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Abstract: This paper discusses a class of thresholding-based iterative se-
lection procedures (TISP) for model selection and shrinkage. People have
long before noticed the weakness of the convex l1-constraint (or the soft-
thresholding) in wavelets and have designed many different forms of noncon-
vex penalties to increase model sparsity and accuracy. But for a nonorthog-
onal regression matrix, there is great difficulty in both investigating the
performance in theory and solving the problem in computation. TISP pro-
vides a simple and efficient way to tackle this so that we successfully borrow
the rich results in the orthogonal design to solve the nonconvex penal-
ized regression for a general design matrix. Our starting point is, however,
thresholding rules rather than penalty functions. Indeed, there is a univer-
sal connection between them. But a drawback of the latter is its non-unique
form, and our approach greatly facilitates the computation and the anal-
ysis. In fact, we are able to build the convergence theorem and explore
theoretical properties of the selection and estimation via TISP nonasymp-
totically. More importantly, a novel Hybrid-TISP is proposed based on
hard-thresholding and ridge-thresholding. It provides a fusion between the
lo-penalty and the l2-penalty, and adaptively achieves the right balance be-
tween shrinkage and selection in statistical modeling. In practice, Hybrid-
TISP shows superior performance in test-error and is parsimonious.

AMS 2000 subject classifications: Primary 62J07, 62J05.
Keywords and phrases: Sparsity, nonconvex penalties, thresholding, model
selection & shrinkage, lasso, ridge, SCAD.

Received December 2008.

1. Introduction

Lasso [30] has attracted people’s a lot of attention recently because it provides
an efficient and continuous way for variable selection, thereby achieving a stable
sparse solution. Although in the orthonormal case it is well understood and has
elegant theories [12, 3, 7], its shrinking and thresholding are not direct for a
general regression matrix, and it suffers some problems in both selection and
estimation [39, 8, 37]. There has been a large and rapidly growing body of
literature for the lasso studies over the past few years. The efficient procedures
proposed for solving the lasso include the well known LARS (Efron et al. [13]),
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the homotopy method (Osborne et al. [26]), and a recently re-discovered iterative
algorithm (Fu [17] Daubechies et al., Friedman et al. [16], Wu & Lange [33]).
As for the theoretical aspects of the lasso, we refer to Knight & Fu [23], Zhao
& Yu [37], Donoho et al. [11], Bunea et al. [5], Zhang & Huang [35], etc. for
asymptotic and nonasymptotic results. Various extensions and modifications to
lasso have also been proposed, such as the grouped lasso (Yuan & Lin [34]), the
Dantzig selector (Candes and Tao [9]), the adaptive lasso (Zou [38]), and the
relaxed lasso (Meinshausen & Yu [25]).

This paper aims to improve the naive l;-penalty, by using nonconvex penal-
ties, to achieve an effective and efficient procedure for model selection and
shrinkage. The rest of the paper is organized as follows. Section 2 provides
a mechanism to borrow the rich nonconvex penalties in the orthogonal design
to solve the general problem. From the point of view of thresholding rules, Sec-
tion 3 constructs the thresholding-based iterative selection procedures (TISP)
for model selection and successfully builds the convergence theorem. Section
4 investigates the theoretical properties of the selection and the estimation
via TISPs nonasymptotically. In Section 5, we carry out an empirical study
of TISP design which leads us to a novel Hybrid-TISP proposed based on hard-
thresholding and ridge-thresholding. It provides a fusion between the lp-penalty
and the ly-penalty, and adaptively achieves the right balance between shrinkage
and selection in statistical modeling. In practice, Hybrid-TISP shows superior
performance in both test-error and sparsity. Section 6 gives a real data example.
All technical details are left to the Appendices.

2. Motivation — from orthogonal designs to non-orthogonal designs

We consider the penalized regression problem
1
Hgn5HXB—yH§+P(B;A)(é f(8)), (2.1)

where X = [@1, @2, ..., x,] is the regression matrix, y € R™ is the response vec-
tor, and P(83; \) represents the penalty with A as the regularization parameter.
Here p may be greater than n. In this paper, we assume 3 is sparse, and use
(2.1) for predictive learning. Although predictor error or accuracy is our first
concern, we prefer to obtain a parsimonious model that is more interpretative
in practice and is consistent with Occam’s razor. Usually P is assumed to be
an additive penalty in the sense that P(83;\) is obtained by a univariate P:
P(B;A\) = > P(B;; \). This sparsity problem has wide applications in variable
selection, functional data analysis, graphical modeling, compressed sensing, and
SO on.

If P(B; ) = A||B]|1, then (2.1) is the lasso [30], a basic and popular method
in variable selection. However, although the /;-norm provides the best convex
approximation to the [y-norm and is computationally efficient, the lasso cannot
handle collinearity [39] and may result in inconsistent selection (cf. the irrepre-
sentable conditions [37]) and introduce extra bias in estimation [25].
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On the other hand, if we concentrate on orthogonal designs only, i.e., X7 X =
I, like in wavelets, [; is far from the only choice. There are established theories
and algorithms for various types of (nonconvex) penalties.

Example 1. Hard-penalties.

L P2 = —02/2 4 A|0), if |6] < A
' A2 2,010 > A

2. P(0;\) = \?/2 - Iy, which is in fact the lp-penalty.

3. P(0: ) = M), if [6] < A
ST A2 2, 0 |0 > A

, due to Antoniadis [1].

, due to Fan [14].

It is interesting to note that all three lead to the same estimator obtained by
hard-thresholding.

A, if 0 <A
Example 2. SCAD-penalty. P'(6; \) = ¢ (aX—0)/(a—1), if A <0 < aX

0, if 0 > aA

for & > 0 and a > 2. The default choice of a is 3.7, based on a Bayesian argument
(Fan [3]).

Example 3. Transformed [;-penalty. P(0;\) = \b|6|/(1 + 0]6]) for some
b > 0, due to Geman & Reynolds [20].

In this simplified setup, (a) the fitting part of the penalized regression (2.1)
is separable in this case, which means we only need to deal with the univariate
case, if P is also separable (which is true in general); (b) even if P is nonconvex,
it still often results in a unique solution.

One of our main goals in this paper is to borrow these rich results in the or-
thogonal design to help us solve the general problem (2.1). We use the following
mechanism to achieve this. Define

9(8.9) = 31Xy ~yl3 + P N + 5 < L= D) =By —B>. (2.
Here < a,b>=a’b, ¥ = X" X.
Given B, minimizing g over = is equivalent to

argngn% H'y— [(1_2)5+XTy]Hz+P(»y; ). (2.3)

In contrast to (2.1), this problem has an orthogonal design — as mentioned ear-
lier this is easier to handle both in computation and in theory. For example, we
may adopt some nonconvex penalties, and they still result in a unique solution
of ~.

Given «, minimizing g over 3 is equivalent to

argmgn% <(I-%)8,8-2y>. (2.4)
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Taking its derivative with respect to 3 gives (I — X)(8 — ) = 0, from which
it follows that 8 = ~ if ||X]|2 < 1. Note that (2.4) is a convex optimization.
Therefore, the optimal value of ¢ is always achieved at v = 3 if X is scaled
down properly.

The connection to the original problem is now clear: it is easy to verify
ming g(B, B) is equivalent to ming f(8). The advantage of optimizing g instead
of f is that given (3, the problem is orthogonal and separable in -+, and we
can adopt far more flexible penalties in the algorithm design, including the
nonconvex ones.

3. Thresholding-based iterative selection procedures (TISP)
3.1. Thresholding rules and penalties

As the title suggests, our starting point in this paper is thresholding rules rather
than different forms of the penalty function. One direct reason is that differ-
ent P’s may result in the same estimator and the same thresholding, say, in
the situation of hard-thresholding [1, 14]. Moreover, starting with thresholding
functions facilitates the computation (as will be shown in the next subsection).
Besides, there is also a universal connection between thresholding rules and
penalty functions that we will investigate in this subsection. For convenience,
we consider the univariate case only.

A thresholding function, denoted by ©(+; A), with A as a parameter, is required
to satisfy:

1. O(+; A) is an odd function. (O4(-; A) is used to denote the ©(+; \) restricted
to Ry =[0,00).)

2. O is a shrinkage rule: 0 < O (t; \) < ¢, Vit € Ry.

3. O is nondecreasing on R, and O, ({; \) — oo as t — oo.

In addition, it is natural to have ©,(t; \) = 0,0 < ¢t < 7 for some 7 > 0.
Given a thresholding rule ©(-; \), a penalty function can be obtained from
the following three-step construction. First, define

O ! (u; \) = sup{t: O(t; \) < u} and O H(—u; \) = —0 7 (u; \),
for any v € R. Then define
s(u; A) 2 07 (us \) — u, Vu. (3.1)

Finally, let P be a continuous and positive penalty defined by

1]
P(0; \) = /0 s(u; N)du. (3.2)

Antoniadis [2] showed the following result for this constructed P.

Proposition 3.1. The minimization problem ming(t — 0)?/2 + P(6; \) has a
unique optimal solution 6 = O(t; \) for every t at which ©(+; \) is continuous.
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In addition, if we define t(t) = t—©(t), then it is the psi-function for defining
M-estimators; see [2, 18].

Note that (3.2) is not the only way to construct a penalty that leads to © in
solving the optimization. For example, in the situation of hard-thresholding, in
addition to the continuous penalty

P=22/2— (6] = \*1jp1x/2 (3.3)
constructed via (3.2),
A, if 0] < A A2
PO\ = , and P(O;\) = — -1 3.4

are also valid choices [1, 14]. In some sense, (3.3) may be considered as a con-
tinuous version of the discrete [o-penalty.

3.2. TISP and its convergence

Now we go back to the mechanism introduced in Section 2 for the penalized
multivariate regression problem (2.1), with P constructed from a given thresh-
olding function ©. Solving (2.3) yields v = O((I — £)8 4+ X' y; \). Seen from
(2.4), our iterates simplify to

YUY = o((I = £)8Y) + XTy; \). (3-5)

This iterative procedure is referred to as the Thresholding-based Iterative
Selection Procedure (TISP). TISP provides a feasible way to tackle the
original optimization (2.1). It is a simple procedure that does not involve any
complicated operations like matrix inversion.

There are rich examples for the procedure defined by (3.5). (a) Using a soft-
thresholding in (3.5), we immediately obtain the iterative algorithm (in vector
form) for solving the lasso problem where P(3;\) = A||B]]1 [10]. In fact, the
asynchronous updating of (3.5) leads exactly to the component-by-component
iteration referred to as the coordinate decent algorithm (see Friedman et al. [16]).
The corresponding pathwise algorithm has been considered to be the fastest in
solving the lasso problem to date, especially when p > n. (b) If we substitute
hard-thresholding for ©, seen from (3.4), it is an alterative optimization for
solving the penalized regression with

P=c-Y lgz0=c-|8lo,

i.e., the lp-penalized regression problem. (¢) We can also replace the hard-
thresholding by the more smoothed SCAD to reduce instability. (d) Finally,
it is worth mentioning that TISP may also include the ridge penalty P(8;\) =

AIB13/2, if we set
t
t: = — .
O(1:N) = . 3.6)

thanks to the generic definition of a thresholding function.
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Obviously, if 3 is nonsingular, and so n > p, the TISP mapping is a con-
traction and thus the sequence ,B(j ) converges to a stationary point of (2.1). We
would like to apply TISP to large p problems as well where 3 is singular —
a surprising fact is, however, that TISP may not be a nonezpansive operator!
for most thresholdings (except soft-thresholding), let alone a contraction. The
following studies cover the large p case (p > n). We use u(A) to represent an
arbitrary singular value of matrix A, and fimax(A) (fmin(A)) the max (min) of
u(A), respectively.

Without loss of generality, suppose the penalty function defined by (3.2)
satisfies the bounded curvature condition (BCC) for some symmetric matrix
H:

1
P(B+A;)\)>P(B; N+ <A, s> —§ATHA,VA € RP (3.7)

where s = s(8; \) is given by (3.1). Many thresholding rules of practical interest
including Example 1-3 satisfy the BCC with a positive semi-definite H. For in-
stance, for soft-thresholding, H = 0 since || 3|1 is convex; for hard-thresholding,
H = I; for SCAD-thresholding, we can take H = I/(a — 1) (recall that the
parameter a is assumed to be greater than 2 in Example 2, and so H is positive
definite).

Theorem 3.1. Given the TISP (3.5), if pimax(E) < 1V (2 — pimax(H)), then

F(BYD) > f(BUHY). (3.8)

Moreover, if pmax(2) < 1V (2 — pmax(H)), there ezists a constant C > 0,
dependent on X, H only, such that

FBY) = f(BYFY) = € BY) — U3, (3.9)

Therefore, for an arbitrary X, we can use TISP of the following form in
practice

, 1 , 1 A
Ut —g((I-=2)8Y + = XTy; = 3.10
8 ((r-2=)82 + mX"vis). (3.10)
where ko = fimax(X) = || X||2, although larger values of k¢ generally lead to
faster convergence. Applying Theorem 3.1 to some interesting special cases gives
the following corollaries.

Corollary 3.1. Suppose © is soft-thresholding. If pmax(X) < /2, then (3.9)
holds.

Corollary 3.2. Suppose O is hard-thresholding. If pmax(X) < 1, then (3.8)
holds; further, if pmax(X) < 1, then (3.9) is true.

L An operator T is called nonexpansive [4] if || T'(z) =T (y)|| < ||z—y|| for any x,y. Obviously,
the hard-thresholding function is not nonexpansive.
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Corollary 3.3. Suppose © is SCAD-thresholding. If pmax(X) < /2 — ﬁ,
then (3.9) holds.

Corollary 3.1 generalizes the lasso result by Daubechies et al. [10], and co-
incides with our previous study [27]. Corollary 3.3 covers the orthogonal case,

since SCAD assumes a > 2 and thus /2 — ﬁ > 1. Finally, it is worth point-

ing out that TISP may not always be an MM algorithm [21] like the LLA
method by Zou & Li [40]. Take the SCAD-thresholding as an example: when

1 < || X2 <4/2— =%, g defined by (2.2) does not majorize f but TISP con-

a—1’
verges. Theorem 3.1 implies that if X is scaled down properly (which does not
affect the variable selection), f(8Y)) is nonincreasing all the time during the
iteration process.
We can easily show a result similar to Zou & Li [40]:

Proposition 3.2. Suppose pimax(E) < 1V (2 — pmax(H)). Give an initial point

B(0), if 8" is a limit point of the TISP sequence ,B(J), then B* is a stationary
point of f(B) (2.1), or equivalently, a fixed point of (3.5).

Denote by F the set of the fixed points of TISP. That is, given any 8% € F,
it satisfies the implicit equation

B=0(I-2)8+X"y; ), (3.11)

referred to as the ©-equation. Clearly, local minima of f are fixed points of
(3.11). In the next section, we will perform an nonasymptotic study of the good
properties of the points in F. Here, we give the following optimality result.

Proposition 3.3. Let 8 € F and suppose jimax(H) < 1. If pmax(H) <
w(E) <2 — pmax(H), then B8 is a global minimizer of f.

Although the fact that nonconvex penalties often result in a unique optimal
solution in the orthogonal design is well known, this proposition states (novelly)
that the same conclusion holds as long as X is not too far from orthogonal
(characterized in terms of H). For instance, for SCAD thresholding and penalty,
TISP necessarily leads to the global minimum of f, provided \/% <u(X) <

\/2— =5, or 0.61 < p(X) < 1.27 when a = 3.7 (the default choice in SCAD-

see Example 2), given any initial point B(O). In summary, TISP is a successful
algorithm for solving the penalized regressions for a general design matrix.

3.3. Related work

The main contribution of this paper is to consider a new class of ©-estimators
defined by the ©-equation (3.11) for model selection and shrinkage, which can be
naturally computed by TISP, and are associated with penalized regressions—
in particular, the penalty P can be constructed via the three-step procedure
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introduced in Section 3.1. More generally, the A in (3.11) can be component-
specific. For example, if X is not column-normalized, we may use

B=0(I-%)B8+X"y; ), (3.12)

where A = [ Azl Alzalla -+ Az, ]T and A is a regularization pa-
rameter. With a carefully designed ©, we obtain a good estimator with both ac-
curacy and sparsity, as will be shown in Section 5.2. The corresponding penalty
is, not surprisingly, nonconvex, which indicates the difficulty of this NP-hard
problem.

Nonconvex penalties have been successfully used in real-world applications
like high-dimensional nonparametric modeling [3], survival analysis [6], and mi-
croarray data analysis [32, 36], where they achieve outstanding performance.
The numerical optimization has been a challenging and intriguing problem. In
the context of wavelet denoising where X X” = I, Antoniadis & Fan [3] pro-
posed the ROSE to approximately solve the minimization problem for a wide
class of nonconvex penalties. They also introduced the graduated nonconvexity
(GNC) algorithm, developed in image processing; it has a number of tuning
parameters and is computationally intensive. Fan and Li [15] then proposed a
generic local quadratic approximation (LQA) algorithm by solving a series of
lo-penalized problems. Like ridge regression, this approach does not intrinsically
yield zeros, and setting a small cutoff value during iteration has been shown to
be too greedy. A refined version is the perturbed LQA suggested by Hunter &
Li [22] to avoid numerical instability. The perturbation parameter needs to be
chosen very carefully in implementation since it affects the sparsity of the solu-
tion as well as the speed of convergence. Recently, Zou & Li [40] proposed a new
local linear approximation (LLA) which significantly improves the LQA. Explicit
sparsity is attained by solving a weighted lasso problem at each iteration step.
(Note that our TISP does a simple thresholding at each step.) One-step SCAD
estimator is advocated. Our empirical studies show that this one-step convex
approximation has limited power in finite samples. Although the estimate is
sparser than using the plain [;-penalty, it may result in misleading models with
poor prediction error. See Section 5 for detail.

Using thresholding rules to define ©-estimators shares similarities to the stud-
ies of M-estimators of i-type in robust regression. Most M-estimators were
proposed in the form of ¢-functions but not based on loss functions, such as
Huber’s, Hampel’s three-part, and Tukey’s bisquare M-estimators. Indeed, we
find an interesting connection between these two fields. Assume a mean shift
outlier model, y = X8 + v + €,€ ~ N(0,0%I), where n > p and v € R" is
sparse. If 4, is nonzero, case i is an outlier. Let H = X (X7 X)" ' X" be the
hat matrix and suppose its spectral decomposition is given by H = UDU”.
Define an index set ¢ = {i : D;; = 0} and U, is formed by taking the corre-
sponding columns of U. Then a reduced model can be obtained from the mean
shift outlier model

Y= A'y—i-e/,e/ ~ N(O, 0’2I(n,p)><(n,p)), (3.13)
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where § = ULy, A = U (of dimension (n —p) x n). Applying ©-TISP to
this ‘large-p’ sparsity problem gives the iteration v+ = ©(ATy/k2 + (I —
AT AR YD); N/k3) with ko = pimaz (H), or

AU = O(HAY) + (I — H)y; M).

After getting 4 from TISP, we can estimate 8 by 8 = (X7 X)X (y — 4).
Simple algebra shows that this special ©-TISP solves an M-estimation prob-
lem associated with 1, if (0, 1) satisfies O(t; \) + ¥ (¢; A) = ¢. It is well known
that Huber’s method (or equivalently, Soft-TISP, which corresponds to using
a convex [j-penalty on =) behaves poorly in outlier detection even for mod-
erate leverage points. Instead, redescending w-functions are advocated, which
corresponds to using nonconvex penalties for the sparsity problem of (3.13).

4. Selection and estimation via TISP

TISP provides a very simple way to do variable selection via penalized regres-
sions. In this section, we will perform a theoretical study of the variable selection
and coefficient estimation by TISPs based on different thresholdings. Our results
are nonasymptotic.

4.1. Assumptions on ©

Given O(+; \), denote its thresholding value by 7(A), i.e., O(t; A) =0Vt : |t| <7
and ©(t; \) # 0 for [t| > 7. For example, 7(A\) = A in soft-, hard-, and SCAD-
thresholdings, but is not so for the transformed ;. Assume 7 > 0. To ease our
TISP study based on the ©-equation (3.11), we define another version of s,
called the generalized sign. Introduce

Sgn(u; \) = {s € R: O(u+7s;)) =u} if u € ran(O),

and Sgn(u; \) = {0} otherwise, where ran(©) is the range of ©; sgn(u; \) is used
to denote a specific element in ggvn(u, A). The vector versions of Sgn and sgn
can be defined correspondingly. Clearly if uw = ©(¢; A) then ¢t = u + 7sgn(u; \)
for some sgn(u; \) € Sgn(u; ).

As a demonstration, if O(-;A) is soft-thresholding, 7 = A and S/g;l(ﬁ) =
{s:8,=1if3; > 0,8, = —1if §; <0, and s; € [—1,1] if 5; = 0}. Thus now
S/g;l(ﬁ) is the subdifferential of || 3||1, and sgn(B3) is a subgradient [29]. For hard-
thresholding, Sgn(8) = {s : s; = 0 if ; # 0, s; € [-1,1] if B; = 0}. Sgn and sgn
are called generalized signs due to the following fact.

Proposition 4.1. Suppose O(+; \) is sandwiched by soft- and hard-thresholdings,
Os(+;7) and O (5 7), i.e.,

(©5)+(t:7) SO4L(A) < (On)+(t;7), VE € Ry (4.1)

Then 0 < sgn(u) <1 ifu >0, —1 < sgn(u) <0 if u <0, and sgn(0) € [—1,1].
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This proposition is easy to prove from the non-decreasing property of ©.
Throughout the rest of the section, we assume O always satisfies the sandwiching
condition (4.1). By the definition of the generalized signs, (3.11) is equivalent
to ¥8 = Xy — rsgn(B; \), for some 5gn(B;\) € Sgn(B; ). We study the
TISP estimate based on the scaled form (3.10). Let 8 be a fixed point of (3.10)
and suppose 7(A) = ¢7(A/c) for any ¢ > 0. Then the ©-equation for this TISP
estimate can be rewritten as

8 = X"y — 7sgn(B; \/k), (4.2)

where ko = HXH2

4.2. Sparsity recovery

Recall that y = X3 + €, € ~ N(0,02I), and 3 is sparse. Let z = {i : 3; = 0},
nz ={i:0; #0},d, = |z|, dn = |nz|. To study the sign-consistency of a TISP
estimate, we denote by ps the probability of successful sign recovery, that is, the
probability that there exists a 3 € F such that sgn(3) = sgn(3).

To simplify asymptotic discussions, we assume X has been scaled to have
all column ly-norms equal to /n. Define ) = % /n. To get a better form
of the bounds for p,, we define two quantities p = ,umin(E( s) ) and K £

nz,nz

ma,X|‘2,SS73Z|‘2 /\/dn . Intuitively, x measures the ‘mean’ correlations between the

relevant predictors and the irrelevant predictors. The following nonasymptotic
result is always true regarding the selection via TISP.

Theorem 4.1. Assume p > kdy,, >0 and min|3,,,| > d;;:f, then

ps > [1—20(—M)]*[1 — 20(—L)] %, (4.3)

where M = (1—%) ., L= @(minm

NGTE Td;‘lz ), and ® s the standard

nz| T
normal distribution.

Corollary 4.1. Under the conditions of Theorem 4.1, we have

where @ is the standard normal density.

Clearly, the size of k is very important. A small value of xk weakens the
interference of X, and X, and helps recover the sparsity correctly. We can
also use this theorem to explore some asymptotics. (i) Assume 3, d., and d,,.
are fixed, n — oo, then under some regularity conditions we get: if 7/y/n — oo
and 7/n — 0, then TISP is sign consistent. This result in the Soft-TISP (lasso)
case coincides with other studies like [23, 37]. (ii) Suppose B,,, and d,,, are fixed,
n,d, — oo, and u > (1 4 €)kd,, for some ¢ > 0. Then TISP can successfully
recover the sparsity pattern of B if d,o(M)/M — 0 and 7/n — 0, which only
requires n to grow faster than logd,.
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Unfortunately, the regularity condition p > kd,,, cannot be removed in gen-
eral. In the lasso case, it is a version of the irrepresentable conditions [37]. (We
took this more restrictive form because it is more intuitive and leads to more
nice-looking bounds in (4.3) and (4.4).) However, for hard-thresholding-like ©’s,
this is unnecessary and we can obtain stronger results.

We say that © belongs to the hard-thresholding family if

O(t; \) =t,Vt: |t| >c-T, (4.5)

for some constant ¢ > 1. Hard-thresholding and SCAD-thresholding are two
examples with ¢ = 1, a respectively. Unlike soft-thresholding, they do not intro-
duce bias for large nonzero components.

Theorem 4.2. Suppose © belongs to the hard-thresholding family and min|8,,,| >
cr/k3. Then

ps > [1=20(=M"))*[1 = 20 (=L")]*, (4.6)
where M’ = %, L' = @(min|ﬁm| — %)

Corollary 4.2. Under the conditions of Theorem 4.2, we have
1—ps <2d,0(M")/M" +2d,0(L") /L. (4.7)

(4.6) is strictly better than the bound in (4.3) if ¢ < dp.k3/(un), or
c < dnz,umax(E(S)) / ,umin(ngz) ), which is usually true for both hard- and scad-
thresholding. Therefore the TISP induced by a © in the hard-thresholding fam-
ily can achieve better performance in variable selection.? This will be verified
empirically in the next section. Note that although in the orthogonal case, hard-
thresholding and soft-thresholding give exactly the same zeros, they result in
very different sparsity patterns in our iterative procedure for a nonorthogonal X.

4.3. Estimation risk

We obtain the following TISP risk bounds for any thresholding ©.
Theorem 4.3. Let v = pin(2°)) and B € F. Define R,,. = E(||8,.. — B3,.12),

2,z

and R, = E(||3,|3). Suppose 3 is nonsingular. Then

an§§ %U2+d_"227-_2+ﬁ2dzdnz.
n| pw we n

nR.|. (4.8)

And

o2 d? 1
n v M

?Note that, however, the regularization parameters are generally tuned to reduce the test
error.
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14x2d2  /p?

. . 1+ P
where M s defined as in Theorem 4.1, Ky = 6-—‘=sineltl K, = 6(1 —

(1,,{2 dzdnz )2 ’
v

B and p > Kkdy.

k2 4zdnz )72 in which we assume k2 < T
yi% zlnz
This general result holds for any TISP estimate. It is not difficult to show
that in the previous setting of (i) where B is fixed, we also obtain R, — 0

and R,, — 0 by the theorem if 7/y/n — oo and 7/n — oco. Besides, under the

conditions stated in the theorem, M = \/ 2log % + (1 +¢)loglog % is sufficient

to ensure R, — 0 for any ¢ > 0; since M ~ \/210g% < +/2logd,, Donoho &
Johnstone’s classical work [12] in the orthogonal design implies this risk bound
can not be improved significantly in general. We leave the TISP design problem
to the next section using an empirical study.

In the orthogonal case, we can show the oracle inequalities [12] hold.

Theorem 4.4. Suppose © satisfies the sandwiching condition (4.1) and X* X =
I. Then

. - 2
BB Bl < (1+ 7)Y min (22702 4 52.0?) (1.10)
1
for any T > 1. Consequently, when 7 = /2logn,
~ 0'2 .
BB Bl < (2logn+1) (5 + min(,0)) (411

for any n > 2.

This nonasymptotic result covers soft-, hard-, and SCAD-thresholdings. It
coincides with the classical soft-thresholding studies [12] and is sharper than [3,
38]. (A correction of Zou’s oracle bound [38] is also given at the end of the proof;
see Appendix A.4.)

5. TISP designs: An empirical study
5.1. A numerical study of TISPs

In this section, we demonstrate the empirical performance of TISPs by some
simulation data. Although there are rich choices about © in (3.5), we focus on
three basic TISPs only in this subsection. In addition to the Soft-TISP, i.e., the
lasso, we implemented Hard-TISP and SCAD-TISP, the thresholdings of which
belong to the hard-thresholding family. The parameter a in SCAD-thresholding
takes the default value, 3.7, based on a Bayesian argument [15]. As seen from
the theoretical studies in Section 4, the last two should perform better than
the lasso in variable selection. In generating the solution path for a grid of
A-values, we always set the initial point, B(O), to be zero in Hard- or SCAD-
TISP. A natural search range for \, seen from (3.11), is [0, X7 y], if X has been
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column normalized. (Note that a pathwise algorithm with warm start, which
takes the previous estimate associated with the old value of A\ as the initial
point of the procedure for the current value of A\, may be inappropriate for
TISPs when nonconvex penalties are used. In fact, the solution path associated
with a nonconvex penalty is generally not continuous in A and warm-start leads
to bad solutions because of multiple local minima effects.)

For comparison, the one-step LLA method, proposed by Zou & Li [40] for
penalized likelihood models, is also included in our tests. They showed good
asymptotics about one-step SCAD when n — oo and p is fixed, and demon-
strated its performance in various numerical examples. The one-step LLA is
actually a weighted lasso with weights constructed from the OLS estimate using
different penalty functions. According to our general result of weights in sparse
regression [27], it can achieve better sign consistency than the lasso as n grows
to infinity. We are greatly interested in drawing a comparison between TISP
and LLA since TISP also successfully solves the penalized regression problems.

We did experiments on two simulation datasets. Each dataset contains train-
ing data, validation data, and test data. We use # =*“/- /-7 to denote the
number of observations in the training data, validation data, and test data. Let
3 be the correlation matrix in generating X, i.e., each row of X is indepen-
dently drawn from N(0,3X). We use ({a1}",...,{ar}"™) to denote the column
vector made by ny ai’s, ..., ni ag’s consecutively in the following examples.
Example 1. # = 20/100/200, d = 8, B8 = ({3}},{1.5}1,{0}2, {2}}, {0}3),
¥ = pl'=7 with p = 0.5, ¢ = 2,3,5,8; the corresponding signal-to-noise vari-
ance ratio (87 X8/0?) is 5.31, 2.36, 0.85, and 0.33, respectively.

Example 2. # = 20/100/200, d = 8, B8 = ({3}},{1.5}1,{0}2, {2}}, {0}3),
¥ = plIl with p = 0.85, ¢ = 2,3,5,8; the corresponding signal-to-noise
variance ratio is 8.21, 3.65, 1.31, and 0.51, respectively.

Before an algorithm is applied, the columns of a regression matrix are all nor-
malized to have a squared ly-norm equal to the number of the observations; no
centering is performed in these examples.

Each model is simulated 50 times, then, we measure the performance of each
algorithm mainly by test error and sparsity error. The test error is characterized
by the 40% trimmed-mean of the scaled MSE (SMSE) on the test data, where
SMSE is 100 (Y2, (4 —%:)?/(No?) — 1) defined for the test data. (Medians of
MSEs are mostly used [30, 39] to measure the performance from multiple runs,
but are not so stable for comparisons based on our experience.) The sparsity
error here is defined by the 40% trimmed-mean of the following 50 percentages:
100 - |{i : sgn(B;) # sgn(B;)}|/d, which represents the number of inconsistent
signs for each estimate compared to the true 8. We also summarized the proper
zero percentages, 100% - [{i : 5; = 0,0; = 0}|/|{¢ : B; = 0}|, and the proper
nonzero percentages, 100% - |{i : 3; # 0,08; # 0}/|{i : B; # 0} in the table
as follows. The numbers in parentheses are the standard errors of the trimmed
means of SMSE, estimated by bootstrapping the SMSE 500 times as in [3§].
The total computing time (in seconds) for each algorithm is also included.
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parameters. The last row gives the total computing time in seconds

TABLE 1
Performance comparisons on the simulation data, in terms of test error, sparsity error,
proper sparsity, and proper nonsparsity — all the numbers are /0% trimmed-mean of the 50
stmulations. Siz methods are listed here: lasso (Soft-TISP), one-step SCAD, Hard-TISP,
SCAD-TISP, elastic net (eNet), and Hybrid-TISP; the last two both have two regularization

397

Lasso One-step | Hard- SCAD- eNet Hybrid-
SCAD TISP TISP TISP
Test-err 28.6(3.6) | 25.3(4.9) 21.7@3.7) | 18.2(3.4) || 25.4(3.5) | 15.9(3.4)
EX]l. o =9 Spar-err || 31.8 12.5 0 12.5 31.0 0
’ Prop-Z 50.8% 91.2% 100% 89.5% 51.2% 100%
Prop-NZ || 100% 100% 100% 100% 100% 100%
Test-err 27.8(3.4) | 27.4(3.5) 25.93.6) | 25.8(3.5) || 23.4(3.5) | 18.2(4.0)
EX]l. o =3 Spar-err || 30.7 16.7 5.5 12.5 31.5 3.8
’ Prop-Z 50.8% 80.0% 93.2% 92.0% 47.3% 94.1%
Prop-NZ || 100% 87.2% 100% 100% 100.0% 100.0%
Test-err 23.0(3.8) | 27.0(2.5) 22.3(2.7) | 25.7(3.1) || 18.4(3.6) | 17.8(3.5)
EXl o =5 Spar-err || 32.0 25.0 12.5 25.0 31.5 12.5
’ Prop-Z 50.4% 80.0% 91.6% 80.0% 48.6% 92.3%
Prop-NZ || 86.2% 66.7% 85.1% 66.7% 100.0% 100%
Test-err 15.4(2.9) | 20.4 (2.6) | 20.3(2.9) | 17.1(2.9) || 14.1(2.8) | 11.3(2.6)
EXl o —8 Spar-err || 31.3 30.5 25.0 32.8 37.5 30.6
’ Prop-Z 72.3% 80.0% 94.9% 80.0% 70.4% 94.7%
Prop-NZ || 66.7% 33.3% 49.5% 33.3% 66.7% 66.7%
Test-err 24.12.1) | 28.7(a.1) 19.9¢2.8) | 20.8(2.9) || 19.43.5) | 14.3(3.2)
EX2. o — 9 Spar-err || 31.0 32.0 12.5 12.5 30.8 12.5
’ Prop-Z 60.0% 74.5% 80.0% 90.5% 52.3% 80%
Prop-NZ || 100% 84.1% 100% 100% 100.0% 100.0%
Test-err 19.93.3) | 29.1(3.1) 19.8(2.2) | 20.2(2.4) || 14.3(2.9) | 14.1(2.9)
EX2 o —3 Spar-err || 30.7 29.8 16.1 16.3 28.6 17.3
’ Prop-Z 60.0% 80.0% 91.1% 91.9% 55.8% 80%
Prop-NZ || 85.7% 66.7% 83.7% 66.7 % 100.0% 100.0 %
Test-err 13.9:3.1) | 24.8(2.2) 16.6(2.6) | 17.42.7) || 9.72.6) 9.0(2.7)
EX2. o =5 Spar-err || 31.0 31.3 25.0 25.0 30.0 25
’ Prop-Z 68.8% 80.0% 80.0% 80.0% 52.9% 80%
Prop-NZ || 66.7% 48.2% 66.7% 66.7% 100.0% 84.1%
Test-err 10.42.6) | 16.3(2.1) 13.8(2.8) | 15.6(2.8) || 7.2(2.2) 6.9(2.5)
EX2. o — 8 Spar-err || 32.0 36.4 31.0 29.0 37.5 30.4
’ Prop-Z 71.0% 80.0% 92.1% 91.0% 49.3% 74.6%
Prop-NZ || 66.7% 33.3% 47.4% 33.3% 83.0% 66.7%
[ Total computing time [[ 284 [ 599 [ 596 [ 610 [[ 2185 [ 2234 |

First, although Zou & Li’s one-step SCAD brings more sparsity than the lasso
estimate (seen from the proper-sparsity and proper-nonsparsity), it is often the
worst in terms of test error. This is because the one-step SCAD is indeed a
weighted lasso method and the OLS estimate used for weight construction may
not be trustworthy, if, say, there is large noise, or high correlation between
some variables. This phenomenon is serious in Example 2 where the OLS esti-
mate can be unstable and misleading. Our Hard-TISP and SCAD-TISP clearly
showed the remarkable parsimoniousness brought by nonconvex penalties. In-
stead of solving a [1-constrained convex approximation as in the LLA method,
our TISPs directly tackled the original nonconvex penalized regressions and
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demonstrated better performance in both test-error and sparsity-error. (In fact,
we doubt if the [;-based one-step SCAD is truly able to solve the SCAD pe-
nalized regression, seen from the convex approximation in its derivation, and
after comparing its estimate to the SCAD-TISP.) Hard-TISP and SCAD-TISP
do not differ much here, which verifies the previous theoretical results regarding
the hard-thresholding family in Section 4.

Hard-TISP and SCAD-TISP achieve smaller test error than the lasso which
may introduce extra bias when the signal-to-noise ratio is medium or high. In-
terestingly, when the noise level is very high, the lasso (Soft-TISP) yields a more
accurate estimate than the two. This is in fact not so surprising. In predictive
learning, to reduce the test error, when the noise is relatively large compared to
the signal, it is also necessary to shrink the nonzero coeflicients even if the true
ones are far from zero. In either hard- or SCAD-thresholding, there is basically
no shrinkage offered for large nonzero coefficients, while the lasso does this by
soft-thresholding (although the shrinkage amount is the same as the threshold-
ing value). Fortunately, TISP still gives us good selection results and achieves
parsimonious models. We can apply, for example, a second-time shrinkage to
the coeflicients of the selected variables. Of course, a better strategy is to take
into account these two concerns — selection and shrinkage — simultaneously and
adaptively in building a model as probed in the next subsection.

5.2. Hybrid-TISP for model selection and shrinkage

To deal with the low SNR problem, a promising approach is to modify the
thresholding in Hard-TISP to include adaptive shrinkage for nonzero coeflicients.
Motivated by the thresholding function of ridge regression given by (3.6), we
propose a novel hybrid-thresholding:

0, if]tl<A
O(t; \,n) = t . 5.1
1+n
The penalty constructed via the mechanism introduced in Section 3.1 is made
up of two quadratic parts:

1
—592 + A9, if|o < %
P(0;xm) =1 4 1 22 K : (5.2)

A
2 .

- - o] > ——
2" ey ! | |—1+n

We have seen the first quadratic part in the continuous hard-penalty (3.3) (which
leads to the same solution as the discrete lp-penalty); the second part resembles a
ridge penalty. See Figure 1 below. Note that the knots £A/(1 + 1) are dependent
on 7, too. Simple calculations show that this P satisfies the BCC (cf. (3.7)) with
H =1, and Theorem 3.1 holds. We can apply (3.10) given an arbitrary design
matrix. The corresponding TISP (referred to as Hybrid-TISP) converges. The
O-equation (3.11) implies the nonzero components of a Hybrid-TISP estimate
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Hybrid penalty (A=0, n=1) Hybrid penalty (A=.3, n=.7)
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F1c 1. The penalty defined by hybrid-thresholding. As A and n vary, it takes the continuous
hard-penalty and the ridge penalty as extremes.

result from a partial ridge regression. This fact can be used in implementation
when the maximum number of iterations allowed has been reached.

Moreover, we have the following nonasymptotic result in parallel to Theorem
4.2. Recall that ko = | X |2, = = B/n = X" X /n, g = pmin(ZL,,.) and

o r?eazXHEl(-izHQ/\/dm. Define ¢ £ min [(2,,, + nI)"'%,..3,,.|, the minimum
absolute value in the noiseless partial ridge estimate. Let p. be the probability
of Hybrid-TISP estimates having incorrect sparsity patterns, that is, for any
B € F, there exists some i or j such that 8, ; # 0 or 3, ; =0.

A np+n
Theorem 5.1. Assume p > 0, and A\, n are chosen such that k < BTV

X
and v > W Then

Pe < 2d-p(M")/M" + 2dno(L")/L", (5.3)

where M" = ﬁ()‘ - nZZnHH/anH2V dnz); L' = %Z (L - kg)«\kn)'

Hybrid-TISP successfully offers both selection and shrinkage in estimating 3.
Before going into the numerical results, we summarize the traits of the design
of Hybrid-TISP as follows. (a) Its penalty provides us a trade-off between the
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lo-penalty and the ly-penalty (ridge-penalty), and takes the two as extremes,
from which we secure selection and shrinkage simultaneously. In particular, the
selection is achieved by a penalty more like [y than [;, seen from the penalty
function, or the iterative thresholding. (b) Hybrid-TISP avoids double shrink-
age. Double shrinkage is a serious problem in the design of naive elastic net [39]
which simply adopts a linear combination of the l;-penalty and the lo-penalty.
However, the [;-penalty also plays a role in shrinking the nonzero coeflicients
in addition to the ly-penalty. By contrast, Hybrid-TISP deals with the zeros
and the nonzeros separately, by hard-thresholding and ridge-thresholding, re-
spectively; there is no overlapping between them. (c) We have two parameters,
A and 7, responsible for selection and shrinkage respectively. One drawback
of the lasso is that it uses the same parameter to control both selection and
shrinkage [24]. Therefore, it may result in insufficient zeros even if the SNR is
pretty high, as shown clearly in Table 1. Hybrid-TISP has A, n designed for the
two different purposes and can adapt to different sparsity and noise level. (d)
The TISP selecting and shrinking interplay with each other during the itera-
tion till in the end we successfully achieve selection/shrinkage balance in the
final estimate. This is in contrast to the relaxed lasso [24] which treats selection
and shrinkage as separate steps in building a model. (e) Finally, Hybrid-TISP
is a very simple procedure to implement. It only involves multiplication and
thresholding operations.

In the implementation of Hybrid-TISP, an empirical parameter search is usu-
ally needed to determine the values of A and 7, because running a grid search
over the (A, n)-space is a formidable task. We search along a couple of few one-
dimensional solution paths including the A-paths (with 7 fixed) and the n-paths
(with X fixed) to save computational cost. The optimal tuning parameter from
the ridge regression path (corresponding to A = 0), denoted by 7("), is used as
a reference for 7). Briefly, our search process generates and searches along some
A- and 7-paths, compares the results from these searches, and then takes (A, )
to be the one minimizing the validation error. The concrete search paths are as
follows. (i) n > p. Denote the OLS scale estimate by &. If n/p < 5, or n/p < 10
but 6 > 5, we adopt the alternative search strategy which has been shown to
be fast and efficacious [27]: fixing 77 at 0.57("), search along the A-path to get an
optimal solution (having the smallest validation error) at, say, A(°); then search
along the 7-path with X fixed at (). If n/p > 10 and 6 < 5, we only search over
the A-path with = 0.057("). In all remaining cases, we generate and search
long two A-paths with 7 = 0.57(") and 0.057(") respectively. (i) p > n. We use
the above alternative search starting with 0.57("), and an additional search for
X with 7 fixed at 0.057("). Accordingly, 3 paths in total are generated in the
large-p situation. This simple empirical search does not cover the full parameter
space but is more efficient than a grid search. The results are reported in Table
1. We also included the elastic net (eNet) in the experiments, which has two
regularization parameters as well. Note that eNet generates and searches along
6 solution paths to tune the parameters [39].

Seen from Table 1, Hybrid-TISP has amazing performance in both accuracy
and sparsity. We briefly summarize the story as follows. When the noise level is
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low or medium, the value of A in the lasso is limited by the amount of shrinkage
and thus gives insufficient sparsity. Large noise alleviates the problem but there
is still much room for the improvement of test-error and sparsity-error because
the amount of shrinkage may not equal to the thresholding value in the selection.
The weighted lasso like the one-step SCAD has somewhat limited power because
the OLS estimate may be inaccurate and misleading for weight construction.
Benefiting from the lo-penalty, the eNet shows much better accuracy in the case
of large noise and/or high correlation between the variables; nevertheless, the
sparsity of the estimate may be seriously hurt when the ridge penalty must take
control. And it seems possible to improve its test-error further by incorporating
this sparsity in estimation. All of these problems can be resolved by Hybrid-
TISP, which achieves the right balance between shrinkage and selection. Its test
error is consistently lower than the eNet, and more importantly, Hybrid-TISP
provides a parsimonious model as Hard-TISP.

5.3. Large sample and large dimension experiments

At the end of this section, we demonstrate the performance of TISP on large-n
data as well as on large-p data. We modified the parameters in Example 1 and
reran the simulations, where ¥;; = pl"=Jl with p = .5, B is appended with zeros
given by [3,1.5,0,0,2,0,0,...,0]", 0 = 2,5, and n, d are not fixed anymore:
in the large sample experiment, d = 8, n = 40, 80,200 (corresponding to 5
times, 10 times, and 25 times as large as d); in the large dimension experiment,
n = 20, d = 100, 200, 500 (corresponding to 5 times, 10 times, and 25 times as
large as n). Table 2 shows the simulation results of these different combinations
of n and d. In both situations, the Hybrid-TISP path is preferable in terms of
accuracy and sparsity. Our conclusions are similar to the findings summarized
before. Note that one-step SCAD uses the OLS estimate as the initial guess
and thus is not included in the large-p simulation. In fact, as an example of the
adaptive lasso, it is most powerful in large samples with small noise and low
correlation between covariates, where the OLS estimate is accurate. The elastic
net is an improvement of the lasso and provides a good algorithm in predictive
learning. However, despite having two regularization parameters, it does not
improve much the sparsity of the lasso. Hard- and SCAD-IPOD give significantly
different solution paths than the above convex penalties. They may dramatically
reduce the sparsity error and the test error, say, for large-p sparse signals with
moderate noise. Both thresholdings fall into the hard-thresholding family which
does not introduce much estimation bias for large coefficients. Interestingly, if
our main concern is to reduce the test error in building a statistical model
(which is the most frequently used tuning criterion in implementation), they
are not always our best choices. Indeed, it is more desirable to offer adaptive
shrinkage to nonzero coefficient estimation to benefit from the bias-variance
tradeoff. Hybrid-TISP is successful especially for the large-p data because it
does joint and adaptive selection and shrinkage.
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TABLE 2
Performance comparisons on the simulation data with large sample size or dimensionality,
in terms of test error, sparsity error, proper sparsity, and proper nonsparsity over 50
stmulations. Siz methods are listed here: lasso (Soft-TISP), one-step SCAD, Hard-TISP,
SCAD-TISP, elastic net (eNet), and Hybrid-TISP; the last two both have two
regularization parameters
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Lasso One-step |Hard- SCAD- eNet Hybrid-
SCAD TISP TISP TISP
n—40. d—8 Test-err |[14.2(2.8) |10.6(2.3) [10.4(2.7) [9.2(1.9) 10.72.7) |8.2(2.5)
’ > |Spar-err ||29.3 12.5 0.0 4.5 29.7 0.0
=9 Prop-Z {[53.0% 91.0 % 100% 100% 52.5% 100.0%
- Prop-NZ ||100% 100% 100% 100% 100% 100%
n—40. d—8 Test-err |[12.6(3.0) |15.2(3.1) [13.9(2.4) [13.3(2.0) 10.02.9) [12.3(2.5)
’ > |Spar-err |[29.8 25.0 16.9 17.6 31.7 16.9
c=5 Prop-Z ||54.7% 66.4 % [94.1% 80% 52.0% 93.9%
Prop-NZ ||100% 83.0% 87.7% 83.3% 100.0% 100.0%
n—80. d—8 Test-err ||9.2(2.6) 5.6(2.0) |5.7(1.8) 5.7(1.9) 8.7(2.8) 5.6(1.8)
’ > |Spar-err ||44.3 3.5 0 4.7 42.9 0
=9 Prop-Z 1[29.2% 94.4% 100% 92.4% 31.3% 100%
Prop-NZ ||100% 100% 100% 100% 100.0% 100%
n—80. d—8 Test-err ||8.8(2.5) 10.0¢2.3) [5.8(1.8) 6.8(1.9) 7.6(2.2) 5.2(1.7)
’ > |Spar-err (|44.9 17.8 4.6 17.9 37.5 3.8
c—5 Prop-Z 1[29.2% 80% 94.9% 80% 40.0% 95.1%
Prop-NZ ||100% 100% 100% 100% 100% 100.0%
Test-err ||3.2(1.6) 1.71.4) |1.8(1.9) 1.8(1.4) 2.3(1.5) 1.8(1.4)
n=200, d=38, Spar-err |[43.4 3.2 3.8 2.9 29.8 3.8
=9 Prop-Z [30.5% 94.8% 93.9% 95.3% 52.4% 93.9%
- Prop-NZ ||100% 100% 100% 100% 100% 100%
Test-err ||3.2(1.6) 2.5(1.5) |2.2(1.4) 2.7(1.6) 3.0(1.4) 1.9(1.3)
n=200, d=38, Spar-err ||37.5 17.8 12.5 3.3 29.8 12.5
c=5 Prop-Z {[40.0% 71.1% 92.4% 98.0% 52.3% 80.0%
- Prop-NZ ||100% 100% 100% 100% 100% 100%
Test-err ||83.2(7.9) |— 68.3(10.6) |45.1(8.8) 82.9(7.4) |64.3(10.2)
n=20,d=100,\g err ||7.9 — 1.3 1.0 7.5 1.3
=9 Prop-Z ][100% — 100% 100.0% 100.0% 98.5%
- Prop-NZ |192.0% — 99.3 % 99.6 % 92.2% 100.0%
Test-err ||50.7@E.7) |— 53.0(7.1) |50.0¢6.8) |[|51.0¢a.7) |39.9¢6.1)
n=20,d=100, g err ||7.5 — 3.5 2.3 7.6 2.4
c—5 Prop-Z 1193.9% — 99.6% 99.7% 93.2% 98.7%
Prop-NZ ||52.8% e 49.6% 33.3% 66.7% 66.7%
Test-err ||121.2(15.0) — 98.0(12.0) {92.3(16.3) ||121.6(13.9)103.9(12.6)
n=20,d=200,\q emr |47 — 1.0 0.8 4.2 0.7
=9 Prop-Z 1195.4% — 99.9% 99.9% 95.7% 99.9%
- Prop-NZ ||100% — 84.6% 85.0% 100.0% 66.7%
Test-err ||57.2(5.8) |— 58.6(6.8) |59.8(7.5) [|54.1(5.8) [47.76.5)
n=20,d=200,\q err ||3.5 — 1.5 1.8 4.6 1.3
c=5 Prop-Z [|97.5% — 99.2% 99.3% 95.8% 99.0%
- Prop-NZ ||46.0% — 53.3% 51.6% 66.7% 66.7%
Test-err ||173.5(19.1)— 117.9(14.6) 118.1(16.3)| 181.1(20.1) 118.2(14.5)
n=20,d=500,|q . err ||2.5 S 0.4 0.3 2.1 0.4
=2 Prop-Z [|97.6% — 100.0% 100% 97.9% 99.9%
Prop-NZ ||100% — 66.7% 66.7% 88.4% 66.7%
Test-err ||72.9(7.5) |— 66.6(6.5) |67.5(7.0) |[|67.3(7.2) [60.1(6.5)
n=20,d=500,|g . err 1.2 — 0.7 0.7 1.4 1.1
c=5 Prop-Z 1[99.2% — 99.5% 99.6% 99.0% 99.3%
- Prop-NZ ||33.3% — 50.6% 50.0% 33.3% 51.3%
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F1G 2. Histograms of the 100 Hybrid-TISP coefficient estimates for all of the 43 predictors in
the prostate example.

6. Real data

Hybrid-TISP was applied to a real prostate dataset which was used by Tibshi-
rani [30]. The prostate data have 97 observations and 9 clinical measures. In this
example, unlike [30], we take the log(cancer volume) (1cavol) as the response
variable and consider a full quadratic model; the 43 predictors are 8 main effects,
7 squares, and 28 interactions of eight original variables — lweight, age, 1bph,
svi, lcp, gleason, pgg4b, and lpsa, where svi is binary. The lasso does not
give stable and accurate results for this example due to the existence of many
highly correlated predictors.

The regularization parameters of Hybrid-TISP were tuned by leave-one-out
cross-validation. To identify the relevant variables in a trustworthy way, non-
parametric bootstrap resampling was used with B = 100. For every bootstrap
dataset, after standardizing the predictors, we apply Hybrid-TISP with fixed
regularization parameters tuned for the original dataset. Figure 3 shows the
percentages of the bootstrap coefficient estimates being nonzero over the 100
replications for all the 43 predictors. The histograms are plotted in Figure 2.
It is easy to see that 8 variables are much more significant than the others.
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F1G 3. Proportions of the Hybrid-TISP coefficients being nonzero over the 100 bootstrap repli-
cations in the prostate example. Eight variables have nonzero coefficient estimates more fre-
quently than zero estimates.

In fact, these are exactly the variables selected by Hybrid-TISP on the orig-
inal data. A more careful examination shows that they appear (jointly) 36
times in the selected models, the top visited octuple in bootstrapping. These
variables fall into two groups with similar patterns: (I) {x5, z19, 225, T35}, i.€.,
{1lcp, lweight*1lcp, age*lcp, gleason*lcp}; (II) {xs, xa2, X2s, T4z}, i.e., {1psa,
lweght*lpsa, age*lpsa, gleason*lpsa}. The within-group correlations are
very high, > .98 for Group (I), and > .93 for Group (II). Furthermore, an
interesting feature is that for any of the eight variables selected by Hybrid-
TISP, the other three in the same group are most correlated with it among 42
predictors.

7. Discussion

We have proposed the thresholding-based iterative selection procedures for solv-
ing nonconvex penalized regressions. In fact, people have long before noticed the
weakness of the convex [j-constraint (or the soft-thresholding) in wavelets and
have designed many different forms of nonconvex penalties to increase model
sparsity and accuracy. But for a nonorthogonal regression matrix, there is great
difficulty in both investigating the performance in theory and solving the prob-
lem in computation. TISP provides a simple and efficient way to tackle this.
Somewhat different than other studies, we started from thresholding rules
rather than penalty functions. Indeed, there is a universal connection between
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them. But a drawback of the latter is its non-unique form: different penalties
may result in the same estimator and the same thresholding. The main con-
tribution of this paper is the study of a class of O-estimators satisfying (3.11),
which can be naturally computed by TISP, and are associated with penalized
regressions. With a carefully designed thresholding rule, we obtained a good
estimator for model selection and shrinkage. Starting from © greatly facilitated
the computation and the analysis. In fact, some penalty designs may even have
a better explanation from O, or equivalently, the ¥-function — for example, the
SCAD-penalty (recall that it is defined by its derivative) seems to originate from
Hampel’s three-part redescending . Conversely, we can use TISP to compute
M-estimators in robust statistics as described in Section 3.3.

Using a thresholding rule in the hard-thresholding family, TISP gives good
selection results. Our novel Hybrid-TISP, accomplishing a fusion between -
penalty and lp-penalty based on the hard-thresholding and the ridge thresh-
olding, shows superior performance and beats the commonly used methods in
both test-error and sparsity. The hybrid penalty function (5.2) may look a bit
odd, but is quite natural and simple from the point of view of thresholding;
see (5.1). It is worth mentioning that in contrast to [19, 3, 2], where more than
one tuning parameter is considered a drawback and unnecessity, we believe a
good procedure should have two explicit regularization parameters to control
and balance selection and shrinkage.

We assume the penalty function P is dependent on 3 and A only. Therefore
the iterative weighting, substituting the nonnegative garrote [19] for © in TISP,
is not covered by the studies in this paper. In fact, with 8 involved in P, it
might be difficult to optimize in the second step of the mechanism introduced
in Section 2.

The solution path associated with a nonconvex penalty is generally not con-
tinuous in A. For example, even for the transformed [;-penalty in Example 3
which is differentiable to any order on (0,+00), the solution path still has no
A-continuity practically. Hence a pathwise algorithm is not appropriate here.
Empirically, using a zero estimate as the start in nonconvex TISPs works pretty
well. We conjecture that it leads to an estimate with some least norm prop-
erty. Take Hard-IPOD as an example: this roughly means that we were looking
for the local minimum of the lp-penalized regression that is closest to zero in
building a parsimonious model.

The generalization of TISP to GLM seems straightforward; we will inves-
tigate this topic in the next paper. TISP fits perfectly into the Accelerated
Annealing [27] and thus can be used in the generic sparse regression with cus-
tomizable sparsity patterns, such as the supervised clustering problem. Other
future studies include developing some acceleration techniques for TISP (like
the relaxation and asynchronous updating [27]) and deriving some risk oracles
in theory.
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Appendix A: Proofs
A.1. Proofs of Theorem 3.1, Proposition 3.2, and Proposition 3.3
Let’s consider the orthogonal case first. Define Q(v) = ||y — «||3/2 + P(v; \),

where a is a known vector. Let v, = argmin Q(). By the construction of P
and Proposition 3.1, «, satisfies v, — a + s(v,; ) = 0.

1 1
QYo +h) = QM) = 5o +h—alz—Slve — @l + P, +hiA) = P(v45:4)
1
= SlhlE+ < oy —a > +P(v, + B A) = P(75 )

1
= §th\§ +(P(vo +hi A) = P(vp;A)— < h,5>)

Y

Lo 1op 1oy
2HhH2 - 2h Hh = 2h (I — H)h.
This inequality is due to the BCC (3.7). On the other hand, we know

Q(vo + h) - Q(vo) > 0.

In summary, we get

Qv + 1)~ QM) = Sh" Ah, (A1)

for both A = I — H and A = 0; formally, we write A = (I — H)V 0. Note that
(A.1) is a global result for any h.
Now look at the TISP. Recall the ¢ in (2.2) is

9(8,7) = 1 Xy~ 93+ Ply: ) + 57— )7L~ )y~ B).

Then given B, we can write g as

9(8.7) = lly — (1~ )8+ X y)|3 + C(X..8).

and apply (A.1) with a = (I — )3+ X'y,

9(8,7,(8) + 1) ~ 9(B,7,(8)) > 3T (T~ H)VO)h, Vh.  (A2)
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Correspondingly, for the TISP iterates ,B(j ), we have
F(BYTYY 4 %(B(J”rl) — BUNT(I - =)(BYUTY — gU)) = (81, Bt
g(BY), B9y — %(B(J”rl) —BINT((I — H) v 0)(BY+Y — gl))

= F(B9) — (B9 — BT (T — H) v 0)(8U+) - g9,

IN

That is,

(89D = )1~ H) v O+ T =%)(80") = g)).
(A.3)

) G+1y s L
7(BY) = FBUHY) = 2

Now (3.8) and (3.9) can be obtained after simple calculations.

As for Proposition 3.2, let B(j") — (" as k — oo. Under the condition
Hmax(2) < 1V (2 — pmax (H)), Theorem 3.1 states that

HB(J’HI) _B(jk)H% < (f(ﬁ(jk)) —f(B(jk+1)))/C§ (f(ﬁ(jk)) —f(ﬁ(j’“+1)))/0—>0.

That is, O((I — )8 + XTy; \) — BU*) — 0. Therefore, 8 is a fixed point
of TISP.

Finally, we prove Proposition 3.3. Noticing that ~,(8") = 8%, we get the
following inequality from (A.2)

98"+ h) — g(8". ") = ShT (I~ H)VO)h, Vh.
Since g(8",8%) = f(B"),
f(B" +h)+ %hT(I —)h > f(B") + %hT((I_ H)VO0)h, Vh
= f(B"+h)-f(B*) > %hT((I ~H)VO+X-1)h, Vh

Therefore, if u(X) > pmax(H), 8 is a global minimizer of f.

A.2. Proofs of Theorem 4.1 and Theorem 4.2

These theorems have all been essentially proved in [27]. We provide a self-
contained proof as follows. All inequalities and the absolute value ‘||” are un-
derstood in the componentwise sense. Assume, for the moment, X has been
column-normalized such that the diagonal entries of 3 = X TX are all 1. Let
Y =X7X;, B =X} X for any index sets I, I'.
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Lemma A.1. Assume X, is nonsingular. The TISP estimate B satisfies the
following equations

SZIBZ = (Xg - Ez,nzzglegz)e =+ Tzz,nzzgzl@?l(/énﬁ )\/k?)) - T%(Bﬁ )\/k?))
(A4)
where S, =%, -3, .3 13, ..
This can be obtained directly from (4.2).

Lemma A.2. Let z ~ N(0,Dgyxq), 2’ ~ N(0,Ayxa), where D is a diagonal
matriz. Assume the diagonal entries of A, denoted by diag(A), are the same as
those of D, i.e., diag(A) = diag(D). Then

P(max|z'| > ¢) < P(max|z| > ¢), (A.6)

for any c.

This is clear from Sidék’s classical result [31] in 1967.
To prove Theorem 4.1, let X'," = X7 - %.,..5.1 X7 and define
< T}

{’E;;nge’ +7 ’2;213’ < |B,,.| for any s satisfying |s| < 1}.

A 2 {|Xle+ 7850 50 (B,

[I>

|4

Clearly 1 — p, < P(A°UV®) < P(A¢) + P(V°).

Let .z = [v1,--0q.]", then |villa < wv/dyz. So [0 B, sg0(B,.)] <
lvill2 - HE;ZIH2 < lsen(B,,2) |2 < Kdp2/p and yzz,nzzgzlggﬁ(ﬁnz)’ < Kdpz/pe Tt
follows that P(A¢) < P({ max ’X;Te’ > (1= Kdy./p)T}).

Define €, = X" € € R4 Note that X" X’ = S,. Thus €, ~ N(0,0285.).
Since diag(X3,) = 1 and diag(Ezyan;ZlEzTym) = [viTE;zlvi] > 0, diag(S,) < 1.
Lemma A.2 states that

dnz
P(max|e/1/|~027'(1—ﬂ ))
W

4.\ 1
d.P (|e/1/1-| > 7(1 -k )-) = 2d.®([M, +00)),
’ jz

g

P(A%)

IN

IN

where €] ~ N (0, I4, «q.). Using the standard bound of the normal tail proba-

bility, we get P(A¢) < 2d,p(M)/M, where M = (1 _ “df)g

To bound P(V*¢), suppose the spectral decomposition of 3,,. is given by
Y,. = UDU" with U = [uy,...,uq,.]", then we can represent X, as
[uiTDfluj]dnzxdnz, and 3, 's as [ ;.1:1 sjuiTDfluj]dnle. It follows that

diag(2,}) < % and |3, 1s| < df. Therefore, P(V°) < P(|E;§X§Z6| < L),
where Lo = min|8,,.| — 7dn./ .
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Because X' X7T e ~ N(0,0%%,}), and we have shown diag(X

nz 1) <
applying Lemma A.2 yields

- 1
nz = w

P(V®) = P(max|X,! X} el > Lo) < P(max ley| > LO\/—E> < 2d,,.®([L, ),
o
where € ~ N(0,14,_xa,.). Hence,
1 1
L= pe < P(A°UV) < P(A%) + P(V¥) < 2dao(M) + 24 T(L), (A7)
where L = ¥*(min |83, | m )-

In fact, we can get something slightly stronger than (A.7). Observing that
x." T €, we have

z nz-r

€ is independent of X
ps > P(ANV) = P(A)- P(V) > [1 — 2&(—M)]% [1 — 20(—L)]™ . (A.8)

(A.8) implies (A.7).

We assumed z7x; = 14 = 1,...,d in the above derivation. If the l3-norm
of each column of X is no greater than omnax, we only need to replace 3, B, T,
by B - Omax, B * Omax; T/Omax, respectively. The proof of Theorem 4.1 is now
complete if opax = /1.

For Theorem 4.2, noticing that (a) sgn(u) = 0,V|u| > ¢r by definition and
() po = P(A = 0, and |B,] > er9) with B = By, 7) = 7/, we

can prove it following the same lines.

A.3. Proof of Theorem 4.3

Use the same symbols and notations as defined in Appendix A.2. Let ., = ||3. |3,
Tnz = ||Bns — Bnsll3- From (A.5), we have

— dzdnz
R.. <3 (E|zn;X£ze|§ T R -Rz) ,

due to Cauchy-Schwarz inequality and the fact that |2, .2 = max |2, a2 <

lleell2=1
v/ dody. Thus Ry, < 3(0%tr(2;,7) + 77 % + #2 %k - R.) and (4.8) holds.
To get (4.9), we need the following result about fma.(S; "), the largest eigen-
value of S;'t fmaa(S21) < 2(1 — K2 - %)71. This is true by noting that

S, = X;TX; is semi-positive definite and pi,in(S.) > v — k2d.d,. /1.
By (A.4) and the results in Appendix A.2, we have

_ T —15m (g sen (A
e < Bihaa (871 [1XL 7€l + 733 15808, 3 + 7 ISER(B)B] - L

d2
< e (87 [IXT el L (P 20 ) ]
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Therefore,

d? 1
Re < audn (82 [BORCT el 10+ (1405 ) 2 Lota)|

dnz
< 32,.(SY)-d.E [<max|ea|>2;max|ea| > 71— n2 >]

1+ w%d} . /1i°
(1 — Kdnz/p)?
Since for a random variable z with probability density p(-) and a > 0,

+ 3luﬁ2nax(‘s;1) ' ! 2U2d§M¢(M)

E(2*;z2>a) = / p(t)dt = / 25P(z > s)ds + a*P(z > a),

it follows from Lemma A.2 that

d
E | (max |€}])?; max|e}| > 7(1 — & ;z)] < E [max|€}|* - 0%; max |€]| > M].

(Recall that € ~ N (0, I4,xq.).) The density of max |€]| is given by 2d,p(t)(1—
2®(—t))4=~1. Tt is easy to get

E [max |€]|*; max |€]| > M] < 2dz/ t2o(t)dt < 2d,(M + 1/M)p(M).
M

Hence,
1 d.dn.\ 1
R, < 3= (1 - /@2—> : (202(13 (M—|— —) o(M)
0 M
1+ r2dy. /1
(1 — Kdnz/p)?

o? , 1

: 2a2d§M<p(M)>

Using a similar scaling argument we obtain Theorem 4.3.

A.4. Proof of Theorem 4.4

Let BH, BS denote the hard- and soft-thresholding estimates with threshold

~H -8 . .
value 7o. It is easy to see 3 , B , and 3 all have the same sign and 3 is sand-
wiched by the other two. Therefore, E||3 — 8|13 < Y. E(max((8 — 3;)?, (B —
£i)?)). Tt is sufficient to study soft- and hard-thresholdings in the univariate
case.

Let y = p+ € (all are scalars) with e ~ N(0,1), and pg (7, 1), pu (7, i) be the
risks of the soft- and hard-thresholdings with parameter 7. It is well known [12, 7]
that

2p(7)

pa(rop) < minips(r0) + 4,1+ ) < min( 227 k14 72)  (ag)
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for any 7 > 0. Yet it seems that there is no such explicit nonasymptotic bound,
or a complete proof for the hard-thresholding rule. This short appendix is mainly
to give some details about this.

Our goal is to show the following on the basis of [12]

pr(T,p) < 14+72for7>1 (A.10)
pr(T ) < pu(1,0) + 1.24% (A.11)

Dohoho & Johnstone have shown (A.10), and (A.11) for 0 < p < 7, but it is
technically difficult to use the second derivative to prove (A.11) for any u > 0.
Let g = 0pp /Ou — 2.4u, and py (7, 1) is known to be [12, 19]

1+ (@2 = 1)((1 — p) — ®(—7 — ) + (T + we(T + 1) + (1 — we(r — p),

where ¢, ® are the standard normal density and distribution functions, respec-
tively. One may observe that sup,,~q (0, ;1) < sup,q g(7,0) = 0, which is trivial
to verify. So it is sufficient to show that for any (7, ) > 0, there exists some
0 € [r, 2] such that the directional derivative Dyg at (7, y1) is greater than 0,
or 30, € [0, 5] s.t. Dog(, 1) < 0, because g is smooth enough.

Consider a uniform direction § = 7, and let h = Dyg = (% + S—Z)/\/i We
assume g > 7 in the following. Then simple calculations yield

h(r,p) = V2 (@ +p) = (n—7)) = pp(u —7) +

o(T+ ) (T2 4+ 372+ 270 + p — 27) — 1.2
V2(0.5 + (1 + p)>p(r + p) — 1.2)
(0.54+0.5—-1.2) <0.

Therefore,

1
o (T, 1) < min(pg (1,0) + 1.24% 1+ 72) < min(2(7) (7’ + —) +1.20% 1+ 72)
T

(A.12)
for any 7 > 1. Now, combining (A.9) and (A.12) we can bound the univariate
TISP risk

2p(7) 1.2,
1
+ 1+ 2t

plr) < wmaxlps(r ) pra(r ) < (172 i

(1 + 72) min (2%(7) + 12, 1) ,

IN

for any 7 > 1. Theorem 4.4 thus follows.

Finally it may be worth mentioning that although applying Stein’s lemma
is one possible way (see, for example, Gao [19]), it does not handle the oracle
bound well for an estimator very close to hard thresholding — like Zou’s oracle
bound for the adaptive lasso [38], because the hard-thresholding function is not
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weakly differentiable. (Due to an error made in the derivative calculation, Zou’s
oracle bound for the adaptive lasso defined by min % |ly— X B(3+7 > w;|8;| with
W] o | Bots,i| =" should be (2logn + 5 + 4n) - (Y min(62, 02) + o2 /(2y/7logn)) ,
with the first factor being (2logn + 5+ 47) instead of (2logn +5+4/n), which
diverges as 1 goes to infinity. See [27] for detail.)

A.5. Proof of Theorem 5.1

In the proof, all inequalities and the absolute value ‘||” are understood in the
componentwise sense.
First we calculate the generalized sign for the hybrid-thresholding (5.1)

e[-1,1], ifu=0
. A
sgn(ui g =40 e (A.13)
n . A
£ >
YW if Ju| > T+ 0

And note that 7(A) = A. The generalized sign form of the ©-equation for Hybrid-
TISP estimate 3 from (3.10) is

B =X"y - \sgn (B;%,k%) (A.14)
0 0

where ko = HXH2

The proof still follows the lines of the proof for Theorem 4.1. Assume, for
the moment, X has been column-normalized such that the diagonal entries of
> = XTX are all 1. Clearly, BZ =0, |an| > k%%n is a sufficient condition for

the zero consistency of B From Lemma A.1, the ©-equation is equivalent to

Ssz = (Xg p nzzglegz)e + A%, nzz;zlggﬁ (an§ %a %)
7 7 kO kO
(s A 7
_)\Sgn<'32’k_(2)’k_8>

R . A _ ”
/an = /an + 2;,21 (nge - )\Sgn(lgnz; F5 %)) - 27121227"2162
0 0

Our calculations based on the definition of sgn show that
Asgn(0) = {Xf - zz,nzZ);; I —n(Zn: + nI)il]ng} €

+ 77227712(2”2 + /r]I)illB/rLZ
B = (Zn- + T]I>712n216nz + (B + nI)*lezﬁ
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Define

AL {’ {XZT— EZVME;;[I—n(Em+77I)*1]X£z}e

)

Vv A {’(szrnI)1zmﬁm+(zm+nr) LXT ¢

=+ 7722,712(2712 =+ 77I)71/3nz

A
k2 +7
Then p. < P(A°U V) < P(A%) + P(V°).
To bound the first probability, noticing that ’nEzym(Em +77I)*1Bm’ <
o dnzﬁ”ﬁnz”% we have P(Ac) < P(max|e’1| > A= Hvdnz‘unTnH,anH2),
where € = {XT - %, .3 T —n(Z,. + nI)~ 11X~ }e. Since

var(€)) = o {22 =3, I - (. +nI)72%, IEZTM} ,

diag(var(€})) < o%diag(X,) < 021. It follows from Lemma A.2 that P(A°) <
P(max|e o > XA — K/ nzﬁ”ﬁmﬂg), where €/ ~ N(0,14, _xa,.). Define

M" = L(X = ki Vd:]|B,z]l2). We obtain P(A%) < 2d.®([M”,+00)) <
2dz<P(M//)/M//
Next consider P(V°). Let €, = (2,,. +nI) ' X’ _e. Then
P(V°) < P(max|ey| >t — A
N YT k)

Since var(eh) = (Zpz + 1) 18, (Xn. + nI)~to?, diag(var(ey)) < ﬁ By
Lemma A.2 again, we know P(V®) < P(max|€ej| > %Z (v — kg):m))’ where
€} ~ N(0,1,4,. xq,.). Define L' = ?Z (v — k§+n)' It follows that P(V¢) <

2 ®([L", +00)) < 2dn.p(L")/L".

We assumed cc x; =17 =1,...,d in the above derivation. If the ls>-norm
of each column of X is no greater than Omax, 1t 18 not difficult to know that

we only need to replace the 3, ,8 A, 1, by B omax, ,3 Tmaxs A Tmaxs 1/ Tmax
respectively. The proof of Theorem 5.1 is now complete if oyax = /7.
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