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Abstract: We consider the nonparametric estimation of the density func-
tion of weakly and strongly dependent processes with noisy observations.
We show that in the ordinary smooth case the optimal bandwidth choice
can be influenced by long range dependence, as opposite to the standard
case, when no noise is present. In particular, if the dependence is moder-
ate the bandwidth, the rates of mean-square convergence and, additionally,
central limit theorem are the same as in the i.i.d. case. If the dependence is
strong enough, then the bandwidth choice is influenced by the strength of
dependence, which is different when compared to the non-noisy case. Also,
central limit theorem are influenced by the strength of dependence. On the
other hand, if the density is supersmooth, then long range dependence has
no effect at all on the optimal bandwidth choice.
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1. Introduction

The nonparametric estimation of the density function for dependent sequences
has attracted many researchers in the past. We are not claiming to provide
the full overview of this topic, however results can be summarized as follows.
In case of weak dependence the results on the (mean square error) optimal
bandwidth choice, optimal rates of convergence for the mean square error and
central limit theorems for the Parzen-Rosenblatt kernel estimator are exactly
the same as in i.i.d. case (see e.g. [3] or [28, Theorem 1]). The situation is a bit
more complicated for long-range dependent sequences. Although dependence
has no influence on the optimal bandwidth choice, the rates of mean-square
convergence may differ according to very strong and moderate dependence. In
the latter case they are the same as in the i.i.d. situation. We refer to [5, 8, 13, 14]
and [23]. Similarly, if the bandwidth is “small”, then central limit theorem for
the kernel density estimates is the same as in the i.i.d. case. On the other
hand, if the bandwidth is “big” enough, then the long range dependence effect
dominates (see [6], [28, Theorem 2]). The similar phenomena occur in random-
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design regression problems. The reader is referred to [22] and [24] for the up-to-
date results and references for a kernel and a local linear estimation, respectively.

As for smooth estimators of the distribution function, either short or long
range dependence have no influence on the optimal bandwidth choice. The op-
timal bandwidth is the same as in the i.i.d. case. However, the optimal rates
of convergence for the mean square error are always affected by long range
dependence (see [8] for more details).

In the present paper we will consider deconvolution problem for dependent
sequences. Suppose that we have n observations Y1, . . . , Yn available. We want to
estimate the unknown density f = fX of a random variableX, where Y = X+ǫ,
with a measurement error ǫ of a known distribution Fǫ and the density fǫ. It
is assumed that X and ǫ are independent and that {ǫ, ǫj, j ≥ 1} is the i.i.d.
sequence.

We will estimate f(x0) using the classical estimator (cf. [4, 9])

f̂n(x0) =
1

nhn

n
∑

j=1

gn

(

x0 − Yj

hn

)

,

where

gn(x0) =
1

2π

∫

IR

exp(−itx0)
φK(t)

φǫ(t/hn)
dt.

Above, φǫ is a characteristic function which corresponds to the density fǫ and
φK(t) =

∫

IR
exp(itx)K(x)dx. The mean square error is defined as

MSE(f, hn) := E(f̂n(x0) − f(x0))
2.

We also study the behavior of the estimator

F̂n(x0) =

∫ x0

−∞

f̂n(u)du.

of the distribution function F .
In the i.i.d. case the deconvolution problems were studied in [4, 9, 10] and

[25] among others. In the latter paper, Fan provided the optimal rates of con-
vergence for MSE(f, hn) in both ordinary smooth and supersmooth case. As for
weakly dependent case, the previous results have been obtained under various
mixing conditions (see [18, 19, 20]) and under association (see [21]). The prin-
cipal message from the latter papers is that the results (optimal bandwidth,
optimal rates, central limit theorem) for weakly dependent sequences are the
same as in the i.i.d. case. As for the distribution function, the problem was
studied in [9] in the i.i.d case and in [17] in the dependent case.

However, mixing is rather hard to verify and requires additional assumptions.
In particular, let {Z, Zi, i ∈ ZZ} be a centered sequence of i.i.d. random variables.
Consider the class of stationary linear processes

Xj =

∞
∑

k=0

ckZj−k, j ≥ 1. (1)
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To obtain a strong mixing for linear processes both regularity of the density of
Z1 and some constraints on ck’s are required (see e.g. [7]). On the other hand,
association requires that all ck are positive. To overcome such problems, the
martingale based method has been proposed and it works surprisingly well in
a variety of problems, not necessary connected with nonparametric estimation
(see [15, 16, 26, 27, 28]). Thus, from technical point of view assuming that
c0 = 1 and the sequence ck, k ≥ 0, is summable (referred later as short range
dependence, SRD), we will extend Masry’s results to moving averages, without
referring to mixing or association at all.

However, the more interesting problem is the influence of long range de-
pendence on the deconvolution estimator. To deal with it, we assume that
c0 = 1 and ck is regularly varying with index −γ, γ ∈ (1/2, 1). This means that
ck ∼ k−γL0(k) as k → ∞, where L0 is slowly varying at infinity. We shall refer to
all such models as long range dependent (LRD) linear processes. In particular, if
the variance exists, then the covariances ρk := EX0Xk decay at the hyperbolic
rate, ρk = L(k)k−(2γ−1), where limk→∞ L(k)/L2

0(k) = B(2γ − 1, 1 − γ) and
B(·, ·) is the beta-function. Consequently, the covariances are not summable.

We will show below that in the ordinary smooth case the optimal bandwidth
choice for the density problem is influenced by the dependence parameter γ, as
opposite to the optimal bandwidth in the standard (non-noisy) kernel density
estimation. In particular, if the dependence is moderate, then the optimal band-
width and the optimal rates for the density estimation are the same as in the
i.i.d. case. If the dependence is very strong, the optimal bandwidth depends on γ
itself. See Proposition 2.2 and Corollary 2.3. In case of the distribution function,
the dependence parameter is always present in the optimal bandwidth and the
optimal rates of convergence, as opposite to the non-noisy case (Proposition 2.5).

As for central limit theorem for the density estimator, we have results mim-
icking CLT for standard kernel density estimators (cf. [28, Theorem 2]): if hn

is small, then CLT is the same as in the i.i.d. case; if hn is “big”, LRD effect
starts to dominate. Note that the change from “i.i.d.” behavior to LRD behav-
ior occurs in the same way as in the standard kernel estimation, according to
hn = o

(

σ2
n,1/n

)

or σ2
n,1/n = o(hn), where

σ2
n,1 := Var(

n
∑

j=1

Xj).

In the distribution case, we do not have such dichotomous behavior and long-
range dependence always influences the limiting behavior.

We note in passing that “small” and “big” bandwidth may have different
meanings for different estimation problems. For example, “small” bandwidths
are different when estimating a function and its derivative (see [22] for a com-
plete analysis in the regression setting). In the present context and density
estimation for error-in-variables models, “small” and “large” bandwidths are
the same as for non-noisy case. OF course, this dichotomous behavior is well-
known, however, the crucial difference between noisy and non-noisy problem
is the optimal bandwidth choice. Note that in the non-noisy setting the opti-
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mal bandwidth, under appropriate conditions, is not influenced by γ, regardless
whether estimation of the function (as mentioned above) or its derivatives is
considered. Thus, in errors-in-variables models we have different phenomena
than those described in [22].

Another phenomena is that for supersmooth densities the optimal bandwidth
choice and the rates for MSE(f, hn) are always the same as in the i.i.d. case,
irrespectively of the dependence being moderate or very strong. At the first
sight this message seems to be optimistic, however, it means that the rate of
convergence is so slow that even the very strong dependence cannot worsen it.

2. Results

Recall that by SRD assumption we mean that
∑∞

k=0 |ck| <∞. Additionally, we
assume that

∑∞
k=0 ck 6= 0. By LRD assumption we mean that ck ∼ k−γL0(k),

γ ∈ (0, 1).
We assume that f = fX is twice differentiable with continuous and bounded

second order derivatives and K is of the second order. i.e.
∫

uK(u)du = 0 and
0 6=

∫

u2K(u)du <∞. Furthermore, we assume that

|φǫ(t)| > 0 (2)

and that φǫ, φK are twice differentiable with continuous and bounded deriva-
tives. These assumptions are standard in the i.i.d. situation for both ordinary
smooth and supersmooth case.

The proofs are based on the following decomposition: Let Fi = σ(Xj , Zj , j ≤
i). Write

n
∑

j=1

(

gn

(

x0 − Yj

hn

)

− Egn

(

x0 − Yj

hn

))

(3)

=

n
∑

j=1

(

gn

(

x0 − Yj

hn

)

− E

[

gn

(

x0 − Yj

hn

)

|Fj−1

])

+

n
∑

j=1

(

E

[

gn

(

x0 − Yj

hn

)

|Fj−1

]

− Egn

(

x0 − Yj

hn

))

=: mn(x0) + ln(x0).

Note that {mn(x0),Fn, n ≥ 1} is a martingale. We call ln(x0) the differentiable
part. The similar decomposition is also valid in the distribution case.

2.1. Ordinary smooth densities

Throughout this section, we consider the ordinary smooth case, i.e.

|t−β||φǫ(t)| → |B1| > 0, β ≥ 1. (4)

Furthermore, assume that

δβ,1

∫

|u|β−2|φK(u)|du+

∫

|u|β−1|φ′
K(u)|du+

∫

|u|β|φ
(2)
K (u)|du <∞, (5)
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and

D1 :=
1

2π|B1|2

∫

|t|2βφ2
K(t)dt <∞. (6)

To deal with the LRD case we will impose a stronger condition than (5): with
β > 1,

3
∑

j=0

∫

|u|β−j|φ
(j)
K (u)| <∞. (7)

We will consider some technical assumptions on the densities:

(A) fZ , fǫ, the densities of Z and ǫ, respectively, are uniformly bounded and
Lipschitz continuous.

Note that in this case, fǫ+Z - the density ǫ+Z, f = fX and fY - the density of
Y are also uniformly bounded and Lipschitz continuous. These conditions are
required to handle SRD case.

(B1)
∑2

r=1

∫

∣

∣

∣f
(r)
ǫ+Z(v)

∣

∣

∣ dv <∞,

(B2)
∑2

r=0

(

∫

∣

∣

∣f
(r)
Z (v)

∣

∣

∣

2

dv +
∫

∣

∣

∣f
(r)
ǫ+Z(v)

∣

∣

∣

2

dv

)

< ∞ and fZ , fǫ+Z are twice

differentiable with continuous and bounded derivatives.

These conditions are required for LRD case (see Appendix for more discussion).
First, we provide the asymptotic expansion of the mean square error.

Proposition 2.1. Assume (4), (5), (6), (A) . Under the SRD assumption,

MSE(f, hn) =

(

1

2
f(2)(x0)

∫

u2K(u)du

)2

h4
n +D1fY (x0)n

−1h−(2β+1)
n

+ o
(

h4
n + n−1h−(2β+1)

n

)

.

Proposition 2.2. Assume (4), (6), (7), (B1), (B2) and EZ4
1 < ∞. Under the

LRD assumption,

MSE(f, hn) =

(

1

2
f(2)(x0)

∫

u2K(u)du

)2

h4
n +D1fY (x0)n

−1h−(2β+1)
n +

+ (f ′Y (x0))
2n−2σ2

n,1h
−2β
n + o

(

h4
n + n−1h−(2β+1)

n + n−2σ2
n,1h

−2β
n

)

. (8)

If hn = o(n/σ2
n,1) (in particular, hn = o(n−(2(1−γ)))), then the optimal choice

is the same as in the i.i.d. case: hn = Cn−1/(5+2β) (here and in the sequel, C is
a generic constant, which does not depend on n). Consequently, MSE(f, hn) ∼
Cn−1/(5+2β). (We must check that such the choice is permitted, i.e. to check if

n−1/(5+2β) = o(n−(2(1−γ))). This is equivalent to 1 > γ > 4(2+β)+1
4(2+β)+2

> 1
2
).

If n/σ2
n,1 = o(hn) (in particular, n−2(1−γ) = o(hn)), then we find the op-

timal bandwidth as hn ∼ Cn−(2γ−1)/2(2+β). Then, to assure that n−2(1−γ) =

o(n−(2γ−1)/2(2+β)) we assume that γ < 4(2+β)+1
4(2+β)+2 . From Proposition 2.2 we ob-

tain the following corollary.
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Corollary 2.3. Assume that 1
2
< 4(2+β)+1

4(2+β)+2
< γ < 1. Then, by choosing hn =

Cn−1/(5+2β) we obtain MSE(f, hn) ∼ Cn−4/(5+2β).

Assume that 1
2
< γ < 4(2+β)+1

4(2+β)+2
< 1. With hn ∼ Cn−(2γ−1)/2(2+β) we obtain

MSE(f, hn) ∼ Cn−2(2γ−1)/(2+β).

Remark 2.4. The result of Proposition 2.1 extends the previous ones for ρ−
and α−mixing (see [19, Lemma 2.1b]) or associated sequences ([21]). In princi-

ple, it says that the optimal bandwidth, the rate of convergence of Varf̂n(x0)
(and, consequently, of MSE(f, hn)) for weakly dependent sequences are the same
as in the i.i.d. case. Thus is also true for LRD sequences with moderate depen-
dence (γ close to 1). On the other hand, if the dependence is very strong, then
the bandwidth and the rate of convergence may depend on γ.

As for the distribution estimator we have the following result.

Proposition 2.5. Assume (4), (6), (7), (B1), (B2) and EZ4
1 < ∞. Under the

LRD assumption,

MSE(F, hn) =

(

1

2
f ′(x0)

∫

u2K(u)du

)2

h4
n+(fY (x0))

2
σ2

n,1

n2h2β
n

+o

(

σ2
n,1

n2h2β
n

+h4
n

)

.

We can see that the optimal bandwidth is hn ∼ C
(

σ2
n,1/n

2
)1/2(β+2)

and opti-

mal mean square error is of the order
(

σ2
n,1/n

2
)2/(β+2)

. Under weak dependence
the optimal bandwidth and the optimal mean square error are proportional to
n−1/2(β+2) and n−2/(β+2), respectively. Consequently, in case of the distribution
function the optimal bandwidth and the rates change as soon as we cross the
boundary between short- and long range dependence.

As for CLT we have the following results.

Theorem 2.6. Suppose that nhn → ∞ and let σ2(x0) = D1fY (x0). Under
conditions of Proposition 2.1 we have

n1/2hβ+1/2
n

(

f̂n(x0) − Ef̂n(x0)
)

d
→ N(0, σ2(x0)).

Theorem 2.7. Suppose that nhn → ∞ and let σ2(x0) = D1fY (x0). Under
conditions of Proposition 2.2 we have

n1/2hβ+1/2
n

(

f̂n(x0) − Ef̂n(x0)
)

d
→ N(0, σ2(x0))

if hn = o(n/σ2
n,1), and

nhβ
n

σn,1

(

f̂n(x0) − Ef̂n(x0)
)

d
→ N(0, (f ′Y (x0))

2)

if n/σ2
n,1 = o(hn). Under the conditions of Proposition 2.2 we have in either

case
nhβ

n

σn,1

(

F̂n(x0) − EF̂n(x0)
)

d
→ N(0, (fY (x0))

2).
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Remark 2.8. Theorem 2.6 extends results of [10] and [20]. The result of The-
orem 2.7 should be compared with Theorem 2 in [28]. Note that the change
from SRD to LRD behavior occurs in the same way as in the standard kernel
density case, i.e. by crossing the boundary hn ∼ n/σ2

n,1. Theorem 2.7 describes

the dichotomous behavior of f̂n(x0). If f ′Y (x0) = 0, then we may establish tri-
chotomous behavior along the lines of Theorem 3 in [28].

Remark 2.9. We shall comment on the assumption EZ4
1 < ∞. This is neces-

sary for us to use Wu [26] result for empirical processes (see Lemma C below).
Instead, we can use Giraitis and Surgailis [12] assumption E|Z1|

2+δ < ∞ to-
gether with additional condition on fZ (See also Section 2.2). However, it does
not solve completely the problem in case EZ2

1 <∞.

Remark 2.10. It would be desirable to extend the results of, especially, Propo-
sition 2.2 and Theorem 2.7 to the multivariate setting. However, it does not
seem to be feasible when using the martingale approximation approach as in
the current paper.

Remark 2.11. We do not provide CLT for F̂n(x0) in the weakly dependent
case. The martingale method we use here is based on fact that in the den-
sity case the differentiable part is negligible compared to the martingale part,
provided that SRD conditions hold (compare (18) with (20)). However, in the
distribution case if SRD assumptions are fulfilled, then the martingale part and
the differentiable part are of the same order and the method does not apply.
We also note that the problem is symmetric in X and ǫ, i.e. instead of assuming
that Xj are dependent and ǫj are i.i.d., we may assume that Xj are i.i.d. and
ǫj are dependent. What is important in our results is the dependence structure

of Yj ’s. In [17] it is assumed that Xj is mixing and it is claimed that VarF̂n(x0)
has different behavior according to ǫj being dependent or i.i.d. Note, however,
that their proof of Lemma 3.2(i) is invalid.

To obtain confidence interval for f̂n(x0) we choose appropriate bandwidth
to make sure that the variance of the estimator dominates the bias term. In
particular, in the LRD case it reads as follows.

Corollary 2.12. Assume that hn = o(n/σ2
n,1) and hn = o(n−1/(5+2β)) (which

ensures that 1
2 <

4(2+β)+1
4(2+β)+2 < γ < 1). Then

n1/2hβ+1/2
n

(

f̂n(x0) − f(x0)
)

d
→ N(0, σ2(x0)). (9)

Corollary 2.13. Assume that n/σ2
n,1 = o(hn) and hn = o(n−(2γ−1)/2(2+β))

(which ensures 1
2 < γ <

4(2+β)+1
4(2+β)+2 < 1). Then

nhβ
n

σn,1

(

f̂n(x0) − f(x0)
)

d
→ N(0, (f ′Y (x0))

2).
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To apply Corollary 2.12 in a practical situation one has to estimate fY (x0). If
hn = o(n/σ2

n,1) and hn = o(n−1/(5+2β)), then we can estimate fY (x0) by using

f̂Y,n(x0) =
1

nbn

n
∑

j=1

K

(

x0 − Yj

bn

)

.

Note that the kernel density bandwidth bn need not to be the same as hn, as
assumed in [20]. In fact, the optimal mean-square error choice is bn ∼ Cn−1/5.

Further, if γ > 9/10 (which is ensured by taking 1
2
< 4(2+β)+1

4(2+β)+2
< γ < 1), then

both the mean square error and the variance of the kernel density estimator
behave like Cn−4/5. On the other hand, from Corollary 2.3, the variance of the

deconvolution estimator behaves like n−1h
−(2β−1)
n . Thus, under the constrain

hn = o(n−1/(5+2β)) the variance of the deconvolution estimator of fX(x0) dom-
inates the variance of the kernel density estimator of fY (x0). Consequently, we

may build confidence interval for f̂n(x0) by replacing fY (x0) with its kernel
estimator in (9).

Remark 2.14. As suggested by the Referee, assume that

Xj = (1 − B)−δ0φ−1(B)ψ(B)Zj ,

where as before Zj is i.i.d.,B is the backshift operator and φ, ψ are polynomials.
If δ0 ∈ (0, 1/2) it is the particular case of LRD model (1) with the specification
1 − γ = δ0 . If δ0 ∈ (−1/2, 0) (so that γ ∈ (1, 3/2)), then this is the case of
antipersistent sequences. Under appropriate regularity conditions, it was proven
in [1, Theorem 3] that for all γ ∈ (1/2, 3/2)

1

n3/2−γ

n
∑

i=1

Xi
d
→ N(0, v),

where v is a finite and positive constant. In view of the above result, it is
intuitively clear that the expansion (8) is valid for γ ∈ (1, 3/2) as well. However,
following the comment below Proposition 2.2, in such the case we always have
hn = o(n/σ2

n,1). Consequently, the rates of convergence are the same as in i.i.d.
case. This is in contrast to fixed-design regression, where antipersistency may
improve the rates of convergence beyond those for i.i.d. case. See [1] and [2] for
more details.

2.2. Supersmooth densities

In a supersmooth case we consider the usual assumptions (cf. [20]):

(i) B1|t|
β0 exp(−a|t|β) ≤ |φǫ(t)| ≤ B2|t|

β0 exp(−a|t|β) as t → ∞ for some
a > 0, B1, B2, β > 0, β0 ∈ IR.

(ii) φK has a finite support (−d, d).
(iii) |φK(t)| ≤ B3(d−t)

m and φK(t) ≥ B4(d−t)
m for t ∈ (d−δ, d) and positive

constants δ,m,B3, B4.
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(iv) The real (imaginary) part of φǫ is negligible as t→ ∞ with respect to the
imaginary (real) part.

To deal with LRD linear processes (1), recall that ρk = L(k)k−(2γ−1) as k → ∞.
We assume additionally that for all x, y,

fk(x, y) = fY (x)fY (y) + ρkf
′
Y (x)f ′Y (y) + hk(x, y), (10)

where fk is the joint density of (Y0, Yk) and

|hk(x, y)| ≤ |ρk|
1+δh(x)h(y), (11)

with δ > 0 and h being an integrable and continuous function.

Proposition 2.15. Assume (i)–(iv) and that f ′Y is continuous and integrable.
Under the LRD assumption and (10) we have

MSE(f, hn) = O((lnn)−2/β)

by choosing hn = d
(

2a
(1−θ) ln n

)1/β

, θ ∈ (2 − 2γ, 1).

The result of Proposition 2.15 means that in the supersmooth case long range
dependence has no influence on the optimal bandwidth choice and the optimal
rates for MSE(f, hn). They are the same as in the i.i.d. and weakly dependent
situation situation (cf. [9, 19]).

Remark 2.16. Let fk,X ne the joint density of (X0, Xk), where {Xj , i ≥ 1} is
the LRD linear process Xj =

∑∞
k=0 ckZj−k. Then

fk,X(x, y) = fX(x)fX(y) + ρkf
′
X(x)f ′X(y) + h̃k(x, y) (12)

with h̃ satisfying (11), provided appropriate smoothness condition on φZ . We
refer to [8, 12] or [23] for more details. Consequently, having established (12),
it is easy to verify (10).

Remark 2.17. Note that the martingale approximation method used in the or-
dinary smooth case requires the precise information about ||gn||1, in particular,
its finiteness. It is not feasible in the supersmooth case. Instead, we addition-
ally assume (10). We could have worked with this assumption in the ordinary
smooth case and obtain the results for MSE(f, hn). However, using linear struc-
ture and the martingale approximation method we can obtain at the same time
MSE(f, hn) and the central limit theorem.

3. Proofs

Since fX is twice differentiable with continuous and bounded second order
derivatives and K is of the second order, we obtain (see [18])

bias(f̂n(x0)) ∼ h2
n

1

2
f

(2)
X (x0)

∫

u2K(u)du. (13)



R. Kulik/Deconvolution and dependence 731

3.1. Ordinary smooth case

We have

MSE(hn) = Varf̂n(x0) + (bias(f̂n(x0)))
2

=
1

(nhn)2
(

Em2
n(x0) + El2n(x0) + 2Emn(x0)ln(x0)

)

+ (bias(f̂n(x0)))
2.

Since mn is a martingale,

Em2
n(x0) = nE

(

gn

(

x0 − Y1

hn

)

− E

[

gn

(

x0 − Y1

hn

)

|F0

])2

.

Let ζi = gn

(

x0−Yi

hn

)

, ξi = ζi − E(ζi|Fi−1). Under (2), (4) and (5) we have (cf.

[18, Lemma 3])
||gn||1 = O(h−β

n ). (14)

Also, if additionally (6) holds, then

E[ζ2
i ] =

∫

g2
n

(

x0 − u

hn

)

fY (u)du ∼ D1fY (x0)h
1−2β
n (15)

as n → ∞, see [18, Lemma 4].
Let Xj,j−1 =

∑∞
k=1 ckZj−k = Xj − Zj . Then, by (14),

E(E[ζi|Fi−1])
2 = E

(

E

[

gn

(

x0 − Y1

hn

)

|F0

])2

= E

(

hn

∫

gn(x0 − (u+X1,0))fǫ+Z(u)du

)2

≤ O(h2
n)E

(∫

|gn(x0 − (u+X1,0))|du

)2

= O(h2
n)E

(∫

|gn(v)|dv

)2

= O(h2−2β
n ). (16)

Thus, by (15), (16) and Cauchy-Schwartz inequality,

Eξ2i = Eζ2
i + E(E[ζi|Fi−1])

2 − 2E [ζiE[ζi|Fi−1]]

= Eζ2
i + O(h2(1−β)

n ) + O(h
1

2
−β

n h1−β
n ) = Eζ2

i + o(h1−2β
n ). (17)

Consequently, via (15), Eξ2i ∼ D1fY (x0)h
1−2β
n as n → ∞ (note that ξi depends

on n) and
Em2

n(x0) ∼ D1fY (x0)nh
1−2β
n . (18)

For r = 0, 1, 2, let

R(r)
n (z) =

n
∑

j=1

(F
(r)
ǫ+Z(x0 −Xj,j−1 + z) − F

(r)
Y (x0 + z)).
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Note that F
(r)
Y (y) = EF

(r)
ǫ+Z(y−X1,0) (see Lemma D). Also, E

[

gn

(x0−Yj

hn

)

|Fj−1

]

=

hn

∫

gn(v)fǫ+Z (x0 −Xj,j−1 − hnv)dv. Consequently,

ln(x0) = hn

∫

gn(v)R(1)
n (−hnv)dv. (19)

Proof of Proposition 2.1. We claim that under SRD assumption, Varln(x0) =

O(nh2−2β
n ). Indeed, by [28, Lemma 3], supz ||R

(1)
n (z)||22 = O(n). From (19) and

by Cauchy-Schwartz inequality,

El2n(x0) = h2
nE

(∫

gn(v)R(1)
n (−hnv)dv

)2

≤ h2
nE

∫ ∫

gn(u)gn(v)R(1)
n (−hnu)R

(1)
n (−hnv)dudv

≤

∫ ∫

|gn(u)||gn(v)|E
[

|R(1)
n (−hnu)||R

(1)
n (−hnv)|

]

dudv

≤ O(n)

(∫

|gn(u)|du

)2

= O(nh2−2β
n ). (20)

Consequently, comparing (20) with (18) we see that ln(x0) is negligible com-
pared to the martingale part mn(x0). Also, via Cauchy-Schwartz inequality, the
mixed term ln(x0)mn(x0) is negligible. The result of Proposition 2.1 follows by
considering (13) and (18).

Proof of Proposition 2.2. Recall (19). Take Taylor expansion,

R(1)
n (−hnv) = R(1)

n (0) − hnvR
(2)
n (ξ),

where ξ = ξ(v) = ξ(v, hn). Thus,

El2n(x0) = h2
nER(1)

n (0)

(∫

gn(v)dv

)2

+ O(h4
n)E

(∫

vgn(v)R(2)
n (ξ(u))du

)2

+ O(h3
n)

∫

gn(u)du

∫

ugn(u)E
[

R(1)
n (0)R(2)

n (ξ(u))
]

du.

From Lemmas B, C, the first term is of order (f ′Y (x0))
2h2

nσ
2
n,1h

−2β
n . On account

of Lemmas A, (C) and by Cauchy-Schwartz inequality, the third term is bounded
by

O(h4
n)

∫ ∫

ugn(u)vgn(v)E
[

R(2)
n (ξ(u))R(2)

n (ξ(v))
]

dudv

= O(h4
n) sup

z
E

[

(

R(2)
n (z)

)2
](∫

|u||gn(u)|du

)2

= O(h4
nσ

2
n,1)

(

hβ+1
n

∫

|u||gn(u)|du

)2

h−2(β+1)
n = o(h2−2β

n σ2
n,1).
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Similarly, for the second term the bound is (cf. Lemmas A and C)

O(h3
nh

−β
n )

(

E
(

R(1)
n (0)

)2
)1/2(

sup
z

E

[

(

R(2)
n (z)

)2
])1/2 ∫

|ugn(u)|du

= O(h3
nh

−β
n σ2

n,1)h
−(β+1)
n o(1) = o(h2−2β

n σ2
n,1).

We conclude

El2n(x0) = (f ′Y (x0))
2σ2

n,1h
2−2β
n + o(σ2

n,1h
2−2β
n ). (21)

Combining (13), (18) and (21) we obtain (8).

Proof of Proposition 2.5. We sketch it briefly, since it is similar to the previous
one.

Let Gn(x0) =
∫ x0

−∞
gn(u)du. Then F̂n(x0) = 1

n

∑n
j=1Gn

(

x0−Yj

hn

)

and

F̂n(x0) − EF̂n(x0) =
1

n

n
∑

j=1

(

Gn

(

x0 − Yj

hn

)

− E

[

Gn

(

x0 − Yj

hn

)])

Similarly to (3),

n
∑

j=1

(

Gn

(

x0 − Yj

hn

)

− EGn

(

x0 − Yj

hn

))

=

n
∑

j=1

(

Gn

(

x0 − Yj

hn

)

− E

[

Gn

(

x0 − Yj

hn

)

|Fi−1

])

+

n
∑

j=1

(

E

[

Gn

(

x0 −Yj

hn

)

|Fi−1

]

−EGn

(

x0 − Yj

hn

))

=:Mn(x0)+Ln(x0).

Then,
EM2

n(x0) = O(nh−2β
n ). (22)

Further, we have as in (19),

Ln(x0) = hn

∫

Gn(v)R(0)
n (−hnv)dv =

∫

gn(v)R(0)
n (−hnv)dv.

Taking Taylor expansion R
(0)
n (−hnv) = R

(0)
n (0) − hnvR

(1)
n (ξ) we obtain as in

the proof of Proposition 2.2,

EL2
n(x0) = (fY (x0))

2σ2
n,1h

−2β
n + o

(

σ2
n,1h

−2β
n

)

. (23)

Comparing (22) with (23) we can see that the martingale part is of smaller
order. Consequently,

VarF̂n(x0) = (fY (x0))
2
σ2

n,1

n2
h−2β

n + o

(

σ2
n,1

n2
h−2β

n

)

.

Since bias(F̂n(x0)) = 1
2
f ′(x0)

∫

u2K(u)duh2
n +o(h2

n) we conclude the result.



R. Kulik/Deconvolution and dependence 734

In order to prove CLT, we will use the martingale central limit theorem.

Lemma 3.1. Assume that nhn → ∞. Then

(nh1−2β
n )−1/2mn(x0)

d
→ N(0, σ2(x0))

Proof. The proof is similar to that of Lemma 2 in [28].
Since mn is a martingale it suffices to verify the Lindeberg condition and

convergence of conditional variances.
Let ζ̄j = (nh1−2β

n )−1/2ζi, ξ̄j = (nh1−2β
n )−1/2ξi. Note that for sufficiently large

n we have hβ
n|gn(v)| ≤ C and the bound does not depend on v nor n. As for the

Lindeberg condition we have by

nE
[

ξ̄2j 1{|ξ̄i|>ε}

]

≤ 4nE
[

ζ̄2
j 1{|ζ̄j|>ε/2}

]

= 4h2β
n

∫

g2
n(v)fY (x0 − vhn)1{|gn(v)|>(nh1−2β

n )1/2ε/2}dv

= O(h2β
n )

∫

g2
n(v)1

{hβ
n|gn(v)|>(nhn)1/2ε/2}

dv.

The set {hβ
n|gn(v)| > (nhn)1/2ε/2} becomes empty for sufficiently large n. Con-

sequently,

nE
[

ξ̄2j 1{|ξ̄j|>ε}

]

→ 0

as n → ∞.
Now, we want to show that

n
∑

j=1

E
[

ξ̄2j |Fj−1

] p
→ σ2(x0). (24)

As in (17), we have

E
[

ξ̄2j |Fj−1

]

= E
[

ζ̄2
j |Fj−1

]

− E
(

E[ζ̄j|Fj−1]
)2

= E
[

ζ̄2
j |Fj−1

]

+ OP (n−1hn).

Consequently,
n
∑

j=1

E
[

ξ̄2j |Fj−1

]

−

n
∑

j=1

E
[

ζ̄2
j |Fj−1

]

= oP (1)

and it suffices to prove

n
∑

j=1

E
[

ζ̄2
j |Fj−1

] p
→ σ2(x0).

We have
n
∑

j=1

E
[

ζ̄2
j |Fj−1

]

−

n
∑

j=1

E
[

ζ̄2
j

]

= h2β
n

∫

g2
n(v)

1

n
R(1)

n (−hnv)dv

≤ h2β
n

∫

g2
n(v)

1

n
|R(1)

n (−hnv) −R(1)
n (0)|dv +

1

n
R(1)

n (0)h2β
n

∫

g2
n(v)dv.
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By (15) and the ergodic theorem, the second part is oP (1). By Lipschitz conti-
nuity of fǫ+Z and fY , the first part is bounded by

O(h2β
n )

∫

g2
n(v)min{1, |hnv|}dv

which converges to 0 by the dominated convergence theorem since h2β
n gn(v) is

uniformly bounded in v and n and integrable.

Proof of Theorem 2.6. It follows from Lemma 3.1 and (20).

Proof of Theorem 2.7. If hn = o(n/σn,1), then it follows from Lemma 3.1 and
(21), since the martingale part dominates the differentiable part.

If n/σ2
n,1 = o(hn), then as in the proof of Proposition 2.2,

σ−1
n,1h

1−β
n ln(x0) = R(1)

n (0) + oP (1).

Consequently, the result follows by Lemma C since the martingale part is neg-
ligible.

3.2. Supersmooth case

Proof of Proposition 2.15. Let Zn,j = 1
hn
gn

(

x0−Yj

hn

)

. Then

Varf̂n(x0) =
1

n
VarZn,0 +

2

n

n−1
∑

j=1

(1 − j/n)Cov(Zn,0, Zn,j)

=
1

n
VarZn,0 +O





2

n

n−1
∑

j=1

(1 − j/n)|ρj |
1+δ





1

h2
n

(∫

gn

(

x0 − u

hn

)

h(u)du

)2

+
2

n

n−1
∑

j=1

(1 − i/n)ρj
1

h2
n

(∫

gn

(

x0 − u

hn

)

f ′Y (u)du

)2

=: I1 + I2 + I3.

From [20] we know that

l(1)
n := C

1

n
h

2([m+1]β+β0−
1

2
)

n exp(2a(d/hn)β) ≤ I1

and

I1 ≤ C
1

n
h2([m+1]β+β0−1)

n exp(2a(d/hn)β) (ln(1/hn))
2m

=: U (1)
n .

Now, from continuity and integrability of f ′Y we obtain via Lemma 3.1 in [11],

1

h2
n

(∫

gn

(

x0 − u

hn

)

f ′Y (u)

)2

≥ Ch2([m+1]β+β0)
n exp(2a(d/hn)β)
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and

1

h2
n

(∫

gn

(

x0 −u

hn

)

f ′Y (u)

)2

≤ Ch2([m+1]β+β0−1)
n exp(2a(d/hn)β) (ln(1/hn))

2m
.

(25)
Consequently,

l(3)
n := C

σ2
n,1

n2
h

2([m+1]β+β0−
1

2
)

n exp(2a(d/hn)β) ≤ I3

and

I3 ≤ C
σ2

n,1

n2
h2([m+1]β+β0−1)

n exp(2a(d/hn)β) (ln(1/hn))
2m

=: U (3)
n .

Further, as in (25),

I2 ≤ o

(

σ2
n,1

n2

)

h2([m+1]β+β0−1)
n exp(2a(d/hn)β) (ln(1/hn))

2m
=: U (2)

n .

To assure that I1 → 0 as n → ∞ we choose hn = d
(

2a
(1−θ) ln n

)1/β
, θ ∈ (0, 1).

Now, U
(1)
n = o(l

(3)
n ) and U

(2)
n = o(l

(3)
n ) as long as hn ∼ C(lnn)−κ, κ > 0.

Consequently, with our choice of hn the third part I3 dominates both I1 and I2.
The upper bound for the third part is

O

(

σ2
n,1

n1+θ

)

= O(n−κ),

κ > 0 as long as 0 < 2 − 2γ < θ < 1. Consequently, via (13), the bias term
dominates and the mean square rate of convergence is of the order (lnn)−2/β.

Appendix A

Lemma A. Assume (2), (4), (7). Then ugn(u) ∈ L1(IR),
∫

|ugn(u)|du =
O(h−2

n ) and consequently hβ+1
n

∫

|ugn(u)|du = o(1) for β > 1.

Proof. Integrate by parts three times to obtain

|u3gn(u)| <
1

2π

∫

∣

∣

∣

∣

∣

(

φK(t)

φǫ(t/hn)

)(3)
∣

∣

∣

∣

∣

dt.

Consequently, if we show that the right-hand side is bounded by Ch−2
n we will

prove that |ugn(u)| = O(|u|−2) (the bound depends on hn) and hence |ugn(u)|
is integrable.
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We have
(

φK(t)

φǫ(t/hn)

)(3)

=
φ

(3)
K (t)

φǫ(t/hn)
−

3

hn

φ
(2)
K (t)φ′

ǫ(t/hn)

φ2
ǫ (t/hn)

+
5

h2
n

φ′
K(t)(φ′

ǫ(t/hn))2

φ3
ǫ(t/hn)

−
1

h2
n

φ
(2)
ǫ (t/hn)

φ2
ǫ (t/hn)

[2φK(t) + φ′
K(t)] +

4

h3
n

φK(t)φ
(2)
ǫ (t/hn)φ′

ǫ(t/hn)

φ3
ǫ (t/hn)

−
1

h3
n

φK(t)

φ2
ǫ (t/hn)

[

φ(3)
ǫ (t/hn) +

(φ′
ǫ(t/hn))3

φ2
ǫ(t/hn)

]

.

Taking integral of each term separately on {|t| <Mhn} and {|t| ≥Mhn}, using
(2), (4) and boundness of derivatives we obtain for the terms involving h3

n:

4

h3
n

∫

{|t|<Mhn}

∣

∣

∣

∣

∣

φK(t)φ
(2)
ǫ (t/hn)φ′

ǫ(t/hn)

φ3
ǫ (t/hn)

∣

∣

∣

∣

∣

dt

+
1

h3
n

∫

{|t|<Mhn}

∣

∣

∣

∣

φK(t)

φ2
ǫ(t/hn)

[

φ(3)
ǫ (t/hn) +

(φ′
ǫ(t/hn))3

φ2
ǫ(t/hn)

]∣

∣

∣

∣

dt = O(h−2
n )

On {|t| ≥ Mhn} we utilize condition (7) and the form (2) of φǫ and the corre-
sponding behavior of its derivatives.

To establish exact asymptotics in the LRD case, we need the precise result
on behavior of ∈ gn(u)du.

Lemma B. Assume (2), (4), (5). Then

lim
n→∞

hβ
n

∫

gn(u)du = 1.

Proof. In view of [18, Lemma 3], gn ∈ L1(IR). Let g(u) =
∫

exp(itu)φK (t)
φǫ(t)

dt.

By the inversion formula, φK(t)/φǫ(t) =
∫

exp(−itu)g(u)du. Since g ∈ L1(IR),
taking t = 0, we obtain

∫

g(u)du = 1.
On the other hand,

lim
n→∞

∫

hβ
ngn(u)du =

∫

lim
n→∞

hβ
ngn(u)du

=
1

2π

∫ ∫

exp(itu) lim
n→∞

hn
φK(t)

φǫ(t/hn)
dtdu.

The change of limit and integrals is permitted since ([18, Lemma 3])

hβ
n|gn(u)| = hβ

n|gn(u)|1{|u|<1} + hβ
n|gn(u)|1{|u|≥1}

≤ Chβ
n1{|u|<1}

∫
∣

∣

∣

∣

φK(t)

φǫ(t/hn)

∣

∣

∣

∣

dt+Ch−β
n u−21{|u|≥1}

and

hβ
n

∣

∣

∣

∣

φK(t)

φǫ(t/hn)

∣

∣

∣

∣

= hβ
n

∣

∣

∣

∣

φK(t)

φǫ(t/hn)

∣

∣

∣

∣

1{|t|<Mhn} + hβ
n

∣

∣

∣

∣

φK(t)

φǫ(t/hn)

∣

∣

∣

∣

1{|t|≥Mhn}

≤ Chβ
n1{|t|<Mhn} + Chβ

n|φK(t)||t−β|.

The upper bounds are integrable as the functions of u and t, respectively.
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Appendix B

Lemma C. Assume (B1), (B2) and EZ4
1 <∞. Then under the LRD assump-

tions and r = 0, 1, 2 we have a weak convergence

σ−1
n,1R

(r)
n (z)⇒f

(r+1)
Y (x0 + z)Z,

sup
z

E

[

∣

∣

∣R(r)
n (z)

∣

∣

∣

2
]

= O(σ2
n,1),

and E
[(

R
(r)
n (0)

)2]
∼ σ2

n,1

(

f
(r+1)
Y (x0)

)2
.

Proof. Let r = 0, 1, 2. Let Gn be the empirical distribution function associated
with X1,0, . . . , Xn,n−1. Let G be the distribution of X1,0. Then

R(r)
n (z) = n

∫

(Gn(u) −G(u)) f
(r+1)
ǫ+Z (x0 − u+ z)du

Consequently, under the condition
∫

f
(r+1)
ǫ+Z (v)dv <∞ we have

|R(r)
n (z)| ≤ Cn sup

u
|Gn(u) −G(u)|

and the bound is independent of z. Now, we apply Theorem 2 in [26] with p = 0.

Then E
[

supu |Gn(u) −G(u)|2
]

= O(σ2
n,1/n

2) and hence supz E
[

|R
(r)
n (z)|2

]

=
O(σ2

n,1).
Further, we can apply Theorem 1 in [26] to obtain

E







∣

∣

∣

∣

∣

∣

R(r)
n (0) + f

(r+1)
Y (x0)

n
∑

j=1

Xj,j−1

∣

∣

∣

∣

∣

∣

2





= o(σ2

n,1).

Consequently,

σ2
n,1E

[

(

R(r)
n (0)

)2
]

→
(

f
(r+1)
Y (x0)

)2

.

Lemma D. Assume that
∑2

r=0

∫ ∫

∣

∣

∣f
(r)
ǫ+Z(v)

∣

∣

∣

2

dv < ∞ and E|Y1|
κ < ∞ for

some κ > 0. Then
F

(r)
Y (y) = EF

(r)
ǫ+Z(y −X1,0).

Proof. It follows from [26, Lemma 6].

Lemma E. Let k ≥ 1. Assume that either
∫

|f
(r)
ǫ (v)|kdv <∞ or

∫

|f
(r)
Z (v)|kdv <

∞. Then
∫

|f
(r)
ǫ+Z(v)|kdv <∞.

Proof. By Fubini’s theorem
∫

|f
(r)
ǫ+Z(v)|kdv =

∫

|Ef
(r)
Z (v − ǫ)|kdv ≤ E

∫

|f
(r)
Z (v − ǫ)|kdv <∞.
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