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Abstract: We show that the control of the false discovery rate (FDR) for
a multiple testing procedure is implied by two coupled simple sufficient con-
ditions. The first one, which we call “self-consistency condition”, concerns
the algorithm itself, and the second, called “dependency control condition”
is related to the dependency assumptions on the p-value family. Many stan-
dard multiple testing procedures are self-consistent (e.g. step-up, step-down
or step-up-down procedures), and we prove that the dependency control
condition can be fulfilled when choosing correspondingly appropriate rejec-
tion functions, in three classical types of dependency: independence, pos-
itive dependency (PRDS) and unspecified dependency. As a consequence,
we recover earlier results through simple and unifying proofs while extend-
ing their scope to several regards: weighted FDR, p-value reweighting, new
family of step-up procedures under unspecified p-value dependency and
adaptive step-up procedures. We give additional examples of other possi-
ble applications. This framework also allows for defining and studying FDR
control for multiple testing procedures over a continuous, uncountable space
of hypotheses.
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1. Introduction

A multiple testing procedure is defined as an algorithm taking in input some
(randomly generated) data X ∈ X and returning a set R(X) of rejected hy-
potheses, which is a subset of the set H of initial candidate null hypotheses.
The false discovery rate (FDR) of the procedure is then defined as the expected
proportion of null hypotheses in R(X) which are in fact true and thus incor-
rectly rejected. Following its introduction by Benjamini and Hochberg (1995),
the FDR criterion has emerged recently as a widely used standard for a majority
of applications involving simultaneous testing of a large number of hypotheses.
It is generally required that a multiple testing procedure R has its FDR bounded
by a certain fixed in advance level α .

Our main point in this work is to show that FDR control is implied by two
simple conditions. The first one, which we call self-consistency condition, re-
quires that any rejected hypothesis h ∈ R(X) should have its p-value ph(X)
smaller than a threshold ∆β(|R(X)|) which itself depends on the volume of re-
jected hypothesis |R(X)| , and on a fixed functional parameter β . The second
one, called dependency control condition, requires that for each true null hypoth-
esis h , the couple of real variables (U, V ) = (ph, |R(X)|) satisfies the inequality
(for any c > 0 , and the same function β as in the first condition):

E

[
1{U ≤ cβ(V )}

V

]
≤ c . (1)

The first condition only concerns how the data is processed to produce the
decision, and is hence purely algorithmic. It can easily be checked for several
classical multiple testing procedures, such as step-down, step-up or more gener-
ally step-up-down procedures. In this condition, the function β controls how the
threshold increases with respect to the volume of rejected hypotheses. In partic-
ular, for step-wise procedures, β corresponds (up to proportionality constant)
to the rejection function used to cut the curve of ordered p-values. The second
condition, on the other hand, is essentially probabilistic in nature. More pre-
cisely, we can show that (1) can be satisfied under relatively broad assumptions
on the dependency of (U, V ) . In turn, as will be shown in more detail in the
paper, this implies that the second condition is largely independent of the exact
procedure R , but rather is related to the dependency assumptions between the
p-values.

The two conditions are not independent of each other: they are coupled
through the same functional parameter β, appearing in (1) as well as in the
definition of the threshold ∆β . The function β, called shape function, is as-
sumed to be nondecreasing but otherwise arbitrary; if there exists β such that
the two corresponding conditions are satisfied, this entails FDR control.

The main advantage of this approach when controlling the FDR is that it
allows us to abstract the particulars of a specific multiple testing procedure,
in order to concentrate on proving the bound (1). This results in short proofs
which in particular do not resort explicitly to p-values reordering.
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We then present different types of applications of the result. This approach
is first used to show that several well-known results on FDR control (mainly
concerning step-up or step-down procedures based on a linear rejection function)
are recovered in a synthetic way (e.g., results of Benjamini and Hochberg, 1995,
1997; Benjamini and Yekutieli, 2001; Sarkar, 2002; Genovese et al., 2006). We
also derive the following new results:

• some classical results on step-up procedures are extended to weighted pro-
cedures (weighted-FDR and/or p-value weighting), under independence or
dependence of the p-values;

• a new family of step-up procedures which control the FDR is presented,
under unspecified dependencies between the p-values;

• we present a simple, exemplary application of this approach to the problem
of adaptive procedures, where an estimate of the proportion π0 of true null
hypotheses in H is included in the procedure with the aim of increasing
power;

• the case of a continuous space of hypotheses is briefly investigated (which
can be relevant for instance when the underlying obervation is modelled
as a stochastic process);

• the results of Benjamini and Liu (1999a) and Romano and Shaikh (2006a)
on a specific type of step-down procedure are extended to the cases of
positive dependencies (under a PRDS-type condition) and unspecified de-
pendencies.

To put some perspective, let us emphasize here again that the conditions
proposed here are only sufficient and certainly not necessary: naturally, there are
many examples of multiple testing procedures that are known to have controlled
FDR but do not satisfy the coupled conditions presented here (including some
particular step-up and step-down procedures). The message that we nevertheless
want to convey is that these conditions are able to cover at once an interesting
range of classical existing results on FDR control as well as provide a useful
technical tool. It was pointed out to us that a result similar in spirit to ours
will appear in the forthcoming paper by Finner et al. (2008); this is discussed
in more detail in Section 5.1.

This paper is organized as follows: in Section 2, we introduce the framework,
the two conditions and we prove that taken together, they imply FDR control.
The self-consistency and dependency control conditions are then studied sepa-
rately in Section 3, leading to specific assumptions, repectively, on the procedure
itself (e.g. step-down, step-up) and on the dependency between the p-values (in-
dependence, PRDS, unspecified dependencies). The applications summarized
above are detailed in Section 4. Some technical proofs are postponed in the
appendix.
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2. Two sufficient conditions for FDR control

2.1. Preliminaries and notations

Let (X , X, P ) be a probability space, with P belonging to a set or “model” P

of distributions, which can be parametric or non-parametric. Formally, a null
hypothesis is a subset h ⊂ P of distributions on (X , X) . We say that P satisfies
h when P ∈ h .

In the multiple testing framework, one is interested in determining simultane-
ously whether or not P satisfies distinct null hypotheses belonging to a certain
set H of candidate hypotheses. Below, we will always assume that H is at most
countable (except specifically in Section 4.4, where we mention extensions to
continuous sets of hypotheses). We denote by H0(P ) = {h ∈ H | P satisfies h}
the set of null hypotheses satisfied by P , called the set of true null hypotheses.
We denote by H1(P ) = H \H0(P ) the set of false null hypotheses for P .

A multiple testing procedure returns a subset R(x) ⊂ H of rejected hypothe-
ses based on a realization x of a random variable X ∼ P .

Definition 2.1 (Multiple testing procedure). A multiple testing procedure
R on H is a function R : x ∈ X 7→ R(x) ⊂ H , such that for any h ∈ H , the
indicator function 1{h ∈ R(x)} is measurable . The hypotheses h ∈ R are the
rejected null hypotheses of the procedure R.

We will only consider, as is usually the case, multiple testing procedures R
which can be written as function R(p) of a family of p-values p = (ph, h ∈ H) .
For this, we must assume that for each null hypothesis h ∈ H, there exists a
p-value function ph , defined as a measurable function ph : X → [0, 1], such
that if h is true, the distribution of ph(X) is stochastically lower bounded by a
uniform random variable on [0, 1]:

∀P ∈ P, ∀h ∈ H0(P ) , ∀t ∈ [0, 1] , PX∼P [ph(X) ≤ t] ≤ t .

A type I error occurs when a true null hypothesis h is wrongly rejected i.e.
when h ∈ R(x) ∩H0(P ). There are several different ways to measure quantita-
tively the collective type I error of a multiple testing procedure. In this paper,
we will exclusively focus on the false discovery rate (FDR) criterion, introduced
by Benjamini and Hochberg (1995) and which has since become a widely used
standard.

The FDR is defined as the averaged proportion of type I errors in the set of
all the rejected hypotheses. This “error proportion” will be defined in terms of
a volume ratio, and to this end we introduce Λ , a finite positive measure on H .
In the remainder of this paper we will assume such a volume measure has been
fixed and denote, for any subset S ⊂ H , |S| = Λ(S) .

Definition 2.2 (False discovery rate). Let R be a multiple testing procedure
on H . The false discovery rate (FDR) is defined as

FDR(R, P ) := EX∼P

[ |R(X) ∩H0(P )|
|R(X)| 1{|R(X)| > 0}

]
. (2)
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Throughout this paper we will use the following notational convention: when-
ever there is an indicator function inside an expectation, this has logical priority
over any other factor appearing in the expectation. What we mean is that if other
factors include expressions that may not be defined (such as the ratio 0

0
) outside

of the set defined by the indicator, this is safely ignored. In other terms, any
indicator function present implicitly entails that we perform integration over
the corresponding set only. This results in more compact notation, such as in
the above definition.

For the sake of simplifying the exposition, we will (as is usually the accepted
convention) most often drop in the notation a certain number of dependencies,
such as writing R or ph instead of R(X), ph(X) and H0, H1, FDR(R) instead of
H0(P ), H1(P ), FDR(R, P ) . We will also omit the fact that the probabilities or
expectations are performed with respect to X ∼ P . Generally speaking, we will
implicitly assume that P is fixed, but that all relevant assumptions and results
should in fact hold for any P ∈ P . For example, our main goal will be to derive
upper bounds on FDR(R, P ) valid for all P ∈ P ; this will be formulated simply
as a bound on FDR(R) .

Remark 2.3. (Role of Λ and weighted FDR in the finite case) When the space of
hypotheses is finite, the “standard” FDR in multiple testing literature is the one
defined using |.| equal to the counting measure (cardinality) on a finite space
and will be referred to as “standard Λ weigthing”. The notation |.| was kept here
to allow notation compatibility with this case and to alleviate some notational
burden. We stress however that in the case H is countably infinite, the volume
measure Λ cannot be the cardinality, since we assume it to be finite.

The possibility of using different weights Λ({h}) for particular hypotheses
h leads to the so-called “weighted FDR”. In general, the measure Λ repre-
sents the relative importance, or criticality, of committing an error about dif-
ferent hypotheses, and can be dictated by external constraints. As discussed
by Benjamini and Hochberg (1997) and Benjamini and Heller (2007), control-
ling the “weighted FDR” can be of interest in some specific applications. For
instance, in the situation where each hypothesis concerns a whole cluster of
voxels in a brain map, it can be relevant to increase the importance of large
discovered clusters when counting the discoveries in the FDR. Note finally that
Λ can be rescaled arbitrarily since only volume ratios matter in the FDR.

2.2. Self-consistency, dependency control and the false discovery

rate

It is commonly the case that multiple testing procedures are defined as level
sets of the p-values:

R = {h ∈ H | ph ≤ t}, (3)

where t is a (possibly data-dependent) threshold. We will be more particularly
interested in thresholds that specifically depend on a real parameter r and pos-
sibly on the hypothesis h itself, as introduced in the next definition.
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Definition 2.4 (Threshold collection). A threshold collection ∆ is a function

∆ : (h, r) ∈ H × R+ 7→ ∆(h, r) ∈ R+,

which is nondecreasing in its second variable. A factorized threshold collection
is a threshold collection ∆ with the particular form: ∀(h, r) ∈ H × R+,

∆(h, r) = απ(h)β(r) ,

where π : H → [0, 1] is called the weight function and β : R+ → R+ is a
nondecreasing function called the shape function. Given a threshold collection
∆, the ∆-thresholding-based multiple testing procedure at rejection volume r is
defined as

L∆(r) := {h ∈ H | ph ≤ ∆(h, r)}. (4)

Let us discuss the role of the parameter r and proceed to the first of the two
announced sufficient conditions. Remember our goal is to upper bound FDR(R) ,
where the volume of rejected hypotheses |R| appears as the denominator in the
expectation. Hence, intuitively, whenever this volume gets larger, we can globally
allow more type I errors, and thus take a larger threshold for the p-values.
Therefore, the rejection volume parameter r in the definition above should be
picked as an (increasing) function of |R| . Formally, this leads to the following
“self-referring” property:

Definition 2.5 (Self-consistency condition). Given a factorized threshold
collection of the form ∆(h, r) = απ(h)β(r) , a multiple testing procedure R
satisfies the self-consistency condition with respect to the threshold collection
∆ if the following inclusion holds a.s.:

R ⊂ L∆(|R|). (SC(α, π, β))

Next, we introduce the following probabilistic condition on two dependent
real variables:

Definition 2.6 (Dependency control condition). Let β : R+ → R+ be a
nondecreasing function. A couple (U, V ) of (possibly dependent) nonnegative
real random variables is said to satisfy the dependency control condition with
shape function β if the following inequalities hold:

∀c > 0, E

[
1{U ≤ cβ(V )}

V

]
≤ c . (DC(β))

The following elementary but fundamental result is the main cornerstone
linking the FDR control to conditions SC and DC.

Proposition 2.7. Let β : R+ → R+ be a (nondecreasing) shape function,
π : H → [0, 1] a weight function and α a positive number . Assume that the
multiple testing procedure R is such that:

(i) the self-consistency condition SC(α, π, β) is satisfied ;
(ii) for any h ∈ H0 the couple (ph, |R|) satisfies DC(β).

Then FDR(R) ≤ αΠ(H0) , where dΠ = πdΛ , i.e., Π(H0) :=
∑

h∈H0
Λ({h})π(h) .
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Proof. From (2),

FDR(R) = E

[ |R ∩H0|
|R| 1{|R| > 0}

]
=

∑

h∈H0

Λ({h})E
[
1{h ∈ R}

|R|

]

≤
∑

h∈H0

Λ({h})E
[
1{ph ≤ απ(h)β(|R|)}

|R|

]

≤ α
∑

h∈H0

Λ({h})π(h),

where we have used successively conditions (i) and (ii) for the two above in-
equalities.

Let us point out the important difference in nature between the two sufficient
conditions: for a fixed shape function β, the self-consistency condition (i) con-
cerns only the algorithm itself (and not the random structure of the problem).
On the other hand, the dependency control condition (ii) seems to involve both
the algorithm and the statistical nature of the problem. However, we will show
below in Section 3.2 that this latter condition can be checked under a weak, gen-
eral and quite natural assumption on the algorithm itself (namely that |R(p)|
is nonincreasing function of the p-values), and primarily depends on the depen-
dency structure of the p-values. (Moreover, in the case of arbitrary dependencies,
we will consider a special family of βs which satisfy the condition without any
assumptions on the algorithm.) Hence, the interest of the above proposition is
that it effectively separates the problem of FDR control into a purely algorith-
mic and an (almost) purely probabilistic sufficient condition. The link between
the two conditions is the common shape function β : the dependency assump-
tions between the p-values will determine for which shape function the condition
DC(β) is valid; in turn, this will impose constraints on the algorithm through
condition SC(α, π, β).

Remark 2.8. (Role of π and p-value weighting in the finite case) To understand
intuitively the role of the weight function π , assume H is of finite cardinality m
and take for simplification β(r) = 1 for now. Consider the corresponding testing
procedure L∆: the rejected hypotheses are those for which p′h := ph/(mπ(h)) ≤
α/m , where p′h is the weighted p-value of h . If π(h) is constant equal to 1/m ,
we have p′h = ph and the above is just Bonferroni’s procedure, which has family-
wise error rate (FWER) controlled by α . If π(h) is, more generally, an arbitrary
probability distribution on H , the above is a weighted Bonferroni’s procedure
and has also FWER less than α (see, e.g., Wasserman and Roeder, 2006). In
this example, π represents the relative importance, or weight of evidence, that
is given a priori to p-values, and thus plays the role of a prior that can be fixed
arbitrarily by the user. Its role in the control of FDR is very similar; the use
of weighted p-values for FDR control has been proposed earlier, for example by
Genovese et al. (2006). When H is of finite cardinality m, we will refer to the
choice π(h) ≡ 1/m , in conjunction with Λ being the cardinality measure, as the
“standard Λ − π weighting”.
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More generally, following Proposition 2.7, control of the FDR at level α is
ensured as soon as the weight function π is chosen as a probability density with
respect to Λ (i.e.

∑
h∈H Λ({h})π(h) = 1). When H is of finite cardinality m and

with the “standard Λ−π weighting” defined above, we obtain FDR ≤ αm0/m ≤
α (where m0 denotes the number of true null hypotheses).

Remark 2.9. Proposition 2.7 can be readily extended to the case where we use
different volume measures for the numerator and denominator of the FDR .
However, since it is not clear to us whether such an extension would be of
practical interest, we choose in this paper to deal only with a single volume
measure.

3. Study of the two sufficient conditions

In this section, we give a closer look to conditions SC(α, π, β) and DC(β), and
study typical situations where they are statisfied.

3.1. Self-consistency condition and step-up procedures

The main examples of self-consistent procedures are step-up procedures. In fact,
for a fixed choice of parameters (α, β, π) , step-up procedures output the largest
set of rejected hypotheses such that SC(α, π, β) is satisfied, and are in this
sense optimal with respect to that condition. Here, we define step-up procedures
by this characterizing property, thus avoiding the usual definition using the
reordering of the p-values.

Definition 3.1 (Step-up procedure). Let ∆ be a factorized threshold col-
lection of the form ∆(h, r) = απ(h)β(r) . The step-up multiple testing procedure
R associated to ∆ , is given by either of the following equivalent definitions:

(i) R = L∆(r̂) , where r̂ := max{r ≥ 0 | |L∆(r)| ≥ r}
(ii) R =

⋃{
A ⊂ H | A satisfies SC(α, π, β)

}
.

Additionally, r̂ satisfies |L∆(r̂)| = r̂ ; equivalently, the step-up procedure R
satisfies SC(α, π, β) with equality.

Proof of the equivalence between (i) and (ii). Note that, since ∆ is assumed to
be nondecreasing in its second variable, L∆(r) is a nondecreasing set as a func-
tion of r ≥ 0 . Therefore, |L∆(r)| is a nondecreasing function of r and the
supremum appearing in (i) is a maximum i.e. |L∆(r̂)| ≥ r̂ . It is easy to see that
|L∆(r̂)| = r̂ because this would otherwise contradict the definition of r̂ . Hence
L∆(r̂) = L∆(|L∆(r̂)|) , so L∆(r̂) satisfies SC(α, π, β) (with equality) and is in-
cluded in the set union appearing in (ii). Conversely, for any set A satisfying
A ⊂ L∆(|A|) , we have |L∆(|A|)| ≥ |A| , so that |A| ≤ r̂ and A ⊂ L∆(r̂) .

When H is finite of cardinal m endowed with the standard Λ-weighting
Λ(·) = Card(·) , Definition 3.1 is equivalent to the classical definition of a
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m

ordered p-values p(k)

Self-consistent thresholds

Step-upStep-down

αβ(k)/m

Fig 1. Pictorial representation of the step-up (and step-down) thresholds, and (in grey) of
all thresholds r ∈ {1, . . . ,m} for which L∆(r) satisfies the self-consistency condition. The
p-values and the rejection function represented here have been picked arbitrarily and in a
deliberately exaggerated fashion in order to illustrate the different procedures; they are not
meant to represent a realistic data or model. This picture corresponds to the standard Λ-π
weighting only.

step-up procedure, based on reordering the p-values: for any h ∈ H, denote
by p′h := ph/(mπ(h)) the weighted p-value of h (in the case π(h) = 0, we put
p′h = +∞ if ph > 0 and p′h = 0 if ph = 0), and consider the ordered weighted
p-values

p′(1) ≤ p′(2) ≤ · · · ≤ p′(m).

Since L∆(r) = {h ∈ H | p′h ≤ αβ(r)/m}, the condition |L∆(r)| ≥ r is equivalent
to p′(r) ≤ αβ(r)/m . Hence, the step-up procedure associated to ∆ defined in
Definition 3.1 rejects all the r̂ smallest weighted p-values, where r̂ corresponds
to the “last right crossing” point between the ordered weighted p-values p′(·) and

the scaled shape function αβ(·)/m:

r̂ = max
{
r ∈ {0, . . . , m} | p′(r) ≤ αβ(r)/m

}
,

with p′(0) := 0; see Figure 1 for an illustration. For the standard π-weighting

π(h) = 1/m, the weighted p-values are simply the p-values. In particular:

• The step-up procedure associated to the linear shape function β(r) = r
is the well-known linear step-up procedure of Benjamini and Hochberg
(1995).

• The step-up procedure associated to the linear shape function β(r) =

r
(∑m

i=1
1
i

)−1
is the distribution-free linear step-up procedure of Benjamini

and Yekutieli (2001).

Finally, let us point out that step-down and more generally step-up-down
procedures are also self-consistent. The latter class of step-wise procedures have
been introduced by Tamhane et al. (1998), and contains step-up and step-down
procedures as particular cases. These procedures select in a certain way among
the “crossing points” between the p-value function and some fixed rejection
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function (for example, on Figure 1, there are only two non-zero crossing points to
choose from). More formally, and under arbitrary weighting, given a parameter
λ ∈ [0, |H|], the step-up-down procedure with threshold collection ∆ and of
order λ is defined as L∆(r̂λ), where either r̂λ := max{r ≥ λ | ∀r′, λ ≤ r′ ≤
r, |L∆(r′)| ≥ r′} if |L∆(λ)| ≥ λ ; or r̂λ := max{r < λ | |L∆(r)| ≥ r} otherwise.
In words, assuming the standard weighting case and λ an integer, if p(λ) is
smaller than the rejection function at λ , the closest crossing point to the right
of λ is picked, otherwise the closest crossing point to the left. In particular, the
step-up-down procedure of order λ = |H| is simply the step-up procedure (based
on the same threshold collection). The case λ = 0 is the step-down procedure.
Although generalized step-up-down procedures are not maximal with respect to
condition SC like the plain step-up, the fact that they still satisfy that condition
is worth noticing.

3.2. Dependency control condition

In this section, we show that condition (ii) of Proposition 2.7 holds under differ-
ent types of assumptions on the dependency of the p-values. We will follow the
different types of dependencies considered by Benjamini and Yekutieli (2001),
namely independent, positive dependency under the PRDS condition and arbi-
trarily dependent p-values. In each case, we have to prove DC(β) for specific
conditions on the variables (U, V ) , resulting in specific choices for the shape
function β .

We start the section with a probabilistic lemma collecting the technical tools
used to deal with each situation.

Lemma 3.2. Let (U, V ) be a couple of nonnegative random variables such
that U is stochastically lower bounded by a uniform variable on [0, 1] , i.e.
∀t ∈ [0, 1], P(U ≤ t) ≤ t . Then the dependency control condition DC(β) is
satisfied by (U, V ) under any of the following situations:

(i) β(x) = x and V = g(U) , where g : R+ → R+ is a nonincreasing function.

(ii) β(x) = x and the conditional distribution of V given U ≤ u is stochastically
decreasing in u, that is,

for any r ≥ 0 , the function u 7→ P(V < r | U ≤ u) is nondecreasing . (5)

(iii) The shape function is of the form

βν(r) =

∫ r

0

xdν(x) , (6)

where ν is an arbitrary probability distribution on (0,∞) , and V is arbitrary.

The proof is found in appendix. Note that there is some redundancy in the
lemma since (i) is a particular case of (ii), but this subcase has a particularly
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simple proof and is of self interest because it corresponds to the case of inde-
pendent p-values (as will be detailed below).

We now apply this result to prove that for any h ∈ H0, the couple of variables
(ph, |R|) satisfies DC(β), under the different dependency assumptions on the p-
values, and for the correspondingly appropriate functions β given by the lemma.
The only additional assumption we will make on the procedure R itself is that
it has nonincreasing volume as a function of the p-values (and this assumption
will not be required in the case of arbitrarily dependent p-values).

3.2.1. Independent case

Proposition 3.3. Assume that the collection of p-values p = (ph, h ∈ H)
forms an independent family of random variables. Let R(p) be a multiple testing
procedure such that |R(p)| is nonincreasing in each p-value ph such that h ∈ H0 .
For any h ∈ H, denote p−h the collection of p-values (pg : g ∈ H, g 6= h) .

Then for any h ∈ H0 and for the linear shape function β(x) = x , the couple
of variables (ph, |R|) satisfies DC(β), in which the expectation is taken con-
ditionally to the p-values of p−h. As a consequence, it also satisfies DC(β)
unconditionally.

Proof. By the independence assumption, the distribution of U = ph condi-
tionally to p−h is identical to its marginal and therefore stochastically lower
bounded by a uniform distribution. The value of p−h being held fixed, |R(p)| =
|R((p−h, ph))| can be written as a nonincreasing function g of ph by the assump-
tion on R . We conclude by part (i) of Lemma 3.2.

Remark 3.4. Note that Proposition 3.3 is still valid under the slightly weaker
assumption that for all h ∈ H0, ph is independent of the family (pg , g 6= h) (in
particular, the p-values of (ph, h ∈ H1) need not be mutually independent).

3.2.2. Positive dependencies (PRDS)

From point (ii) of Lemma 3.2, each couple (ph, |R|) satisfies DC(β) with β(x) =
x under the following condition (weaker than independence):

for any r ≥ 0 , the function u 7→ P(|R| < r | ph ≤ u) is nondecreasing . (7)

Following Benjamini and Yekutieli (2001), we state a dependency condition
ensuring that (ph, |R|) satisfies (7). For this, we recall the definition of posi-
tive regression dependency on each one from a subset (PRDS) (introduced by
Benjamini and Yekutieli, 2001, where its relationship to other notions of posi-
tive dependency is also discussed). Remember that a subset D ⊂ [0, 1]H is called
nondecreasing if for all z, z′ ∈ [0, 1]H such that z ≤ z′ (i.e. ∀h ∈ H, zh ≤ z′h), we
have z ∈ D ⇒ z′ ∈ D .

Definition 3.5. For H′ a subset of H , the p-values of p = (ph, h ∈ H) are
said to be positively regressively dependent on each one from H′ (denoted in



G. Blanchard and E. Roquain/Sufficient conditions for FDR control 974

short by PRDS on H′), if for any h ∈ H′ , for any measurable nondecreasing set
D ⊂ [0, 1]H , the function u 7→ P(p ∈ D | ph = u) is nondecreasing.

We can now state the following proposition:

Proposition 3.6. Suppose that the p-values of p = (ph, h ∈ H) are PRDS
on H0 , and consider a multiple testing procedure R such that |R(p)| is nonin-
creasing in each p-value. Then for any h ∈ H0 , the couple of variables (ph, |R|)
satisfies DC(β) for the linear shape function β(x) = x .

Proof. We merely check that condition (7) is satisfied. For any fixed r ≥ 0 ,
put D =

{
z ∈ [0, 1]H | |R(z)| < r

}
. It is clear from the assumptions on R that

D is a nondecreasing measurable set. Then by elementary considerations, the
PRDS condition (applied using the set D defined above) implies (7). The latter
argument was also used by Benjamini and Yekutieli (2001) with a reference to
Lehmann (1966). We provide here a succinct proof of this fact in the interest of
remaining self-contained.

Under the PRDS condition, for all u ≤ u′ , putting γ = P [ph ≤ u | ph ≤ u′] ,

P [p ∈ D | ph ≤ u′] = E [P [p ∈ D | ph] | ph ≤ u′]

= γE [P [p ∈ D | ph] | ph ≤ u]

+ (1 − γ)E [P [p ∈ D | ph] | u < ph ≤ u′]

≥ E [P [p ∈ D | ph] | ph ≤ u] = P [p ∈ D | ph ≤ u] ,

where we have used the definition of PRDS for the last inequality.

3.2.3. Unspecified dependencies

We now consider a totally generic setting with no assumption on the dependency
structure between the p-values nor on the structure of the multiple testing pro-
cedure R . Using point (iii) of Lemma 3.2, we obtain immediately the following
result:

Proposition 3.7. Let βν be a shape function of the form (6). Then for any
h ∈ H0 , the couple of variables (ph, |R|) satisfies DC(β), for any multiple testing
procedure R .

Note that a shape function of the form (6) must satisfy βν(r) ≤ r , with
strict inequality except for at most one point beside zero (some examples will
be discussed below in Section 4.2). Therefore, the price to pay here is a more con-
servative dependency control inequality, in turn resulting in a more restrictive
self-consistency condition when using this shape function. This form of shape
function was initially introduced by Blanchard and Fleuret (2007), where some
ties were exposed between multiple testing and statistical learning theory.
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4. Applications

4.1. The linear step-up procedure with Λ − π weighting

We have seen earlier in Section 3.1 that step-up procedures satisfy the self-
consistency condition. Furthermore, is is easy to see that step-up procedures
are nonincreasing as a function of the p-values. Using this in conjunction with
Proposition 3.3 (resp. Proposition 3.6) and Proposition 2.7, we obtain the follow-
ing result for the (Λ-weighted) FDR control of the (π-weighted) linear step-up
procedure – that is, the step-up procedure associated to the threshold collection
∆(h, r) = απ(h)r .

Theorem 4.1. For any finite and positive volume measure Λ , the (π-weighted)
linear step-up procedure R has its (Λ-weighted) FDR upper bounded by Π(H0)α ,
where Π(H0) :=

∑
h∈H0

Λ({h})π(h), in either of the following cases:

• the p-values of p = (ph, h ∈ H) are independent.
• the p-values of p = (ph, h ∈ H) are PRDS on H0.

Again, the statement is redundant since independence is a particular case of
PRDS, and we just wanted to recall that the treatment of the independent case
is particularly simple. This theorem essentially recovers and unifies some known
results concerning particular cases: the two points of the theorem were respec-
tively proved by Benjamini and Hochberg (1995) and Benjamini and Yekutieli
(2001), with a uniform π, and Λ the cardinality measure. For a general volume
measure Λ and a uniform π, the above result in the independent case was proved
by Benjamini and Hochberg (1997). A proof with a general π, Λ the cardinality
measure and in the independent case was investigated by Genovese et al. (2006).

The interest of the present framework is to allow for a general and unified
version of these results with a concise proof (avoiding in particular to consider
explicitly p-value reordering). We distinguish clearly between the two different
ways to obtain “weighted” versions of step-up procedures, by changing respec-
tively the choice of the volume measure Λ or the weight function π. Both types of
weighting are of interest and of different nature; using weighted p-values can have
a large impact on power (Genovese et al., 2006; Roquain and van de Wiel, 2008;
see also above Remark 2.8), while using a volume Λ different from the cardinal-
ity measure can be of relevance for some application cases (see Benjamini and
Hochberg, 1997; Benjamini and Heller, 2007; and Remark 2.3 above). Up to our
knowledge, the two types of weighting had not been considered simultaneouly
before; in particular and as noticed earlier (see Remark 2.8), in order to ensure
FDR control at level α under an arbitrary volume measure Λ , the appropriate
choice for a weight function π is to take a density function with respect to Λ .

4.2. An extended family of step-up procedures under unspecified

dependencies

Similarly, in the case where the p-values have unspecified dependencies, we use
Proposition 3.7 instead of Proposition 3.6 to derive the following theorem:
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Theorem 4.2. Consider R the step-up procedure associated to the factorized
threshold collection ∆(h, r) = απ(h)βν(r), where the shape function βν can be
written in the form (6). Then R has its (Λ-weighted) FDR controlled at level
Π(H0)α .

Theorem 4.2 can be seen as an extension to the FDR of a celebrated inequality
due to Hommel (1983) for the family-wise error rate (FWER), which has been
widely used in the multiple testing literature (see, e.g., Lehmann and Romano,
2005; Romano and Shaikh, 2006a,b). Namely, when ν has its support in {1, . . . , m}
and H = H0 , the above result recovers Hommel’s inequality. Note that the lat-
ter special case corresponds to a “weak control”, where we assume that all null
hypotheses are true; in this situation the FDR is equal to the FWER. Note also
that Theorem 4.2 generalizes without modification to a possibly continuous hy-
pothesis space, as will be mentioned in Section 4.4. The result of Theorem 4.2
initially appeared in a paper of Blanchard and Fleuret (2007), in a somewhat
different setting.

4.2.1. Discussion of the family of new shape functions

Theorem 4.2 establishes that, under arbitrary dependencies between the p-
values, there exists a family of step-up procedures with controlled false discovery
rate. This family is parametrized by the free choice of a distribution ν on the
positive real line, which determines the shape function βν .

In the remaining of Section 4.2, we assume H to be finite of cardinal m ,
endowed with the standard Λ weighting, i.e., the counting measure. In this
situation, let us first remark that it is always preferable to choose ν with support
in {1, . . . , m} . To see this, notice that only the values of β at integer values
k, 1 ≤ k ≤ m matter for the output of the algorithm. Replacing an arbitrary
distribution ν by the discretized distribution ν ′({k}) = ν((k − 1, k]) for k < m
and ν ′({m}) = ν((m − 1, +∞)) results in a shape function β′ which is larger
than β on the relevant integer range, hence the associated step-up procedure
is more powerful. This discretization operation will however generally result in
minute improvements only; sometimes continuous distributions can be easier to
handle and avoid cumbersomeness in theoretical considerations.

Here are some simple possible choices for (discrete) ν based on power func-
tions ν({k}) ∝ kγ , γ ∈ {−1, 0, 1} :

• ν({k}) = γ−1
m k−1 for k ∈ {1, . . . , m} with the normalization constant γm =∑

1≤i≤m
1
i . This yields β(r) = γ−1

m r , and we recover the distribution-free
procedure of Benjamini and Yekutieli (2001).

• ν is the uniform on {1, . . . , m}, giving rise to the quadratic shape function
β(r) = r(r + 1)/2m. The obtained step-up procedure was proposed by
Sarkar (2008).

• ν({k}) = 2k/(m(m + 1)) for k ∈ {1, . . . , m} leads to β(r) = r(r + 1)(2r +
1)/(3m(m + 1)) .
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Fig 2. For the standard Λ-weighting and m = 1000 hypotheses, this figure shows several
(normalized) shape functions m−1β associated to different distributions ν on R+ (accord-
ing to expression (6)): Dirac distribution: ν = δµ, with µ > 0. (Truncated-) Gaussian
distribution: ν is the distribution of max(X,1), where X ∼ N (µ,σ2) . Power distribu-

tion: dν(r) = rγ1{r ∈ [1, m]}dr/
∫ m

1
uγdu, γ ∈ R. (Truncated-) Exponential distribution:

dν(r) = (1/λ)exp(−r/λ)1{r ∈ [0,m]}dr, with λ > 0. On each graph, for comparison pur-
poses we added the threshold function for Holm’s step-down m−1β(x) = 1/(m − x + 1) ,
(small dots), and the linear thresholds β(x) = x (large dots) and β(x) = (

∑
i≤m

i−1)−1x

(solid – also corresponding to the power distribution with γ = −1), corresponding to the
standard linear step-up and to the distribution-free linear step-up of Benjamini and Yekutieli
(2001), respectively.

On Figure 2, we plotted the shape functions corresponding to different choices
of distributions ν (which are actually continuous, i.e., without applying the
discretization procedure mentioned above). It is clear that the choice of ν has
a large impact on the final number of rejections of the procedure. However,
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since no shape function uniformly dominates the others, there is no universally
optimal choice of ν : the respective performances of these different procedures
will depend on the exact distribution P , and in particular on the number of
non-true hypotheses.

We like to think of ν as a kind of “prior” on the possible volumes of rejected
hypotheses. If we expect to have only a few rejected hypotheses, ν should be
concentrated on small values, and more spread out if we expect a significant
rejection proportion. This intuition is in accordance with a case of equality in
Hommel’s inequality established by Lehmann and Romano (2005, Lemma 3.1
(ii) ). In the situation studied there (a specifically crafted distribution P ), it
can be checked that the distribution of the cardinality of the step-up procedure
R using the shape function βν , conditionally to R 6= ∅ , is precisely ν in our
notation, while FDR(R) is exactly α .

As mentioned previously in Section 3.2.3, for any choice of ν , the shape func-
tion βν is always upper bounded by the linear shape function β(x) = x . The
only cases of equality are attained if ν is equal to a Dirac measure δx0

in a point
x0 ∈ {1, . . . , m} : in this case βδx0

(x0) = x0 but βδx0
(x) < x for any x 6= x0 .

Therefore, these procedures always reject less (or at most as many) hypotheses
than the linear step-up. Admittedly, this probably limits the practical impli-
cations of this result, as we expect practitioners to prefer using the standard
linear step-up even if the theoretical conditions for its validity cannot be for-
mally checked in general. Additional conservativeness is the “price to pay” for
validity under arbitrary dependencies, although the above result shows that one
has, so to say, the choice in the way this price is to be paid.

Finally, from the examples of shape functions drawn on Figure 2, the shape
functions based on exponential distributions ν seem particularly interesting;
they appear to exhibit a qualitatively diverse range of possible shape functions,
offering more flexibility than the Benjamini-Yekutieli procedure while not being
as committed as the Dirac distributions to a specific prior belief on the number
of rejected hypotheses.

4.2.2. Comparison to Bonferroni’s and Holm’s procedures

Observe that Bonferroni’s procedure also belongs to the family presented here
(taking ν = δ1) – in the sense that a single-step procedure using a fixed threshold
can be technically considered as a step-up procedure. It is well-known, however,
that its control on type I error is much stronger than bounded FDR, namely
bounded FWER. To this extent, it is worth considering the question of whether
other rejections functions in the family – for which only the FDR is controlled
– are of interest at all As remarked earlier, no shape function in the family
can uniformly dominate the others, and consequently there exist particular sit-
uations where Bonferroni’s procedure can be more powerful (i.e. reject more
hypotheses) than other members of the family. However, this case appears only
when there is indeed a very small number of rejections (i.e., when the signal
is extremely “sparse”). For instance, comparing the three examples mentioned
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above to Bonferroni asymptotically as m → ∞, we see that the corresponding
step-up procedures have a rejection function larger than Bonferroni’s threshold
— and are therefore a posteriori more powerful than Bonferroni — provided
their number of rejections |R| is larger than:

• Θ(log m) for ν(k) ∝ k−1 (Benjamini-Yekutieli procedure);
• Θ(

√
m) for ν uniform;

• Θ
(
(m)

2

3

)
for ν(k) ∝ k .

(Recalling here that Θ() means asymptotic order of magnitude, in other terms
“asymptotically lower and upper bounded, up to a constant factor”.) In each
of the above cases, the largest proportion um = |R| /m of rejections for which
Bonferroni’s procedure would a posteriori have been more powerful tends to
zero as m → ∞ . An identical conclusion will hold if we compare these rejection
functions to that of Holm’s step-down (Holm, 1979), since the latter is equivalent
to Bonferroni when um → 0 (in addition, Holm’s procedure is step-down while
the above procedures are step-up).

More generally, let us exhibit a generic family of shape functions β such that
um tends to zero as m → ∞. We first define the proportion um for a given
shape function β more formally, as um = rm/m, where rm is the first point of
{1, . . . , m} for which β(·) is above 1 (Bonferroni’s shape function). Introduce the
family of scale invariant shape functions β, that is, the βs that can be rewritten
under the form β(r) = mβ̃( r

m) for some fixed function β̃(u) =
∫ u

0 vdν̃(v) and
fixed probability measure ν̃ on (0, 1]. In the latter, ν̃ should be taken indepen-
dently of m as a “prior” on the proportion of rejections. (Equivalently, ν̃ takes
the role of ν if we consider the following alternate scaling of the standard Λ-π
weighting: Λ is the uniform probability measure on H and π ≡ 1.) It is then
straightforward to check that um tends to 0 as m → ∞ if we choose ν̃ such
that β̃(u) > 0 for all u > 0 (i.e. the origin is an accumulation point of the
support of ν̃). This gives many examples of shape functions which outperform
Bonferroni’s and Holm’s procedures as m grows to infinity in the “non-sparse”
case. For example, the “power function” choice dν̃(u) = 1{u ∈ [0, 1]}(γ+1)uγdx

for γ > −1 gives rise to the rescaled shape function β̃(u) = γ+1
γ+2

uγ+2 and thus

β(r) = γ+1
γ+2

rγ+2

mγ+1 . In the cases γ = 0, 1, note that the latter corresponds to the

functions β considered earlier (up to discretization).
By contrast, one can easily check that there is no scale-invariant linear rejec-

tion function satisfying (6): the Benjamini-Yekutieli procedure would correspond
(up to lower order terms introduced by discretization) to the “truncated” prior
dν̃(u) = (logm)−11{m−1 ≤ u ≤ 1}x−1du , which cannot be extended to the ori-
gin independently of m since u 7→ u−1 is not integrable in 0. We have seen above
that um → 0 nevertheless also holds for this procedure: hence scale-invariant
shape functions are certainly not the only candidates in the family to asymptot-
ically outperform Bonferroni’s and Holm’s procedures in the “non-sparse” case.

For comparison w.r.t. several other possible choices of ν , (and for a finite
m = 1000) we have systematically added Holm’s rejection function on the plots
of Figure 2. This leads to a qualitatively similar conclusion.
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4.3. Adaptive step-up procedures

We now give a very simple application of our results in the framework of adaptive
step-up procedures. Observe that the FDR control obtained for classical step-up
procedures is in fact not at the target level α , but rather at the level π0α , where
π0 = Π(H0) is the “weighted volume” of the set of true null hypotheses (equal
to the proportion of true null hypotheses m0/m in the standard case). This
motivates the idea of first estimating π−1

0 from the data using some estimator
G(p) , then applying the step-up procedure with the modified shape function

β̃ = G(p)β . Because this function is now data-dependent, establishing FDR
control for the resulting procedure is more delicate; it is the subject of numerous
recent works (see, e.g., Black, 2004; Benjamini et al., 2006; Finner et al., 2008;
see also Gavrilov et al., 2008 for an adaptive step-down procedure).

In this context we prove the following simple result, which is valid under the
different types of dependency conditions:

Lemma 4.3. Assume either of the following conditions is satisfied:

• the p-values (ph, h ∈ H) are PRDS on H0 , β is the identity function.
• the p-values have unspecified dependencies and β is a function of the

form (6).

Define R as an adaptive step-up procedure using the data-dependent threshold
collection ∆(h, r, p) = α1π(h)G(p)β(r) , where G(p) is some estimator of π−1

0 ,
assumed to be nondecreasing as a function of the p-values. Then the following
inequality holds:

FDR(R) ≤ α1 + E

[ |R ∩H0|
|R| 1{G(p) > π−1

0 }
]

. (8)

Proof. Consider R̃ the modified step-up procedure using the data-dependent
threshold collection α1π(h)max(π−1

0 , G(p))β(r) . Then it is easy to check that

R̃ satisfies the self-consistency condition SC(α1π
−1
0 , π, β). Furthermore, R̃ is a

nondecreasing set as a function of the p-values, by the hypothesis on G . There-
fore, by combining Proposition 2.7 with Proposition 3.6 (resp. Proposition 3.7),

R̃ has its FDR controlled at level π0(α1π
−1
0 ) = α1 in both dependency situations

and we have

FDR(R) = E

[ |R ∩H0|
|R| 1{|R| > 0}

]

≤ E

[
|R̃ ∩H0|

|R̃|
1{|R̃| > 0}

]
+ E

[ |R ∩H0|
|R| 1{G(p) > π−1

0 }
]

≤ α1 + E

[ |R ∩H0|
|R| 1{G(p) > π−1

0 }
]

.
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Incidentally, the above proof illustrates a technical use of the main result
where the inclusion in the self-consistency condition is generally not an equality.

We can apply Lemma 4.3 when considering a so-called two-stage procedure,
where π0 is estimated using a preliminary multiple testing procedure R0 . We
assume here that this first stage has controlled FWER (e.g. Holm’s step-down).

Corollary 4.4. Let R0 be a multiple testing procedure with FWER(R0) :=
P(H0 ∩ R0 6= ∅) controlled at level α0 . Estimate π0 by π̂0 = Π((R0)

c) =∑
h/∈R0

π(h)Λ({h}) the π-volume of hypotheses non rejected by the first stage,

and put G(p) = π̂−1
0 (defined as +∞ when π̂0 = 0).

Then the adaptive step-up procedure R using the data-dependent threshold
collection ∆(h, r, p) = α1π(h)G(p)β(r) satisfies

FDR(R) ≤ α0 + α1 .

The proof is a direct application of Lemma 4.3: the second term in (8) is
upper bounded by P(G(p) > π−1

0 ) = P(Π((R0)
c) < Π(H0)), which is itself

smaller than or equal to P(H0 ∩ R0 6= ∅), the FWER of the first stage. Note
that in the standard situation where Λ = |.| is the counting measure and π is
uniform, the above estimator of π−1

0 = m/m0 is simply m/m̂0 , where m̂0 is the
number of non rejected hypotheses by the first stage.

Because of the loss in the level introduced by the first stage, the latter result
is admittedly not extremely sharp: for example, putting α0 = α1 = α/2 , a
theoretical improvement over the non-adaptive version at level α is obtained
only when more than 50% of hypotheses are rejected in the first stage. However,
while sharper results are available under the assumption of independent p-values
(see, e.g., Benjamini et al., 2006), up to our knowledge, there are almost no
results addressing the case of dependent p-values (as is the case in the above
result). The results we know of for this case are found in works of Sarkar (2008)
and Farcomeni (2007). The latter reference establishes a result similar to the
above one, but seems to make the implicit assumption that the two stages are
independent, which we are not assuming here. A more extensive treatment of the
question of adaptive procedures when following the general principles exposed
in the present work, including other applications of Lemma 4.3, is proposed
by Blanchard and Roquain (2008a) (see also the second author’s PhD thesis,
Roquain, 2007, Chap. 11).

4.4. FDR control over a continuous space of hypotheses

An interesting feature of the approach advocated here for proving FDR control
is that it can be readily adapted to the case where H is a continuous set of
hypotheses. A simple example where this situation arises theoretically is when
when the underlying observation is modelled as a random process W over a
continuous space T , and the goal is to test for each t ∈ T whether E [W (t)] = 0 .
In this case we can identify H to T . Such a setting was considered for example
by Perone Pacifico et al. (2004).
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In order to avoid straying too far from our main message in the present work,
it was decided to postpone the detailed exposition of this point to a separate
note. We refer the interested reader to the Section 5 of the technical report of
Blanchard and Roquain (2008b), and restrict ourselves here to a brief overview.
First, under appropriate (and tame) measurability assumptions, the framework
developed in this paper carries over without change: in the FDR definition,
instead of using the cardinality measure (which is of course not adapted in the
continuous case), we are able to deal with an arbitrary “volume measure” Λ on
H (such as the Lebesgue measure if H is a compact subset of Rd). Also, while
it seems considerably more difficult to define rigorously step-up procedures in
the traditional sense via reordering of the p-values, Definition 3.1 of a step-up
procedure carries over in a continuous setting.

Secondly, our main tool, Proposition 2.7, remains true when H is continuous,
by replacing each sum over H by the corresponding integral (with respect to
the measure Λ). Thirdly comes the question of how to adapt the three types of
dependency conditions considered in Section 3.2 to a continuous setting. Under
unspecified dependencies, there is nothing to change as our arguments are not
specific to the discrete setting. The independent case, on the other hand, can-
not be adapted to the continuous setting as it conflicts with some measurability
assumptions. However, this setting is mainly irrelevant in a continuous setting
as continuous families of independent random variables are not usually consid-
ered. Finally, in the case of positive dependencies, condition (7) still ensures
the dependency control condition since Lemma 3.2 is valid for arbitrary vari-
ables, not necessarily discrete. The main difficulty is therefore to suitably adapt
the PRDS assumption in the continuous setting. We propose two extensions of
the PRDS condition, namely the “strong continuous PRDS”, which is a direct
adaptation of the finite PRDS definition to a continuous setting, and the “weak
continuous PRDS”, which states that any finite subfamily of p-values should be
(finite) PRDS. The strong continuous PRDS condition is sufficient but arguably
possibly not easy to check, while the weak PRDS condition is easier but requires
some additional requirements on the procedure R to ensure condition DC. An
example of a process satisfying either type of condition is a continuous Gaussian
process with a positive covariance operator.

4.5. Other types of procedures

We want to point out that the approach advocated here also provides FDR
control for procedures more general than step-up. For example, as mentioned
at the end of Section 3.1, generalized step-up-down procedures satisfy a self-
consistency property. Therefore, combining Proposition 2.7 with Proposition 3.6
(PRDS case) and Proposition 3.7 (unspecified dependencies), we obtain the
following result:

Theorem 4.5. Assume either of the following conditions is satisfied:

• the p-values (ph, h ∈ H) are PRDS on H0 , β is the identity function.
• the p-values have unspecified dependencies and β is of the form (6).
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Then the generalized step-up-down procedure of any order λ ∈ [0, |H|] and asso-
ciated to the threshold collection ∆(h, r) = απ(h)β(r) has its FDR controlled at
level αΠ(H0) .

In the PRDS case and with the standard Γ - π weighting, the first point of
the above result has been first proved by Sarkar (2002) (see also Finner et al.,
2008, where an approach related to ours is used to prove the same result; this
is discussed in more detail below in Section 5.1). The contribution of the above
result is to deal with possible Γ - π weighting and with the general dependent
case (in particular, note that this theorem contains both Theorem 4.1 and The-
orem 4.2). We emphasize that the latter result does not come trivially from the
fact that a step-up-down procedure is always a subset of the step-up procedure
using the same threshold collection, because in the FDR expression the numera-
tor and the denominator inside the expectation both decrease with the rejection
set size.

It could however legitimately be objected that only step-up procedures are
really of interest in the present context, since they are less conservative than
step-up-down, and even the less conservative possible under the SC condition,
as argued in Section 3.1. But one interest of the self-consistency condition is to
allow more flexibility, in particular if there are additional constraints to be taken
into account. Consider the following plausible scenario: in a medical imaging
context, the user wants to enforce additional geometrical constraints on the set
R of rejected hypotheses, represented as a 2D set of pixels. For example, one
could demand that R be convex or have only a limited number of connected
components. If such additional constraints come into play, the step-up may not
be admissible, and has to be replaced by a subset satisfying the constraints. In
this case, the flexibility introduced by the SC condition will be useful in order
to give a simple criterion sufficient to establish FDR control without necessarily
having to engineer a new proof for each new specific algorithm. Note in particular
that in such a scenario, one would probably like to choose a maximal rejection
set satisfying both the geometric constraints and self-consistency condition; in
this case the resulting procedure cannot be characterized in general as a step-
up-down procedure, and the SC condition might hold without equality, i.e.
R ( L∆(|R|) .

4.6. Another application of condition DC(β)

In this section, we step outside of the framework used in Proposition 2.7; more
precisely, we present another application of condition DC(β) to study the FDR
of a step-down procedure that does not satisfy the self-consistency condition
with respect to the adequate shape function. We will prove that the step-down
procedure proposed by Benjamini and Liu (1999a) and Romano and Shaikh
(2006a) has a controlled FDR under a PRDS-type assumption of H0 on H1;
we also deduce a straightforward generalization to the unspecified dependencies
case. In this section, we only consider Λ equal to the counting measure, so that
the aim is to control the standard FDR.
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Benjamini and Liu (1999a) and Romano and Shaikh (2006a) introduced the
step-down procedure based on the threshold collection ∆(i) = αm

(m−i+1)2 , showed

that it has controlled FDR at level α if for each h0 ∈ H0 , ph0
is independent of

the collection of p-values (ph, h ∈ H1) (in fact Romano and Shaikh, 2006a used
a slightly weaker assumption, but it reduces to independence when the p-values
of true null hypotheses are uniform on [0, 1]). Here, we prove this result under
a weaker assumption, namely a positive regression depency assumption of p-
values of H1 from those of H0 . Let us reformulate slightly the notion of “PRDS
on H0” given in Definition 3.5. We say that the p-values of (ph, h ∈ H1) are
positively regression dependent from each one in a separate set H0 (for short:
H1 PRDSS on H0) if for any measurable nondecreasing set D ⊂ [0, 1]H1 and for
all h0 ∈ H0, the function

u 7→ P
(
(ph)h∈H1

∈ D | ph0
= u

)

is nondecreasing. Note that the latter condition is obviously satisfied when for
all h0 ∈ H0 , ph0

is independent of (ph, h ∈ H1) . We chose to introduce a new
acronym only to emphasize the fact that, contrarily to the standard PRDS , this
assumption does not put constraints on the inner dependency structure of the
p-value vector of true hypotheses.

Theorem 4.6. Suppose that the p-values of H1 are PRDSS on H0. Then the
step-down procedure of threshold collection ∆(i) = αm

(m−i+1)2 has a FDR less

than or equal to α .
If β is a shape function of the form (6), then without any assumptions on

the dependency of the p-values, the step-down procedure of threshold collection

∆(i) = αm
m−i+1β

(
1

m−i+1

)
has a FDR less than or equal to α .

The proof is found in appendix. Essentially, we followed the proof of Ben-
jamini and Liu (1999a) and identified the point where the condition DC(β)
(along with the results of Lemma 3.2) can be used instead of their argument.

Benjamini and Liu (1999b) proposed a slightly less conservative step-down
procedure: the step-down procedure with the threshold collection ∆(i) = 1−

[
1−

min
(
1, αm

m−i+1

)]1/(m−i+1)
. It was proved by Benjamini and Liu (1999b) that this

procedure controls the FDR at level α as soon as the p-values are independent.
More recently, a proof of this result was given by Sarkar (2002) when the p-
values are MTP2 (see the definition there) and if the p-values corresponding to
true null hypotheses are exchangeable. However, the latter conditions are more
restrictive than the PRDSS assumption of Theorem 4.6.

The procedure of Theorem 4.6 is often more conservative than the LSU pro-
cedure. First because the LSU procedure is a step-up procedure, and secondly
because the threshold collection of the LSU procedure is larger on a substantial
range. However, in some specific cases (m small and large number of rejections),
the threshold collection of Theorem 4.6 can be larger than the one of the LSU
procedure. A similar argument can be made when comparing the proposed mod-
ified step-down under unspecified dependencies to (for example) the modified
LSU procedure of Benjamini and Yekutieli (2001).
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In order to use Theorem 4.6 in the unspecified dependencies case, we have to
choose a “prior” ν on the set

{
1
k : 1 ≤ k ≤ m

}
:

• taking a uniform ν yields ∆(i) = α 1
m−i+1

(
1

m−i+1 + · · ·+ 1
m

)
,

• taking ν
(

1
k

)
∝ k results in the threshold function ∆(i) = α

m+1
2i

(m−i+1)
,

• taking ν
(

1
k

)
∝ 1

k
results in ∆(i) equal to

γ−1
m α m

m−i+1

(
1

(m−i+1)2 + · · ·+ 1
m2

)
≃ γ−1

m α i
(m−i+1)2 , with γm =

∑
i≤m

1
i .

5. Discussion and conclusion

5.1. The self-consistency condition and connection with other works

The self-consistency condition with a linear shape function can be related to
the following heuristic motivation: consider the problem of choosing a threshold
for rejected p-values, which we reformulate equivalently as choosing r such that
L∆(r) has a FDR smaller than α (for the linear threshold collection ∆(h, r) =
αr/m). If the final number of rejections |L∆(r)| was equal to a deterministic
constant C(r), we would have a FDR bounded by

E [ |{h ∈ H0 | ph ≤ αr/m}| ] /C(r) ≤ αr/C(r) ,

so that the desired FDR control would be attained if r ≤ C(r) = |L∆(r)|,
that is, when L∆(r) satisfies the self-consistency condition. This reasoning is, of
course, unrigorous since L∆(r) is in fact a random variable (and we need other
arguments to correctly prove the FDR control, e.g. Lemma 3.2). This point of
view is in the same spirit as the post-hoc interpretation of the classical linear
step-up procedure proposed in Section 3.3 of Benjamini and Hochberg (1995),
where the authors remarked that the linear step-up procedure maximizes the
number of rejected hypotheses under the above constraint, which is the property
we used in Definition 3.1.

As mentioned in the introduction and in Section 4.5, the forthcoming paper
of Finner et al. (2008) introduces a condition quite similar to the self-consistency
condition (although formulated differently). Precisely, condition (T2) of
Finner et al. (2008) can be seen to be equivalent to R = L∆(|R|) in our nota-
tion (in the specific case of a linear threshold collection ∆ and for the standard
Λ-π weighting). It is proved in Theorem 4.1 of Finner et al. (2008) that (T2)
implies FDR control in the PRDS case (or more precisely, when (7) holds). The
authors note that the corresponding proof unifies and simplifies classical results
and proofs. The present work, developed independently, led to a very similar
conclusion. In particular, Finner et al. (2008) note that their result covers in
general the step-up-down procedures satisfying (T2), which is essentially the
same as the first point of the present Theorem 4.5 (for the standard Λ and
π-weighting).

As an additional contribution, we introduced the “abstract” dependency con-
dition DC, which allowed us to increase the range where the self-consistency
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condition can be used, in particular when the p-values have unspecified depen-
dencies. We also included Λ and π-weighting in our results; the formulation we
adopted allows in particular for an easy extension to infinite, possibly continuous
hypothesis spaces. Other original applications were exposed in Section 4.

Conversely, Finner et al. (2008) used their approach for different applications
of interest, based on an asymptotically optimal rejection curve. Several step-up
or step-up-down procedures are proposed by Finner et al. (2008) based on vari-
ations on this rejection curve and shown to have a an asymptotic and adaptive
(in the sense of Section 4.3) control of the FDR (related to this is also the step-
down procedure of Gavrilov et al. (2008), based on the same curve and shown
to enjoy non-asymptotic control of the FDR). These results do not fit directly
into the framework delineated in the present paper, but some of the technical
tools used in their proof are of a similar spirit. A full technical development
on this topic is out of the scope of the present work, but we demonstrate in a
separate work (Blanchard and Roquain, 2008a) that the two conditions we pre-
sented here (along with some additional key ideas coming from Benjamini et al.,
2006) can be used to prove (non-asymptotic) FDR control under independence,
for an adaptive procedure based on a rejection curve analogous to that consid-
ered by Finner et al. (2008) and Gavrilov et al. (2008). To this regard, let us
also mention the recent work of Neuvial (2008), which compares a number of
these related procedures in terms of their asymptotical power.

Finally, we mention that the self-consistency condition presented here has
a slightly weaker form than condition (T2) of Finner et al. (2008), namely it
is R ⊂ L∆(|R|) instead of R = L∆(|R|). From a technical point of view, we
note here that the argument of Finner et al. (2008) can actually be adapted
straightforwardly to accomodate the weaker condition. Is the weaker form of
the condition of interest at all? While the stricter condition is sufficient to
cover the case of step-up and step-up-down procedures, in the present work we
have also tried to demonstrate that the weaker form is not purely anectodical
but useful in some other applications: first for truncated threshold collections
(proof of Lemma 4.3), and secondly in Section 4.5 where we mentioned plausible
practical scenarios where equality might not hold due to additional constraints.

5.2. Conclusion

The approach advocated in this paper to establish FDR bounds introduced
a clear distinction between two sufficient conditions of a different nature: on
the one hand, the self-consistency condition, which is purely algorithmic, and
on the other hand, the (essentially probabilistic) dependency control condition.
The two conditions are effectively coupled via the common choice of the shape
function β appearing in both. The fundamental result of this paper is that these
two conditions suffice for FDR control, but part of our message is that this point
of view also introduced some relevant technical tools, which, abstracting some
key arguments present in previous works, can be of use in various other settings.

While these conditions are only sufficient and hence certainly not universal,
we illustrated their interest by recovering in Sections 4.1, 4.2 and 4.5 several
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existing results of the FDR multiple testing literature in an unified way, as in
particular with any arbitrary combination of the following factors:

• arbitrary Λ-weighting of the FDR via the volume measure,
• arbitrary π-weighting of the p-values via the weight function,
• arbitrary choice of dependency setting: independent, PRDS or unspecified,
• in the unspecified dependencies setting, arbitrary choice of the shape func-

tion β satisfying (6).
• in the procedure algorithm, arbitrary choice between “step-down” and

“step-up”, “step-up-down”, and more generally arbitrary choice among
the possible orders λ in a “step-up-down” procedure.

In the past literature, many results have been established for specific combina-
tions of the above variations; here we were able to cover all of these at once,
possibly covering combinations that had not been explicitly considered earlier
(in particular, the fourth “factor” above seems to be new). Several other appli-
cations were proposed.

An interesting direction for future work is to try to “adapt” the choice of the
weight function π (and possibly also the distribution ν in the case of unknown
dependencies) depending on the observed data. Because these parameters have
an crucial influence on power, doing so in a principled way might result in a
substantial improvement.

Appendix

Appendix A: Proof of Lemma 3.2

Part (i). We want to establish the following inequality:

E

[
1{U ≤ cg(U)}

g(U)

]
≤ c ,

for U stochastically lower bounded by a uniform distribution and g nonincreas-
ing. Let U = {u | cg(u) ≥ u} , u∗ = supU and C∗ = inf{g(u) | u ∈ U} . It is not
difficult to check that u∗ ≤ cC∗ (for instance take any nondecreasing sequence
un ∈ U ր u∗ , so that g(un) ց C∗ ). If C∗ = 0 , then u∗ = 0 and the result is
trivial. Otherwise, we have

E

[
1{U ≤ cg(U)}

g(U)

]
≤ P(U ∈ U)

C∗
≤ P(U ≤ u∗)

C∗
≤ u∗

C∗
≤ c.

Part (ii). The proof uses a similar telescopic sum argument as developed
by Benjamini and Yekutieli (2001) for proving FDR control of the linear step-
up under the PRDS assumption; the goal of the lemma presented here is to
isolate this argument in order to specifically concentrate on condition DC, and
to extend it to arbitrary (non-discrete) variables .
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We want to prove the inequality

E

[
1{U ≤ cV }

V

]
≤ c

for U, V two nonnegative real variables such that U is stochastically lower
bounded by a uniform distribution, and the conditional distribution of V given
U ≤ u is stochastically decreasing in u . Fix some ε > 0 and some ρ ∈ (0, 1)
and choose K large enough so that ρK < ε. Put v0 = 0 and vi = ρK+1−i for
1 ≤ i ≤ 2K + 1 . The following chain of inequalities holds:

E

[
1{U ≤ cV }

V ∨ ε

]

≤
2K+1∑

i=1

P(U ≤ cvi; V ∈ [vi−1, vi))

vi−1 ∨ ε
+ ε

≤ c

2K+1∑

i=1

P(U ≤ cvi; V ∈ [vi−1, vi))

P(U ≤ cvi)

vi

vi−1 ∨ ε
+ ε

≤ cρ−1
2K+1∑

i=1

P(V ∈ [vi−1, vi) | U ≤ cvi) + ε

= cρ−1
2K+1∑

i=1

(
P(V < vi | U ≤ cvi) − P(V < vi−1 | U ≤ cvi)

)
+ ε

≤ cρ−1
2K+1∑

i=1

(
P(V < vi | U ≤ cvi) − P(V < vi−1 | U ≤ cvi−1)

)
+ ε

≤ cρ−1 + ε .

We obtain the conclusion by letting ρ → 1 , ε → 0 and applying the monotone
convergence theorem.

Part (iii). Rewriting for any z > 0 , 1/z =
∫ +∞

0
v−21{v ≥ z}dv , and using

Fubini’s theorem:

E

[
1{U ≤ cβ(V )}

V

]
= E

[∫ +∞

0

v−21{v ≥ V }1{U ≤ cβ(V )}dv

]

=

∫ +∞

0

v−2E [1{v ≥ V }1{U ≤ cβ(V )}] dv

≤
∫ +∞

0

v−2P
(
U ≤ cβ(v)

)
dv

≤ c

∫ +∞

0

v−2β(v)dv

= c

∫

u≥0

u

∫

v≥0

1{u ≤ v}v−2dvdν(u) = c .
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Appendix B: Proof of Theorem 4.6

To establish the first assertion of the Theorem, remember we assume the p-values
of H1 are PRDSS on H0 , and the threshold collection is ∆(i) = αm/(m−i+1)2 .
Assume m0 > 0 (otherwise the result is trivial) and consider p(1) ≤ p(2) ≤ · · · ≤
p(m) the ordered p-values of (ph, h ∈ H). Denote by j0 the (data-dependent)
smallest integer j ≥ 1 for which p(j) corresponds to a true null hypothesis.
Denote by R1 the step-down procedure of threshold collection ∆ and restricted
to the set of the false null hypotheses H1. First note that the following points
hold:

(i) |R ∩H0| > 0 ⇒ p(j0) ≤ αm
(m−j0+1)2

(ii) |R ∩H0| > 0 ⇒ j0 − 1 ≤ |R1|
(iii) R1 ⊂ R ∩H1 .

To prove this, suppose that |R∩H0| > 0, so that the null hypothesis correspond-
ing to p(j0) is rejected by R. Hence, from the definition of a step-down procedure
we have p(j0) ≤ ∆(j0) and (i) holds. Moreover, since for all j ≤ j0 − 1, we have
p(j) ≤ ∆(j) and p(j) corresponds to a false null hypothesis, R1 necessarily re-
jects all the null hypotheses corresponding to p(j), j ≤ j0 − 1, and we get (ii) .
Finally, we obviously have R1 ⊂ H1 and it is easy to check that R1 ⊂ R (using
the fact that the reordered p-values of H1 form a subsequence of (p(i))).

From (i) and (ii) we deduce that

|R ∩H0| > 0 ⇒ ∃h ∈ H0 : ph ≤ αm

(m − |R1|)2
≤ αm

m0(m − |R1|)
. (9)

Therefore,

FDR(R) = E

[ |R ∩H0|
|R| 1{|R ∩H0| > 0}

]

= E

[ |R ∩H0|
|R ∩H0| + |R ∩H1|

1{|R ∩H0| > 0}
]

≤ E

[
m0

m0 + |R ∩H1|
1{|R ∩H0| > 0}

]

≤
∑

h∈H0

E

[
m0

m0 + |R1|
1{ph ≤ (αm/m0)(m − |R1|)−1}

]
,

where for the first inequality, we used that fact that for each fixed a ≥ 0, x 7→
x

x+a is a nondecreasing function on R+\{0} . For the second inequality, we used
simultaneously (9) and the point (iii) above. Since the function x 7→ m0

m0+x
m

m−x
is log-convex on [0, m1] and takes values 1 in x = 0 and x = m1, we have
pointwise m0

m0+|R1|
m

m−|R1|
≤ 1 . Therefore, we get
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FDR(R) ≤ 1

m

∑

h∈H0

E

[
1{ph ≤ (αm/m0)(m − |R1|)−1}

(m − |R1|)−1

]

≤ 1

m

∑

h∈H0

αm/m0 = α .

In the last inequality, we used that the couple (ph, (m − |R1|)−1) satisfies con-
dition DC(β) with c = αm/m0 and β(x) = x ; this holds in the present case
from part (ii) of Lemma 3.2 because for any v > 0, D = {z ∈ [0, 1]H1 | (m −
|R1(z)|)−1 < v} is a nondecreasing set (so that we can apply the same reasoning
as for the proof of Proposition 3.6).

For the second part of the theorem, we follow exactly the same proof as
above with the modified threshold function and part (iii) of Lemma 3.2 instead
of part (ii).
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