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Abstract: We propose a general family of algorithms for regression es-
timation with quadratic loss, on the basis of geometrical considerations.
These algorithms are able to select relevant functions into a large dictio-
nary. We prove that a lot of methods that have already been studied for this
task (LASSO, Dantzig selector, Iterative Feature Selection, among others)
belong to our family, and exhibit another particular member of this family
that we call Correlation Selector in this paper. Using general properties of
our family of algorithm we prove oracle inequalities for IFS, for the LASSO
and for the Correlation Selector, and compare numerical performances of
these estimators on a toy example.
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1. Introduction

1.1. The regression problem

In this paper, we study the linear regression problem: we observe n pairs (Xi, Yi)
with Yi = f(Xi) + εi for a noise ε = (ε1, . . . , εn) to be specified later.

The idea is that the statistician is given (or chooses) a dictionary of functions:
(f1, . . . , fm), with possibly m > n, and he wants to build a “good” estimation
of f of the form α1f1 + · · ·+ αmfm.

Actually, we have to precise two things: what is the distribution of the pairs
(Xi, Yi), and what is the criterion for a “good” estimation. We are going to
consider two cases.

1.2. Deterministic and random design

1.2.1. Deterministic design case

In this case the values X1, . . . , Xn are deterministic, and the εi are i. i. d.
according to some distribution P with Eε∼P(ε) = 0 and Eε∼P(ε2) < ∞. In this
case, the distance between f and α1f1 + · · ·+ αmfm will be measured in terms
of the so-called empirical norm.
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Definition 1.1. For any α = (α1, . . . , αm) ∈ Rm and α′ = (α′
1, . . . , α

′
m) ∈ Rm

we put

‖α− α′‖
2
n =

1

n

n
∑

i=1

[

m
∑

j=1

αjfj(Xi) −

m
∑

j=1

α′
jfj(Xi)

]2

and

αn ∈ arg min
α∈Rm

1

n

n
∑

i=1

[

f(Xi) −

m
∑

j=1

αjfj(Xi)

]2

.

1.2.2. Random design case

In this case, we assume that the pairs (Xi, Yi) are i. i. d. according to some
distribution P, that the marginal distribution of every Xi is PX , and that we
still have E(X,Y )∼P(ε) = 0 and E(X,Y )∼P(ε2) < ∞. The distance will be measured
by the L

2 distance with respect to PX .

Definition 1.2. For any α, α′ ∈ Rm we put

‖α − α′‖
2
X = EX∼PX







[

m
∑

j=1

αjfj(X) −

m
∑

j=1

α′
jfj(X)

]2






and

αX ∈ arg min
α∈Rm

EX∼PX







[

f(X) −

m
∑

j=1

αjfj(X)

]2






.

Moreover, we make the following restrictive hypothesis: the statistician
knows PX .

1.3. General notations

Now, we assume that we are in one of the two cases defined previously. However,
as the results we want to state are the same in both settings, we introduce the
following notation.

Definition 1.3. We introduce the general norm

‖α − α′‖GN

that is simply ‖α− α′‖n if we are in the deterministic design case and and
‖α − α′‖X if we are in the random design case. Moreover, we will let α denote
αn or αX according to the case.

In any case, we let P denote the distribution of the sample (Xi, Yi)i=1,...,n.
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In order so simplify the notations, we assume that the functions fj of the
dictionary are normalized, in the sense that 1

n

∑n
i=1 f2

j (Xi) = 1 if we are in the

deterministic design case and that EX∼PX
[fj(X)]

2
= 1 if we are in the random

design case. Note that this could be simply written in terms of the general norm:
if we put e1 = (1, 0, . . . , 0),. . . , em = (0, . . . , 0, 1) the canonical basis of Rm, we
just have to assume that for any j ∈ {1, . . . , m}, ‖ej‖GN = 1.

Finally, let us mention that 〈., .〉GN will denote the scalar product associated
to the norm ‖.‖GN while we will use the notation ‖.‖ for the euclidian norm inRm and 〈., .〉 for the associated scalar product.

1.4. Previous works and organization of the paper

The aim of this paper is to propose a method to estimate the real regression
function (say f) on the basis of the dictionary (f1, . . . , fm), that have good
performances even if m > n.

Recently, a lot of algorithms have been proposed for that purpose, let’s cite
among others the bridge regression by Frank and Friedman [14], and a particular
case of bridge regression called LASSO by Tibshirani [19], some variants or
generalization like LARS by Efron, Hastie, Johnstone and Tibshirani [13], the
Dantzig selector by Candes and Tao [9] and the Group LASSO by Bakin [3],
Yuan and Lin [21] and Chesneau and Hebiri [11] or iterative algorithms like
Iterative Feature Selection in our paper [2] or greedy algorithms in Barron,
Cohen, Dahmen and DeVore [4]. This paper proposes a general method that
contains LASSO, Dantzig selector and Iterative Feature Selection as a particular
case.

Note that in the case where m/n is small, we can use the ordinary least square
estimate. The risk of this estimator is roughly in m/n. But when m/n > 1, this
estimator isn’t even properly defined. The idea of all the mentioned works is
the following: if there is a “small” vector space F ⊂ Rm such that α ∈ F , one
could build a constrained estimator with a risk in dim(F )/n. But can we obtain
such a result if F is unknown? For example, a lot of papers study the sparsity
of α, this means that F is the span of a few ej , or, in other words, that α have
only a small number (say p) of non-zero coordinates: an estimator that selects
automatically p relevant coordinates and achieving a risk close to p/n is said to
satisfy a “sparsity oracle inequality”. A paper, by Bickel, Ritov and Tsybakov
[5] gives sparsity oracle inequalities for the LASSO and the Dantzig selector
in the case of the deterministic design. Another paper by Bunea, Tsybakov
and Wegkamp [8] gives sparsity oracle inequalities for the LASSO. This paper
is written in a more general context than ours: random design with unknown
distribution (in the case of a random design, remember that our method require
the knowledge of the distribution of the design). However, the main results
require the assumption ‖fj‖∞ ≤ L for some given L, what is not necessary
in our paper, and prevents the use of popular basis of functions like wavelets.
This is due to the use of Hoeffding’s inequality in the technical parts of the
paper.
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Our paper uses a geometric point of view. This allows to build a general
method of estimation and to obtain simple sparsity oracle inequalities for the
obtained estimator, in both deterministic design case and random design with
known distribution. It uses a (Bernstein’s type) deviation inequality proved in a
previous work [2] that is sharper than Hoeffding’s inequality, and so gets rid of
the assumption of a (uniform) bound over the functions of the dictionary. An-
other improvement is that our method is valid for some types of data-dependant
of dictionaries of functions, for example the case where m = n and

{f1(.), . . . , fm(.)} = {K(X1, .), . . . , K(Xn, .)}

where K is a function X 2 → R, performing kernel estimation.
In Section 2, we give the general form for our algorithm under a particular

assumption, Assumption (CRA), that says we are able to build some confidence
region for the best value of α in some subspace of Rm.

In Section 3, we show why Iterative Feature Selection (IFS), LASSO, Dantzig
Selector among others are particular cases of our algorithm. We exhibit another
particular case of interest (called the Correlation Selector in this paper). More-
over, we prove some oracle inequalities for the obtained estimators: roughly,
LASSO, Dantzig Selector and IFS performs well when the vector α is sparse
(which means that a lot of its coordinates, 〈α, ej〉 = αj are equal to zero) or
approximately sparse (a lot of coordinates are nearly equal to zero), while the
Correlation Selector performs well when a lot of 〈α, ej〉GN are almost equal to
zero (in the deterministic design case, 〈α, ej〉GN = E( 1

n

∑n
i=1 fj(Xi)Yi) while in

the random design case, 〈α, ej〉GN = E(fj(X)Y ), so in any case, this quantity
is a measure of the correlation between the variable Y and the j-th function in
the dictionary). So, intuitively, the Correlation Selector gives good results when
most of the functions in the dictionary have weak correlation with Y , but we
expect that altogether these functions can bring a good prediction for Y .

In order to prove oracle inequalities, some types of orthogonality (or approx-
imate orthogonality, in some sense) are required on the dictionary of functions.
Our results are the following: under orthogonality on the dictionary of func-
tions, and using only general properties of our family of estimators, we have a
sparse oracle inequality. Under an approximate orthogonality condition taken
from Bickel, Ritov and Tsybakov [5], the result can be extended for the LASSO
and the Dantzig selector (with a proof taken from [5]). Some remarks by Huang,
Cheang and Barron [15] show that these results can be extended to IFS with
a slight modification of the estimator. Finally, the central result for the Corre-
lation Selector does not require any hypothesis on the dictionary of functions
but concerns a measure of the risk that is not natural, we obtain a result on the
risk measured by ‖.‖GN under an assumption very close to the one in [5] - here
again, the proof uses only general properties of our family of estimators.

Section 4 is dedicated to simulations: we compare ordinary least square
(OLS), LASSO, Iterative Feature Selection and the Correlation Selector on a toy
example. Simulations shows that both particular cases of our family of estima-
tors (LASSO and Iterative Feature Selection) generally outperforms the OLS
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estimate. Moreover, LASSO performs generally better than Iterative Feature
Selection, however, this is not always true: this fact leads to the conclusion that
a data-driven choice of a particular algorithm in our general family could lead
to optimal results.

After a conclusion (Section 5), Section 6 is dedicated to some proofs.

2. General projection algorithms

2.1. Additional notations and hypothesis

Definition 2.1. Let C be a closed, convex subset of Rd. We let ΠGN
C (.) denote

the orthogonal projection on C with respect to the norm ‖.‖GN:

ΠGN
C (α) = arg min

β∈C
‖α− β‖GN .

For a generic distance δ, we will use the notation Πδ
C(.) for the orthogonal pro-

jection on C with respect to δ.

We put, for every j ∈ {1, . . . , m}:

Mj =
{

α ∈ Rm, ℓ 6= j ⇒ αℓ = 0
}

= {αej, α ∈ R} .

Definition 2.2. We put, for every j ∈ {1, . . . , m}:

αj = arg min
α∈Mj

‖α − αej‖GN = ΠGN
Mj

(α).

Moreover let us put:

α̃j =
1

n

n
∑

i=1

fj(Xi)Yi and α̂j = α̃jej .

Remark 2.1. In the deterministic design case (‖.‖GN = ‖.‖n) we have

αj =

[

1

n

n
∑

i=1

fj(Xi)f(Xi)

]

ej

and in the random design case we have

αj = EX∼PX
[fj(X)f(X)] ej

so in any case, α̂j is an estimator of αj.

Hypothesis (CRA) We say that the confidence region assumption (CRA) is
satisfied if for ε ∈ [0, 1] we have a bound r(j, ε) ∈ R such that

P
[

∀j ∈ {1, . . . , m},
∥

∥αj − α̂j
∥

∥

2

X
≤ r(j, ε)

]

≥ 1 − ε.

In our previous work [2] we examined different hypothesis on the probability
P such that this hypothesis is satisfied. For example, using inequalities by Catoni
[10] and Panchenko [17] we proved the following results.
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Lemma 2.1. Let us assume that ‖f‖∞ ≤ L for some known L. Let us as-
sume that EP(ε2) ≤ σ2 for some known σ2 < ∞. Then Assumption (CRA) is
satisfied, with

r(j, ε) =
4
(

1 + log 2m
ε

)

n

[

1

n

n
∑

i=1

f2
j (Xi)Y

2
i + L2 + σ2

]

.

Remark 2.2. It is also shown in [2] that we are allowed to take

{f1(.), . . . , fm(.)} = {K(X1, .), . . . , K(Xn, .)}

for some function K : X 2 → R (this allows for f(x) a kernel estimator of the
form

∑n
i=1 αiK(Xi, x)), even in the random design case, but we have to take

r(j, ε) =
4
(

1 + log 4m
ε

)

n

[

1

n

n
∑

i=1

f2
j (Xi)Y

2
i + L2 + σ2

]

in this case.

Lemma 2.2. Let us assume that there is a K > 0 such that P(|Y | ≤ K) = 1.
Then Assumption (CRA) is satisfied with

r(j, ε) =
8K2

(

1 + log 2m
ε

)

n
.

Definition 2.3. When (CRA) is satisfied, we define, for any ε > 0 and j ∈
{1, . . . , m}, the random set

CR(j, ε) =
{

α ∈ Rm,
∥

∥

∥
ΠGN

Mj
(α) − α̂j

∥

∥

∥

2

GN
≤ r(j, ε)

}

.

This can easily be interpreted: Assumption (CRA) says that there is a con-
fidence region for αj in the small model Mj; CR(j, ε) is the set of all vectors
falling in this confidence region when they are orthogonally projected on Mj.

We remark that the hypothesis implies that

P
[

∀j ∈ {1, . . . , M}, α ∈ CR(j, ε)
]

≥ 1 − ε.

2.2. General description of the algorithm

We propose the following iterative algorithm. Let us choose a confidence level
ε > 0 and a distance on X , say δ(., .).

• Step 0. Choose α̂(0) = (0, . . . , 0) ∈ Rm. Choose ε ∈ [0, 1].

• General Step (k). Choose N(k) ≤ M and indices (j
(k)
1 , . . . , j

(k)
N ) ∈

{1, . . . , M}N(k) and put:

α̂(k) ∈ arg min
α∈
⋂

N(k)

ℓ=1
CR(j

(k)

ℓ
,ε)

δ
(

α, α̂(k − 1)
)

.
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This algorithm is motivated by the following result.

Theorem 2.3. When the CRA assumption is satisfied we have:

P
[

∀k ∈ N, δ
(

α̂(k), α
)

≤ δ
(

α̂(k − 1), α
)

≤ · · · ≤ δ
(

α̂(0), α
)

]

≥ 1 − ε. (2.1)

So, our algorithm builds a sequence of α̂(k) that gets closer to α (according to
δ) at every step. Moreover, if δ(x, x′) = ‖x − x′‖GN then

α̂(k) = ΠGN
⋂

N(k)

ℓ=1
CR(j

(k)

ℓ
,ε)

(

α̂(k − 1)
)

and we have the following:

P

[

∀k ∈ N, ‖α̂(k) − α‖
2
GN ≤ ‖α̂(0) − α‖

2
GN−

k
∑

j=1

‖α̂(j) − α̂(j − 1)‖
2
GN

]

≥ 1−ε.

Proof. Let us assume that

∀j ∈ {1, . . . , M},
∥

∥αj − α̂j
∥

∥

2

GN
≤ r(Sj , ε).

This is true with probability at least 1 − ε according to assumption (CRA). In
this case we have seen that

α ∈

N(k)
⋂

ℓ=1

CR(j
(k)
ℓ , ε)

that is a closed convex region, and so, by definition, δ (α̂(k), α) ≤ δ (α̂(k − 1), α)
for any k ∈ N. If δ is the distance associated with the norm ‖.‖GN , let us choose
k ∈ N,

‖α̂(k) − α‖
2
GN =

∥

∥

∥

∥

ΠGN
⋂

N(k)

ℓ=1
CR(j

(k)

ℓ
,ε)

(

α̂(k − 1)
)

− α

∥

∥

∥

∥

2

GN

≤ ‖α̂(k − 1) − α‖
2
GN −

∥

∥

∥

∥

ΠGN
⋂

N(k)

ℓ=1
CR(j

(k)

ℓ
,ε)

(

α̂(k − 1)
)

− α̂(k − 1)

∥

∥

∥

∥

2

GN

= ‖α̂(k − 1) − α‖
2
GN − ‖α̂(k) − α̂(k − 1)‖

2
GN .

A recurrence ends the proof.

Remark 2.3. We choose our estimator α̂ = α̂(k) for some step k ∈ N; the choice
of the stopping step k will depend on the particular choices of the projections
and is detailed in what follows. But remark that there is no bias-variance
balance involved in the choice of k as Theorem 2.3 shows that overfitting
is not possible for large values of k.
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3. Particular cases and oracle inequalities

We study some particular cases depending on the choice of the distance δ(., .)
and on the sets we project on.

Roughly, LASSO and Iterative Feature Selection (at least as introduced in
[2]) correspond to the choice δ(α, α′) = ‖α − α′‖GN , and are studied first.

Dantzig selector corresponds to the choice δ(α, α′) = ‖α−α′‖1 the ℓ1 distance,
it is studied in a second time.

Finally, the new Correlation Selector corresponds to another choice for δ.

3.1. The LASSO

Here, we use only one step where we project 0 onto the intersection of all the
confidence regions and so we obtain:

α̂L = α̂(1) = ΠGN
⋂

m

ℓ=1
CR(ℓ,ε)

(0) .

The optimization program to obtain α̂L is given by:
{

arg minα=(α1,...,αm)∈Rm ‖α‖2
GN

s. t. α ∈
⋂m

ℓ=1 CR(ℓ, ε)

and so:
{

arg minα∈Rm ‖α‖2
GN

s. t. ∀j ∈ {1, . . . , m},
∣

∣〈α, ej〉GN − α̃j

∣

∣ ≤
√

r(j, ε)
(3.1)

Proposition 3.1. Every solution of the program

arg min
α∈Rm







‖α‖2
GN − 2

m
∑

j=1

αjα̃j + 2

m
∑

j=1

√

r(j, ε) |αj|







(3.2)

satisfies Program 3.1. Moreover, all the solutions α of Program 3.1 have the same
risk value ‖α − α‖2

GN . Finally, in the deterministic design case, Program
3.2 is equivalent to:

arg min
α∈Rm

{

1

n

n
∑

i=1

[

Yi −

m
∑

j=1

αjfj(Xi)

]2

+ 2

m
∑

j=1

√

r(j, ε) |αj|

}

. (3.3)

The proof is given ay the end of the paper (in Subsection 6.1 page 1147).
Note that, if r(j, ε) does not depend on j, Program 3.3 is exactly one of the

formulations of the LASSO estimator studied first by Tibshirani [19]. In the
particular deterministic design case, this dual representation was already
known and introduced by Osborne, Presnell and Turlach [16].

However, in the cases where r(j, ε) is not constant, the difference with the
LASSO algorithm is the following: the harder the coordinates are to be esti-
mated, the more penalized they are.

Moreover, note that the program 3.2 gives a different from of the usual LASSO
program for the cases where we do not use the empirical norm.
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3.2. Iterative Feature Selection (IFS)

As in the LASSO case we use the distance δ(α, β) = ‖α − β‖GN .
The only difference is that instead of taking the intersection of every con-

fidence region, we project on each of them iteratively. So the algorithm is the
following:

α̂(0) = (0, . . . , 0)

and at each step k we choose a j(k) ∈ {1, . . . , m} and

α̂(k) = ΠGN
CR(j(k),ε)

(

α̂(k − 1)
)

.

We choose a stoping step k̂ and put

α̂IFS = α̂(k̂).

This is exactly the Iterative Feature Selection algorithm that was introduced
in Alquier [2], with the choice of j(k):

j(k) = arg max
j

∥

∥

∥
α̂(k − 1) − ΠX

CR(j,ε)

(

α̂(k − 1)
)

∥

∥

∥

GN
,

and the suggestion to take as a stopping step

k̂ = inf {k ∈ N∗, ‖α̂(k) − α̂(k − 1)‖GN ≤ κ}

for some small κ > 0.

Remark 3.1. In Alquier [2], it is proved that:

α̂(k) = α̂(k − 1) + sgn (βk)
(

|βk| −
√

r(j(k), ε)
)

+
ej(k) (3.4)

where

βk =
1

n

n
∑

i=1

fj(Xi)

[

Yi −
m
∑

ℓ=1

α̂(k)ℓfℓ(Xi)

]

.

So this algorithm looks quite similar to a greedy algorithm, as it is described
by Barron, Cohen, Dahmen and DeVore [4]. Actually, it would be a greedy
algorithm if we replace r(j, ε) by 0 (such a choice is however not possible here):
it is a soft-thresholded version of a greedy algorithm. Such greedy algorithms
were studied in a recent paper by Huang, Cheang and Barron [15] under the
name “penalized greedy algorithm”, in the case ‖.‖GN = ‖.‖n.

Note that in Iterative Feature Selection, every selected feature actually im-
proves the estimator: ‖α̂(k) − α‖2

GN ≤ ‖α̂(k − 1) − α‖2
GN (Equation 2.1).

3.3. The Dantzig selector

The Dantzig selector is based on a change of distance δ. We choose

δ(α, α′) = ‖α − α′‖1 =
m
∑

j=1

|αj − α′
j|.
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As is the LASSO case, we make only one projection onto the intersection of
every confidence region:

α̂DS ∈ arg min
α∈
⋂

m

ℓ=1
CR(j,ε)

‖α‖1

and so α̂DS is the solution of the program:















arg min
α=(α1,...,αm)∈Rm

m
∑

j=1

|αj|

s. t. ∀j ∈ {1, . . . , m},
∣

∣〈α, ej〉GN − α̃j

∣

∣ ≤
√

r(j, ε).

In the case where r(j, ε) does not depend on j, and where ‖.‖GN = ‖.‖n, this
program is exactly the one proposed by Candes and Tao [9] when they intro-
duced the Dantzig selector.

3.4. Oracle Inequalities for the LASSO, the Dantzig Selector and
IFS

Definition 3.1. For any S ⊂ {1, . . . , m} let us put

MS = {α ∈ Rm, j /∈ S ⇒ αj = 0}

and
αS = arg min

α∈MS

‖α − α‖GN .

Every MS is a submodel of Rm of dimension |S| and αS is the best approx-
imation of α in this submodel.

Theorem 3.2. Let us assume that assumption (CRA) is satisfied. Let us as-
sume that the functions f1, . . . , fm are orthogonal with respect to 〈., .〉GN . In this
case the order of the projections in Iterative Feature Selection does not affect
the obtained estimator, so we can set

α̂IFS = ΠGN
CR(m,ε) . . .ΠGN

CR(1,ε)0.

Then

α̂IFS = α̂L = α̂DS =
m
∑

j=1

sgn (α̃j)
(

|α̃j| −
√

r(j, ε)
)

+
ej

is a soft-thresholded estimator, and

P







∥

∥α̂L − α
∥

∥

2

GN
≤ inf

S⊂{1,...,m}

[

‖αS − α‖
2
GN + 4

∑

j∈S

r(j, ε)

]







≥ 1 − ε.

For the proof, see Subsection 6.2 page 1149.
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Remark 3.2. We call “general regularity assumption with order β > 0 and
constant C > 0”:

∀j ∈ {1, . . . , m}, inf
S ⊂ {1, . . . , m}

|S| ≤ j

‖αS − α‖GN ≤ Cj−β.

This is the kind of regularity satisfied by functions in weak Besov spaces, see
Cohen [12] and the references therein, with fj being wavelets. If the general
regularity assumption is satisfied with regularity β > 0 and constant C > 0 and
if there is a k > 0 such that

r(j, ε) ≤
k log m

ε

n
,

then we have:

P

{

∥

∥α̂L − α
∥

∥

2

GN
≤ (2β + 1)C

1
2β+1

(

2k log m
ε

βn

)

2β

2β+1

+

(

4k log m
ε

n

)

}

≥ 1 − ε.

Now, note that the orthogonality assumption is very restrictive. Usual results
about LASSO or Dantzig Selector usually involve only approximate orthogonal-
ity, see for example Cands and Tao [9], Bunea [6], Bickel, Ritov and Tsybakov [5]
and Bunea, Tsybakov and Wegkamp [8], and sparsity (the fact that a lot of the
coordinates of α are null), as for example the following result, which is a small
variant of a result in [8], that is reminded here in order to provide comparison
with the results coming later in the paper.

Theorem 3.3 (Variant of Bunea, Tsybakov and Wegkamp [8]). Let us assume
that we are in the deterministic design case, that assumption (CRA) is
satisfied, and that r(j, ε) = r(ε) does not depend on j (this is always possible by
taking r(ε) = supj∈{1,...,m} r(j, ε)). Moreover, we assume that there is a constant
D such that, for any α ∈ Fm,

‖α‖GN ≥ D‖α‖

where

Fm =

{

α ∈ Rm,
∑

j:αj=0

|αj| ≤ 3
∑

j:αj 6=0

|αj|

}

.

Then

P

{

∥

∥α̂L − α
∥

∥

2

GN
≤

16

D2

∣

∣

∣
{j : αj 6= 0}

∣

∣

∣
r(ε)

}

≥ 1 − ε.

The only difference with the original result in [8] is that r(ε) is given in a
general form here, so we are allowed to use different values for r(ε) depending
on the context, see the discussion of Hypothesis (CRA) in the beginning of the
paper. Similar results are available for the Dantzig selector, see Candes and Tao
[9], and Bickel, Ritov and Tsybakov [5].



P. Alquier/LASSO, IFS and Correlation Selector 1141

Remark 3.3. We can wonder how IFS performs when the dictionary is not
orthogonal. Actually, the study of penalized greedy algorithm in Huang, Cheang
and Barron [15] leads to the following conclusion in the deterministic design
case: there are cases where IFS can be really worse than LASSO. However,
the authors proposes a modification of the algorithm, called “relaxed penalized
greedy algorithm”; if we apply this modification here we obtain

α̂(k) = γkα̂(k − 1) + sgn (βk)
(

∣

∣β̃k

∣

∣−
√

r(j(k), ε)
)

+
ej(k)

instead of equation 3.4, where

β̃k =
1

n

n
∑

i=1

fj(Xi)

[

Yi − γk

m
∑

ℓ=1

α̂(k)ℓfℓ(Xi)

]

,

and at each step we have to minimize the empirical least square error with
respect to γk ∈ [0, 1]. Such a modification ensures that the estimators given by
the k-th step of the algorithm become equivalent to the LASSO when k grows,
for more details see [15] (note that the interpretation in terms of confidence
regions and the property ‖α̂(k) − α‖2

GN ≤ ‖α̂(k − 1) − α‖2
GN are lost with this

modification).

3.5. A new estimator: the Correlation Selector

The idea of the Correlation Selector is to use

‖α‖CS =

m
∑

j=1

〈ej , α〉
2
GN .

We make only one projection onto the intersection of every confidence region:

α̂CS ∈ arg min
α∈
⋂

m

ℓ=1
CR(j,ε)

‖α‖CS

and so α̂CS is a solution of the program:















arg min
α=(α1,...,αm)∈Rm

m
∑

j=1

〈ej , α〉
2
GN

s. t. ∀j ∈ {1, . . . , m},
∣

∣〈α, ej〉GN − α̃j

∣

∣ ≤
√

r(j, ε).

This program can be solved for every uj = 〈ej, α〉GN individually: each of them
is solution of

{

arg minu |u|2

s. t. ∀j ∈ {1, . . . , m}, |u − α̃j| ≤
√

r(j, ε).
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As a consequence,

uj =
〈

ej , α̂
CS
〉

= sgn (α̃j)
(

|α̃j| −
√

r(j, ε)
)

+

that does not depend on p. Note that uj is a thresholded estimator of the
correlation between Y and fj(X), this is what suggested the name “Correlation
Selector”. Let us put U the column vector that contains the uj for j ∈ {1, . . . , m}
and M the matrix (〈ei, ej〉GN)i,j, then α̂CS is just any solution of α̂CSM = U .

Remark 3.4. Note that the Correlation Selector has no reason to be sparse,
however, the vector α̂CSM is sparse. An interpretation of this fact is given in
the next subsection.

3.6. Oracle inequality for the Correlation Selector

Theorem 3.4. We have:

P





∥

∥α̂CS − α
∥

∥

2

CS
≤ inf

S⊂{1,...,m}

(

∑

j /∈S

〈α, ej〉
2
GN + 4

∑

j∈S

r(j, ε)

)



 ≥ 1 − ε.

Moreover, if we assume that there is a D > 0 such that for any α ∈ Em,
‖α‖GN ≥ D ‖α‖ where

Em =
{

α ∈ Rm, 〈α, ej〉GN = 0 ⇒ 〈α, ej〉 = 0
}

then we have:

P





∥

∥α̂CS − α
∥

∥

2

GN
≤

1

D2
inf

S⊂{1,...,m}

(

∑

j /∈S

〈α, ej〉
2
GN + 4

∑

j∈S

r(j, ε)

)



 ≥ 1 − ε.

The proof can be found in Subsection 6.3 page 1150.

Remark 3.5. Note that the result on
∥

∥α̂CS − α
∥

∥

CS
does not require any as-

sumption on the dictionary of functions. However, this quantity does not have,
in general, an interesting interpretation. The result about the quantity of inter-

est,
∥

∥α̂CS − α
∥

∥

2

GN
, requires that a part of the dictionary is almost orthogonal,

this condition is to be compared to the one in Theorem 3.3.

Remark 3.6. Note that if there is a S such that for any j /∈ S, 〈α, ej〉GN = 0
and if r(j, ε) = k log(m/ε)/n then we have:

P

[

∥

∥α̂CS − α
∥

∥

2

CS
≤

4k|S| log m
ε

n

]

≥ 1 − ε,

and if moreover for any α ∈ Em, ‖α‖GN ≥ D ‖α‖ then

P

[

∥

∥α̂CS − α
∥

∥

2

GN
≤

4k|S| log m
ε

D2n

]

≥ 1 − ε.
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The condition that for a lot of j, 〈α, ej〉GN = 0 means that most of the functions
in the dictionary are not correlated with Y . In terms of sparsity, it means that
the vector αM is sparse. So, intuitively, the Correlation Selector will perform
well when most of the functions in the dictionary have weak correlation with Y ,
but we expect that altogether these functions can bring a reasonable prediction
for Y .

4. Numerical simulations

4.1. Motivation

We compare here LASSO, Iterative Feature Selection and Correlation Selector
on a toy example, introduced by Tibshirani [19]. We also compare their perfor-
mances to the ordinary least square (OLS) estimate as a benchmark. Note that
we will not propose a very fine choice for the r(j, ε). The idea of these simula-
tions is not to identify a good choice for the penalization in practice. The idea is
to observe the similarity and differences between different order in projections
in our general algorithm, using the same confidence regions.

4.2. Description of the experiments

The model defined by Tibshirani [19] is the following. We have:

∀i ∈ {1, . . . , 20}, Yi = 〈β, Xi〉 + εi

with Xi ∈ X = R8, β ∈ R8 and the εi are i. i. d. from a gaussian distribution
with mean 0 and standard deviation σ.

The Xi’s are i. i. d. too, and each Xi comes from a gaussian distribution with
mean (0, . . . , 0) and with variance-covariance matrix:

Σ(ρ) =
(

ρ|i−j|
)

i ∈ {1, . . . , 8}
j ∈ {1, . . . , 8}

for ρ ∈ [0, 1[.
We will use the three particular values for β taken by Tibshirani [19]:

β1 = (3, 1.5, 0, 0, 2, 0, 0, 0),

β2 = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5),

β3 = (5, 0, 0, 0, 0, 0, 0, 0),

corresponding to a “sparse” situation (β1), a “non-sparse” situation (β2) and a
“very sparse” situation (β3).

We use two values for σ: 1 (the “low noise case”) and 3 (the “noisy case”).
Finally, we use two values for ρ: 0.1 (“weakly correlated variables”) and 0.5

(“highly correlated variables”).
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We run each example (corresponding to a given value of β, σ and ρ) 250 times.
We use the software R [18] for simulations. We implement Iterative Feature
Selection as described in subsection 3.2 page 1138, and the Correlation Selector,
while using the standard OLS estimate and the LASSO estimator given by the
LARS package described in [13]. Note that we use the estimators defined in the
deterministic design case, this means that we consider ‖.‖GN = ‖.‖n (the
empirical norm) as our criterion here. The choice:

r(ε) = r(j, ε) =
σ

3

√

log m

n
=

σ

3

√

log 8

20

was not motivated by theoretical considerations but seems to perform well in
practice.

4.3. Results and comments

The results are reported in Table 1.
The following remarks can easily be made in view of the results:

• both methods based on projection on random confidence regions using
the norm ‖.‖GN = ‖.‖n clearly outperform the OLS in the sparse cases,
moreover they present the advantage of giving sparse estimates;

• in the non-sparse case, the OLS performs generally better than the other
methods, but LASSO is very close, it is known that a better choice for the
value r(j, ε) would lead to a better result (see Tibshirani [19]);

• LASSO seems to be the best method on the whole set of experiments. In
every case, it is never the worst method, and always performs almost as
well as the best method;

• in the “sparse case” (β1), note that IFS and LASSO are very close for the
small value of ρ. This is coherent with the previous theory, see Theorem
3.2 page 1139;

• IFS gives very bad results in the non-sparse case (β2), but is the best
method in the sparse case (β3). This last point tends to indicate that
different situations should lead to a different choice for the confidence
regions we are to project on. However, theoretical results leading on that
choice are missing;

• the Correlation Selector performs badly on the whole set of experiments.
However, note that the good performances for LASSO and IFS occurs for
sparse values of β, and the previous theory ensures good performances for
C-SEL when βM is sparse where M is the covariance matrix of the Xi.
In other words, two experiments where favorable to LASSO and IFS, but
there was no experiment favorable to C-SEL.

In order to illustrate this last point, we build a new experiment favorable to
C-SEL. Note that we have

Yi = 〈Xi, β〉 + εi =
〈

XiM
−1, βM

〉

+ εi (4.1)
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Table 1

Results of Simulations. For each possible combination of β, σ and ρ, we report in a column
the mean empirical loss over the 250 simulations, the standard deviation of this quantity
over the simulations and finally the mean number of non-zero coefficients in the estimate,
for ordinary least square (OLS), LASSO, Iterative Feature Selection (IFS) and Correlation

Selector (C-SEL)

β σ ρ OLS LASSO IFS C-SEL

3 0.5 3.67 1.64 1.56 3.65

β1 1.84 1.25 1.20 1.96
(sparse) 8 4.64 4.62 8

1 0.5 0.40 0.29 0.36 0.44

0.22 0.19 0.23 0.23
8 5.42 5.70 8

3 0.1 3.75 2.72 2.85 3.44

1.86 1.50 1.58 1.72
8 5.70 5.66 8

1 0.1 0.40 0.30 0.31 0.43

0.19 0.19 0.19 0.20
8 5.92 5.96 8

3 0.5 3.54 3.36 4.90 3.98

β2 1.82 1.64 1.58 1.85
(non sparse) 8 7.08 6.57 8

1 0.5 0.41 0.54 0.84 0.47

0.21 0.93 0.36 0.24
8 7.94 7.89 8

3 0.1 3.78 3.82 4.50 4.01

1.78 1.51 1.59 1.86
8 7.06 7.03 8

1 0.1 0.40 0.42 0.71 0.48

0.20 0.29 0.32 0.22
8 7.98 7.98 8

3 0.5 3.55 1.65 1.59 3.42

β3 1.79 1.28 1.27 1.74
(very sparse) 8 4.48 4.49 8

1 0.5 0.40 0.18 0.17 0.46

0.21 0.14 0.14 0.25
8 4.46 4.48 8

3 0.1 3.46 1.69 1.62 3.00

1.74 1.29 1.18 1.45
8 4.92 4.92 8

1 0.1 0.40 0.20 0.19 0.44

0.20 0.14 0.14 0.24
8 4.98 4.91 8

where M is the correlation matrix of the Xi. Let us put X̃i = XiM
−1 and

β̃ = βM , we have the following linear model:

Yi =
〈

X̃i, β̃
〉

+ εi. (4.2)

The sparsity of β gives advantage to the LASSO for estimating β in Model 4.1,
it also gives an advantage to C-SEL for estimating β̃ in Model 4.2 (according
to Remark 3.4 page 1142).

We run again the experiments with β = β3 and this time we try to estimate
β̃ instead of β (so we act as if we had observed X̃i and not Xi).
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Table 2

Results for the estimation of β̃. As previously, for each possible combination of σ and ρ, we
report in a column the mean empirical loss over the 250 simulations, the standard deviation
of this quantity over the simulations and finally the mean number of non-zero coefficients in

the estimate, this for each estimate: OLS, LASSO, IFS and C-SEL

β σ ρ OLS LASSO IFS C-SEL

3 0.5 3.64 4.83 5.12 2.41

β1 1.99 2.53 2.64 1.92
(sparse) 8 5.98 6.05 8

1 0.5 0.41 1.09 0.92 0.26

0.21 1.72 0.48 0.19
8 7.11 7.40 8

3 0.1 3.65 3.71 3.72 2.09

1.71 1.96 1.99 1.40
8 6.25 6.28 8

1 0.1 0.40 0.47 0.55 0.23

0.20 0.25 0.16 0.27
8 7.35 7.38 8

Results are given in Table 2.
The correlation selector clearly outperforms the other methods in this case.

5. Conclusion

5.1. Comments on the results of the paper

This paper provides a simple interpretation of well-known algorithms of statis-
tical learning theory in terms of orthogonal projections on confidence regions.
This very intuitive approach also provides tools to prove oracle inequalities.

Simulations shows that methods based on confidence regions clearly outper-
forms the OLS estimate in most examples. Actually, the theoretical results and
the experiments lead to the following conclusion: in the case where we think
that α is sparse, that means, if we assume that only a few functions in the
dictionary are relevant, we should use the LASSO or the Dantzig Selector (we
know that these estimators are almost equivalent since [5]); IFS can be seen as
a good algorithmic approximation of the LASSO in the orthogonal case. In the
other cases, we should think of another method of approximation (LARS, re-
laxed greedy algorithm. . . ). When αM is sparse, i. e. almost all the functions in
the dictionary are uncorrelated with Y , then we the Correlation Selector seems
to be a reasonable choice. This is, in some way, the “desperate case”, where
for example for various reason a practitioner thinks that he has the good set of
variables to explain Y , but he realizes that only a few of them are correlated
with Y and that methods based on the selection of a small subset of variables
(LASSO, . . . ) leads to unsatisfying results.

5.2. Extentions

First, note that all the results given here in the deterministic design case (‖.‖GN =
‖.‖n) and in the random design case (‖.‖GN = ‖.‖X) can be extended to another
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kind of regression problem: the transductive case, introduced by Vapnik [20].
In this case, we assume that m more pairs (Xn+1, Yn+1),. . . , (Xn+m, Yn+m) are
drawn (i. i. d. from P), and that Xn+1,. . . , Xn+m are given to the statistician,
whose task is now to predict the missing values Yn+1,. . . , Yn+m. Here, we can
introduce the following criterion

‖α − α′‖
2
trans =

1

m

m
∑

i=n+1

[

m
∑

j=1

αjfj(Xi) −

m
∑

j=1

α′
jfj(Xi)

]2

.

In [2], we argue that this case is of considerable interest in practice, and we
show that Assumption (CRA) can be satisfied in this context. So, the reader
can check that all the results in the paper can be extended to the case ‖.‖GN =
‖.‖trans.

Also note that this approach can easily be extended into general statistical
problems with quadratic loss: in our paper [1], the Iterative Feature Selection
method is generalized to the density estimation with quadratic loss problem,
leading to a proposition of a LASSO-like program for density estimation, that
have also been proposed and studied by Bunea, Tsybakov and Wegkamp [7]
under the name SPADES.

5.3. Future works

Future works on this topic include a general study of the projection into the
intersection of the confidence regions

{

arg minα=(α1,...,αm)∈Rm δ(α, 0)

s. t. ∀j ∈ {1, . . . , m},
∣

∣〈α, ej〉GN − α̃j

∣

∣ ≤
√

r(j, ε)

for a generic distance δ(., .).
A generalization to confidence regions defined by grouped variables, that

would include the Group LASSO studied by Bakin [3], Yuan and Lin [21] and
Chesneau and Hebiri [11] as a particular case is also feasible.

A more complete experimental study, including comparison of various choices
for δ(., .) and for r(j, ε) based on theoretical results or on heuristics would be of
great interest.

6. Proofs

6.1. Proof of Proposition 3.1

Proof. Let us remember program 3.1:

{

maxα∈Rm −‖α‖2
GN

s. t. ∀j ∈ {1, . . . , m},
∣

∣〈α, ej〉GN − α̃j

∣

∣ ≤
√

r(j, ε).
(6.1)
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Let us write the lagrangian of this program:

L(α, λ, µ) = −
∑

i

∑

j

αiαj 〈ei, ej〉GN

+
∑

j

λj

[

∑

i

αi 〈ei, ej〉GN − α̃j −
√

r(j, ε)

]

+
∑

j

µj

[

−
∑

i

αi 〈ei, ej〉GN + α̃j −
√

r(j, ε)

]

with, for any j, λj ≥ 0, µj ≥ 0 and λjµj = 0. Any solution (α∗) of Program 3.1
must satisfy, for any j,

0 =
∂L

∂αj
(α∗, λ, µ) = −2

∑

i

α∗
i 〈ei, ej〉GN +

∑

i

(λi − µi) 〈ei, ej〉GN ,

so for any j,
∑

i

〈

1

2
(λi − µi) ei, ej

〉

GN

= 〈α∗, ej〉GN . (6.2)

Note that this also implies that:

‖α∗‖X =

〈

∑

i

α∗
i ei,

∑

j

α∗
jej

〉

GN

=
∑

i

α∗
i

〈

ei,
∑

j

α∗
jej

〉

GN

=
∑

i

α∗
i

〈

ei,
∑

j

1

2
(λj − µj)ej

〉

GN

=
∑

j

1

2
(λj − µj)

〈

∑

i

α∗
i ei, ej

〉

GN

=
∑

j

∑

i

1

2
(λj − µj)

1

2
(λi − µi) 〈ei, ej〉GN .

Using these relations, the lagrangian may be written:

L(α∗, λ, µ) = −
∑

i

∑

j

1

2
(λi − µi)

1

2
(λj − µj) 〈ei, ej〉GN

+
∑

i

∑

j

1

2
(λi − µi)(λj − µj) 〈ei, ej〉GN

−
∑

j

(λj − µj)α̃j +
∑

j

(λj + µj)
√

r(j, ε).

Note that the condition λj ≥ 0, µj ≥ 0 and λjµj = 0 means that there is a
γj ∈ R such that γj = 2(λj − µj), |γj | = 2(λj + µj), and so µj = (γj/2)− and
λj = (γj/2)+. Let also γ denote the vector which j-th component is exactly γj ,
we obtain:

L(α∗, λ, µ) = ‖γ‖2
GN − 2

∑

j

γj α̃j + 2
∑

j

|γj |
√

r(j, ε)
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that is maximal with respect to the λj and µj , so with respect to γ. So γ is a
solution of Program 3.2.

Now, note that Equation 6.2 ensures that any solution α∗ of Program 3.1
satisfies:

〈

∑

i

γiei, ej

〉

GN

= 〈α∗, ej〉GN .

We can easily see that α∗ = γ is a possible solution.
In the case where ‖.‖GN is the empirical norm ‖.‖n we obtain:

‖γ‖2
GN − 2

m
∑

j=1

γj α̃j =
1

n

n
∑

i=1

[

m
∑

j=1

γjfj(Xi)

]2

− 2
1

n

n
∑

i=1

Yi

[

m
∑

j=1

γjfj(Xi)

]

=
1

n

n
∑

i=1

[

Yi −

m
∑

j=1

γjfj(Xi)

]2

−
1

n

n
∑

i=1

Y 2
i .

6.2. Proof of Theorem 3.2

Proof. In the case of orthogonality, we have ‖.‖GN = ‖.‖ the euclidian norm.
So α̂L satisfies, according to its definition:















arg min
α=(α1,...,αm)∈Rm

m
∑

j=1

α2
j

s. t. ∀j ∈ {1, . . . , m}, |αj − α̃j| ≤
√

r(j, ε)

while α̂DS satisfies:














arg min
α=(α1,...,αm)∈Rm

m
∑

j=1

|αj|

s. t. ∀j ∈ {1, . . . , m}, |αj − α̃j| ≤
√

r(j, ε).

We can easily solve both problem by an individual optimization on each αj and
obtain the same solution

α∗
j = sgn (α̃j)

(

|α̃j| −
√

r(j, ε)
)

+
.

For α̂IFS just note that in the case of orthogonality, sequential projections on
each CR(j, ε) leads to the same result than the projection on their intersection,
so α̂IFS = α̂L. Then, let us choose S ⊂ {1, . . . , m} and remark that

∥

∥α̂L − α
∥

∥

2

GN
=
∥

∥α̂L − α
∥

∥

2
=

m
∑

j=1

〈

α̂L − α, ej

〉2

=
∑

j∈S

〈

α̂L − α, ej

〉2
+
∑

j /∈S

〈

α̂L − α, ej

〉2
.



P. Alquier/LASSO, IFS and Correlation Selector 1150

Now, with assumption CRA, with probability 1 − ε, for any j, α satisfies the
same constraint than the LASSO estimator so

|〈α, ej〉 − α̃j| ≤
√

r(j, ε)

and so

∣

∣

〈

α̂L − α, ej

〉
∣

∣ =
∣

∣α∗
j − 〈α, ej〉

∣

∣ ≤
∣

∣α∗
j − α̃j

∣

∣+ |〈α, ej〉 − α̃j| ≤ 2
√

r(j, ε).

Moreover, let us remark that α∗
j is the number with the smallest absolute value

satisfying this contraint, so

∣

∣α∗
j − 〈α, ej〉

∣

∣ ≤ max
(∣

∣α∗
j

∣

∣ , |〈α, ej〉|
)

≤ |〈α, ej〉| .

So we can conclude

∥

∥α̂L − α
∥

∥

2

GN
≤
∑

j∈S

4r(j, ε) +
∑

j /∈S

〈α, ej〉
2

= 4
∑

j∈S

r(j, ε) + ‖α − αS‖
2
.

6.3. Proof of Theorem 3.4

Proof. Note that, for any S:

∥

∥α̂CS − α
∥

∥

2

CS
=

m
∑

j=1

〈α̂CS − α, ej〉
2
GN

=
∑

j∈S

〈

α̂CS − α, ej

〉2

GN
+
∑

j /∈S

〈

α̂CS − α, ej

〉2

GN
.

By the constraint satisfied by α̂CS we have:

〈

α̂CS − α, ej

〉2

GN
≤ 4r(j, ε).

Moreover, we must remember that uj =
〈

α̂CS , ej

〉

GN
satisfies the program

{

arg minu |u|

s. t. ∀j ∈ {1, . . . , m}, |u − α̃j| ≤
√

r(j, ε),

that is also satisfied by 〈α, ej〉GN , so |uj| ≤ | 〈α, ej〉 | and so

|uj − 〈α, ej〉| ≤ max(|uj|, | 〈α, ej〉 |) = | 〈α, ej〉 |

and so we have the relation:

〈

α̂CS − α, ej

〉2

GN
≤ 〈α, ej〉

2
GN .
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So we obtain:

∥

∥α̂CS − α
∥

∥

2

CS
≤
∑

j∈S

4r(j, ε) +
∑

j /∈S

〈α, ej〉
2
GN

This proves the first inequality of the theorem. For the second one, we just have
to prove that (α̂CS − α)M ∈ Em. But this is trivial because of the relation:

〈

(α̂CS − α)M, ej

〉2
=
〈

α̂CS − α, ej

〉2

GN
≤ 〈α, ej〉

2
GN .
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