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Abstract: In Markov chain Monte Carlo (MCMC) sampling considerable
thought goes into constructing random transitions. But those transitions
are almost always driven by a simulated IID sequence. Recently it has been
shown that replacing an IID sequence by a weakly completely uniformly
distributed (WCUD) sequence leads to consistent estimation in finite state
spaces. Unfortunately, few WCUD sequences are known. This paper gives
general methods for proving that a sequence is WCUD, shows that some
specific sequences are WCUD, and shows that certain operations on WCUD
sequences yield new WCUD sequences.A numerical example on a 42 dimen-
sional continuous Gibbs sampler found that some WCUD inputs sequences
produced variance reductions ranging from tens to hundreds for posterior
means of the parameters, compared to IID inputs.
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1. Introduction

In Markov chain Monte Carlo (MCMC) sampling, random inputs are used
to determine a sequence of proposals and, in some versions, their acceptance
or rejection. Considerable effort and creativity have been applied to devis-
ing good proposal mechanisms. Many examples can be found in recent books
such as Newman and Barkema (1999), Liu (2001), Robert and Casella (2004),
and Landau and Binder (2005).

With very few exceptions, described below, the proposals and acceptance-
rejection decisions are all sampled the same way. A sequence of points ui ∈ (0, 1)
that simulate independent draws from the U [0, 1] distribution is used to drive

∗Supported by grants DMS-0306612 and DMS-0604939 from the U.S. NSF. We thank
Richard Simard for answering questions about SSJ and an anonymous reviewer for helpful
comments.

634

http://www.i-journals.org/ejs
http://dx.doi.org/10.1214/07-EJS162
mailto:stribbs@gmail.com
mailto:owen@stat.stanford.edu


S. D. Tribble and A. B. Owen/Weakly CUD sequences for MCMC 635

the process. By replacing IID draws with more balanced samples, we can hope
to improve the accuracy of MCMC.

MCMC sampling is subtle and modifying the IID driving sequence with-
out theoretical support is risky. To do so is to simulate a Markov chain us-
ing random variables that do not have the Markov property. Caution is in
order and few have tried it. According to Charles Geyer, writing in 2003,
(http://www.stat.umn.edu/geyer/mcmc/talk/mcmc.pdf) “Every MCMC-like
method is either a special case of the Metropolis-Hastings-Green algorithm, or is
bogus”. Our objective in this paper is to show that a variety of alternative sam-
pling schemes avoid the latter category. They yield consistent MCMC estimates
whose accuracy we investigate empirically.

Two exceptions to IID driving sequences that we know of are Liao (1998)
and Chaudary (2004). The first proposed using randomly reordered quasi-Monte
Carlo points in the Gibbs sampler. The second proposed strategic sampling of
proposals with weighting of rejected proposals. Both found empirical evidence
of a modest improvement, but neither gave any theory to support his method.

We will follow up on Liao’s proposal, which is illustrated in Figure 1. The
quasi-Monte Carlo points, which are rows of the matrix A are very uniformly
distributed through [0, 1]s. They get reordered into a matrix X that then has
its rows concatenated into a long vector u that gets used to drive the MCMC
computation. We refer to both u and X as the driving sequence.

Recently Owen and Tribble (2005) proved consistency for Metropolis-Hastings
algorithms, including Gibbs sampling as a special case, when the driving se-
quence ui are completely uniformly distributed (CUD), or even weakly CUD
(WCUD), as defined below. That work built on Chentsov (1967) who gave con-
ditions under which CUD sequences lead to consistency when Markov chains
are sampled by inversion.

We give formal definitions of CUD and WCUD sequences below. For now,
note that a CUD sequence is one that can be broken into overlapping d-tuples
that pass a uniformity test, and that this holds for all d. Replacing IID points by
CUD points is similar to using the entire period of a random number generator.
When the points of the CUD sequence are well balanced, the effect is to get a
quasi-Monte Carlo (QMC) version of MCMC. One then has to design or choose
random number generators with good uniformity that are small enough to use
in their entirety.

The theory in Owen and Tribble (2005) applied to infinite sequences, but the
examples there used finite sequences that were not yet known to be WCUD. This
paper establishes that several classes of constructions give WCUD sequences and
shows how certain natural operations on WCUD sequences yield other WCUD
sequences. We then illustrate the use of WCUD sampling on a 42 parameter
Gibbs sampling problem and find that the posterior means are estimated with
variance reductions ranging from tens to hundreds. A detailed outline of this
paper follows.

Section 2 provides background material on MCMC, QMC, and CUD se-
quences. In Section 3 a new definition of triangular array (W)CUD sequences is
made, suitable for QMC constructions that are not initial segments of infinite
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A

a1 a11 a12 …… a1s

a2 a21 a22 …… a2s

…… …… …… ……

an an1 an2 …… ans

X

x1x11 x12 …… x1s

x2x21 x22 …… x2s

…… …… …… ……

xnxn1 xn2 …… xns

ττ

x11
……x1s x21

……x2s x31
……x3s …… …… xn1

……xns

u u1
……us us++1

……u2s u2s++1
…… …… ……uns

Fig 1. This figure illustrates the construction used in Liao (1998). The matrix A ∈ [0,1]n×s

has its rows randomly reordered by a permutation τ , creating the matrix X ∈ [0,1]n×s. The
rows of X are then concatenated into one long row vector whose contents are then used to
define the vector u ∈ [0,1]ns. The values of u are then fed into the MCMC algorithm.

sequences. Theorem 2 shows that triangular array (W)CUD sequences lead to
consistent MCMC estimates. Sometimes it is simpler to prove a pointwise ver-
sion of the (W)CUD property instead of the uniform one required. Lemma 1
shows that pointwise (W)CUD sequences are necessarily (W)CUD. (W)CUD
sequences are defined through overlapping blocks of consective values, but some
QMC constructions make it easier to work with non-overlapping blocks. Theo-
rem 3 shows that a (W)CUD like property defined over non-overlapping blocks
suffices to prove the original (W)CUD property. That theorem also shows that
one can restrict attention to any convenient infinite set of dimensions.



S. D. Tribble and A. B. Owen/Weakly CUD sequences for MCMC 637

Next we turn to specific constructions. In Section 4, Theorem 4 shows that
a lattice construction of Niederreiter (1977) leads to a CUD sequence. Cranley-
Patterson rotations are commonly used to randomize lattice rules. Lemma 2
shows that Cranley-Patterson rotations of Niederreiter’s sequence, or indeed
of any (W)CUD sequence, are WCUD. Section 5 investigates Liao’s proposal
for randomly reordering the points of a QMC sequence. Lemma 3 gives a non-
asymptotic bound for the discrepancy of the reordered sequence in terms of
the discrepancy of the original one. Then Theorem 5 gives conditions for the
reordered points to be WCUD. Liao’s proposal simply shuffles a QMC sequence.
Theorem 6 shows that some generalizations that rearrange the QMC points are
also WCUD. Section 6 shows that we can mix IID U [0, 1] sequences into WCUD
sequences in a certain way, and end up with a WCUD sequence. This then
proves, via a coupling argument, that Liao’s proposal for handling acceptance-
rejection sampling leads to consistent estimates.

Section 7 presents an example, with a probit model on some data of Finney
(1947), using QMC-MCMC to drive the Gibbs sampler from Albert and Chib
(1993). In this example, the parameter vector has 42 dimensions. The variance
reductions attained are typically in the range from 20 to 40 but some improve-
ments of over 500-fold were attained. Section 8 summarizes our findings, dis-
cusses rates of convergence and extensions to continuous state spaces.

To conclude this introduction, we mention some related work in the litera-
ture that merges QMC and MCMC ideas. L’Ecuyer et al. (2005) have devel-
oped an array-RQMC method for simulating Markov chains on an ordered state
space. Craiu and Lemieux (2007) combine antithetic and stratified sampling in
the multiple-try Metropolis algorithm of Liu et al. (2000). James Propp and
co-workers have been applying QMC ideas to derandomize some randomized
automata. At present the best way to find this work is via Internet search using
the term “rotor-router”. Lemieux and Sidorsky (2005) use quasi-Monte Carlo
sampling to drive the exact sampling of Propp and Wilson (1996).

2. Background

This section sets out the notation for MCMC, assuming some familiarity with
Markov chain Monte Carlo methods, as described for example in Liu (2001),
Robert and Casella (2004) or Gilks et al. (1996). Our version works on a finite
state space with Metropolis-Hastings type proposals.

Then we describe quasi-Monte Carlo sampling (QMC) and use it to define
CUD and weakly CUD sequences. Finally we show how CUD and weakly CUD
sequences can be used as driving sequences for Metropolis-Hastings sampling.

We use integers m, s, and d to describe dimensions in this paper. One
Metropolis-Hastings step typically consumes m uniform random numbers. A
quasi-Monte Carlo point set is typically constructed for a finite dimension s. It
is most natural to arrange matters so that m = s, but we need two distinct inte-
gers because m 6= s is also workable. Finally we will need some equidistribution
properties to hold for all d in an infinite set of dimensions.
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Points in [0, 1]m, [0, 1]s, or [0, 1]d are denoted by letters such as x and z, or
when there are many such points, by x(i) or z(k) for integer indices. Components

of such tuples are denoted as xj or z
(k)
j . For j ≤ k, the notation xj:k denotes

the (k − j + 1)–tuple taken from components j through k inclusive of x.

2.1. Markov chain Monte Carlo

We describe MCMC for sampling from a distribution π on a discrete state space
Ω = {ω1, . . . , ωK} for K < ∞. We suppose as is usual that the ratio π(ω)/π(ω′)
can be easily obtained for any pair ω, ω′ ∈ Ω, or at least for any pair that
can arise as two consecutive samples. Starting with some point ω(0) ∈ Ω, the
MCMC simulation generates a Markov chain ω(i) ∈ Ω for i ≥ 1 whose stationary
distribution is π.

Common usage of Metropolis-Hastings sampling make a proposal ω̃(i+1) based
on ω̃(i) and m− 1 consecutive uj from the driving sequence:

ω̃(i+1) = Ψ(ω(i), umi+1, . . . , umi+m−1). (1)

Acceptance or rejection of the proposal is based on one more member of the
driving sequence as follows:

ω(i+1) =

{
ω̃(i+1), umi+m ≤ A(ω(i) → ω̃(i+1))

ω(i), else,
(2)

using the Metropolis-Hastings acceptance probability

A(ω → ω̃) = min
(
1,

π(ω̃)p(ω̃ → ω)

π(ω)p(ω → ω̃)

)
. (3)

Here p(ω → ω̃) denotes the probability of proposing a transition from ω to ω̃.
The mechanism described by equations (1), (2), and (3) is less general than

the usual MCMC. It leaves out the case where acceptance-rejection sampling
is used to generate one or more of the components of the proposal. Section 6
shows how one can splice in IID elements of the driving sequence for that case.

The function Ψ that constructs proposals may involve inversion of CDFs
or apply other similar transformations for generating random variables given
by Devroye (1986). We will however need a regularity condition (Jordan mea-
surability) for the proposals. This very mild condition rules out pathological
constructions.

Definition 1 (Regular proposals). The proposals are regular if for all ω, ω̃ ∈
Ω the set

S
ω→ω̃

= {(u1, . . . , um−1) | ω̃ = Ψ(ω, u1, . . . , um−1)} ⊆ [0, 1]m−1

is Jordan measurable.
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Jordan measurability of S
ω→ω̃

means that it has a Riemann integrable indi-
cator function. The boundary of such sets has volume zero. Proposals that do
one thing for ui with rational components and another for irrational ui might
be ruled out. Practically useful proposal mechanisms are regular.

By stage n the fraction of time spent in state ω is

π̂n(ω) =
1

n

n∑

i=1

1ω(i)=ω . (4)

Consistency of π̂n is defined differently for random and nonrandom ui, as follows.

Definition 2. The chain is consistent if

lim
n→∞

π̂n(ω) = π(ω) (5)

holds for all ω, ω(0) ∈ Ω.

Definition 3. The chain is weakly consistent if

lim
n→∞

Pr(|π̂n(ω) − π(ω)| > ǫ) = 0 (6)

holds for all ω, ω(0) ∈ Ω and for all ǫ > 0.

2.2. Quasi-Monte Carlo

In quasi-Monte Carlo sampling, one does not simulate randomness. Instead one
picks points that are more uniform than random points would be. Here we sketch
QMC sampling. The reader seeking more information may turn to Niederreiter
(1992).

For a point z = (z1, . . . , zs) ∈ [0, 1]s let [0, z] denote the s dimensional box
bounded by (0, . . . , 0) at the lower left and z at the upper right. That is [0, z]
is the Cartesian product

∏s
j=1[0, zj]. The volume of this box is Vol([0, z]) =∏s

j=1 zj . Given n points x(1), . . . , x(n) ∈ [0, 1]s define the empirical volume of
the box as

V̂oln([0, z]) =
1

n

n∑

i=1

1x(i)∈[0,z]

and the local discrepancy function

δs
n(z) = δs

n(z; x(1), . . . , x(n)) =
∣∣V̂oln([0, z])− Vol([0, z])

∣∣. (7)

We suppress the dependence of V̂ol on s and x(i) to keep notation uncluttered.
The star discrepancy of x(1), . . . , x(n) ∈ [0, 1]s is

D∗s
n = D∗s

n (x(1), . . . , x(n)) = sup
z∈[0,1]s

δn(z; x(1), . . . , x(n)). (8)
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The star discrepancy is an s dimensional generalization of the Kolmogorov-
Smirnov distance between U [0, 1]s and the empirical distribution of the points x(i).

Let the function f : [0, 1]s → R have total variation ‖f‖HK in the sense
of Hardy and Krause. For s = 1, ‖f‖HK reduces to the usual concept of the
total variation of a function. For s > 1 one must take care to use a measure of
variation that does not vanish when f depends only on a subset of its arguments.
Variation in the sense of Hardy and Krause does so, as described in Owen (2005).
Then the Koksma-Hlawka inequality

∣∣∣∣∣

∫

[0,1]s
f(x) dx −

1

n

n∑

i=1

f(x(i))

∣∣∣∣∣ ≤ D∗s
n × ‖f‖HK (9)

shows the advantage of low discrepancy for integration. There are QMC con-
structions for which D∗s

n = O(n−1+ǫ) holds for any ǫ > 0. Then functions f of
finite variation can be integrated with an error rate that is superior to the famil-
iar O(n−1/2) root mean square error rate of Monte Carlo. The asymptotics can
be slow to set in but in practice the accuracy of QMC ranges from comparable
with MC to far superior to MC.

2.3. CUD and weakly CUD sequences

Quasi-Monte Carlo points will not always lead to the right answer when used
to drive MCMC sampling. The QMC constructions that can be made to work
are the ones that are completely uniformly distributed (CUD) and weakly CUD
(WCUD) as defined below.

Definition 4 (CUD). The infinite sequence ui ∈ [0, 1] for i ≥ 1 is completely
uniformly distributed, if

lim
n→∞

D∗d
n

(
(u1, . . . , ud), (u2, . . . , ud+1), . . . (un, . . . , ud+n−1)

)
= 0 (10)

holds for every integer d ≥ 1.

Knuth (1998) describes several working definitions of randomness for random
number generators. One of them is that the sequence be CUD. The concept of
CUD sequences originated with Korobov (1948). Levin (1999) gives a recent
survey of CUD constructions.

Definition 5 (Weak CUD). The infinite sequence of random variables ui ∈
[0, 1] for i ≥ 1 is weakly completely uniformly distributed, if

lim
n→∞

Pr
(
D∗d

n

(
(u1, . . . , ud), (u2, . . . , ud+1), . . . (un, . . . , ud+n−1)

)
> ǫ
)

= 0 (11)

holds for every integer d ≥ 1 and every ǫ > 0.

Theorem 1. Let ω(0) ∈ Ω = {ω1, . . . , ωK}. For i ≥ 0 let ω̃(i+1) be a regular
proposal generated from (umi+1, . . . , umi+m−1) and ω(i) via equation (1), and let
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ω(i+1) be determined from uis by equation (2). Assume that weak consistency (6)
holds for all ω, ω(0) ∈ Ω and all ǫ > 0 when ui are independent U [0, 1] random
variables. If the IID ui are replaced by weakly CUD ui, then the weak consistency
result (6) still holds. If the IID ui are replaced by CUD ui, then the stronger
consistency result (5) holds.

Proof. Owen and Tribble (2005), Theorem 3.

Theorem 1 does not explicitly make any assumptions about whether the
chain is ergodic or even whether it is irreducible. Those considerations are very
important, but they are buried in the weak consistency assumption (6). If a
proposal mechanism is known to be consistent for an IID driving sequence,
then it remains so for driving sequences that are CUD or WCUD. Therefore
MCMC sampling separates into two problems. One is selecting a good proposal
mechanism. The other is selecting a weakly CUD driving sequence, where of
course IID points constitute the usual choice.

3. Extensions of WCUD

This section presents some basic results for (W)CUD sequences that we use later
to show that specific constructions give rise to consistent MCMC sampling. We
define a triangular array notion of (W)CUD sequences for use with finite driving
sequences.

Theorem 1, taken from Owen and Tribble (2005) applies to infinite sequences
ui. In practice one uses a finite sequence of length N . A theory for large N has to
account for the fact that the constructions are not always nested: for N1 < N2

the sequence of length N2 might not be an extension of the sequence of N1

points.
To formulate our limit, we take a triangular array in which the row indexed

by N has points uN,1, . . . , uN,N ∈ [0, 1] that we use to compute π̂. The value N
belongs to an infinitely large nonrandom set N of positive integers. In terms of
Figure 1, the bottom row has N = ns numbers in [0, 1]. Asymptotics for Liao’s
construction involve a limit of such figures indexed by N . Other constructions
similarly involve limits of finite sequences.

The number n of transitions made depends on N . When each transition
consumes m points of the driving sequence, then n(N) = ⌊N/m⌋. The estimate
using uN,1, . . . , uN,N is π̂n(N)(ω). Consistency or weak consistency holds when
for all ω, π̂n(N)(ω) converges, or converges weakly, to π(ω) as N → ∞. Limits
as N → ∞ are always understood to be through the values N ∈ N .

Definition 6 (Triangular array (W)CUD). Let uN,1, . . . , uN,N ∈ [0, 1] for
an infinite set of positive integers N ∈ N . Suppose that as N → ∞ through the
values in N , that

D∗d
N−d+1((uN,1, . . . , uN,d), . . . , (uN,N−d+1, . . . , uN,N)) → 0
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holds for any integer d ≥ 1. Then the triangular array (uN,i) is CUD. If the
uN,i are random and

Pr(D∗d
N−d+1((uN,1, . . . , uN,d), . . . , (uN,N−d+1 , . . . , uN,N )) > ǫ) → 0

as N → ∞ through values in N holds for all integers d ≥ 1 and all ǫ > 0, then
the triangular array (uN,i) is weakly CUD.

If an infinite sequence u1, u2, . . . is CUD (or WCUD) then the triangular
array of prefixes taking uN,i = ui, for all N ≥ 1 is also CUD (respectively
WCUD). This means that the triangular array definitions are broader than the
original ones.

Theorem 2. Suppose that the transitions are as described in Theorem 1, in-
cluding weak consistency (6) when ui are independent U [0, 1] random variables.
Let each transition consume m of the ui. If ui are replaced by elements uN,i of
a CUD triangular array then

lim
N→∞

π̂⌊N/m⌋(ω) = π(ω). (12)

If ui are replaced by elements uN,i of a WCUD triangular array then

lim
N→∞

Pr(|π̂⌊N/m⌋(ω) − π(ω)| > ǫ) = 0. (13)

Proof. The proof is similar to that of Theorem 3 in Owen and Tribble (2005),
and so we only sketch it. Fix ǫ > 0 and identify the set Tr(ǫ) ⊂ [0, 1]rm for
which

∑
ω∈Ω Pr(|π̂r(ω) − π(ω)| > ǫ) > ǫ holds when (u1, . . . , urm) ∈ Tr(ǫ). For

large enough r the set Tr(ǫ) has volume no more than ǫ. Then apply Definition 6
using d = rm. The rest of the proof follows as in Owen and Tribble (2005).

In proving that D∗d
n converges to zero, the natural first step is to show that

the local discrepancy δd
n(z) tends to zero at each z. It turns out that such a

pointwise (W)CUD property implies the (W)CUD property.

Definition 7 (Pointwise (W)CUD). The triangular array uN,i ∈ [0, 1] is
pointwise CUD, if

lim
N→∞

δd
N−d+1

(
z; (uN,1, . . . , uN,d), . . . , (uN,N−d+1, . . . , uN,N)

)
= 0 (14)

holds for every integer d ≥ 1 and every z ∈ [0, 1]d. The triangular array of
random variables uN,i ∈ [0, 1] is pointwise weakly CUD, if

lim
N→∞

Pr
(
δd
N−d+1

(
z; (uN,1, . . . , uN,d), . . . , (uN,N−d+1, . . . , uN,N)

)
> ǫ
)

= 0

(15)

holds for every integer d ≥ 1, every z ∈ [0, 1]d, and every ǫ > 0.
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Lemma 1. If (14) holds for all z ∈ [0, 1]d then

D∗d
N−d+1

(
(uN,1, . . . , uN,d), . . . , (uN,N−d+1 , . . . , uN,N )

)
→ 0,

as N → ∞. If (15) holds for all z ∈ [0, 1]d then

Pr
(
D∗d

N−d+1

(
(uN,1, . . . , uN,d), . . . , (uN,N−d+1 , . . . , uN,N)

)
> ǫ
)
→ 0.

If uN,i are pointwise CUD then they are CUD. If uN,i are pointwise WCUD
then they are WCUD.

Proof. The final two statements follow from the first two which we prove here.
Pick ǫ > 0 and then choose a positive integer M > 1/ǫ. Next let L be the lattice
of points in [0, 1]d whose coordinates are integer multiples of 1/(2dM).

For any z ∈ [0, 1]d we may choose z′, z′′ ∈ L such that the following hold
componentwise: z′ ≤ z ≤ z′′, |z − z′| < ǫ/(2d), and |z − z′′| < ǫ/(2d). Then
0 ≤ Vol([0, z′′]) − Vol([0, z]) < ǫ/2.

Next, for N ≥ d, let V̂ol([0, z]) denote the fraction of the N − d + 1 points
(uN,i, . . . , uN,i+d−1) that are in [0, z]. Then

V̂ol([0, z])− Vol([0, z]) ≤ V̂ol([0, z′′]) − Vol([0, z]) < ǫ/2 + δd
N−d+1(z

′′),

and with a similarly obtained lower bound via z′, we get D∗d
n < ǫ/2 +

maxy∈L δd
N−d+1(y). The CUD case follows via (14) with ǫ → 0. Taking thresh-

old ǫ/2 in (15) yields Pr(maxy∈L δd
N−d+1(y) > ǫ/2) → 0, proving the WCUD

case.

The (W)CUD properties are defined in terms of consecutive blocks of ob-
servations that overlap, at least when d > 1. It is often useful to consider
non-overlapping blocks of points such as (u1, . . . , ud), (ud+1, . . . , u2d), . . . . For
infinite deterministic sequences it is known (Knuth, 1998, page 155) that if the
discrepancy of overlapping sequences tends to zero for all d then the discrepancy
of non-overlapping sequences also tends to zero for all d. The converse (with ’for
all d’ in both clauses) also holds. See Chentsov (1967).

We need sufficiency of non-overlapping block results for the random case as
well. Also it is helpful to be able to work with only a convenient subset of
dimensions d. Theorem 3 below shows that such special cases are sufficient to
prove the WCUD property and hence consistency.

Theorem 3. Let N be an infinite set of nonnegative integer sample sizes
and let D be an infinite set of nonnegative integer dimensions. Let uN,i be

a triangular array for i = 1, . . . , N and N ∈ N . For integer d̃ ≥ 1 define
the nonoverlapping d̃-tuples x̃(i) = x̃(i)(d̃, N) = (u

N,d̃(i−1)+1
, . . . , u

N,d̃i
) for

i = 1, . . . , M = M(N, d̃) = ⌊N/d̃⌋. For integer d define the ordinary d-tuples
x(i) = x(i)(d, N) = (uN,i, . . . , uN,i+d−1) for i = 1, . . . , N − d + 1.
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Suppose that

lim
N→∞

Pr
(
D∗d̃

M (x̃(1), . . . , x̃(M)) > ǫ
)

= 0 (16)

holds for all d̃ ∈ D and all ǫ > 0 where M = M(N, d̃). Then

lim
N→∞

Pr
(
D∗d

N−d+1(x
(1), . . . , x(N−d+1)) > ǫ

)
= 0 (17)

holds for all ǫ > 0 and all integers d ≥ 1, so that uN,i are WCUD.

Proof. Let ǫ > 0 and η > 0, let d be a positive integer, and suppose that
z ∈ [0, 1]d. Choose d̃ ∈ D with d/d̃ < ǫ/3. Because N is tending to infinity, we

may assume that d̃/N < ǫ/3.
For i = 1, . . . , N−d+1 let x(i) = (uN,i, . . . , uN,i+d−1) and for k = 1, . . . , M =

⌊N/d̃⌋ let x̃(k) = (u
N,d̃(k−1)+1

, . . . , u
N,d̃k

). Most of the x(i) are nested within

exactly one of the x̃(k) as follows. For i = 1, . . . , N − d + 1, define k = k(i) by

(k − 1)d̃ + 1 ≤ i ≤ kd̃ and define ℓ(i) by ℓ = i− (k − 1)d̃. If k(i) ≤ M(N, d̃) and

1 ≤ ℓ ≤ d̃−d+1 then the components uN,i, . . . , uN,i+d−1 of x(i) are in positions

ℓ through ℓ + d − 1 of x̃(k). That is x(i) = x̃
(k)
ℓ:(ℓ+d−1).

Now

N−d+1∑

i=1

1x(i)∈[0,z] ≤
M∑

k=1

d̃−d+1∑

ℓ=1

1
x((k−1)d̃+ℓ)∈[0,z]

+ Md + d̃ − 1

≤
M∑

k=1

f(x̃k) + 2ǫN/3,

where f(x̃) =
∑d̃−d+1

ℓ=1 1
x̃ℓ:(ℓ+d−1)∈[0,z]

. The integral of f over [0, 1]d̃ is (d̃ − d +

1)Vol([0, z]). The function f is piecewise constant within a finite set of axis

parallel hyperrectangular regions in [0, 1]d̃. It follows that for some K < ∞

|M−1
∑M

k=1 f(x̃k) − (d̃ − d + 1)Vol([0, z])| < KD∗d̃
M (x̃(1), . . . , x̃(M)).

Therefore for small enough ǫ̃+ > 0 having D∗d̃
M < ǫ̃+ will imply that (N −d+

1)−1
∑N−d+1

i=1 1x(i)∈[0,z] < Vol([0, z])+ ǫ. Similarly for small enough ǫ̃− > 0 hav-

ing D∗d̃
M < ǫ̃− will imply that (N − d + 1)−1

∑N−d+1
i=1 1x(i)∈[0,z] > Vol([0, z])− ǫ.

Therefore when D∗d̃
M < ǫ̃ = min(ǫ̃+, ǫ̃−) we have δd

N−d+1(z) < ǫ. By equa-

tion (17) we can choose N ∈ N large enough that Pr(δd
N−d+1(z) > ǫ) < η.

Because z, ǫ, and η are arbitrary we have shown that uN,i are pointwise weakly
CUD. To complete the proof we apply Lemma 1.

4. Lattice constructions

Niederreiter (1977) gives a result that shows how lattice rules may be used
to construct a triangular array that is CUD. Let N be a prime number. Let
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u0 = 1/N and for i ≥ 1 let ui = aui−1/N mod 1 where a is a primitive root
modulo N . For integer dimensions s ≥ 1, there are N − 1 distinct consecutive
s-tuples in this sequence; call them x(i) = (ui, . . . , ui+s−1). Niederreiter (1977)
shows that for well chosen a = a(N) that

D∗s
N−1(x

(1), . . . , x(N−1)) <
1

N − 1

(
1 +

(N − 2)(s − 1)

φ(N − 1)

)(
2

π
log(N) +

7

5

)s

(18)

holds, where φ is Euler’s totient function.
The totient function φ(n) counts the number of positive integers less than

or equal to n that are relatively prime to n. The totient function grows quickly
enough for our purposes because

lim inf
n→∞

φ(n)

n
log(log(n)) = exp(−γ),

where γ
.
= 0.5772 is the Euler-Mascheroni constant. As a result there exists an

A < ∞ and an N0 < ∞ such that

D∗s
N−1(x

(1), . . . , x(N−1)) <
As

N
log(log(N))(log N)s (19)

holds uniformly in s ≥ 1 and N ≥ N0. The constant A in (19) does not have
to grow exponentially with s because the factor 2/π in equation (18) is smaller
than 1.

Theorem 4. Let N be an infinite set of prime numbers. Let s(N) be a nonde-
creasing integer function of N ∈ N satisfying s(N) = o([log(N)/ log(log(N))]α)
for some positive α < 1. For each N ∈ N let a(N) be a primitive root modulo
N for which (18) holds. Form a triangular array via uN,1 = a(N)/N mod 1
and uN,i = auN,i−1/N mod 1 for i = 2, . . . , N − 1. Then the triangular array
(uN,i) is CUD.

Proof. For any d ≥ 1 choose Nd with s(Nd) ≥ d. Then for all N ≥ Nd we have
D∗d

N−1 smaller than the right side of (19). Now the growth condition on s makes

D∗d
N−1 → 0.

Owen and Tribble (2005) employed a method of running through the lattice
rule more than once, so as to use all N−1 of the s-tuples in it exactly once. That
work also prepends s zeros to the sequence. The result is that n(N) = N , and
the set of s-tuples used to drive the MCMC form a lattice rule Sloan and Joe
(1994) in [0, 1]s. The lattice rule structure is much more balanced than ran-
dom ui would be and this accounts for most of the improved accuracy seen
there. Prepending one single s-tuple will not affect the CUD property of over-
lapping d-tuples for any d ≥ 1. Similarly, shifting the points from u1, . . . , uN to
uk+1, . . . , uN , u1, . . . , uk−1 for any finite k does not destroy the CUD property
(Chentsov (1967)). Finally concatenating a finite number of CUD triangular
arrays with the same N → ∞ yields a CUD result.
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Lattice rules are commonly randomized via a rotation due to Cranley and
Patterson (1976). Let a ∈ [0, 1]s and suppose that U ∼ U [0, 1]s. Then the
Cranley-Patterson rotation of a is the point x = a+U mod 1 under component-
wise arithmetic. Whatever value a has, the point x is uniformly distributed on
[0, 1]s. A Cranley-Patterson rotation applied to all points in a s-dimensional
low discrepancy lattice yields a shifted lattice with points that are individually
U [0, 1]s while collectively having low discrepancy.

In terms of Figure 1, this proposal starts with the matrix X, skipping the
randomization of A. The matrix X has 0s in its first row and then all other
s-tuples of the lattice obtained in order with possibly multiple passes. Then a
Cranley-Patterson rotation is applied to each row of the matrix. Finally, the
concatenation into a single u vector works as in Figure 1.

Owen and Tribble (2005) applied a single Cranley-Patterson rotation to all of
the s-tuples (urs−s+1, . . . , urs) (r = 1, . . . , N) in the MCMC driving sequence.
As we show next, applying a Cranley-Patterson rotation to any CUD or WCUD
triangular array yields a triangular array that is WCUD.

Lemma 2. Let uN,i ∈ [0, 1] for i = 1, . . . , N and N in an infinite set N of
nonnegative integers. Define vN,i = uN,i + Uj(i) mod 1 where j(i) = 1 + (i − 1
mod m), for integer m ≥ 1. If uN,i are (W)CUD and (U1, . . . , Um) ∼ U [0, 1]m

independently of uN,i, then vN,i are WCUD.

Proof. Suppose that uN,i are WCUD, and let z ∈ [0, 1]d where d = rm for
integer r ≥ 1. Let z(i) = (vN,di−d+1 , . . . , vN,di) ∈ [0, 1]d be the i’th d di-
mensional point taken from the rotated triangular array (vN,i). Let x(i) =
(uN,di−d+1 , . . . , uN,di) be the pre-image of z(i) before Cranley-Patterson rota-
tion was applied. Then z(i) ∈ [0, z] if and only if x(i) ∈ B where B = B(z, U)
is the union of up to 2d axis parallel rectangular boxes in [0, 1]d. Therefore the
local discrepancy satisfies δd

N−d+1(z) < KD∗d
N−d+1(x

(1), . . . , x(N−d+1)) for some

K < ∞. It follows that Pr(δd
N−d+1(z) > ǫ) → 0 for any z and any ǫ > 0.

Therefore Pr(D∗d > ǫ) → 0 for any d that is a multiple of m. Therefore vN,i

is WCUD. If the uN,i are CUD they are also WCUD and so then vN,i are still
WCUD.

5. Consistency of Liao’s proposal

Let a(1), . . . , a(n) be points in [0, 1]s. In Liao’s proposal these points are of low s
dimensional discrepancy. Let x(i) = a(τ(i)) where τ is a uniform random permu-
tation of 1, . . . , n. Liao’s proposal is to concatenate the points x(i) into a driving
sequence for MCMC. We need to show that those points are WCUD. It is very
natural to make the dimension s of the reordered QMC points equal the number
m of driving points consumed by one transition of the chain. It is not however
necessary to use m = s as we show below.

Let u1, . . . , usn ∈ [0, 1] be the components of the points x(i) concatenated.
The point ui comes from the ⌈i/s⌉’th point in the sequence, specifically

ui = x
(⌈i/s⌉)
i−s(⌈i/s⌉−1).
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Table 1

A sequence of 4 dimensional points x(i), represented in the top row, is concatenated into a
sequence of scalars ui, represented in the middle row. Those scalars are then regrouped into

the 7 dimensional points z(i) as shown in the bottom row.

x(1) x(2) x(3) · · ·
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 · · ·

z(1) z(2) · · ·

Now let z(1), . . . , z(m) be the points ui regrouped into m = ⌊sn/d⌋ consecutive
batches of length d, leaving out the last sn − dm of the ui if m < sn/d. That is

z
(i)
j = ud(i−1)+j = x

(⌈(d(i−1)+j)/s⌉)
d(i−1)+j−s(⌈(d(i−1)+j)/s⌉−1). (20)

The situation is illustrated in Table 1 for the case with s = 4 dimensional points
x(i) regrouped into d = 7 dimensional points z(i). The middle row in Table 1
corresponds to the last row in Figure 1 and the bottom row of Table 1 shows
the vectors we need to analyze the d dimensional discrepancy of the driving
sequence for d 6= s.

We will avoid working directly with the rightmost expression in (20) by break-
ing the x(i) into chunks. To illustrate, consider the point z(2) in the example of
Table 1 and let z ∈ [0, 1]7. Then z(2) ∈ [0, z] if and only if

x
(2)
1 ∈ [0, z1], x(3) ∈ [0, z2:5] and, x

(4)
1:2 ∈ [0, z6:7] (21)

all hold. The next Lemma takes care of the main details needed to get a bound
for the discrepancy.

Lemma 3. For i = 1, . . . , n, let a(i) be points in [0, 1]s with star discrepancy at
most D. Let x(i) = a(τ(i)) where τ is a uniformly distributed random permutation
of 1, . . . , n. For i = 1, . . . , ⌊ns/d⌋ let z(i) be obtained as in equation (20). Assume
that D < 1/3 and that n > 3⌈(d − 1)/s⌉. Then for any z ∈ [0, 1]d

|Pr(z(i) ∈ [0, z])− Vol([0, z])| ≤
3

2

(
21+⌈(d−1)/s⌉ − 1

)(
D +

1

n

⌈d − 1

s

⌉)
. (22)

Proof. Because the x(i) are a permuted version of a(i) they have the same star
discrepancy, which is at most D. Furthermore for 1 ≤ j ≤ k ≤ s the k − j + 1–

dimensional star discrepancy of x
(1)
j:k, . . . , x

(n)
j:k is at most D.

The point z(i) is comprised of chunks taken from consecutive x(j)’s. The
number of contributing chunks C is between ⌈d/s⌉ and 1+⌈(d−1)/s⌉ inclusive.
The upper limit is attained if the first component of z(i) is the last component
of one of the x(j) and the lower limit is attained if the first component of z(i) is
the first component of one of the x(j).

For chunks c = 1, . . . , C let L(c) and U(c) be the first and last indices in
z(i) that are taken from chunk c. Let j(i) be the integer such that the first

component z
(i)
1 is taken from x(j). Then chunk c of z(i) is taken from x(j(i)+c−1)
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for c = 1, . . . , C. Let ℓ(c) and u(c) be the first and last indices in x(j(i)+c−1)

that are used to form the c’th chunk of z(i). That is

z
(i)
L(c):U(c) = x

(j(i)+c−1)
ℓ(c):u(c) , c = 1, . . . , C.

Next for 1 ≤ ℓ ≤ u ≤ s let Nℓ:u(z) =
∑n

i=1 1
x
(i)

ℓ:u
∈[0,zℓ:u ]

count the number of

x(i) whose ℓ : u subcomponents are in the box [0, zℓ:u].

To streamline notation we write x̃c for the c’th chunk x
(j(i)+c′−1)
ℓ(c):u(c) , B̃c for

the c’th box [0, zL(c):U(c)], ṽc for Vol(B̃c), and Ñc for Nℓ(c):u(c)(z). From the
discrepancy bounds we know that

n(vc − D) ≤ Ñc ≤ n(vc + D).

Now Pr(z(i) ∈ [0, z]) is the product of C conditional inclusion probabilities:

C∏

c=1

Pr
(
x̃c ∈ B̃c | x̃c′ ∈ B̃c′ , 1 ≤ c′ < c

)
. (23)

What is random in (23) is the selection, by simple random sampling, of which
a(k) will become x(j(i)+c−1). The conditional probability for chunk c is between
max((Ñc − c + 1)/(n − c + 1), 0) and min(Ñc/(n − c + 1), 1) depending on how
many of the suitable a(k) were ‘used up’ for chunks 1, . . . , c − 1. Clipping these
bounds to 0 and 1 is only necessary to handle some extreme cases. We use the
notation y+ to denote max(y, 0).

For the lower bound,

Pr
(
z(i) ∈ [0, z]

)
≥

C∏

c=1

(Ñc − C + 1)+
n

≥
C∏

c=1

(
vc − D −

C − 1

n

)

+

≥ Vol([0, z])− (2C − 1)

(
D +

C − 1

n

)
. (24)

The last step in (24) is quite conservative. It follows from an expansion of
the previous line into 2C terms of which one is Vol([0, z]) and the others have
alternating signs and are all of smaller magnitude than D + (C − 1)/n. The
upper bound on D and lower bound on n suffice to give D + (C − 1)/n < 1 so
that the largest terms are not (D + (C − 1)/n))C. When D + (C − 1)/n is very
small then the quantity 2C − 1 can be replaced by one almost as small as C.
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For the upper bound,

Pr
(
z(i) ∈ [0, z]

)
≤

C∏

c=1

Ñc

n − C + 1
≤

C∏

c=1

n(vc + D)

n − C + 1

=

C∏

c=1

[
vc +

(
vc + D

1 − (C − 1)/n
− vc

)]

≤ Vol([0, z]) + (2C − 1) max
c∈1:C

(
vc + D

1 − (C − 1)/n
− vc

)

≤ Vol([0, z]) +
3

2
(2C − 1)

(
D +

C − 1

n

)
. (25)

The result follows by combining (24) and (25), and using the fact that C ≤
1 + ⌈(d − 1)/s⌉.

Theorem 5. For i = 1, . . . , n, let a(i) be points in [0, 1]s with star discrep-
ancy at most D∗

n. Let x(i) = a(τ(i)) where τ is a uniformly distributed random
permutation of 1, . . . , n. For i = 1, . . . , ⌊ns/d⌋ ≡ ñ let z(i) be obtained as in
equation (20). Suppose that D∗

n → 0 as n → ∞. Then for any z ∈ [0, 1]d and
d ≥ 1,

E(δd

ñ
(z; z(1), . . . , z(ñ))2) = O(n−1 + D∗

n) (26)

as n → ∞, so that for any ǫ > 0

Pr(δd

ñ
(z; z(1), . . . , z(ñ)) ≥ ǫ) = O(n−1 + D∗

n) (27)

as n → ∞. When d = 1, we have the sharper result

|δ1

ñ
(z; z(1), . . . , z(ñ))| ≤ D∗

n. (28)

Proof. Let Yi = 1 if z(i) ∈ [0, z] and Yi = 0 otherwise and let v = Vol([0, z]).
Then

δd

ñ
(z)2 =

1

ñ2

ñ∑

i=1

ñ∑

j=1

(Yi − v)(Yj − v).

For large enough n both D∗
n < 1/3 and n ≥ 3d hold. Using Lemma 3 we find

that |E(Yi) − v| ≤ K11D
∗
n + K12/n holds for large enough n, where K1ℓ < ∞

are constants from Lemma 3. Also, K12 = 0 when d = 1.
Now suppose that Yi and Yj are well separated in that |i − j| ≥ S ≡ 1 +

⌈(d − 1)/s⌉. Then none of the points x(k) contribute chunks to both z(i) and
z(j). Then the same argument used in Lemma 3 can be adapted to show that
for large enough n,

|Pr(YiYj = 1) − v2| ≤ K21D
∗
n + K22/n
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holds for K2ℓ < ∞. The argument simply requires studying the combined set of
chunks for z(i) and z(j). Then ñ2E(δd

ñ
(z)2) may be expanded and bounded as

follows:

E

(
ñ∑

i=1

ñ∑

j=1

YiYj − vYi − vYj + v2

)

≤ ñ(2S − 1)+ ñ2(v2 +K21n
−1 +K22D

∗
n)− 2ñ2v(v −K11n

−1 −K12D
∗
n)+ ñ2v2

= ñ(2S − 1 + K21s/d + 2K11s/d) + ñ2D∗
n(K22 + 2K21).

Therefore E(δd

ñ
(z)2) = O(n−1 + D∗

n) as n → ∞, establishing (26) and hence

also (27) by Markov’s inequality. Finally (28) follows by counting the number
of z(i) ≤ z.

Corollary 1. Let a(1), . . . , a(n) be points in [0, 1]s with star discrepancy D∗s
n → 0

as n → ∞. Then the proposal of Liao (1998) is weakly consistent for Metropolis-
Hastings sampling.

Proof. Liao’s proposal generates pointwise WCUD points by Theorem 5 and
hence WCUD points by Lemma 1. They are then weakly consistent by Theo-
rem 1.

The proposal of Liao (1998) leads to local discrepancies δd
n(z) that vanish, but

are not particularly small except for d = 1. Liao’s motivating application was
Gibbs sampling where the number m of variates required for one cycle matches
the dimension s of the quasi-Monte Carlo points.

That proposal gets better than Monte Carlo stratification for the ui indi-
vidually and for consecutive q–tuples such as (ukm+r1 , ukm+r2 , . . . , ukm+rq

) for
k ≥ 0 that nest within consecutive m = s–tuples. The proposal does not get par-
ticularly good discrepancy even for consecutive pairs (ui, ui+1) because there is
a jump from the boundaries of the underlying QMC points when i is a multiple
of s.

Suppose that we have a problem for which we want to stratify successive
updates to the j’th component of ω. We might want roughly the right number
of low and high proposals for that component and roughly the right probability
for consecutive pairs or triples of proposals. In such a case, we might wish to
arrange that s consecutive proposals for the j’th component of ω are generated
from one of the original s dimensional QMC points.

Similarly we might have a problem in which we wish to treat the acceptance-
rejection step of Metropolis-Hastings specially. We could then take s = m − 1
and use one QMC point for each proposal we need and one QMC point for each
of s consecutive acceptance-rejections.

Whether such alternative schemes work well depends of course on how well
the scheme matches the problem. But such schemes can be used to generate
consistent samples. Each scheme takes the points of a driving sequence, such
as Liao’s proposal, groups them into consecutive blocks of r = ms points, and
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applies a fixed permutation within each block. That permutation operation pre-
serves the WCUD property:

Theorem 6. Let a(i) ∈ [0, 1]s for i = 1, . . . , n have star discrepancy D∗s
n → 0

as n → ∞. Let x(i) = a(τ(i)) where τ is a random permutation of {1, . . . , n}.

Let vi = x
(⌈i/s⌉)
i−s(⌈i/s⌉−1) be the sequence of x–components for i = 1, . . . , ns.

For r > 1 let σ be an arbitrary permutation of the integers 0, . . . , r − 1. For
i ≥ 1 let ui = vj(i) where

j(i) = r⌊(i − 1)/r⌋+ σ(i − r⌊(i − 1)/r⌋)

Then ui are WCUD.

Proof. The vi are the driving sequence proposed by Liao (1998). The ui are a
permutation of them in which no element is moved by more than r positions.
The arguments in Lemma 3 and Theorem 5 go through as before. All that has
changed is the number and identity of chunks contributing to a consecutive
d–tuple of ui’s.

6. Acceptance-rejection sampling

It is often impractical, if not impossible, to generate a transition using an a priori

fixed number of members ui of the driving sequence. The primary example of
such a method is acceptance-rejection sampling, which we sketch here to fix
ideas.

To sample a real valued y from a probability mass or density function f we
begin by sampling y from g instead where f(y) ≤ cg(y) holds for all y ∈ R for
some constant c ∈ [1,∞). Then we accept y with probability f(y)/(cg(y)). If y
is not accepted then we keep on sampling from g until a point is accepted.

For an illustration of acceptance-rejection sampling suppose that g has CDF
G with an efficiently computable inverse G−1. Then to get a sample from f let

vj ∼ U [0, 1], IID, j ≥ 1

yj = G−1(v2j−1)

j∗ = min

{
j ≥ 1 | v2j ≤

f(yj )

cg(yj)

}

and then deliver y = yj∗ . To use this method one needs to be able to compute
the functions G−1 and f/(cg). More elaborate versions use k ≥ 1 uniformly
distributed vj to produce each proposal.

Liao (1998) proposes to handle acceptance-rejection sampling by using the
QMC points to make the first two draws from g and the first two acceptance-
rejection decisions. If the first two points are both rejected then he suggests
drawing from an IID U [0, 1] sequence until a point is accepted before switch-
ing back to the QMC points. To simplify matters we’ll suppose that only one
acceptance-rejection step is tried with the QMC points, and that we switch
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to IID points if that one is rejected. Derandomized adaptive rejection sampling
Hörmann et al. (2004) can be used to construct proposals that are accepted with
probability arbitrarily close to unity, under a generalized concavity assumption
on the density.

To continue the illustration, suppose that the proposal ω̃ has 3 components.
The first two are generated by inversion, each using one point from [0, 1], while
the third is done by acceptance-rejection sampling. Then the driving sequence
for the first n transitions can be represented in a tableau as follows:

u1 u2 u3 u4 (v11 v12 v13 · · · ) u5

u6 u7 u8 u9 (v21 v22 v23 · · · ) u10

...
...

...
...

...
...

...
...

...
u5i−4 u5i−3 u5i−2 u5i−1 (vi1 vi2 vi3 · · · ) uin

...
...

...
...

...
...

...
...

...
u5n−4 u5n−3 u5n−2 u5n−1 (vn1 vn2 vn3 · · · ) u5n

The points ui are WCUD and the points vij are independent U [0, 1]. The i’th
row of the table drives the transition from ω(i) to ω(i+1). For the proposal

ω̃(i+1), u5i−4 generates the first component ω̃
(i+1)
1 , u5i−3 generates the second

component ω̃
(i+1)
2 , u5i−2 proposes the third component ω̃

(i+1)
3 , u5i−1 is used to

accept or reject the third component and u5i is used to accept or reject the
entire proposal ω̃(i+1) as ω(i+1). In the event that u5i−1 leads to rejection of
the third component, then the infinite sequence vi1, vi2, . . . is used to continue
acceptance-rejection until a third component is generated for the i’th proposal.

The difficulty with acceptance-rejection sampling is that the set of driving
points for which a transition from ω to ω′ is proposed does not have a fixed
finite dimension. It is a union of regions whose dimensions depend on the num-
ber of proposals rejected during the course of acceptance-rejection sampling.
This variable dimension complicates discrepancy based methods for studying
the driving sequence.

The tabulation above suggests a coupling argument. We replace the sequence
vi1, vi2, vi3, . . . by a single point vi ∈ [0, 1]. The values vi are independent U [0, 1]
random variables such that the random variable finally generated by acceptance-
rejection would also have been generated by inversion through vi. If the compo-

nent is continuously distributed with CDF H , then vi = H(ω̃
(i+1)
3 ). For discrete

H we let vi = H(ω̃
(i+1)
3 −) + ṽi(H(ω̃

(i+1)
3 ) − H(ω̃

(i+1)
3 −)) where ṽi is U [0, 1]

independent of all other driving variables. That is, using acceptance-rejection
on the third component can be coupled with the use of inversion for the third
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component, based on the following driving sequence:

u1 u2 u3 u4 v1 u5

u6 u7 u8 u9 v2 u10

...
...

...
...

...
...

u5i−4 u5i−3 u5i−2 u5i−1 vi uin

...
...

...
...

...
...

u5n−4 u5n−3 u5n−2 u5n−1 vn u5n

Liao’s padding proposal for acceptance-rejection sampling will work so long
as inserting an IID U [0, 1] sequence into his permuted points at regular intervals,
as illustrated above, preserves the WCUD property. This proposal works more
generally. If we insert an IID U [0, 1] sequence at regular intervals into a CUD or
an independent WCUD sequence, then the result is a WCUD sequence. Inserting
IID points increases the length of a finite sequence, so that row N of the original
sequence becomes row Ñ of the new sequence.

Theorem 7. Let vN,i ∈ [0, 1] for i = 1, . . . , N and N in an infinite set of
positive integers N . Let wi for i ≥ 1 be IID U [0, 1]. For integers m ≥ 2 and

b ∈ {0, . . . , m− 1} and i = 1, . . . , (m + 1)⌊N/m⌋ ≡ Ñ, let

u
Ñ ,i

=

{
w⌈i/m⌉ i ≡ b mod m,

vN,i−⌈(i−b)/m⌉ else.

If vN,i are WCUD and independent of wi, then u
Ñ,i

are WCUD.

Proof. Let d = r(m + 1) for integer r ≥ 1 and choose z ∈ [0, 1]d. For k =
1, . . . , ⌊N/d⌋, the d-tuple x(k) = (u

Ñ ,(k−1)d+1
, . . . , u

Ñ,kd
) has r components from

w and dr components from vN,i. Let A represent the components from w and
B represent the components from vN,i. Then

N(z) ≡

⌊N/d⌋∑

i=1

1z(i)∈[0,z] =

⌊N/d⌋∑

i=1

1
z
(i)

A
∈[0,zA]

1
z
(i)

B
∈[0,zB ]

.

The z
(i)
B are IID Bernoulli variables taking 1 with probability Vol([0, zB]) in-

dependently of z
(i)
A . Therefore Var(N(z) | w1, . . . ) → 0 as N → ∞, while

E(N(z) | w1, . . . ) → Vol([0, zB])
∑⌊N/d⌋

i=1 1
Z

(i)

A
∈[0,zA]

. Now
∑⌊N/d⌋

i=1 1
Z

(i)

A
∈[0,zA]

converges in probability to ⌊N/d⌋Vol([0, zA]) as N → ∞ because vN,i are
WCUD.

It follows that Pr(δd
⌊N/d⌋(z) > 0) → 0 as N → ∞. Invoking Lemma 1 and

Theorem 3 completes the proof.

If some fixed number k ≥ 1 of components are to be sampled by acceptance-
rejection at each step, then we simply apply Theorem 7 k times inserting k
independent streams of IID U [0, 1] random variables.
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Remark 1. It is important that one of the streams in Theorem 7 be IID.
Merging two independent and WCUD streams does not necessarily produce a
WCUD result. For example if the two WCUD sequences ui and vi are indepen-
dent Cranley-Patterson rotations of the same underlying deterministic sequence,
then u1, v1, u2, v2, . . . will not be WCUD because every pair of the form (ui, vi)
will lie within one or two lines in [0, 1]2.

7. Example: Probit regression

In this section we apply a Gibbs sampling scheme developed by Albert and Chib
(1993) for a probit regression example of Finney (1947). For i = 1, . . . , 39,
the response Yi ∈ {0, 1} is 1 if the subject exhibited vasoconstriction and 0
otherwise. The predictors are Xi = (Xi1, Xi2) where the first component is
the volume of air inspired and the second is the rate at which air is inspired.
The probit model has Yi = 1Zi>0 where Zi ∼ N(β0 + β1Xi1 + β2Xi2, 1) are
conditionally independent given X1, . . . , Xn and β = (β0, β1, β2)

′. The data are
shown in Figure 2.

Taking a non-informative prior for β, the full conditional distribution of β
given Z1, . . . , Zn is N((X′X)−1X′Z, (X′X)−1), where X is the n by 3 matrix
with i’th row (1, Xi1, Xi2) and Z is the column vector of Zi values. If Yi = 1
then the full conditional distribution of Zi given β and Zj for j 6= i is N(β0 +
Xi1β1+Xi2β2, 1) truncated to [0,∞). If Yi = 0 then full conditional distribution
is instead truncated to (−∞, 0].

To run the Gibbs sampler we need only invert the normal CDF to obtain
the normal and truncated normal full conditionals. We used the SSJ package
of L’Ecuyer (2008) which includes a high accuracy inverse normal CDF based
on Blair et al. (1976).

The dimension of this simulation is m = 42 variables per step. In our lattice
sampling we let N be a prime number and choose a to be a primitive root
modulo N . Suppose at first that m and N − 1 are relatively prime. Then the
driving sequence we use is obtained by scanning the following matrix from left
to right and top to bottom,




0 0 0 · · · 0
1 a a2 · · · am−1

am am+1 am+2 · · · a2m−1

a2m a2m+1 a2m+2 · · · a3m−1

...
...

...
. . .

...

a(N−2)m a(N−2)m+1 a(N−2)m+2 · · · a(N−1)m−1




mod N

and then dividing by N and applying the same Cranley-Patterson rotation to
each m = 42 dimensional row. Starting in the second row above, the matrix
above contains elements from a linear congruential generator (LCG), with initial
seed 1. Unlike LCGs, integration lattices contain a point at the origin, introduced
here via the first row.
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Fig 2. Vasoconstriction data from Finney (1947) as described in the text. Cases with vaso-
constriction are solid points. There are two solid points at (1.9,0.95).

When m and N − 1 are not relatively prime, then the simple scheme above
does not utilize all N − 1 m-tuples of the LCG. For the general case let g =
GCD(m, N−1), so g = 1 when m and N−1 are relatively prime. Then the table
above contains the 0 vector and g identical blocks of b = (N − 1)/g rows. We
multiply the k’th such block by ak−1 (modulo N) in order to get all m-tuples
of the LCG into the simulation.

Ideally a should be a good multiplier for a linear congruential generator, so
that consecutive tuples are nearly equidistributed. If possible am should also be
a good multiplier so that consecutive updates to a given parameter are also well
equidistributed.

We applied our technique with values of N and a shown in Table 2. These are
from L’Ecuyer (1999). We also applied Liao’s method on the same problem. Each
method was repeated independently 300 times in order to estimate the sampling
variance. Table 3 shows estimated variance reduction factors for the posterior
means of βj . The 0.975 point of the F299,299 distribution is 1.25. Therefore
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Table 2

Shown are the parameters of the LCGs used to drive the Gibbs sampler for the Finney
(1947) probit model. Five prime numbers N near powers of two are shown. Five

corresponding primitive roots a from L’Ecuyer (1999) are listed. In each case g is the
greatest common divisor of a and N − 1. The simulation goes through g blocks of

b = (N − 1)/g m-tuples (m = 42) from the LCG.

N 1021 2039 4093 8191 16381
a 65 393 235 884 665
g 6 2 6 42 42
b 170 1019 682 195 390

Table 3

This table shows variance reduction factors comparing WCUD-MCMC with IID-MCMC.
There are 5 sample sizes N and three regression parameters βj. We are estimating the

posterior mean of βj and comparing variances of these estimates. The upper block compares
a Cranley-Patterson rotated LCG to IID sampling. The middle block compares Liao’s
permutation scheme, on the same rotated LCG, to IID sampling. The bottom block

compares LCG sampling to permutations. Individual entries between 0.8 and 1.25 are not
statistically significantly different from 1.

N 1021 2039 4093 8191 16381
LCG β0 15.9 29.9 22.5 44.4 37.6
vs β1 14.9 29.7 23.3 41.9 39.1
IID β2 17.1 27.4 22.9 46.1 35.2

Liao β0 20.0 17.9 23.1 19.0 19.0
vs β1 18.5 18.5 21.7 19.8 20.2
IID β2 21.3 16.6 24.1 20.0 18.5

LCG β0 0.79 1.67 0.97 2.24 1.98
vs β1 0.80 1.60 1.07 2.18 1.93
Liao β2 0.80 1.64 0.95 2.30 1.91

individual ratios between 0.8 and 1.25 should not be considered statistically
significant.

Some trends are clear in Table 3. The variance reductions for all three re-
gression coefficients track each other very closely. Liao’s method typically gives
a variance reduction of about 20 fold. The LCG method gives a variance reduc-
tion that tends to increase with sample size but is not perfectly monotone. The
quality of the underlying lattices may not be monotone in N . For larger N the
LCG approach performed better than Liao’s. For smaller N , Liao’s approach
did slightly better but perhaps not significantly so.

The QMC-MCMC methods also reduce the variance of the estimated pos-
terior means for the latent parameters Z1, . . . , Z39, sometimes by very large
amounts. When |Zi| is large then the variance reduction for it is nearly the
same as we see for the coefficients βj . When |Zi| is small, corresponding to
cases near the borderline, then variance reductions of several hundred fold are
attained.

Figure 3 plots the variance reductions for latent parameters versus the esti-
mated values of those latent parameters. The curves corresponding to the largest
and smallest sample sizes are shown. The curves for the other sample sizes are
qualitatively similar. The LCG version attains some much larger variance re-
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Fig 3. This figure shows the sampling variance of MCMC estimates of E(Zi | Y1, . . . , Y39) for
the Finney data. The posterior means themselves are on the horizontal axis. Their variance is
on the vertical axis with QMC-MCMC values joined with a solid line and IID-MCMC values
joined with a dashed line. The displayed data are for N = 16,384.

ductions, sometimes over 500–fold, for the Zi near 0. Table 4 shows summary
statistics of the variance reductions.

In MCMC sampling there is usually a bias because the chain only approaches
its stationary distribution asymptotically. Variance reductions are most mean-
ingful when the biases of two methods are comparable and small. Because the
sample values of all 42 parameters averaged over 300 replications are essentially
identical for all 3 methods at every N , we are sure that the biases of all of these
methods are nearly identical here. Table 5 summarizes the evidence on bias.
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Table 4

This table summarizes variance reduction factors for the posterior means of the latent
parameters Zi, pooling all 5 run lengths N . The min, max, mean and quartiles of the

variance reduction factors are shown.

Min Q0.25 Q0.5 Mean Q0.75 Max
LCG 10.0 23.5 38.9 68.1 67.9 561.6
Liao 11.1 18.6 22.5 37.5 48.4 157.0

Table 5

This table summarizes parameter differences, averaged over replications, between the
sampling methods. All parameters and all sample sizes are included. The first row compares
LCG-MCMC to IID-MCMC. The second row compares permuted QMC to IID sampling.
The third row compares two versions of QMC-MCMC. Corresponding mean and median

values (not shown) are all within the range ±1.5 × 10−4.

Min Q0.25 Q0.75 Max
LCG − MC −0.0053 −0.00072 0.00053 0.0073
Liao − MC −0.0081 −0.00068 0.00049 0.0087
Liao − LCG −0.0029 −0.00017 0.00022 0.0014

8. Discussion

This paper has produced some specific constructions of WCUD sequences, has
given general methods that convert WCUD sequences into other WCUD se-
quences, and has found conditions that simplify the task of proving that a
sequence is WCUD.

Some further results appear in the thesis of Tribble (2007). In particular, Tribble
(2007) establishes results parallel to the ones here, for methods that use small
feedback shift register generators instead of small congruential generators. Tribble
(2007) also introduces a skipping method that simplifies the process of running
through all s-tuples of a small random number generator.

Our motivating application for studying (W)CUD sequences is for MCMC,
especially in continuous state spaces. The sequences we construct take place in
a continuous space, and the transformations we apply are those for continuous
random variables. For technical reasons, we have analyzed the methods for dis-
crete state spaces. We expect that some further though hopefully mild regularity
will be required. For now, it is encouraging that nothing seemed to go awry in
the continuous example that we ran.

Our analysis of Liao’s shuffling proposal shows that it only improves the rate
of convergence for one dimensional discrepancies. This fact suggests that his
proposal will affect the constant, but not ordinarily the rate in the MCMC con-
vergence. The numerical results appear to bear this out. It is however surprising
to see as much as a 20 fold variance reduction from a method that only improves
certain one dimensional histograms of the input sequence. This must mean that
those one dimensional aspects are relatively important compared to high di-
mensional and more subtle features. Such a pheomenon has been seen before in
finite dimensional applications of QMC. The effective dimension can be much
smaller than the nominal one as described in Caflisch et al. (1997). Of course
not all integrands have low effective dimension and we would not expect large
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variance reductions every time MCMC was applied. Furthermore the posterior
moments we studied are smooth functions of their arguments and this plays to
a strength of QMC.

The LCG scheme by contrast shows steady improvement with increasing
sample size, though we have no theory that applies to the rate of convergence,
and no reason to expect that better than the MC rate can be attained for MCMC
problems. Against the possibility of better LCG performance there is a tradeoff.
Liao’s method is very simple to use and LCGs require parameter searches.
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