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Abstract: Graphical models are used to describe the conditional inde-
pendence relations in multivariate data. They have been used for a va-
riety of problems, including log-linear models (Liu and Massam, 2006),
network analysis (Holland and Leinhardt, 1981; Strauss and Ikeda, 1990;
Wasserman and Pattison, 1996; Pattison and Wasserman, 1999; Robins
et al., 1999), graphical Gaussian models (Roverato and Whittaker, 1998;
Giudici and Green, 1999; Marrelec and Benali, 2006), and genetics (Dobra
et al., 2004). A distribution that satisfies the conditional independence
structure of a graph is Markov. A graphical model is a family of distri-
butions that is restricted to be Markov with respect to a certain graph. In
a Bayesian problem, one may specify a prior over the graphical model. Such
a prior is called a hyper Markov law if the random marginals also satisfy the
independence constraints. Previous work in this area includes (Dempster,
1972; Dawid and Lauritzen, 1993; Giudici and Green, 1999; Letac and Mas-
sam, 2007). We explore graphical models based on a non-parametric family
of distributions, developed from Dirichlet processes.
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1. Introduction

Markov distributions are multivariate measures that satisfy a specified set of
conditional independence relations. Often, an undirected graph is useful to rep-
resent this struture. A measure is Markov with respect to a graph if whenever
two variables have no edge between them, they are conditionally independent
given the other variables in the graph. Graphical models are especially impor-
tant in many high-dimensional problems to alleviate computational burden or to
solve under-identified models. An example of the former issue arises in Gaussian
models in which we may want to invert the p × p covariance matrix. Graphi-
cal models help by reducing the complexity of this algorithm. Under-identified
models arise in modern statistical fields such as machine learning (REF) and
biostatistics (REF) under the moniker of “n ≪ Ap problems”. Graphical models
are one way to reduce the effective dimensionality of the problem and identify
a solutions. Dawid and Lauritzen (1993) extended the notion of Markovity to
the parameter space. In Bayesian statistics, the measure of the data is ran-
dom, and therefore has its own distribution called the prior. A prior law over
Markov measures is hyper Markov if it gives probability one to Markov measures
and the random marginal measures have the specified conditional independence
structure. An example is the hyper inverse Wishart distribution, which serves
as a prior for the multivariate Gaussian with known mean. The usual inverse
Wishart is a specific case, which is hyper Markov for the saturated model.

Like all parametric models, the hyper inverse Wishart prior makes strong
assumptions about the shape of the distribution. In many applications, such
assumptions are undesirable. Thus, there is a need for a model which takes
advantage of graphs wihtout relying on parametric models. The current paper
aims to answer this need by applying a non-parametric approach to graph-
ical models. In contrast to parametric models, non-parametric models make
weak assumptions. Typical assumptions include continuity and the existence of
some number of derivatives. For example, one may specify that the distribution
is smooth, having derivatives of all orders. We extend the framework laid by
Dawid and Lauritzen to develop the hyper Dirichlet process. We begin with the
Dirichlet Process, a commonly used non-parametric prior law. We then describe
how to build this family into a non-parametric hyper Markov prior.

As in Dawid and Lauritzen (1993), we restrict our attention to decomposable
graphs. The benefit of this is that a decomposable graph can be easily built up
from smaller components called cliques which intersect to form the entire graph.
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Dawid and Lauritzen begin by considering a base distribution for each clique.
The only requirement is that these distributions agree where the cliques inter-
sect. They weave together base distributions by taking the base measure of one
clique as its marginal, and conditioning the second clique on the intersection.
They repeat this process for every clique. The third clique is added by condi-
tioning its base measure on the intersection with the previous two cliques. This
process is repeated until all the cliques have been combined. The end result is a
Markov distribution whose marginal over each clique is the clique’s base. For a
prior on Markov distributions, Dawid and Lauritzen construct a hyper Markov
law in the same way.

As an example of the Dawid and Lauritzen (1993) construction, consider the
problem of estimating the covariance matrix of a multivariate Gaussian. If we be-
lieve that the data exhibit some conditional independence structure, this implies
certain constraints on the covariance matrix. (Speed and Kiiveri, 1986) showed
that the sufficient statistics are the component covariance matrices belonging
to each clique. The inverse Wishart is the usual prior for the saturated model
which has no constraints on the covariance matrix. In a non-saturated model,
the sub-matrix of each clique is unconstrained, except that the sub-matrices
must agree where their indices intersect. For this reason, the inverse Wishart
is the natural choice as the base measure for each clique. The sub-matrix for
the first clique has an inverse Wishart prior. If the graph is connected and the
cliques have a perfect ordering (see Section 2.2), then the first and second sub-
matrices have some elements in common. Thus, the sub-matrix for the second
clique is the inverse Wishart, conditional on knowing some of the elements. By
repeating the conditioning for each clique, we define the hyper inverse Wishart.

In the current paper, we apply this framework to non-parametric priors.
Instead of the inverse Wishart, the Dirichlet process prior is the base mea-
sure for each clique. Following the analogy, we build the marginals into a hyper
Markov prior, which we refer to as the hyper Dirichlet process. The Dirichlet pro-
cess is a special case of tail-free processes (Ferguson, 1973). Dirichlet processes
have been used for non-parametric priors in many areas, including block mod-
els (Bush and MacEachern, 1996), survival analysis (Susarla and Ryzin, 1976;
Ghosh and Ramamoorthi, 1995; Kim and Lee, 2001), and non-stationary point
processes (Pievatolo and Rotondi, 2000). These are all areas that could poten-
tially use a hyper Dirichlet process in multidimensional problems. In Section 2,
we explain notation and formalize some of the ideas presented so far. In Sec-
tion 3, we describe the Dirichlet and some previous results. In Section 4 we
weave Dirichlet processes on the cliques to build the hyper Dirichlet process,
and show that it is a hyper Markov prior. Finally, we explore applications for
this framework in Section 5.

2. Notation and setting

2.1. Basic graph theory

Throughout this paper we consider a graph, G, with vertex set V and edge set
E. By convention, we assume that (γ, γ) ∈ E for all γ. We call such edges loops.
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There is no practical difference if loops are excluded from E, though some minor
changes are required for certain definitions. If A ⊆ V, then GA is the subgraph
of G over A. The subgraph GA has vertex set A, and edge set EA = (A×A)∩E.
We say that A induces the subgraph GA. If EA = A×A, then GA is complete.
A clique is a set A such that GA is complete and for any superset B ⊃ A, GB

is not complete. For example, if G itself is complete, then there is one clique,
viz. V.

A k-path is a sequence (γ0 , γ1, . . . , γk), such that (γi, γi+1) ∈ E, for 0 ≤ i < k.
If A and B are subsets of V, then a path between them is a path between any
a ∈ A and any b ∈ B. A graph is connected if there exists a path between every
pair of subsets. A third subset C ∈ V is said to separate A and B if every path
between them contains an element of C. A k-cycle is a path such that k ≥ 3,
γ0 = γk and the other elements are distinct. Within a k-cycle, a chord is an edge
(or “short cut”) between two non-consecutive nodes. A graph is decomposable if
every cycle longer than length 3 contains a chord. A decomposable graph admits
a perfect ordering of its cliques.

Definition 1 (Perfect Ordering). Suppose a graph G has n cliques. Let the
cliques have an arbitrary ordering C1 , . . . ,Cn. Define Hk = ∪k

i=1Ci. For k ≥ 2
define Sk = Ck ∩ Hk−1 and Rk = Ck \ Hk−1. The ordering of the cliques is a
perfect ordering if for each 2 ≤ k ≤ n, there exists jk < k such that Sk ⊂ Cjk

.

The sets Hk are called the histories. The separators, Sk, separate Ck from
the previous history. The sets Rk are called the residuals, which represent the
new nodes being added to the history. In a perfect ordering, each new clique is
separated from the current set of nodes by a single one of the earlier cliques.

For every, γ ∈ V, Xγ is a random variable taking values in the space
(Xγ ,Fγ). In this sense, we consider V an index set of components of some
random variable X = (Xγ : γ ∈ V). We denote the range and σ-field of X
by (X ,F) = (×γ∈VXγ ,×γ∈VFγ). Furthermore, we extend these definitions to
subsets, A ⊆ V.

XA = (XA : γ ∈ A)

XA = ×γ∈AXγ

FA = ×γ∈AFγ

Let α be a measure over some XA, then α = α/α(XA). In other words, α is
the probability measure proportional to α. If B ⊆ A, then αB is the marginal
of α over XB. Thus, αB(U) = α(U × XA\B), ∀ U ∈ FB. If α and β are both
measures on some space (X ,F), then we define their sum, α + β, by

[α + β](U) = α(U) + β(U), ∀ U ∈ F .

If x ∈ X , then the delta measure δx is a point mass concentrated at x:

δx(U) =

{
1, x ∈ U
0, x 6∈ U

, ∀U ∈ F .
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I J K

Fig 1. A graph depicting conditional independence of I and K given J.

2.2. Graph selection

For the remainder of the paper, we consider undirected graphs, which implies
that (i, j) ∈ E if and only if (j, i) ∈ E. We also assume that the graph is
connected and decomposable. An undirected graph depicts the conditional in-
dependence structure for some variable X in the following sense:

XA ⊥⊥ XB | XC whenever C separates A and B. (1)

Definition 2 (Markov Probability Measure). If θ is a probability measure
on (X ,F), we say it is Markov on a decomposable graph, G, if X ∼ θ satisfies
the conditional independences in G.

Example 1. Let G be the graph depicted in Figure 1. A measure θ is Markov
on G, if and only if XI ⊥⊥ XK |XJ whenever X ∼ θ.

Implicit in the definition is the fact that it is only sensible to refer to a
measure as Markov in relation to a specific graph. For example, if the measure
θ is not Markov on G in Example 1, it is still Markov on the saturated graph
with V = {I, J, K}. All measures over XV are trivially Markov on the saturated
graph since there are no constraints on conditional independence. Furthermore,
if µ is a measure such that each Xγ is independent, then it is Markov on any
graph (with the appropriate vertex set.) We denote the set of all distributions
that are Markov on G by M (G).

It will be useful to keep Figure 1 in mind throughout this paper. While the
graph technically has only three variables, it is representative of any connected
graph of two cliques. Instead of one variable, imagine I, J , and K to contain
multiple variables, with J being the variables that belong to both cliques. I is
the set of variables in one clique but not the other, and K vice versa.

Let X ∼ P ∈ F be a random variable whose distribution is modeled by
some family of probability distributions. In some applications, the focus is not
on determining P , but on discovering the independence structure of X. A graph
of this structure, G, denotes the belief that P is Markov with respect to G. Thus,
it restricts the model to a sub-family, FG = F ∩ M (G). Graph selection is the
problem of determining the smallest FG that contains P . The most prevalent
examples are graphical Gaussian models. Graph selection for Gaussian models
is often called covariance selection. In this setting, the relevant family is the set
of p-variate Gaussian distributions. Denote this family N = {Np(µ, Σ) : µ ∈
Rp, Σ ∈ M+

p }, where M+
p is the cone of real-valued, symmetric p × p matrices

that are positive definite. Specifying a graph, G, translates to putting constraints
on Σ. For example, if (x1, x2, x3) is such that x1 ⊥⊥ x3|x2, then σ13 is no longer
a free parameter, but a function of σ11, σ22, σ33, σ12, and σ23.
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Denote the sub-family of Gaussian distributions Markov on G by NG . Let
PG be the set of positive definite matrices such that Kij = 0 for all (i, j) 6∈ E;
let QG be the image of PG under matrix inversion. Speed and Kiiveri (1986)
showed that if Np(µ, Σ) is Markov with respect to G, then Σ ∈ QG . Thus NG =
{Np(µ, Σ) : µ ∈ Rp, Σ ∈ QG}. The goal of covariance selection is to find the
smallest QG containing Σ, the population covariance matrix.

Much progress has been made with graph selection for parametric models.
Dawid and Lauritzen (1993) proved many results for decomposable graphical
models, including multinomial and multivariate Gaussian problems. For exam-
ple, they present the distribution of the restricted maximum likelihood esti-
mate of Σ for the NG model with µ known. This distribution is called the
hyper Wishart distribution; if we restrict G to the complete graph, then we re-
cover the Wishart distribution for the measure of the MLE. Letac and Massam
(2007) have extended the hyper Wishart to a richer family of distributions on
QG and PG . Giudici and Green (1999) implemented a reversible jump Markov
chain Monte Carlo algorithm for determining G.

The family of hyper inverse Wishart distributions is the subset of Markov
distributions such that each clique marginal is inverse Wishart. Carvalho et al.
(2007) provide an algorithm for generating random variables from this family.
For decomposable models, the presence of a perfect ordering simplifies the pro-
cess. For two cliques, the algorithm begins by generating an inverse Wishart
variable on one clique. If the cliques overlap, this determines some of the pa-
rameters for the other clique. Therefore, one needs to generate a conditional
Wishart variable given those entries. For multiple cliques, one simply repeats
this process. With a perfect ordering, the process is simplified because each
new clique is conditioned on only one previous clique. Conditioning on multi-
ple cliques can lead to moderate complications in the conditional distribution.
Hence, decomposable models are computationally convenient.

3. The Dirichlet process

The Dirichlet process (Ferguson, 1973) is a special case of tail-free distributions.
It is a prior, meaning that it provides a distribution over the space of proba-
bility distributions on (X ,F). In this paper, we use the term law to refer to
distributions over probability measures. However, this terminology is merely a
convenience; the words “law” and “distribution” are typically interchangeable.
The Dirichlet process is an example of a non-parametric law, which means that
it cannot be specified by a finite-dimensional parameter. In this section, the
Dirichlet process is introduced and some of its useful properties are given. This
leads into the next section, in which we show how to compose a hyper Dirichlet
processes from multiple Dirichlet processes.

3.1. The Ferguson (1973) Dirichlet process

Definition 3 (Dirichlet Process). Let A be any subset of V. Let α be a
measure over (XA,FA), and let θ be a random probability measure over the
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same space. We say that the distribution of θ is a Dirichlet process with base
measure α, and write θ ∼ DPα, if

(P(A1), P(A2), . . . , P(Ak)) ∼ Dir(α(A1), α(A2), . . . , α(Ak)), (2)

whenever (Ai)
k
i=1 is a partition of A.

This definition leads to some useful properties, described in the following theo-
rem.

Theorem 4 (Posterior Dirichlet Process). Let θ ∼ DPα and, given θ,
let X1, . . . , Xn be an iid sample from θ.

(i) Xi ∼ α ∀ i.
(ii) θ|(X1, . . . , Xn) ∼ DPα′ , where α′ = α +

∑n

i=1 δXi
.

See Theorem 1.9.4 of Schervish (1995), p. 54.
The first property states that if the random measure is integrated out, the

marginal distribution of the data is α. This property ensures that a Markov
base measure implies that the Dirichlet process, integrated over all possible θ,
is a Markov distribution. This does not guarantee that the process is a hyper
Markov law. That requires the stronger condition that θ ∼ DPα is a Markov
distribution with probability one. The second property states that if a Dirichlet
process is used as a prior measure, then the posterior measure is also a Dirichlet
process, with an easily updated base measure. This fact helps determine which
properties of a prior will persist in the posterior.

If the prior law of θ is a Dirichlet process, then the various marginal dis-
tributions of θ will also have a Dirichlet process law. This is expressed in the
following theorem.

Theorem 5 (Marginal of a Dirichlet Process). Let θ ∼ DPα be a
random probability measure on (XA,FA). For B ⊆ A, the marginal of θ over
B is θB ∼ DPαB

.

Proof. Define A′ = A \ B. Let B1, B2, . . . , Bk be a measurable partition of B.

(PθB
(B1), . . . , PθB

(Bk)) = (Pθ(B1 ×XA′), . . . , Pθ(Bk × XA′))

∼ Dir(α(B1 ×XA′), . . . , α(Bk ×XA′))

= Dir(αB(B1), . . . , αB(Bk)).

3.2. The Dirichlet process as a prior

We proceed by showing how the Dirichlet process can be used as a non-parametric
prior (see Ferguson (1973) for details.) Let F be an unknown cumulative prob-
ability distribution that we wish to estimate. For simplicity, we consider a one-
dimensional random variable. Let π = DPα be the prior law. Let the loss func-
tion be a squared error loss. Then the Bayes’ risk is

Rπ(F, F̃ ) =

∫
E

(
F (t) − F̃ (t)

)2
dt. (3)
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The risk is minimized by setting F̃ (t) to EF (t), where the expectation is
relative to the posterior distribution. If we observe data X1, X2, . . .Xn, then
the posterior is DPα′ , where α′ = α +

∑
i δXi

(see Theorem 7.) The posterior
distribution of P ((−∞, t]) is Beta(α′((−∞, t]), α′((t,∞)). Therefore,

EF (t) =
α′((−∞, t])

α′((−∞, t]) + α′((t,∞))
(4)

=
α((−∞, t]) +

∑n
i=1 1(Xi≤t)

α(X ) + n
. (5)

The Bayes estimate can be written as a weighted sum of two estimates

F̃ (t) = EF (t) (6)

= (1 − w)α((−∞, t]) + wF̂ (t), (7)

where α((−∞, t]) is the prior estimate, F̂ (t) is the empirical cdf, and w =
n(α(X ) + n)−1 is the weight of the data. This convex combination of a prior
estimate and frequentist estimate is common in Bayesian analysis. This shows
the role of the base measure in the Dirichlet process. α is the prior guess about
the shape of the unknown distribution. α(X ) is mathematically equivalent to
the prior sample size.

3.3. The Dirichlet process as a stick-breaking prior

A stick-breaking process is an almost surely discrete random probability mea-
sure, θ, that can be expressed as

θ(·) =

N∑

k=1

wkδZk
(·), (8)

where the Zk are independently distributed atoms from some distribution H ,
and

∑N

k=1 wk = 1 almost surely. The number of atoms, N , may be finite or
infinite. The weights are determined by successively breaking random pieces of
a unit-length stick. Thus, w1 = p1, w2 = (1− p1)p2, and wk = pk

∏k−1
i=1 (1− pi).

For finite N , wN is defined by 1 − ∑N−1
i=1 wi, or equivalently by

∏
i=1(1 − pi).

Traditionally, stick-breaking measures are defined such that pk is defined as a
Beta(ak , bk) random variable for 1 ≤ k < N . Thus, a stick-breaking measure
is specified by a probability distribution P , and a countable sequence of Beta
parameters (ak, bk)

N−1
k=1 . Sethuraman (1994) showed that a Dirichlet Process is

a stick-breaking measure with Zk ∼ α, and (ak, bk) = (0, α(X )) for all k ∈ N.
This relationship leads to an alternative definition of the Dirichlet process.

Definition 6 (Dirichlet Process (alternate definition)). Let A be any sub-
set of V. Let H be a probability measure on (XA,FA), and let θ be a random
probability measure over the same space. For ν > 0, we say that the distribution
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of θ is a Dirichlet process with base distribution (or measure) H and precision
ν , and write θ ∼ DP (νH), if

(P(A1), P(A2), . . . , P(Ak)) ∼ Dir(νH(A1), νH(A2), . . . , νH(Ak)), (9)

whenever (Ai)
k
i=1 is a partition of A.

Note that this distribution is equivalent to Definition 3 by letting α = νH .
For example, ν is equivalent to the prior sample size, and H is equivalent to the
prior mean. In this definition, ν and H are easily translated as the parameters
of a stick-breaking measure. That is, the random atoms are iid H , and pk ∼
Beta(0, ν) for all k ∈ N. Because the stick-breaking representation is useful for
many of the theorems we prove, Definition 6 will be the definition of choice for
much of the current paper.

The previous theorems regarding Dirichlet processes can be expressed us-
ing νH notation. For example, we rewrite Theorem 4 regarding the posterior
Dirichlet process.

Theorem 7 (Posterior Dirichlet Process (alternate)). Let θ ∼ DP (νH)
and, given θ, let X1 , . . . , Xn be an iid sample from θ.

(i) Xi ∼ H ∀ i.
(ii) θ|(X1, . . . , Xn) ∼ DP (ν ′H ′), where ν ′ = ν + n and H ′ = (ν + n)−1(νP +∑n

i=1 δXi
).

In the following section we introduce the hyper Dirichlet process and show
that it is an example of a stick-breaking measure. We then use Equation 8 to
prove some of its properties. While we focus on the hyper Dirichlet Process for
simplicity and concreteness, many of the results apply to other stick-breaking
processes as well.

4. The hyper Dirichlet process

Consider a multivariate variable X with distribution θ. Suppose that we know
little about θ, other than it is Markov on some decomposable graph, G. In this
case we may wish to specify a non-parametric prior for θ. For example, we focus
on the Dirichlet process. There are two main difficulties with this approach. The
first is the elicitation of a proper base measure. The second is ensuring that the
Dirichlet process gives probability one to M (G). Both concerns are addressed
by using a framework that we dub the hyper Dirichlet process.

To define a hyper Dirichlet process, we begin by eliciting a base measure for
each clique in G. Hopefully, this is simpler than eliciting a base measure for the
entire graph at once. These base measures are combined to form a base measure
over the entire graph. We define these combinations in a way which will ensure
that the support of the process lies within the set of Markov distributions on
G. In the remainder of this section, we provide details to this method and show
that it satisfies the Markov property.
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4.1. Markov combinations of probability measures

Dawid and Lauritzen (1993) show that if two subsets of V are each endowed
with a marginal probability measure, then there is a logical choice for their joint
distribution, provided the marginals satisfy a consistency condition.

Definition 8 (Consistency (of probability measures)). Suppose A, B ⊆
V. Let µ and λ be probability measures on (XA,FA) and (XB,FB), respectively.
We say that µ and λ are consistent if they induce the same marginal over XA∩B.

Note that µ and λ are consistent only if

µ(XA\B × U) = λ(XB\A × U) ∀ U ∈ FA∩B.

Theorem 9. Suppose µ on (XA,FA) and λ on (XB,FB) are consistent prob-
ability measures, with A, B ⊆ V. There exists an almost-everywhere unique
distribution, α, such that:

(i) αA = µ,
(ii) αB = λ.
(iii) α ∈ M (GA∪B),

Proof. Construct α such that its marginal over XA is µ, so that condition (i) is
satisfied. Specify its conditional distributions over XB given XA to be the same
as the conditional distributions of λ given XA∩B. This ensures that (iii) holds
as well. Let C = A ∩B and B′ = B \ A. Then for any U ∈ B′ and V ∈ C,

PαB
(U × V ) = Pα

B′ |C
(U |V )PαC

(V )

= Pλ
B′ |C

(U |V )PµC
(V )

= Pλ
B′ |C

(U |V )PλC
(V )

= Pλ(U × V ).

The second equation follows from the construction of α. The third equation
is ensured since µ and λ are consistent. Hence, condition (ii) is also satisfied.
Furthermore, the conditional distributions are unique, except over some subset
of XC with zero measure under λ, and hence also under µ by consistency. There-
fore, this construction gives (a version of) the unique distribution satisfying the
conditions.

Definition 10 (Markov Combination (of probability measures)). Let
µ and λ be as in Theorem 9. We call the unique distribution satisfying (i)-(iii)
the Markov Combination of µ and λ, and denote it by µ ⋆ λ.

Now suppose G has a perfect ordering of cliques (C1, C2, . . . ,Ck), and that
each clique Ci is imbued with a marginal probability distribution Qi. Further
suppose that Qi and Qj are consistent for every pair (i, j). Each clique is con-
sistent with the previous history regarding the separator, since the separator is
contained by a single previous clique. Using the idea of a Markov combination it-
eratively, we stitch together a distribution that is Markov on G and has the given
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marginals. Define H1 = Q1, and Hi = Hi−1 ⋆Qi for i ≥ 2. Dawid and Lauritzen
show that H = Hk is the unique Markov distribution satisfying HCk

= Qk.
We call H the Markov combination of Q1, . . . , Qk. In general, we may write
⋆(Q1, . . . , Qk) to indicate a Markov combination with the understanding that
the cliques are perfectly ordered and Q1, . . . , Qk are pairwise consistent.

4.2. Markov combinations of finite measures

Using Markov combinations, we are able to take probability distributions and
build a distribution over the entire graph. The base measure of a Dirichlet
process, however, is not necessarily a probability distribution. Therefore, we
proceed by extending Markov combinations to finite measures in general. For
probability measures, we required the conditionals over XA∩B to be the same.
We simply extend this definition to any finite measure.

Definition 11 (Consistency of Finite Measures). Let µ be a finite mea-
sure over (XA,FA) and λ be a finite measure over (XB,FA). We say that µ and
λ are consistent if they induce the same marginal measure over A ∩ B. That is,
µ and λ are consistent if

µ(XA\B × U) = λ(XB\A × U) ∀ U ∈ FA∩B. (10)

Recall that µ is the probability measure proportional to µ. Equation 10 holds
if the following two conditions are satisfied:

1. µ and λ are consistent.
2. µ(XA) = λ(XB).

Consider these two conditions in the context of base measures for Dirichlet
processes. µ is the prior guess about the probability distribution of XA, and λ is
the prior guess for XB. The first condition therefore states that the priors must
agree about the distribution of XA∩B. It is reasonable to require that our prior
is coherent in this way. The second condition states that the prior sample sizes
for both sets of variables must be equal. This restraint is perhaps less desirable.
It would be perfectly logical to be more certain about certain dimensions than
others. Unfortunately, any measure on XA∪B must satisfy

α(XA∪B) =

∫

XA∪B

dα =

∫

XA

∫

XB\A

dα =

∫

XA

dαA = αA(XA). (11)

Similarly, αB(XB) = α(XA∪B). Therefore, if µ(XA) 6= λ(XB) there can be
no measure α on XA∪B satisfying αA = µ and αB = λ. In some situations, this
problem is not too severe. Using the alternative definition, we express µ = ν1H1

and λ = ν2H2. The consistency conditions translate to H1 = H2 and ν1 = ν2.
If only the second condition fails, then it is still possible to find H = H1 ⋆ H2.
Employing the stick-breaking condition, we can generate random atoms from
H . The problem lies in assigning weights to each atom. Fortunately, in density
estimation, the value of the prior precision (ν) is typically small compared to
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the sample size (n). If the estimate is robust to changes in ν , we may justifiably
scale the base measures so that ν1 and ν2 are equal. In this case, it is only
important that H1 and H2 are consistent. In other words, the base measures µ
and λ only need to be proportional to each other over A ∩ B.

There may be other situations in which scale is important. Unfortunately,
as Equation 11 shows, we cannot find a suitable base measure for the prior
that satisfies both µ and λ. Without a suitable prior, there can be no suitable
posterior. If the goal is to estimate a distribution and there is genuine concern
about the precision of the prior estimate, then both conditions must be satisfied.
That is, µ and λ must be consistent. Equivalently, H1 and H2 must be consistent
and ν1 must be equal to ν1. Cases in which one or both conditions fail are
explored more fully in Appendix A.

Subsequently, we assume that both consistency conditions are satisfied. This
leads to a natural extension of the previous work. We have equated consistency
of base measures with consistency of probability measures. Thus, we generalize
Markov combinations to include consistent finite measures by scaling them to
probability measures, finding the Markov combination, and rescaling the mea-
sures.

Definition 12 (Markov Combination of Finite Measures). Let µ be
a finite measure on (XA,FA). Let λ be a finite measure on (XB,FB) that is
consistent with µ. The Markov combination of µ and λ is denoted µ ⋆ λ, where

µ ⋆ λ = µ(XA) · [µ ⋆ λ] = λ(XB) · [µ ⋆ λ], (12)

where [µ⋆λ] is the almost-everywhere unique probability distribution satisfying
Theorem 9.

This definition is a generalization of Definition 10 for probability measures. Note
that the Markov combination defined in this way is unique almost everywhere,
since [µ ⋆ λ] is unique almost everywhere.

It is easy to show that the · and ⋆ operations commute (with respect to
composition).

Theorem 13. If µ and λ are consistent measures, then µ ⋆ λ = µ ⋆ λ.

Proof.

µ ⋆ λ =
[µ ⋆ λ]

[µ ⋆ λ](XA∪B)
(13)

=
µ(XA) · [µ ⋆ λ]

µ(XA) · [µ ⋆ λ](XA∪B)
(14)

= µ ⋆ λ. (15)

Writing the base measures in the alternative notation, set µ = νH1 and
λ = νH2. Theorem 13 states that µ ⋆ λ = H1 ⋆ H2. Therefore, the Markov
combination of νH1 and νH2 can be written ν(H1 ⋆ H2).
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4.3. Constructing the hyper Dirichlet Process

Suppose that G has two cliques and we desire to use a Dirichlet process prior
for each one, with specific base measures. If we want to find a suitable Dirichlet
process for the entire graph, we use the Markov combination of the two marginal
base measures. As a result, the prior will have the desired marginal laws.

Theorem 14. Let H1 be a distribution on (XA,FA). Let H2 be a distribution
on (XA,FA) that is consistent with H1. Set H = H1 ⋆ H2. Let Q ∼ DP (νH1),
R ∼ DP (νH2), and θ ∼ DP (νH) be random probability measures. The following
are true:

(i) θA
d
= Q

(ii) θB
d
= R

Proof. The proposition follows from Theorem 5.

As expected, the distribution of θ has the desired Dirichlet processes for
marginals. Since this distribution is a Dirichlet process, previous results apply
to this construction. Most importantly, we know that the prior law is a stick-
breaking prior. Analogous parametric constructions, such as the hyper inverse
Wishart family, have the desirable property of being hyper Markov.

Definition 15 (Hyper Markov). Consider an undirected graph, G. Let θ ∼ L
be a random probability measure over X . We say that L is (weak) hyper Markov
on G if L is concentrated on M (G), and θA ⊥⊥ θB|θC whenever C separates A
and B.

The hyper Markov property is desirable because it ensures that the random
parameters will yield a distribution for the data that lies within the graphical
family of interest. Furthermore, the hyper Markov property ensures that the
random parameters also have a graphical distribution, which is computationally
convenient, as discussed earlier. Therefore, we would like to know when the
construction in Theorem 5 us hyper Markov, at which point we can feel justified
in calling it a hyper Dirichlet process.

Let L = DP (νH) be a Dirichlet process law. Let G be any graph consisting of
two cliques, A and B, with separator C. Using the stick-breaking construction,
let ~w = (wi : i ∈ N) be the random weights and ~Z = (Zi : i ∈ N) be the
atoms, which are iid observations from H . We use ZiΓ to denote the components
of Zi belonging to a set Γ. For example, the marginal of θ over A is θA =∑

i∈N wiδZiA
.

Obviously, one condition for hyper Markovity is that H is a Markov measure.
If H is not Markov, then for Zi ∼ H , it is not true that ZiA ⊥⊥ ZiB|ZiC.
As a result, θA 6 ⊥⊥ θB|θC. This condition is necessary, but not sufficient. In
addition to the location of the random atoms, θB contains information about
the distribution of weights at each atom. We must ensure that θC contains the
information as well. To see this, consider an example for which HC is a point
mass. For H ∈ M (G), this implies that HA ⊥⊥ HB. Further suppose that HA

and HB are not point masses. In this case, θB implies certain constraints on
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~w. For example, if each ZiB is distinct, then the mass at each atom determines
the random weights modulo permutation. Therefore, the second condition for
L to be hyper Markov is that θB contains no information about ~w that is not
contained by θC. To begin, we use the condition expressed in the next theorem.
The condition is sufficient, but more restrictive than necessary.

Theorem 16. Let H be a base measure on XA∪B. Let C = A ∩ B. Set L =
DP (νH) for some ν > 0. Then L is hyper Markov on XA∪B if the following
conditions hold:

1. H is a Markov measure
2. Refinement Condition:

ZiC = ZjC ⇒ ZiB = ZjB a.s.[H ].

Proof. Define A′ = A\C and B′ = B\C. Note that B = C∪B′, so that ZiB =
ZjB ⇒ (ZiC, ZiB′) = (ZjC, ZiB′). In other words, the refinement condition can
be expressed equivalently as an “if and only if” statement:

ZiC = ZjC ⇐⇒ ZiB = ZjB a.s.[H ].

Consider θ ∼ L. The hyper Markov property has two conditions:

1. P(θ ∈ M (G)) = 1, and
2. θA ⊥⊥ θB|θC.

The first condition follows from the refinement condition. Let x = (xA′ , xC,
xB′) be any point in X such that θB(xB) > 0. That is, there exists some i such
that ZiB = xB. By the refinement condition, ZjC = ZiC = xC if and only
if ZjB = ZiB = xB. Hence, {j : ZjC = xC} = {j : ZjB = xB}. Using the
stick-breaking representation, we write the distribution of XA|XB.

θA|B(xA|XB = xB) =

∑

i:ZiB=xB

wi1{ZiA=xA}

∑

i:ZiB=xB

wi

(16)

=

∑

i:ZiC=xC

wi1{ZiA=xA}

∑

i:ZiC=xC

wi

(17)

= θA|C(xA|XC = xc). (18)

Therefore, θ ∈ M (G).
It remains to show that θA ⊥⊥ θB|θC. We begin by writing the marginals of θ

using the stick-breaking representation. Let Γ be any subset of V.

θΓ =
∑

i∈N

wiδZiΓ
. (19)
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Let ~Z∗
Γ

= {ZiΓ} be the set of unique occurrences among the random atoms. We
refer to an element of this set using an arbitrary index, Z∗

iΓ. Let m∗
iΓ be the

total mass at that atom;

m∗
iΓ =

∑

j:ZjΓ=Z∗
iΓ

wj = θΓ(Z∗
iΓ). (20)

Note that ~Z∗
Γ

is the support of the θΓ, and ~m∗
Γ

is the mass at each point
in the support. Thus, there is a bijection between the measure θΓ and the
set { ~Z∗

Γ
, ~m∗

Γ
}. That is to say, both are completely identified if at least one is

known. The immediate result is that conditioning on one (or both) is equivalent
to conditioning on the other (or one of them).

Continue by partitioning the support into two sets. Define ~Z+
Γ

= {Z∗
iΓ :

HΓ(Z∗
iΓ) > 0} and ~Z0

Γ
= {Z∗

iΓ : HΓ(Z∗
iΓ) = 0} = ~Z∗

Γ
\ ~Z+

Γ
. In other words ~Z+

Γ

is the set of support points with strictly positive mass under HΓ and ~Z0
Γ

is the
set of points that are in the support but have probability zero under HΓ. Again,
we specify a particular element in either set with an arbitrary index, e.g. Z+

iΓ.
Partition ~m∗

Γ
in the same way. This yields,

~m+
Γ

= {m∗
iΓ : HΓ(Z∗

iΓ) > 0} = {m∗
iΓ : Z∗

iΓ ∈ ~Z+
Γ
} = {θΓ(Z+

iΓ)}. (21)

We stipulate that the index is consistent with ~Z+
Γ

so that m+
iΓ = θΓ(Z+

iΓ).
Denote the other set in this partition by ~m0

Γ
= ~m∗

Γ
\ ~m+

Γ
, where m0

iΓ = θΓ(Z0
iΓ).

Separate the sum in Equation 19 using this partition.

θΓ =

N+

Γ∑

i=1

m+
iΓδZ+

iΓ

+

N0
Γ∑

i=1

m0
iΓδZ0

iΓ
, (22)

where N ·
Γ

= | ~Z·
Γ
|. Note that Z+

Γ
, has a degenerate distribution. If HΓ(γ) > 0,

then with probability 1, γ will occur infinitely often in ~ZΓ. Therefore, ~Z+
Γ

=
{zΓ : HΓ(zΓ) > 0} almost surely. Since H is known, the sets of summation in

Equation 22 are fully identified by { ~Z∗
Γ
, ~m∗

Γ
}. It follows that conditioning on θΓ is

equivalent to conditioning on the quartet { ~Z+
Γ

, ~m+
Γ

, ~Z0
Γ
, ~m0

Γ
}. We will now show

that under the refinement condition, ~Z+
B

, ~m+
B

, and ~m0
B

are fully identified from

θC. With that fact, showing θA ⊥⊥ θB|θC is equivalent to showing θA ⊥⊥ ~Z0
B
|θC.

By the refinement condition,

m+
iC =

∑

j:ZjC=Z+

iC

wj =
∑

j:ZjB=Z+

iB

wj = m+
iB. (23)

A similar equation shows m0
iC = m0

iB. Therefore, (~m+
C

, ~m0
C

) = (~m+
B

, ~m0
B

).

We now show that ~Z+
B

is a function of ~Z+
C

. This fact ensures that ~Z+
B

is fully

identified by ~Z+
C

and therefore is conditionally independent of anything given
~Z+
C

. One consequence of the refinement condition is that if HC(c) > 0, then
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there exists B(c) such that HB|C(B(c)|c) = 1. This follows from a simple proof
by contradiction. If HB|C(·|c) is not a point distribution, than either every point
has probability 0 (as in a continuous distribution), or there is some point with
positive probability strictly less than 1. We will see that neither of these can be
true and conclude the conditional is indeed a point distribution.

Suppose HB|C(b|c) has measure zero for every point b ∈ XB. With prob-
ability HC(c)2 > 0, the event Z1C = Z2C will occur. However, Z1B 6= Z2B

almost surely. Therefore, the refinement condition fails with probability at least
HC(c)2 > 0. Now suppose there exists b such that 0 < HB|C(b|c) < 1. Then with
probability HC(c)2HB|C(b|c)(1 − HB|C(b|c)) > 0, the events Z1C = c = Z2C

and Z1B = b 6= Z2B will occur. Thus, the refinement condition fails with pos-
itive probability. By these two contradictions, we see that HB|C(·|c) must be
a point distribution if HC(c) > 0. We denote the point of concentration by

B(c). Clearly, c ∈ ~Z+
C

implies that B(c) ∈ ~Z+
B

. Furthermore, every element

of ~Z+
B

= B(c) for some c ∈ ~Z+
C

. This follows from the fact that C ⊆ B, so

HC(ZiC) = 0 ⇒ HB(ZiC, ZiB′) = 0. Therefore, ~Z+
B

= g(~Z+
C

) = {B(c) : c ∈ ~Z+
C
}

almost surely.
We have shown that conditioning on θ· is equivalent to conditioning on

{ ~Z+
· , ~m+

· , ~Z0
· , ~m0

· }. Furthermore, we have that (~Z+
B

, ~m+
B

, ~m0
B

)= (g(~Z+
C

), ~m+
C

, ~m0
C

).
This provides an equivalent condition for the independence property that we
want to show. That is, θA ⊥⊥ θB|θC if and only if θA ⊥⊥ ~Z0

B
|{ ~Z+

C
, ~m+

C
, ~Z0

C
, ~m0

C
}.

The remainder of this proof will show that the second property holds under the
conditions of the theorem.

Begin by partitioning the atoms and weights as follows. Let Ẑ = {Zi : ZiC ∈
~Z+
C
}, and Z̃ = {Zi : ZiC ∈ ~Z0

C
}. Let ŵ = {wi : ZiC ∈ ~Z+

C
}, and w̃ = {wi :

ZiC ∈ ~Z0
C
}. As usual, for Γ ⊆ V, let ẐΓ and Z̃Γ denote that the elements are the

components in Γ. This partition is similar to, but different than, the partition
defined earlier. (ẐΓ, Z̃Γ) depends on HC, whereas (Z+

Γ
, Z0

Γ
) depends on HΓ. The

goal, as above is to rewrite ZA by partitioning it in a way that preserves the
conditional independence structure. This structure is preserved if the partioning
function is non-random. In other words, the atoms must be partitioned based
on on a known event. When conditioning on θB, θB and θC are known, but θA
is unknown. Therefore, (ẐA, Z̃A) provides an observable partition of ~ZA.

θA =

N+

C∑

i=1

ŵiẐiA +

N0
C∑

i=1

w̃iZ̃iA. (24)

Note that Z̃C is equivalent to ~Z0
C

by definition, and Z̃B = ~Z0
B

by the re-

finement condition. We proceed by showing that w̃, Z̃A, ŵ, and ẐA are jointly
independent of ~Z0

B
given { ~Z+

C
, ~m+

C
, ~Z0

C
, ~m0

C
}. We can express ~m+

C
as a function

of ŵ, Ẑ, and ~Z+
C

, where

m+
iC

a.s.
=

∑

j:Ẑj=Z+

iC

ŵj. (25)
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Furthermore, we have noted that ~m0
C

= w̃. By the stick-breaking construc-

tion, Z̃ ⊥⊥ (w̃, ŵ, Ẑ). Since ~Z+
C

is known almost surely, it can be included in the
independence property.

Z̃ ⊥⊥ (~Z+
C

, Ẑ, ŵ, w̃). (26)

Z̃ is also independent of any function of the RHS of Equation 26. In particular,

Z̃ ⊥⊥ (~m+
C

, ~m0
C, ~Z+

C
, ẐA, ŵ, w̃). (27)

Repeating this argument on the LHS of Equation 26, we conclude

(~Z0
B, Z̃A, ~Z0

C) ⊥⊥ (~m+
C

, ~m0
C, ~Z+

C
, ẐA, ŵ, w̃). (28)

Since Z̃i ∼ H ∈ M (G), we can write ~Z0
B

⊥⊥ Z̃A| ~Z0
C

. Since all three of these

are jointly independent of (ẐA, ŵ) and (~m+
C

, ~m0
C

, ~Z+
C

)), it follows that

~Z0
B ⊥⊥ (ẐA, ŵ, Z̃A, w̃)|(~m+

C
, ~m0

C, ~Z+
C

, ~Z0
C). (29)

Recall from Equation 24 that θA is a function of (ẐA, ŵ, Z̃A, w̃). It follows that,

~Z0
B

⊥⊥ θA|(~m+
C

, ~m0
C

, ~Z+
C

, ~Z0
C

). (30)

Hence, by the above argument, it follows that θA ⊥⊥ θB|θC. We conclude that L
is hyper Markov.

Theorem 16 provides sufficient conditions for a Dirichlet process to be hyper
Markov. Thus, under those conditions, we may safely call the Dirichlet process
a hyper Dirichlet process. When H satisfies the refinement condition, we will
say that B is a refinement of C under sampling almost surely under measure
H . It is a refinement in the following sense. Let X1, X2, . . . be an infinite iid
sample from H . Form a partition of the natural numbers such that i and j are
elements of the same set if and only if XiC = XjC. Call this partition X(C).
Define X(B) by analogy. Under the refinement condition, X(B) is almost surely
a refinement of X(C). We denote this relationship by X(B) � X(C) a.s.[H ],
omitting H if the measure is contextually evident.

The refinement condition, as stated in Theorem 16 is sufficient, but it is
stronger than necessary. By symmetry of conditional independence, θB ⊥⊥ θA|θC,
even though no refinement condition is needed between C and A. It may be
necessary that at least one of the two refinements is present, but this has not
been explored.

The hyper Dirichlet process defined on two cliques is an example of a hyper
Markov combination, which is the analog of Markov combinations for prior
laws. Consider two laws: Q for θA and R for θB. We say that Q and R are
hyperconsistent if the marginal laws for θA∪B are equal. Under this condition,
Dawid and Lauritzen (1993) show that there is a unique hyper Markov law L
such that LA = Q, LB = R. This is called the hyper Markov combination and
is denoted L = Q⊙R.
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As with Markov combinations, hyper Markov combinations are easily gen-
eralized to multiple cliques. Let G be a graph with perfectly ordered cliques
(C1 , . . . ,Ck). Suppose Ci is imbued with a prior law Qi and that the priors are
all pairwise hyperconsistent. Let L1 = Q1 and Li = Li−1 ⊙Qi for i ≥ 2. Then
L = Lk is the unique hyper Markov prior satisfying LCi

= Qi. We call L the hy-
per Markov combination of Q1, . . . ,Qk. In general we may write ⊙(Q1, . . . ,Qk)
with the understanding that the cliques are perfectly ordered and Q1, . . . ,Qk

are pairwise consistent.
The next definition generalizes the hyper Dirichlet Process to three or more

cliques.

Definition 17 (Hyper Dirichlet Process). Let G be a graph with a perfect
ordering of cliques C1, . . . ,Ck. Suppose that the ith clique has marginal distribu-
tion Hi and that the marginals are pairwise consistent. Let H = ⋆(H1, . . . , Hk).
Further suppose that Cj or Hj is a refinement of Sj under sampling almost
surely under H , where Hi is the ith history and Si is the ith separator. Then

HDP(ν, S1, . . . , Sk) = DP(νS) (31)

is a hyper Dirichlet process prior.

The hyper Dirichlet process defined in this way is guaranteed to be hyper
Markov. In fact, it is the unique hyper Markov combination of the marginal
Dirichlet processes. Suppose L = HDP(ν, H1, . . . , Hk). By Theorem 7, LCi

=
DP(νHi) for i ≥ 2. Furthermore, it follows from the refinement conditions and
Theorem 16 that LHi−1∪Ci

= DP(νHHi−1
) ⊙ DP(νHi). Hence, Theorem 3.9

in Dawid and Lauritzen (1993) states that L is the almost-everywhere unique
hyper Markov law such that LCi

= DP(νHi), which by definition is called the
hyper Markov combination. In other words,

HDP(ν, H1, . . . , Hk) = DP(ν ⋆ (H1, . . . , Hk)) (32)

= ⊙(DP(νH1), . . . , DP(νHk)). (33)

4.4. Properties of the hyper Dirichlet process

By definition 17, the hyper Dirichlet process is a Dirichlet process with a special-
ized base measure. Thus, any result proved for Dirichlet processes also applies
to hyper Dirichlet processes. For example, Theroem 7 states that the posterior
law will also be a Dirichlet process with an easily updated base measure. The
next theorem strengthens this result by showing that the posterior will also be
a hyper Dirichlet process.

Theorem 18 (Posterior Hyper Dirichlet Process). Suppose G is a graph
with a perfect ordering of cliques C1, . . . ,Ck. Let L = HDP(ν, H1, . . . , Hk) be a
hyper Dirichlet process. Given θ ∼ L, let X1, . . . , Xn be an iid sample from θ.
Denote the marginal value of Xj over the ith clique by Xji. Then,

θ|X1, . . . , Xn ∼ HDP(ν ′, H ′
1, . . . , H

′
k), (34)

where H ′
i = (ν + n)−1(νH +

∑
j δXji

)
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Proof. By Theorem 7 above, the posterior is DP(ν ′H ′) where H ′ = (ν+n)−1(νH+∑
j δXj

). By Corollary 5.2 in Dawid and Lauritzen (1993), this posterior must
be hyper Markov because the prior is hyper Markov. This in part implies that
H ′ is Markov. Since it has the correct marginals, H ′ must be the Markov com-
bination of the marginal updates: H ′ = ⋆(H ′

1, . . . , H
′
k). The result now holds by

Definition 17.

5. Applications

According to our definition of a hyper Dirichlet process (Definition 17), a hyper
Dirichlet process is a Dirichlet process with a base measure that satisfies certain
properties. This is in line with various families of parametric hyper Markov
distributions. For example, the hyper Normal is a Normal distribution with a
constrained covariance matrix. The implication of this property is that a wide
variety of results and applications for Dirichlet processes can be easily extended
to situations which call for the hyper Dirichlet process.

While the refinement condition seems unduly restrictive at first glance, it
allows one to use hyper Dirichlet processes in most areas that have benefited
from Dirichlet processes. For the many applications that use a continuous base
measure, the random atoms are distinct with probability one, so the refinement
condition is trivial. Furthermore, Theorem 18 states that the posterior will also
be hyper Markov. As a result, the hyper Dirichlet process is suitable for applica-
tions such as MCMC, in which one needs a posterior update that is also hyper
Markov. In the following subsections, we study mixture models to illustrate how
the hyper Dirichlet process provides a convenient extension of Dirichlet process
theory.

5.1. Hyper Dirichlet mixtures

One place where the Dirichlet process shines is in mixture modeling. As an
example application, we will see that the hyper Dirichlet process allows us to
incorporate graphical structures into a mixture model. We begin by reviewing
the non-hyper version of Dirichlet mixtures.

Suppose Dn = X1, . . . , Xn are observations from some family of distributions
parameterized by π. If we allow πi to vary for each observation, then the result
is a mixture of distributions. The number of parameters increases with n, which
necessitates placing some prior on the distribution of π. If the prior is unknown,
it can be modeled with a Dirichlet process. In general, a Dirichlet mixture is a
hierarchical model expressed as

θ ∼ DP (νH) (35)

π1, . . . , πn|θ ∼ θ (36)

Xi|π1, . . . , πn ∼ f(X|πi). (37)
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Combining both parts of Theorem 7, the conditional distribution of πn given
π1, . . . , πn−1 is

H ′ = (ν/ν ′)H +

n−1∑

j=1

(1/ν ′)δπj
, (38)

where ν ′ = ν + n − 1. Thus, with positive probability, πn will be a previous
value of πi; otherwise, it is drawn from H . As a result, there will be k ≤ n unique
values of πi. This induces a latent class model in which each class is defined by a
shared value of πi. A key feature is that the number of latent classes is estimated
rather than specified a priori. It is clear from Equation 38 that this estimate
is influenced by ν . When ν is large, new values of πi will often be drawn from
H . Contrarily, when ν is small, πi will more often be drawn from the previous
values. Therefore, ν implies a prior distribution for the number of components.

Note that in the model specified above, the data are conditionally indepen-
dent given the latent class assignments. Mathematically, ⊥⊥ {Xi}|{πi}. There-
fore, the predictive distribution of the next observation conditioned on the cur-
rent sample and parameters satisfies

F (Xn+1|π, Dn) =

∫
F (Xn+1|πn+1)dF (πn+1|π) = F (Xn+1|π), (39)

where π = π1 . . . πn. Bayesian density estimation is solved by using the prior to
integrate out the unknown π. This integral is intractable, but it can be estimated
using a Gibbs sampler for some models. Let π(i) = π \ {πi} be the parameters
other than πi. The required conditional for πi is

F (πi|π(i), Dn) ∝ νfH(xi) · Hi(πi) +

n∑

j=1,j 6=i

f(xi|πj) · δπj
(πi), (40)

where Hi is the posterior for πi|xi and fH is the marginal density for xi when
πi ∼ H . Note that by incorporating the data, the probability of drawing a pre-
viously seen πj depends on f(xi|πj). In the terminology of latent class models,
xi is more likely to be assigned the same class as xj if it has a higher prob-
ability under the class’ model. For example, if πj is a location parameter and
f is unimodal, data near each other are more likely to be assigned the same
label compared to more distant data. Equation 40 reveals the two requirements
necessary for using this type of Gibbs sampler. First, we must be able to calcu-
late the marginal density of xi. Secondly, we must be able to sample from the
posteriors, {Hi}.

As an extenstion of this idea, suppose that the data exhibits some conditional
independence structure specified by the graph G. We need only update the model
at the highest level by specifying a hyper Dirichlet process for θ:

θ ∼ HDPG(νH) (41)

π1, . . . , πn|θ ∼ θ (42)

Xi|π1, . . . , πn ∼ f(X|πi). (43)
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This yields a hyper Markov structure in the following sense. Once again, we
induce latent classes by assigning xi and xj the same class if πi = πj. Given
its class label, each sample observation has a distribution which is Markov with
respect to G. Furthermore, the unique class parameters {π1 . . . πn} are iid draws
from a hyper Markov prior. Thus, by taking advantage of the hyper Dirichlet
process, we are able to incorporate graphical knowledge into a new type of
model. Furthermore, the hyper Markov structure is computationally convenient
since calculations can be carried out individually over each clique and separator
as we see in the following Gaussian example.

5.2. Example: hyper Dirichlet mixture of Gaussians

One example of the Dirichlet mixture model is the Dirichlet mixture of Gaus-
sians, in which πi = (µi, Vi) and Xi|πi ∼ N(µi, Vi). In this case, H is a measure
over (R, M+

p ). Escobar and West (1995) describe a univariate mixture in which
they define H to be a Normal × Inverse-Gamma distribution. The variance,
Vi is Inverse-Gamma, where V −1

i ∼ F (s/2, S/2), a Gamma distribution with
shape s/2 and scale S/2. Conditional on the variance, the mean has Normal
distribution, N(µi, τVi). This prior is conjugate to the Normal distribution.
The posterior for (Vi|Xi) is Inverse-Gamma with V −1

i ∼ G((1 + s)/2, Si/2),
where Si = S + (xi − m)2/(1 + τ ). The conditional posterior for (µi|Vi, xi) is
N((m+τxi)/(1+τ ), τVi/(1+τ )). The marginal distribution of xi is T (s, m, M),
the t-distribution with s degrees of freedom, non-centrality m, and scale

√
M ,

where M = (t + τ )S/s. Thus, a Gibbs sampler is possible, taking advantage
of the conditionals specified in Equation 40. The hyper Dirichlet process allows
us to extend the Dirichlet mixture model to a multidimensional and graphical
setting. Here, we restrict the base measure H to satisfy Theorem 16, so the
Dirichlet process is now a hyper Dirichlet process. In particular, we restrict its
support to (R, QG). Recall that V ∈ QG if V −1

ab = 0 whenever there is no edge
between a and b in G. A relatively simple method is to update the N ×IG model
by replacing the Inverse-Gamma with its hyper Markov cousin, the hyper in-
verse Wishart distribution. In this model, a new mixture component is drawn
as follows:

Vi ∼ HIWG(d, D) (44)

µi|Vi ∼ Np(m, τVi) (45)

Xi|µi, Vi ∼ Np(µi, Vi), (46)

where HIWG(d, D) is the hyper inverse Wishart distribution with center D and
d degrees of freedom. Note that the first two lines specify, H , a hyper Markov
base measure for (µi, Vi). Since this measure is continuous, the Refinement Con-
dition is satisfied trivially. Thus, the end result will be a hyper Dirichlet mixture
of Gaussians.

In addition to being hyper Markov, H is also conjugate. Consider observing
a random variable, X, where X ∼ N(µ, V ) and the parameters (µ, V ) ∼ H
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are unknown. The posterior distribution is f(µ, V |X) = f(V |X)f(µ|V, X). By
conditioning on V , the posterior calculation for µ reduces to the Normal-Normal
conjugate model with known covariance. Thus, (µ|V, X) is Normal with mean
(τm + X)/(τ + 1) and covariance τV/(τ + 1). Furthermore, X|V is marginally
normal with mean m and covariance (1 + τ )V . This gives an expression for the
marginal model, integrated over all µ.

V ∼ HIWG(d, D)

(X|V ) ∼ N(m, (1 + τV ))

Taking advantage of the hyper Markov structure, the posterior can be found
by updating each clique and separator individually. Thus, the posterior distri-
bution of V after observing X is

(V |X) ∼
∏

c∈C dIW (Vc; d + 1, Dc + Φc)∏
s∈S dIW (Vs; d + 1, Ds + Φs)

, (47)

where Φc = xcx
′
c is 1-sample covariance matrix for clique c. Therefore, the

posterior distribution of (V |X) is HIW (d + 1, D + ΦG), where ΦG is the 1-
sample covariance matrix under the graphical constraint.

Taking further advantage of the hyper Markov structure, we find the marginal
distribution for X by integrating each clique and separator individually. My
model leads to a new Markov distribution. The marginal distribution of X for
the 1-sample problem is

X ∼
∏

c∈C dT
(
Xc; d + 1 − |c|, mc,

τ+1
d+1−|c|

Dc

)

∏
s∈S dT

(
Xs; d + 1 − |s|, ms,

τ+1
d+1−|s|Ds

) , (48)

where dT (x; d, m, D) represents the density evaluated at x of the multivariate
t-distribution having d degrees of freedom, non-centrality parameter m, and
scale parameter D, and |c| is the number of elements in c. We call this the
hyper t-distribution because it generalizes the multivariate-t in the same way
that hyper inverse Wishart generalizes the inverse Wishart. The notation for
the hyper t-distribution specified by Equation 48 is HT (d + 1, m, (τ + 1)D).
Dawid and Lauritzen (1993) present what they call the matrix T distribution,
which is a special case of this hyper t-distribution in which m = 0. This case
is not general enough for my model. As a mixture of several distributions with
different centers, we need to consider cases in which m 6= 0.

Following Equation 40 we can incorporate a Gibbs sampler to solve the
Bayesian density estimation. The marginal density calculation is simply the
product of marginal t-distributions. The posterior samples from hyper inverse
Wishart distributions can follow the algorithm detailed by Carvalho et al. (2007).

6. Discussion

The hyper Dirichlet process has been defined by constraining the base measure of
a Dirichlet process. Therefore, any result pertaining to Dirichlet process can be
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reused in the hyper Markov case. We have shown one example of how the hyper
Dirichlet process provides a convenient extension to Dirichlet process theory. As
a final note, we point out that some of the results apply to other stick-breaking
measures. Notably, Theorem 16 did not rely on the distribution of the random
weights. Therefore, the same conditions imply that any stick-breaking measure
is hyper Markov. That is, if the H is Markov and the refinement condition holds,
then a stick-breaking prior whose atoms have distribution H is a hyper Markov
law. Whether or not the posterior is also hyper Markov depends on how the
measure is updated. For the Dirichlet process, the posterior update mechanism
ensures a hyper Markov posterior as long as the prior is hyper Markov.
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Appendix A: Working with non-consistent base measures

We constructed the hyper Dirichlet process by combining base measures on each
clique into a base measure on the entire graph. As we have seen, the end result
is simply another Dirichlet process. In other words, the hyper Dirichlet process
is simply a Dirichlet process that is hyper Markov on the graph of interest. The
benefit is that the elicitation of the base measure is simplified by only considering
a subset of variables at a time. In the current paper, we considered the case in
which the individual base measures are consistent (i.e. they agree about the
intersection.) However, we may not be able to guarantee consistency, especially
if component base measures are elicited from different experts or models. How
can this be resolved?

Consider a two cliques, A and B with intersection C. Let µ be a measure on
XA and λ be a measure on XB. The two measures are consistent if the marginals
over XC are equal. In Section 4.2 we stated that this can be expressed as two
simultaneous conditions: (1) the marginals must be proportional, and (2) the
marginals must have the same scale.

Suppose only the first condition holds. Recall that µ(XA) represents the prior
sample size. The interpretation is that there is more prior information about one
clique than there is about the other clique. Equation 11 shows that there is no
Markov Combination of µ and λ. That is, µ⋆λ does not exist. Thus, there is no
hyper Dirichlet process with those marginals. Fortunately, it is still possible to
generate an “almost appropriate” random distribution. This is possible because
we only need µ ⋆ λ. By the commutative property, we can use µ⋆λ instead. This
is well-defined since the first property ensures that µ and λ are consistent. On
the other hand, the difference in scale must be resolved if a problem requires
having a well-defined prior or posterior. The simplest way to achieve this is to
scale one measure up or down to match the other. Additionally, any convex
combination of µXA and λXB could be a logical choice. The most conservative
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choice would be to set µ(XA) = λ(XB) = min{µ(XA), λ(XB)}. If resources are
sufficient, both scales could be used and the results compared. This would reveal
how sensitive the outcome is to the scale of the base measures.

Now suppose that the first condition does not hold. The interpretation is
that we have conflicting prior information. Once again, µ ⋆ λ does not exist.
Furthermore, µ ⋆ λ does not exist either, so it is not possible to use the same
method to generate random distributions. In order to find a base measure, one
or both distributions must be changed. There are several natural ways to do
this. Let U ⊆ XA, V ⊆ XB, W ⊆ XC.

1. Choose one base measure, and complete the distribution via conditioning.

αA(U × V × W ) = µ(U × W )λ(V |W ). (49)

αB(U × V × W ) = µ(U |W )λ(V × W ). (50)

2. Calculate a weighted average.

αw(U × V × W ) = γαA + (1 − γ)αB, γ ∈ [0, 1]. (51)

If there is no reason to choose one prior over the other, γ = 1/2 is appro-
priate. An interesting choice of γ is µ(XA)/(µ(XA) + λ(XB)). This gives
more weight toward the prior with more information.

3. Minimize the summed KL-divergence. Let µC and λC be the marginals
over XC.

αC =
argmin

ν

∫

XC

µC

µC

ν
+

∫

XC

λC

λC

ν
. (52)

α(U × V × W ) = µ(U |W )αC(W )λ(V |W ). (53)

More work is needed to test these candidate solutions to form good recom-
mendations about their use.
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