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1. Introduction

The explicit study of dependences and independences among a set of random
variables is easiest for the multivariate Gaussian distribution since there are only
linear relations and no interactive effects. Its key features include preservation of
functional form under marginalization and conditioning and the use of triangular
systems in only main effects to model recursive data generating processes. The
latter in particular are strongly linked to a matrix formulation, itself in turn
connected with the representation of independences by graphs; see for instance
Marchetti and Wermuth (2009).

In the present paper, we give similar results for binary variables that are sym-
metric. Such binary variables may but need not result by median-dichotomizing
continuous variables. We denote the two equally likely levels by −1 and 1, so
that all variables are standardized to have marginally zero mean and unit vari-
ance. Then we give linear representations of probabilities involving parameters
of which some can be interpreted as covariances and equivalently as correlations
and others as linear regression coefficients. A strong parallel with Gaussian
theory is established and used to compare different types of graphical Markov
models, including seemingly unrelated regression in binary variables.

Two related approaches in logarithms of probabilities are studied briefly. For
three variables, but not for more, the linear in probability representation is
equivalent to a joint log linear model and to a logit triangular version. It is
shown also that when all pairs of variables are equally correlated, the linear
representation is remarkably close to that formed by median dichotomy of a
latent multivariate Gaussian distribution.

Whenever measurement tools are questionnaires, median-dichotomized vari-
ables are widely used. Especially for visual analogue scales, the resulting sym-
metric binary variables often lead to appropriate data summaries. Symmetric
binary variables may also result by design, for instance, when in medical studies
controls are matched to an equal number of cases. But, since linear triangular
systems of main effects for symmetric binary variables appear to have not been
studied before, they are so far also absent in applications of graphical Markov
models, see for instance Green, Hjort and Richardson (2003), and of discrete
variable models; see e.g. Bergsma, Croon and Hagenaars (2009).
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2. A linear triangular system for symmetric binary variables

2.1. Definition and background

We consider p binary variables As, s = 1, . . . , p. Variable As has two equally
probable levels as, coded as 1 for success and −1 for failure. For up to four
variables, we sometimes denote the variables by A = A1, B = A2, C = A3, D =
A4 and the levels, respectively, by i, j, k, l.

Joint and conditional probabilities are written in a condensed form, for in-
stance for variables A, B, C

πijk = Pr(A = i, B = j, C = k), πi|jk = πijk/
∑

i πijk.

Sometimes, the notation is supplemented by superscripts indicating which vari-
ables correspond to the given levels, such as in

πABC
111 = Pr(A = 1, B = 1, C = 1), π

B|CD
1|11 = Pr(B = 1|C = 1, D = 1).

The linear triangular system of exclusively main effects in four variables is

π
A1|A2A3A4

i|jkl = 1
2{1 + i(η12j + η13k + η14l)}

π
A2|A3A4

j|kl = 1
2{1 + j(η23k + η24l)} (2.1)

π
A3|A4

k|l = 1
2
{1 + k(η34l)}

πA4

l = 1
2 ,

where, with ρst denoting the correlation coefficient of As, At for s < t, with P

the correlation matrix and with r(s) = {s + 1, . . . , p},

η34 = ρ34

(η23 η24) = (ρ23 ρ24)P
−1
r(2),r(2)

(2.2)

(η12 η13 η14) = (ρ12 ρ13 ρ14)P
−1
r(1),r(1).

This form of the η’s as linear regression coefficients in a conventional sense
generalizes directly to p variables and stems from the close connection for binary
variables between probabilities and expectations. For example, on multiplying
the first equation in (2.1) by i, using i2 = 1, and summing over i

E(A1 | A2 = j, A3 = k, A4 = l) = η12j + η13k + η14l.

The joint distribution of the four variables has from (2.1) the form

πA1A2A3A4

ijkl = 1
16

(1+ρ12ij+ρ13ik+ρ14il+ρ23jk+ρ24jl+ρ34kl+η1234ijkl), (2.3)

with
η1234 = (η12 η13 η14)(ρ34 ρ24 ρ23)

T. (2.4)
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After multiplying (2.3) for instance by ij and summing over i, j, k, l, the corre-
lation coefficient of A1, A2 results as

E (A1A2) = (πA1A2

11 + πA1A2

−1−1) − (πA1A2

−11 + πA1A2

1−1 ) = ρ12. (2.5)

In Appendix A, equations (2.3) and (2.4) are derived from (2.1) by multiply-
ing the conditional probabilities in a way that generalizes to p variables. Given
the joint probabilities, the parameters of the joint distribution may be com-
puted by an effect expansion of πA1,...,Ap , a vector of the joint probabilities; see
Appendix B.

Joint distributions generated via linear triangular systems of main effects for
symmetric binary variables relate for p ≥ 4 to the Bahadur expansion (1961)
of general densities as given by Streitberg (1990), who proved existence and
uniqueness without reference to any stepwise generating processes.

Here, we see that these parameters relate also directly to the triangular de-
composition of the concentration matrix, which is for variables standardized to
have zero means and unit variances, the inverse of the correlation matrix P.
This triangular decomposition is denoted here by (H, ∆−1) and gives

P−1 = HT∆−1H,

where H is a unit upper-triangular matrix, which has ones along the diagonal
and zero entries below the diagonal, and ∆ is a diagonal matrix with linear
regression variances along the diagonal. The decomposition exists for every pos-
itive definite P and is unique for a given complete ordering (1, . . . , p).

In particular, for the linear triangular systems treated here

Hst = −ηst, Hs,r(s) = −Ps,r(s)P
−1
r(s),r(s) for s < t ∈ {1, . . . , p}, (2.6)

and for four variables, the diagonal elements of ∆ are δ44 = 1, δ33 = 1 − ρ2
34,

δ22 = 1 − (η23 η24)(ρ23 ρ34)
T, δ11 = 1 − (η12 η13 η14)(ρ12 ρ13, ρ14)

T.

For p > 2, the δss are not the conditional variances of the binary variables,
var(As|Ar(s)), but their expected values with respect to Ar(s).

For p symmetric binary variables, the triangular system in linear main effect
parameters defines the joint distribution as a product of the univariate condi-

tional probabilities, where π
Ap

1 = 1
2

and

π
As|Ar(s)

as|ar(s)
= 1

2(1 + as{as+1ηs,s+1 + · · ·+ apηsp}), (2.7)

with (ηs,s+1, . . . , ηsp) = −Hs,r(s) as in (2.6) and

E (As|Ar(s)) = as+1ηs,s+1 + · · ·+ apηsp

var(As|Ar(s)) = 1 − (as+1ηs,s+1 + · · ·+ apηsp)
2.

The main effects, ηst for t > s, and the conditional expectations are fully deter-
mined by the marginal correlations via the triangular decomposition of P−1.
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The triangular decomposition of a concentration matrix may be obtained
as a byproduct when applying the operator of partial inversion (Wermuth,
Wiedenbeck and Cox, 2006) repeatedly to the covariance matrix or, for stan-
dardized variables, to the correlation matrix. If (a, b) denotes any ordered split
of {1, 2, . . .p}, and e.g. Pab = (P)a,b, then

invb P =

(

Paa|b PabP
−1
bb

∼ P−1
bb

)

, Paa|b = Pab −PabP
−1
bb Pba,

where ∼ denotes entries which are symmetric up to the sign.
Linear triangular systems for continuous responses have been studied in

econometrics under the name of linear recursive equations with uncorrelated
residuals; see Goldberger (1964) and in genetics as path analysis models; see
Wright (1934). In that context, the regression coefficients have been called least-
squares regression coefficients in the population; see Cramèr (1946), p. 302. To
cover path analysis and similar models for general types of densities, the name
triangular system was introduced; see Wermuth and Cox (2004).

For general types of binary variables, the models most closely analogous to
path analysis are triangular systems of logit regressions; see Goodman (1973)
and here Section 3. The vanishing of a logit regression coefficient indicates always
conditional independence given the remaining directly explanatory variables;
see also Fienberg (2007). It is in the special case of symmetric binary variables
considered here, that the vanishing of a main effect in probabilities in (2.7)
coincides with the vanishing of a corresponding logit regression coefficient.

The symmetry of the binary variables leads to missing odd-order terms in the
effect expansion of πA1,...,Ap . The presence of only even-order moments is also
a feature of joint Gaussian distributions so that Gaussian probabilities, such as
all variables being jointly positive, are well approximated by the corresponding
probabilities for the binary variables; see Section 4.

By the relation of the linear main effects to the triangular decomposition of
the correlation matrix, independence constraints on the joint probability dis-
tribution generated by a linear triangular system (2.7) in symmetric binary
variables have similar implications as in a joint Gaussian distributions. For in-
stance for three disjoint subsets a, b, c of {1, . . . , p}, the conditional independence
Aa ⊥⊥ Ab|Ac, often written compactly as a ⊥⊥ b|c, imposes the following constraint
on the correlation matrix. The submatrix Pab is replaced by P∗

ab, where

P∗
ab = PacP

−1
cc Pcb, (2.8)

all other entries are left unchanged. This is a unique modification of P which
maximizes the determinant; see Dempster (1972). The effect of this modification
of a correlation matrix is that P∗

ab|c = 0. For p variables having a multivariate

Gaussian distribution, this is known to be equivalent to a ⊥⊥ b|c. For joint distri-
butions of four or more symmetric binary variables generated as in (2.7), it is
only a necessary condition for a ⊥⊥ b|c; see Appendix C.

In the linear triangular systems (2.7), mutual conditional independence is
captured by zero parameters of this stepwise generating process while marginal
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mutual independence is reflected in sets of zero parameters of the joint distri-
bution. For p = 4, for instance A1 ⊥⊥ A2 ⊥⊥ A3|A4 holds if 0 = η12 = η13 = η23

and A2 ⊥⊥ A3 ⊥⊥ A4 holds if 0 = ρ23 = ρ24 = ρ34. Likelihood ratio tests apply
just as for general categorical variables, but maximum-likelihood estimation is
often simpler than for general binary variables. These features makes the fam-
ily attractive for illustrating basic distinctions and similarities between various
types of graphical Markov models, as studied for discrete variables by Wermuth
(1976), Darroch, Lauritzen and Speed (1980), Wermuth and Cox (2004), Drton
(2009), Marchetti and Lupparelli (2009); see Section 5.

2.2. Some basic properties

Streitberg (1999) stresses that estimation in constrained Bahadur expansions
is undeveloped and that a truncated Bahadur expansion may be negative. The
closed form (2.4) of the four-factor interaction term makes the first statement
transparent for joint distributions generated by (2.7).

A linear four-factor effect can be zero if and only if some of the marginal
or conditional linear regression coefficients are zero as well. For instance, when
η12 = 0 in (2.1), and all other parameters in this process generating the joint
distribution are nonzero, then the linear four-factor effect does not vanish unless
0 = ρ23 = ρ24 or η14ρ23 = −η13ρ24.

Marginal independences may be implied by independence constraints on
(2.7), or result by parametric cancellations, which are very special parametric
constellations, for instance 0 = ρ23 if η23 = −η24ρ34; see Appendix A. For ex-
amples of parametric cancellations in joint Gaussian distributions see Wermuth
and Cox (1998).

An important feature of (2.7) is that the symmetry in all margins, 1
2 = π1 =

π−1, carries over to the joint probabilities, so that for instance for p = 4

π1111 = π−1−1−1−1, π−1111 = π1−1−1−1, . . . , π−1−1−11 = π111−1.

That is, the probabilities of any given pattern of level combinations and that of
the reversed pattern are the same.

For p ≥ 4, every marginal trivariate distribution of (2.7) is of the same form
as the joint probability πBCD

jkl in (2.1), that is

πBCD
jkl = 1

8(1 + ρ23jk + ρ24jl + ρ34kl). (2.9)

Such distributions have in general four distinct probabilities, since

π111 = π−1−1−1, π−111 = π1−1−1, π1−11 = π−11−1, π−1−11 = π11−1.

Sets of marginal correlations that give valid trivariate distributions (2.9) sat-
isfy

ρ23 + ρ24 + ρ34 ≥ −1, ρ23 − ρ24 − ρ34 ≥ −1,

−ρ23 + ρ24 − ρ34 ≥ −1, −ρ23 − ρ24 + ρ34 ≥ −1
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Fig 1. a) The simplex of sets of correlations for a valid density of B,C, D; b) curved bound-
aries for correlations satisfying just positive-definiteness of P; c) surface of points excluded
when requesting absence of parametric cancellation for pair (C, D).

so that they belong to the simplex of Figure 1a), defined by the convex hull of
the points V1 = (1,−1,−1), V2 = (1, 1, 1), V3 = (−1,−1, 1), V4 = (−1, 1,−1).
Within the curved boundaries of Figure 1b) are sets of correlations constrained
only by the positive definiteness of the 3 × 3 correlation matrix. The maximal
Euclidean distance of these boundaries to the simplex is 1/

√
12. Figure 1c) shows

the surface obtained by avoiding parametric cancellation for pair (C, D) in the
distribution of B, C, D generated by (2.1) with nonvanishing η23, η24, ρ34. That
is, when ρ34 = ρ23ρ24 were to be explicitly excluded.

With only linear two-factor effects in (2.9), there is in this special trivariate
family of symmetric binary variables no additive interaction as defined for three-
dimensional contingency tables by Lazarsfeld (1961), or Lancaster (1969); see
also Streitberg (1990).

In fact, it also has no multiplicative interaction. To see this, we look at
odds for success, say level 1 of variable A2, compared to failure given its two

explanatory variables A3, A4, denoted by odsA2|kl = π
A2|A3A4

1|kl /π
A2|A3A4

−1|kl . There

are two odds reversals in (2.9) with

odsA2|11 = 1/odsA2|−1,−1, odsA2|−11 = 1/odsA2|1−1.

Therefore, the conditional odds ratios of success to failure, abbreviated here by
odr, coincide at the two levels of the third variable, where

odr(A2A3|A4 = l) =
π11lπ−1−1l

π−11lπ1−1l
= odsA2|1l/odsA2|−1l.

Equal odds-ratios at both levels of A4 are equivalent to a zero three-factor effect
in logπA2A3A4

jkl ; the 23 table is said to be without a multiplicative interaction. If
these two odds-ratios are in addition equal to one then 2 ⊥⊥ 3|4

Multiplicative interaction was defined for three-dimensional contingency ta-
bles by Bartlett (1935) and extended later for measuring associations in general
log-linear models; see for instance Fienberg (2007).
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For general trivariate log-linear models, expected counts have been defined as
mijk = nπijk, where n =

∑

nijk is the total number of observed counts. For such
log-linear models without a multiplicative interaction, maximum-likelihood esti-
mates are obtained by equating the three marginal two-way tables of mijk to the
three marginal two-way tables of nijk; see Birch (1963). An iterative algorithm
is needed to solve the equations. One such algorithm is iterative proportional
fitting, for which Darroch and Ratcliff (1972) proved convergence.

By contrast, for symmetric binary variables, closed form estimates are avail-
able. The set of minimal sufficient statistics for model (2.9) consists of observed
sums of counts, sums for two successes and two failures, and sums for the mix-
ture of success and failure

nAsAt

11 + nAsAt

−1−1, nAsAt

−11 + nAsAt

1−1 .

These lead to closed form maximum-likelihood estimates of ρst, in terms of
differences of the cross sums

ρ̂st = {(nAsAt

11 + nAsAt

−1−1) − (nAsAt

−11 + nAsAt

1−1 )}/n, (2.10)

and to closed form estimates of the marginal odds-ratios by the one-to-one
relations

odr(AsAt) = {(1 + ρst)/(1 − ρst)}
2, ρst = tanh{ 1

4
log odr(AsAt)}. (2.11)

For p > 3, the method of moments yields with (2.10) and (2.5) all elements of
an unconstrained correlation matrix of the binary variables. In this paper we
shall not discuss inference for models with independence constraints. Instead,
we describe and compare examples of models in different types of model classes.

Equal odds-ratios for any variable pair, at the fixed level combinations of all
remaining variables, is equivalent for this variable pair having zero parameters
of all orders higher than two in the log-linear model for A1, . . . , Ap. Log-linear
models with this property satisfied for all variable pairs have been studied and
named binary quadratic exponential distributions by Cox and Wermuth (1994).

Such joint distributions are in general determined by sets of full two-way
marginal tables and, for the subclass of symmetric binary variables considered
here, by the sets of cross sums defining also the correlation coefficients; see (2.5).
Nevertheless for p > 3, these distributions are in general different from those
generated by a linear triangular system (2.7) as well as from those generated by
a logit triangular system; see the next section.

3. A logit triangular system for symmetric binary variables

A logit is the logarithm of the odds, for instance,

logitπ
A3|A4

1|l = log odsA3|l, logitπ
A2|A3A4

1|kl = log odsA2|kl.
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The logit triangular system of main effects in four symmetric binary variables
is

logitπ
A1|A2A3A4

1|jkl = θ12j + θ13k + θ14l

logitπ
A2|A3A4

1|kl = θ23k + θ24l (3.1)

logitπ
A3|A4

1|l = θ34 l

logitπA4
1 = 0,

where

exp(θ34) = 1
2odr(A3A4), exp(θ2s) = 1

2odr(A2As|At = at) for s 6= t ∈ r(2),

exp(θ1s) = 1
2odr(A1As|At = at, Au = au) for s 6= t 6= u ∈ r(1).

After exponentiating, each given logit equation can be solved for the correspond-
ing probabilities of success and of failure.

For symmetric binary variables, the trivariate marginal distributions coincide
for the logit triangular system and for the linear triangular system of only main
effects, since they have no additive and no multiplicative interaction; see the
discussion of (2.9). For p > 3, the joint distributions generated by (3.1) will
typically contain higher than two-factor effects of even order which differ from
those generated by (2.1).

It can however be shown that for up to four variables, families of joint dis-
tributions can be obtained with (3.1) which are quadratic exponential and lead
to an equal correlation matrix P. The following vector of probabilities, gives an
example for ρ = 0.833̄ and p = 4,

(πA1A2A3A4)T =(81 3 3 1 3 1 1 3 3 1 1 3 1 3 3 81)/192.

These distributions introduce six non-vanishing two-factor effects and one
four-factor effect in the linear expansion of πA1...A4 . For instance, the four-
factor terms obtained for πA1A2A3A4

ijkl from the linear triangular system, (2.1)
as given in (4.3) below, and from the logit triangular system (3.1) are for
equal correlation ρ = 0.555̄, 0.833̄, 0.963, respectively, 0.44, 0.78, 0.95. and
0.41, 0.75, 0.94. Thus, the joint quadrivariate distributions differ, but it would
take large numbers of observations to discriminate between them in any given
set of data.

In this paper, we explore properties of the linear triangular system (2.7). In
the next section, we give its relation to a standardized joint Gaussian distribu-
tion having equal correlations.

4. Orthant probabilities

Attempts to approximate the Gaussian multivariate integral have a long tradi-
tion; see for instance Schläfli (1858), Sheppard (1898), Moran (1956), McFadden
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(1955, 1956), Cheng (1969). For a more recent overview see Johnson, Kotz and
Balakrishnan (1995). An orthant probability is the probability that all variables
are simultaneously positive.

Sheppard (1898) derived the bivariate orthant probability in closed form, Mc-
Fadden (1955) extended the result to trivariate distributions and Cheng (1969)
used the di-logarithm for the quadrivariate distribution. From (2.7), bivariate
and trivariate probability distributions for symmetric binary variables having
equal correlation ρ are

πAs ,At

as,at
= 1

4(1 + ρ asat), πijk = 1
8{1 + ρi (j + k) + ρjk}, (4.1)

and from Sheppard’s result, the correlation coefficient ρ∗ in an underlying Gaus-
sian distribution satisfies ρ∗ = sin(1

2π ρ), where π is Archimedes’ constant. In
this context, each symmetric binary variable results by dichotomizing a corre-
sponding standardized Gaussian variable at its median.

For equally correlated binary variables, the effect parameters η in (2.7) reduce
to

ηst = ρ/(1 + {d − 1}ρ), for all t ∈ r(s),

where d denotes the number of explanatory variables, i.e. is the dimension of
r(s). For p = 4, 6, 8, the even order interaction terms in the joint probabilities
generated by the linear triangular system of only main effects are, respectively,

3 η12 η34, 15 η12 η34 η56, 105 η12 η34 η56 η78, (4.2)

where indices of the η’s do not overlap.
Table 1 compares the binary orthant probabilities for a few selected values

of odds being in favor of success with orthant probabilities of standardized and
equally correlated Gaussian variables, as obtained with Matlab. Displayed are
on top, the selected value of the odds, odsAas|1

, the bivariate orthant probability,
π11, the correlations of the binary variables, ρ, and the corresponding correla-
tion ρ∗ of the Gaussian variables. For each p, there are two rows of orthant
probabilities, the first row contains values given by Matlab for the Gaussian
distribution and the second row contains values given by (4.4) for the linear
triangular system. For p = 4, the former coincide with Cheng’s evaluations in
terms of di-logarithms up to the 6th decimal place. As it turned out, the two
types of orthant probabilities agree at least up to the third decimal place, also
for all other values of ρ > 0 not shown in the Table 1.

The p’th order interaction introduced for even p, and denoted by intp, may
be expressed directly in terms of ρ as

intp = ρp/2 ∏

1
2
(p−2)

h=0 (1 + 2h)/(1 + 2hρ). (4.3)
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Table 1

Orthant probabilities for standardized, equally correlated Gaussian variables and for
symmetric binary variables generated by a triangular system of main effects

odsAas|1
101/99 21/19 11/7 3 8 19 39

π11 0.2525 0.2625 0.3056 0.3750 0.4444 0.4750 0.4875

ρ for Lintri 0.0100 0.0500 0.2222̄ 0.5000 0.7777̄ 0.9000 0.9500
ρ∗ for Gauss 0.0157 0.0785 0.3420 0.7071 0.9397 0.9877 0.9969

p = 4, Gauss 0.0663 0.0817 0.1522 0.2734 0.3986 0.4542 0.4771
Lintri 0.0663 0.0817 0.1522 0.2736 0.3987 0.4544 0.4772

p = 5, Gauss 0.0344 0.0479 0.1167 0.2461 0.3853 0.4481 0.4740
Lintri 0.0344 0.0479 0.1167 0.2463 0.3858 0.4485 0.4742

p = 6, Gauss 0.0180 0.0290 0.0927 0.2256 0.3749 0.4432 0.4715
Lintri 0.0180 0.0289 0.0926 0.2259 0.3757 0.4439 0.4720

p = 7, Gauss 0.0095 0.0180 0.0756 0.2095 0.3663 0.4392 0.4695
Lintri 0.0095 0.0179 0.0756 0.2100 0.3676 0.4402 0.4701

p = 8, Gauss 0.0051 0.0114 0.0630 0.1964 0.3592 0.4358 0.4677
Lintri 0.0051 0.0114 0.0629 0.1970 0.3609 0.4371 0.4685

p = 9, Gauss 0.0027 0.0074 0.0534 0.1855 0.3530 0.4328 0.4662
Lintri 0.0027 0.0074 0.0533 0.1862 0.3551 0.4343 0.4671

p = 10, Gauss 0.0015 0.0049 0.0459 0.1762 0.3475 0.4301 0.4648
Lintri 0.0015 0.0049 0.0457 0.1771 0.3500 0.4319 0.4659

Similarly, the corresponding orthant probabilities for p ≥ 3 are

π
A1...Ap

1...1 =



















2−p
∏p−2

h=
1
2
(p−2)

{1 + (1 + 2h)ρ}/
∏

1
2
(p−2)

h=0 (1 + 2hρ) if p is even,

2−p
∏p−2

h=
1
2(p−1)

{1 + (1 + 2h)ρ}/
∏

1
2 (p−3)

h=0 (1 + 2hρ) if p is odd,

(4.4)
or, more explicitly, for instance for p = 4, 5, respectively,

π1111 = 2−4(1 + 3ρ)(1 + 5ρ)/(1 + 2ρ), π11111 = 2−5(1 + 5ρ)(1 + 7ρ)/(1 + 2ρ).

5. Types of graphical Markov models

We now discuss distributions for symmetric binary variables generated by trian-
gular systems (2.7) with independence constraints. The resulting graphs consist
of nodes and of edges that couple pairs of nodes. Edges may be arrows, dashed
lines or full lines. A path is a sequence of nodes for which the consecutive nodes
are distinct and are coupled by an edge. Every path of three or more nodes
has some inner nodes. These are nodes of the path that differ from the path
endpoints. A path of at least two arrows is direction-preserving if every inner
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node has an incoming and and outgoing arrow. A directed graph is acyclic if
it is impossible to return to the same node following any direction-preserving
path.

We assume in this section that edges present in the graph correspond to
positive correlations and that a positive probability is associated with each level
combination.

5.1. Markov chains, covariance and concentration graph models

A Markov chain is a special type of a triangular system represented by a directed
graph consisting of a single direction-preserving path which is a special case of
a directed acyclic graph. For four variables, such a path is

1≺ 2≺ 3≺ 4.

In the linear triangular system (2.1), the constraints are then 0 = η13 = η14 =
η24, or, equivalently, 1 ⊥⊥ 34|2 and 2 ⊥⊥ 4|3. Every quadrivariate joint density with
the above Markov chain structure factorizes. The factorization is, written in a
condensed notation in terms of the nodes in the graph,

f1234 = f1|2 f2|3 f3|4 f4.

This chain is represented in the correlation matrix of the symmetric binary
variables by a particular pattern of correlations, which is the same pattern as
for the corresponding Gaussian Markov chain. The diagonal matrix ∆ is defined
by δss = 1− ρ2

s,s+1 for s = 1, . . . , 4. The matrix of regression coefficients H and

the correlation matrix P = H−1∆H−T are

H =









1 −ρ12 0 0
1 −ρ23 0

1 −ρ34

0 1









, P =









1 ρ12 ρ12 ρ23 ρ12 ρ23 ρ34

. 1 ρ23 ρ23 ρ34

. . 1 ρ34

. . . 1









.

where the dots indicate symmetric entries. Thus, the correlations corresponding
to edges present in the generating directed graph match the simple correlations
in P; the three other correlations for pairs (1,3), (1,4), (2,4) are products of
correlations along the path and therefore called sometimes merely induced or
spurious correlations.

The zero constraints on the regression coefficients turn here into more com-
plex constraints on the correlation matrix. The Markov chain for (A1, A2, A3, A4)
has as conditioning set r(s) for variable As, s = 1, 2, 3, while the correlation ma-
trix contains the bivariate association for each variable pair. For each missing
arrow, the bivariate association results by ignoring some variables in the condi-
tioning sets defined implicitly by the generating Markov chain. Therefore, the
more complex structure in P is sometimes said to represent a case of under-
conditioning. Each of the induced correlations may be computed, for popula-
tion values as well as for maximum-likelihood estimates, by using Wright’s rules
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for tracing paths whenever the directed graph is decomposable, i.e. contains
no sink-oriented V-configuration; Wermuth (1980). Such a V-configuration is a
subgraph of three nodes, ◦, having two arrows as edges and both arrows point
to the common neighbor: ◦ ≻◦ ≺ ◦; see also Section 5.6.

In a covariance graph, that is an undirected graph with edges shown by
dashed lines, each edge corresponds to a marginal, pairwise association. Thus,
for instance a missing edge for pair (1,3) means 1 ⊥⊥ 3. For symmetric binary
variables generated by (2.1), a covariance graph model is specified by zero con-
straints on marginal correlations. In general, some additional latent variables are
needed to generate a covariance chain model recursively with univariate condi-
tional distributions having exclusively zero parameter constraints; see Pearl and
Wermuth (1994), Holland and Rosenbaum (1986).

For the above Markov chain, none of the marginal pairwise associations van-
ishes, so that the covariance graph induced by the generating directed graph
for the given four variables is complete, i.e. it has no missing edges. In such
cases, it cannot be recognized from the two graphs alone that the two model
specifications captured by the matrices (H, ∆−1) and P are Markov equivalent,
i.e. that they define the same independence structure.

By contrast, in a concentration graph, that is an undirected graph with edges
shown by full lines, each edge corresponds to a conditional association given all
of the remaining variables. Thus, for instance a missing edge for pair (1,3) in a
concentration graph of four nodes means 1 ⊥⊥ 3|24. For discrete variables, these
conditional associations and independences are reflected in the parameters of
log-linear models for the joint probabilities, that is in the effect expansion of
log πA1...Ap ; see Appendix B. There is conditional independence of a variable
pair if the log-linear two-factor effect and all higher-order effects of this pair
vanish and this happens if and only if the conditional odds-ratios of this pair
equal one at all level combinations of the remaining variables. For a Markov
chain, the induced concentration graph has the same edge set as the Markov
chain graph; see the following section.

For the symmetric binary variables discussed here, zero partial correlation
coefficients given all remaining variables are necessary for the corresponding
conditional independence statement to hold. But starting with four variables,
zero partial correlations are no longer sufficient, see Appendix C. Partial corre-
lations given all remaining may be computed from P−1 with elements ρst, see
for instance Cox and Wermuth (1996), p. 69, as

ρst|{1,...,p}\{st} = −ρst/
√

ρssρtt.

5.2. A concentration chain

For the Markov chain given in the previous section, the order of the variables was
specified implicitly as (1,2,3,4) and all independences implied by the directed
graph can be derived from the two defining statements 1 ⊥⊥ 34|2 and 2 ⊥⊥ 4|3. For
instance, the statements 1 ⊥⊥ 3|24 and 1 ⊥⊥ 4|23 and 2 ⊥⊥ 4|13 are implied. These



Wermuth, Marchetti and Cox/Triangular systems for symmetric binary variables 945

three independences happen to define a concentration graph in four nodes and
edges present for pairs (1,2), (2,3) and (3,4), that is the undirected graph

1 2 3 4.

Conversely, given the defining independences of this concentration graph, all
independence statements implied by the Markov chain graph of Section 5.1 can
be derived, so that the two graphs are Markov equivalent.

For the symmetric binary variables, each edge present in the above con-
centration graph corresponds to a two-factor term in the effect expansion of
log πA1A2A3A4 , where

πA1A2A3A4

ijkl = 1
16
{(1 + ρ12ij)(1 + ρ23jk)(1 + ρ34kl)}.

Then log f1234 is the sum of terms involving at most two variables. Therefore,
the joint log-linear model has no higher-order than two-factor effects and no
two-factor effects for all pairs of missing edges in the generating directed graph;
see also (2.11).

In general, the characterizing feature for Markov equivalence of a directed
acyclic graph and a concentration graph is that the generating directed graph
is decomposable; see Frydenberg (1990). Thus, from a decomposable directed
graph the corresponding induced concentration graph is obtained by replacing
each arrow by a full line. In such a case, the concentration graph induced by
the generating directed acyclic graph has an unchanged edge set and the two
graphs are then said to have the same skeleton.

5.3. A covariance chain

A covariance chain for the ordered pairs (1, 2), (2, 3), (3, 4) has covariance graph

1 2 3 4,

where each edge present corresponds to the bivariate association of the corre-
sponding variable pair. This is another undirected graph with the same skeleton
as those discussed in the previous two graphs, but it represents a quite different
independence structure.

For the linear triangular system (2.1), the correlation matrix P to this graph
and the matrix H of the triangular decomposition of P−1 are

P =









1 ρ12 0 0
. 1 ρ23 0
. . 1 ρ34

. . . 1









, H =









1 −η12 η12 η23 −η12 η23 η34

1 −η23 η23 η34

1 −η34

0 1









.

Here, the dependences that do not correspond to edges present in the covari-
ance graph, are products of the coefficients corresponding to the non-vanishing
marginal correlations. Thus, simple zero constraints on the marginal correla-
tions in P, correspond to more complex nonlinear constraints in H. Therefore,
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the more complex structure in H which may be regarded as a case of over-
conditioning.

The directed graph in the induced by the covariance chain is complete, since
none of the induced conditional dependences of As on Ar(s) vanishes. Therefore,
there is also no simplifying factorization of the joint density and there is no direct
representation of the structure in the log-linear formulation of πA1A2A3A4

ijkl that is

in the effect expansion of logπA1A2A3A4 . The two model specifications captured
by the matrices (H, ∆−1) and P are again Markov equivalent but this is not
reflected in the corresponding two graphs alone, that is in the complete directed
graph corresponding to H, and in the covariance graph corresponding to P,
which is here a chain of dashed lines.

For a joint Gaussian distribution, maximum-likelihood estimation for a chain
of covariances and for a chain of concentrations are quite different, even though
both are defined without reference to an order of the variables; see Wermuth,
Cox and Marchetti (2006) or Cox (2006), pp. 120-124. For binary variables,
estimation under a covariance graph model maybe is less complex than in the
Gaussian case; see Drton (2009). This holds also for symmetric binary variables
when the multivariate regression is equivalent to a covariance chain; see the next
section.

5.4. Seemingly unrelated regression and multivariate regression

chains

A seemingly unrelated regression model, Zellner (1962), that is Markov equiva-
lent to the covariance chain in the previous section has the graph

1 ≻2 3≺ 4,

where variables A1, A4 are independent explanatory variables for the joint re-
sponses A2, A3. With a set of arrows pointing to a set of nodes that may be
connected by undirected edges, one speaks sometimes of a joint response graph.

The graph implies in particular that A1, A4 are both generated before A2, A3.
We therefore reordered the correlation matrix accordingly, i.e. as (2, 3, 1, 4), to
give P′. This matrix and the changes that the result after partial inversion with
respect to the explanatory variables are

P′ =









1 ρ23 0 ρ12

. 1 ρ34 0

. . 1 0

. . . 1









, inv3,4 P′ =









1 − ρ2
12 ρ23 0 ρ12

. 1 − ρ2
34 ρ34 0

∼ ∼ 1 0
∼ ∼ . 1









.

By using the more explicit Yule-Cochran notation, where for instance β1|2.3

denotes the coefficient of variable A2 in linear regression of variable A1 on A2, A3,
we obtain from equations (A.1), (A.2) and (A.4) in Appendix A that the nonzero
two-factor terms in πA2A3|A1A4 reduce to β2|1.3 = ρ12, β3|4.1 = ρ34, η23+η24ρ13+
η21ρ34 = ρ23 and η21η34 + η24η12 = ρ12ρ34 to give

π
A2A3|A1A4

jk|il = 1
4 (1 + ρ12ij + ρ23jk + ρ34jl + ρ12ρ34ijkl).
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The next, more complex seemingly unrelated regression model has associated
explanatory variables and a joint response graph reflecting 1 ⊥⊥ 4|3 and 2 ⊥⊥ 3|4

1

2

3

4

In the model for this graph, the conditional distribution of the responses
(1, 2) given (3, 4) has in general the same form as for independent explanatory
variables, the case described first in this subsection.

Whenever a conditional distribution is complemented by a marginal one in
such a way that its parameters do not depend on those of the margin, then the
joint density gives independently varying factors, say f12|34, f34, where

f1234 = f12|34f34,

and for maximum-likelihood estimation, each of the two parts of the likelihood
can then be maximized separately. This is typically achieved, whenever the
only types of constraint are independence statements captured by missing edges
in graphs. By contrast, this is for instance not possible, when a parametric
cancellation, such as illustrated in Figure 1, were to be explicitly excluded or
when regression coefficients in different equations had to take on equal values.

The conditional probabilities are here

π
A1A2|A3A3

ij|kl = 1
4
(1 + ρ12ij + ρ13ik + ρ24jl + ρ13ρ24ijkl),

so that the joint distribution is given by

πA1A2A3A4

ijkl = 1
16

π
A1A2|A3A4

ij|kl
(1 + ρ34kl).

There is only a small step from this last example to the formulation of mul-
tivariate regressions chains and the corresponding graphs; see Wermuth and
Cox (2004). Let for example {1, . . . , p} = (a, b, c, d) be an ordered partition of
{1, . . . , p} and suppose that

f = fa|bcdfb|cdfc|dfd.

There results a factorisation corresponding to the joint or single responses within
the chain components a, b, c, d. Each response has as potential explanatory vari-
ables all variables in the past but not those within the same chain component
nor any variable in the future. Among several responses on equal standing, i.e.
variables within the same chain component, the pairwise associations are mod-
elled given the past.

The corresponding chain graph has within each chain component a covari-
ance graph of dashed lines and represents between chain components regressions
given the past by arrows. For general discrete variables, Marchetti and Luppar-
elli (2009) show how such a multivariate regression chain is formulated as a
multivariate logistic model of Glonek and McCullagh (1995). They also prove
equivalence of its independence structure to the one obtained with a more com-
plex formulation that depends only on the graph; see for instance Drton (2009).
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5.5. Mutual conditional independence of A1, A2, A3, A4 given A5

For mutually independent discrete variables given a latent variable, it is known
that no constraints are implied on an observed contingency table provided that
the latent variable has a sufficiently large number of levels; see Holland and
Rosenbaum (1986). However, if all variables including the latent variable are
binary then the correlation matrix of the observed variables satisfies the tetrad
conditions, just like in the Gaussian case; see e.g. equation (21) of Wermuth
(1976).

But, unless the joint probabilities even of symmetric binary variables may
be generated via a triangular system of only main effects (2.7), a partial corre-
lation coefficient of two binary variables given a third may be zero even if the
three variables are strongly associated; see Wermuth (1998) for an example from
psychological research.

We take here four symmetric binary variables to satisfy mutual conditional
independence given A5 and to have positive correlations with A5. The decom-
posable directed generating graph is

1 2 3 4

5

where each V-configuration of the graph implies conditional independence of
the uncoupled variable pair given A5.

The matrix H and the induced correlation matrix, P = H−1∆H−T, are

P =













1 ρ15ρ25 ρ15 ρ35 ρ15 ρ45 ρ15

. 1 ρ25ρ35 ρ25 ρ45 ρ25

. . 1 ρ35ρ45 ρ35

. . . 1 ρ45

. . . . 1













, H =













1 0 0 0 −ρ15

1 0 0 −ρ25

1 0 −ρ35

1 −ρ45

0 1













,

and δss = 1 − ρ2
s5 for s = 1, . . . , 4.

For instance for the submatrix P{1,2},{3,4}, the tetrad conditions can then be
stated as

ρ13/ρ23 = ρ14/ρ24.

This holds since every marginal correlation of the first four variables is induced
by their correlations with A5 to satisfy ρst|5 = 0 , that is

ρst = ρs5ρt5 for s 6= t ∈ {1, 2, 3, 4}.

5.6. Mutual independence of A2, A3, A4, A5, common response A1

The final example treats mutual marginal independence of four variables. With
the four variables having a common response, the non-decomposable generating
graph is
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1

2 3 4 5

The joint distribution in symmetric binary variables, generated by (2.7), is
in this case defined by an identity matrix for Hr(1),r(1), δss = 1 for s = 2, . . . , 5,

H1,r(1) = (−ρ12 − ρ13 − ρ14 − ρ15), δ11 = 1 −
∑t=5

t=2 ρ2
1t.

If data to this model were analyzed by a log-linear model that is by an effect
expansion of logπA1...A5 , then one would see all variables being associated. The
reason is that for this model, the induced partial correlation for a pair AsAt of
the explanatory variables given all remaining variables is a multiple of ρs1ρt1.

Ignoring the information about which variables are responses and which in-
dependent explanatory variables by treating all variables on equal standing, is
another instance of over-conditioning, that is here of inducing associations by
enlarging the conditioning sets, r(s) of As, for s = 2, 3, 4, 5 given in the gener-
ating process, to include the common response A1.

Thus, as we have seen, independences may lead to simple zero constraints
in one formulation but may appear as more complex constraints in parameter
equivalent but different model formulations. It is therefore in general rarely use-
ful to restrict model fitting and data analysis to one particular class of graphical
Markov models unless there is strong prior knowledge. Also, Markov equivalent
graphs may be most helpful in suggesting possible alternative interpretations of
a given model, but Markov equivalence of two models need not be reflected in
the corresponding graphs. Thus by using only one class graphs to learn about
models, one may overlook some important Markov equivalent models.

The outstanding features of the described linear triangular systems are the
simplicity of the parametrization of different types of independence models for
few variables, the close approximation of the orthant probabilities of equally
correlated Gaussian variables by the corresponding binary orthant probabilities
and the complete reversal of odds for success in two-way margins.

Because of the symmetry in the joint probability distributions it may be
difficult to distinguish for a given small set of data among different types of in-
dependence structure. Moreover the permissible range of association parameters
reduces when the number of variables in the generating process is increasing. It
remains to be seen for which substantive questions these special binary distri-
butions may become attractive. Possibly, complete reversals in odds for success
of some features or events can be expected when in medical case-control studies,
particular genes are present for cases and absent for controls.

Appendix A: Proof of equations (2.3), (2.9)

By noting that a2
s = 1, we have from (2.1)

πA2A3A4

jkl = π
A2|A3A4

j|kl πA3A4

kl = 1
8 (1 + η23jk + η24jl)(1 + ρ34kl)
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= 1
8{1 + (η23 + η24ρ34)jk + (η24 + η23ρ34)jl + ρ34kl}.

and for instance, from a matrix multiplied by its inverse giving the identity
matrix,

η24 + η23ρ34 = (η23 η24)(ρ34 1)T = (ρ23 ρ24)

(

1 ρ34

. 1

)−1

(ρ34 1)T = ρ24.

With η23 + η23η34 = ρ23 obtained similarly, equation (2.9) follows.
The above argument proves also Cochran’s recursion relation for regression

coefficients, Cochran (1938). With the coefficients written in the more explicit
Yule-Cochran notation, where for instance β2|3.4 denotes the coefficient of vari-
able X3 in a linear least-squares regression of variable X2 on X3, X4, one obtains

β2|4 = β2|4.3 + β2|3.4β3|4, (A.1)

here applied to regression coefficients of binary variables, standardized to have
mean zero and unit variance. See Cox and Wermuth (2003), Ma, Xie and Geng
(2006), Cox (2007), Xie, Ma and Geng (2008) for interpretations and conse-
quences of (A.1).

From (2.1) and (A.1), giving η23 = β2|3.4, η24 = β2|4.3,

η14 + η12η24 = β1|4.3, η13 + η12η23 = β1|3.4,

and with π
A1A2|A3A4

ij|kl = π
A1|A2A3A4

i|jkl π
A2|A3A4

j|kl , one obtains

π
A1A2|A3A4

ij|kl = 1
4{1 + β1|3.4ik + β1|4.3il + β2|3.4jk + β2|4.3jl (A.2)

+ (η12 + η13η23 + η14η24)ij + (η13η24 + η14η23)ijkl}.

From




1 ρ23 ρ24

. 1 ρ34

. . 1





−1

(1 ρ23 ρ24)
T = (1 0 0)T, (A.3)

one gets an extension of Cochran’s formula as

η12 + η13ρ23 + η14ρ24 = (η12 η13 η14)(1 ρ23 ρ24)
T = ρ12. (A.4)

Then, from (A.2) with πijkl = π
A1A2|A3A4

ij|kl { 1
4 (1 + ρ34kl)} we have

πijkl = 1
16

[1 + ρ12ij + (β1|3.4 + β1|4.3ρ34)ik + (β1|4.3 + β1|3.4ρ34)il

+ (β2|3.4 + β2|4.3ρ34)jk + (β2|4.3 + β2|3.4ρ34)jl + ρ34kl

+ {η12ρ34 + η13(β2|4.3 + β2|3.4ρ34) + η14(β2|4.3 + β2|3.4ρ34)}ijkl],

and hence, after repeatedly applying Cochran’s recursion relation (A.1), the
claimed form of (2.3).

It is equation (A.3) which extends directly to higher dimensions. This leads
to further generalisations of Cochran’s relation, in addition to (A.4) and hence
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to direct expressions of a marginal correlation in terms weighted sums of η’s and
ρ’s. Products of parameters without overlapping indices are not related in this
way and induce higher-order interactions, such as given in (4.2) for the equal
correlation case. In general, for instance the six-factor interaction contains terms
such as

β1|2.3456β3|4.56β5|6, β1|3.2456β2|4.56β5|6.

Such expressions look complex, but they are readily computed via the effect
parameter expansion of the joint probabilities that are given by the linear tri-
angular system.

Appendix B: Effect parameter expansions

Effect parameter expansions for binary variables are given by Yates’ algorithm
(Yates, 1937), which has been extended to general discrete variables by Good
(1958) using contrast matrices.

Every contrast matrix is the inverse of a corresponding design matrix, Dp,
that can for a 2p table be obtained in terms of a 2× 2 matrix D1 via Kronecker
products, where here for effect coding

D1 =

(

1 1
1 −1

)

, D−1
1 = 1

2
D1, D2 = D1 ⊗D1, D3 = D1 ⊗ D2, . . .

Thus, since the inverse of a matrix of Kronecker products is the Kronecker
product of the inverses

Cp = D−1
p = 2−p Dp.

When writing the 2p probabilities in a column vector πA1,...,Ap such that the
levels of the first variable change fastest, then the levels of the second variable
next and the levels of the p′th variable last, then the effect parameters that
result with Cp πA1,...,Ap are in a lexicographical order in which the overall effect

λ− is followed by the main effect λA1

1 of A1, then (λA2

1 , λA1A2

11 ) is added to
(λ−, λA1

1 ), then (λA3

1 , λA1A3

11 λA2A3

11 , λA1A2A3

111 ) follows the first four terms and
so on, adding at the next step, the additional variable in the superscripts and a
level 1 in the subscripts of each of the previous terms.

Thus, for a vector of joint probabilities with structure given by (2.9), the
linear effect parameter expansion is

(C3 πA1A2A3

ijk )T = 1
8(1 0 0 ρ12 0 ρ13 ρ23 0)

and for the three correlations being nonzero, precisely the entries in position
2,3,5 and 8 are also zero in (C3 logπA1A2A3

ijk )T, the log-linear effect expansion.

For any constant c, the linear effect terms of c πA1A2A3

ijk are multiplied by

c, while the effect parameters of log c πA1A2A3

ijk remain unchanged except that
log c is added to the overall effect. Thus, for comparisons of linear and log-linear
parameters it is sometimes convenient to divide the probability vector by one
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of its probabilities to obtain ones in some entries. For instance, for model (2.9)
with equal correlations, we have with α = π111/π−111 and β = logα

(πA1A2A3 )T/π−111 = (α 1 1 1 1 1 1 α),

log{(πA1A2A3)T/π−111} = (β 0 0 0 0 0 0 β).

so that the log-linear effect expansion becomes 1
4(β 0 0 β 0 β β 0).

Appendix C: A Gaussian and a symmetric binary correlation matrix

Here, an example of a correlation matrix is provided, in which precisely one
independence, 1 ⊥⊥ 2|34, holds whenever it represents the correlation structure
of a joint Gaussian distribution since ρ12|34 = 0 so that ρ∗12 = 0.6173̄ is given by
(2.8) with a = {1}, b = {2}, c = {34}. But as we shall see, when the same matrix
represents the correlation structure of a linear triangular system of symmetric
binary variables, it depends on the order in which the variables are generated,
whether 1 ⊥⊥ 2|34 holds or not.

The following display on the left, shows in the order (1,2,3,4), marginal cor-
relations in the lower half, and partial correlations given the two remaining
variables in the upper half; on the right in the upper half, the upper part of the
matrix H for generating the joint density the order (1,2,3,4) and in the lower
half, the upper part of the matrix H′ for the order (4,3,2,1) but rearranged so
that indices s, t correspond to t, s in the upper half:









1.0000 0 0.2285 0.4180
0.6173̄ 1.00 0.2489 0.4451
0.7000 0.72 1.0000 0.3900
0.7600 0.78 0.8000 1.0000

















1.0000 0 −0.2556 −0.5556
−0.6173̄ 1.0000 −0.2667 −0.5667
−0.4129 −0.4651 1.0000 −0.8000
−0.3145 −0.3496 −0.3282 1.0000









The two joint distributions of the binary variables differ substantially for
the two orders. For (1,2,3,4), the conditional probability vectors πA3|A4 are
generated first, then πA2|A3A4 and last πA1|A2A3A4 while for (4,3,2,1), πA2|A1

comes first, then πA3|A2A1 and πA4|A3A2A1 last. With the following index vector,
the joint probabilities obtained for (4,3,2,1) are arranged to imply the correlation
matrix as it has been used for (1,2,3,4), i.e. the same values in the same order

(1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16).

We get as the first case for the variable order (1,2,3,4)

1000πijk1

levels jk1 of A2, A3, A4

levels of A1 111 −111 1 − 11 −1− 11

i = 1 373.54 33.96 21.12 11.38
i = −1 38.96 3.54 11.38 6.12

odr(A1A2|A3 = k, A4 = 1) 1 1
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and as the second case for the variable order (4,3,2,1), with the probabilities
rearranged to be directly comparable to those obtained for (1,2,3,4),

1000πijk1

levels jk1 of A2, A3, A4

levels of A1 111 −111 1 − 11 −1 − 11

i = 1 378.19 29.31 16.48 16.02
i = −1 34.31 8.19 16.02 1.48

odr(A1A2|A3 = k, A4 = 1) 3.081 0.095

Because of the symmetry of the joint distributions, it is enough to list i, j, k at
level 1 of A4. Since in the second case the conditional odds-ratios odr(A1A2|A3 =
k, A4 = 1) are quite different, there is a substantial four-factor effect in the log-
linear expansion. It is only in the first case that 1 ⊥⊥ 2|34 holds.

In both cases, non-vanishing four-factor terms result in the linear effect ex-
pansion of the probabilities. This illustrates in particular that there may be
a conditional independence in the presence of a linear four-factor effect. The
second case shows with ρ12|34 = 0, that there may be a linear independence
without a corresponding conditional independence statement being satisfied.

Thus, in spite of the strong similarities to standardized, equally correlated
Gaussian distributions, some important properties of Gaussian distributions do
not carry over to the described joint distributions of symmetric binary variables.
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