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SAMOS-MATISSE-Centre d’Économie de la Sorbonne
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Abstract: In several application fields like daily pluviometry data mod-
elling, or motion analysis from image sequences, observations contain two
components of different nature. A first part is made with discrete values ac-
counting for some symbolic information and a second part records a contin-
uous (real-valued) measurement. We call such type of observations “mixed-
state observations”.

This paper introduces spatial models suited for the analysis of these
kinds of data. We consider multi-parameter auto-models whose local con-
ditional distributions belong to a mixed state exponential family. Specific
examples with exponential distributions are detailed, and we present some
experimental results for modelling motion measurements from video se-
quences.
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1. Introduction

In many applications, it is frequent to get observations with two components of a
different nature: the first component is made up of discrete values and the second
component records a continuous measurement. For example, pluviometry time
series at a given site records many zeros for dry days, followed by positive and
continuous records for wet periods [2, 1]. Similar phenomena also occur in speech
recordings where interchanges are permanent between absences and presences
of the signal. Other examples arise in the motion analysis problem from image
sequences [5], or in epidemiological data analysis where the disease at given
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locations can be absent or spreads out. We call such type of measurements
mixed-state observations. It then raises the question to find accurate models for
these types of data.

To deal with data of mixed nature, most of the existing approaches rely on
an hierarchic approach. One introduces a hidden variable to distinguish discrete
observations from continuous ones. Or equivalently, the discrete values are in-
terpreted as resulting from some unobserved censoring variable [2]. Specifically,
a Bayesian approach is used for statistical inference.

Our approach is different. We propose a direct modelling by considering ran-
dom variables which can take discrete values as well as continuous ones. Al-
though the idea seems absolutely natural, we are not aware of any statistical
models relying on such a direct approach for mixed-state data.

The main motivation of the paper is a search for spatial models for observa-
tions {Xs} such that each Xs is a mixed-state random variable. In the spatial
context, the discrete components could not be simply neglected, because these
symbolic values as well as their spatial correlations convey important point-wise
and contextual information. To this end, we introduce a new class of auto-models
for such mixed-state data. Their construction proposed in this paper relies on
an adaptation to the present context of a general class of Markov random fields
models, namely multi-parameter auto-models, that we recently introduced in [9].
Roughly speaking, an auto-model, as introduced originally in [4], is a Markov
field on a finite set of sites, for which the interactions between sites are pairwise
only, and each local conditional distributions belongs to some exponential fam-
ily. The multi-parameter auto-models of [9] extend the classical one-parameter
auto-models of [4] and several known spatial models previously proposed in
[6, 10, 11].

The plan of the paper is the following. We first present mixed state random
variables in a simple context where the observation is made up with 0 and val-
ues in (0,∞). The distribution of this mixed state random variable has two
main features; it reflects the dual character of the observation, and the distri-
bution belongs to an exponential family. In §3, we give the general definition
for mixed-state variables. We recall in §4 results on general multi-parameters
auto-models of [9] which constitute the starting blocks of our construction of
auto-models for mixed-state observations that we present in §5. We wet out in
§6 a detailed study of mixed-state auto-models where neighbouring sites are
spatially cooperative. This property contrasts with many classical auto-models
introduced in [4] which lead to a spatial competitive behaviour, which is clearly
inadequate in many practical situations. We conclude the paper by an analysis
of motion measurements from video sequences, using a mixed positive Gaussian
auto-model.

2. Simple random variables with mixed states

Before defining general mixed state variables, let us begin with the simplest
situation where the state space is E = {0}∪(0,∞). Of course E = [0,∞), but the
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split formula has the merits to insist on the null value which plays a particular
role in the construction. A mixed-state random variable X on E is defined as
follows: with a probability γ ∈ [0, 1] we set X = 0, and with probability 1−γ, X
follows a continuous distribution on (0,∞) with a probability density function g.

Formally, we equip E with its Borel field E and we introduce a reference
measure of mixture type

m(dx) = δ0(dx) + λ(dx) , (2.1)

where δ0 is the Dirac measure at 0 and λ the Lebesgue measure. Throughout the
paper, we denote by 1A the indicator function of a set A. For the particular case
of {0}, we use a simpler notation by setting δ(x) = 1{0}(x) and δ∗(x) = 1−δ(x).
The above mixed-state variable X then has a probability density function with
respect to m given by

f(x) = γδ(x) + (1 − γ)δ∗(x)g(x), x ∈ E. (2.2)

Clearly, such mixed-state random variables (or distributions) can provide accu-
rate modelling for the marginal empirical distributions discussed in §1.

For the upcoming construction of spatial models, we are interested in mixed-
state random variables of a particular type, namely their continuous component
g belongs to a ℓ−dimensional exponential family

g(x) = gξ(x) = H(ξ)L(x) exp〈ξ, T (x)〉 , ξ ∈ R
ℓ, T (x) ∈ R

ℓ, (2.3)

for some sufficient statistics T and measurable positive functions H and L (〈, 〉
denoting the scalar product in R

ℓ). Interestingly enough, the mixed-state dis-
tribution can also be put in the form of an exponential family. Indeed,

f(x) = fθ(x) = γδ(x) + (1 − γ)δ∗(x)gξ(x)

= exp

[

δ∗(x) ln
(1 − γ)H(ξ)

γ
+ 〈ξ, T (x)δ∗(x)〉 + log γ + δ∗(x) log L(x)

]

= H ′(θ)L′(x) exp〈θ, B(x)〉, (2.4)

with H ′(θ) = γ, L′(x) = exp{δ∗(x) log L(x)}, and the natural parameter and
the sufficient statistics defined by

θ =

(

θ1

θ2

)

=

(

log (1−γ)H(ξ)
γ

ξ

)

, B(x) =

(

δ∗(x)
T (x)δ∗(x)

)

, x ∈ E. (2.5)

Note that with the standard convention 0 log 0 = 0, these formula are still
valid in the extreme situations γ ∈ {0, 1} which correspond to a purely continu-
ous and a purely discrete distribution, respectively. Therefore, the mixed-state
distribution fθ belongs to an exponential family, of dimension ℓ + 1. Moreover
the original parameters ξ and γ can be recovered from θ by

ξ = θ2 , γ =
H(θ2)

H(θ2) + eθ1

.

Let us consider some examples.
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Example 1. Mixed-state Exponential distribution: this simple distribution is
obtained with gλ(x) = λe−λx where λ > 0. Then ξ = H(ξ) = λ and T (x) = −x.
The parametric dimension of the resulting mixed-state distribution equals two.

Example 2. Mixed-state Gamma distribution: this situation generalises Ex-
ample 1 by substituting a Gamma distribution Γ(a, b), a, b > 0, for the ex-
ponential distribution. Here we have ξ = (b, a − 1), H(ξ) = Γ(a)−1ba and
T (x) = (−x, lnx). The resulting mixed-state distribution belongs to an expo-
nential family of dimension three.

Example 3. Positive mixed-state Gaussian distribution: here the continuous
component of X is the distribution of the modulus of a zero-mean Gaussian

distribution with variance σ2. We have θ = (ln 2(1−γ)

γσ
√

2π
, 1

2σ2 )T and B(x) =

(δ∗(x),−x2)T.

3. General random variables with mixed states

To cover situations involving several atomic values, the previous simple model
need to be extended. Let F = {e1, . . . , eM} be a finite set of M elements and G
a Borel subset of an Euclidean space R

p. Let q = (q1, . . . , qM) be a probability
distribution on F and g a probability density function on G (with respect to
the Lebesgue measure).

We define a general mixed-state random variable X as follows:

• with a probability γ ∈ [0, 1], X takes values in F with distribution q;
• with probability 1− γ, X takes values in G according to the density func-

tion g.

Although the nature of the discrete state space F could be arbitrary (possi-
bly qualitative), we are going to embed F in R

p to ease the development of a
likelihood-based estimation theory. In other words, we set the state space of X
to be

E = {e1, . . . , eM} ∪ G, ei ∈ R
p \ G, G ⊂ R

p.

Therefore, we can supply E with its Borel field and a reference measure of
mixture type

m(dx) =

M
∑

i=1

δei
(dx) + λ(dx) (3.1)

where δe denotes the Dirac measure at a point e ∈ R
p and λ the Lebesgue

measure on E. Then the mixed-state variable X has the the following density
function with respect to m:

f(x) = γ1F (x)

M
∑

i=1

qi1{ei}(x) + (1 − γ)1G(x)g(x), x ∈ E. (3.2)
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3.1. Exponential family case

We focus now on mixed-state distributions which belong to some exponential
family. To avoid trivial situations, we assume that

• the discrete distribution q is everywhere positive: qi > 0 (i = 1, . . . , M).
• the density g of the continuous component belongs to a ℓ−dimensional

exponential family as in (2.3).

We first write the discrete distribution q in an exponential family form,
through the logistic transformation:

ki = log
qi

qM
, i = 1, . . . , M.

We notice that by definition kM = 0. We have,

M
∑

i=1

qi1{ei}(x) = exp

M
∑

i=1

1{ei}(x)(ki + log qM ), x ∈ {e1, . . . , eM}.

Combining this writing with (2.3) and (3.2), we get

f(x) = fθ(x)

= exp

[

1F (x)

{

M
∑

i=1

1{ei}(x)(ki + log qM ) + log γ

}

+ 1G(x) {log[(1− γ)H(ξ)L(x)] + 〈ξ, T (x)〉}

]

= exp

[

1G(x) log
(1 − γ)H(ξ)

γqM
+ 〈ξ, T (x)1G(x)〉

+

M−1
∑

i=1

ki1{ei}(x) + log(γqM ) + 1G(x) logL(x)

]

= H ′(θ)L′(x) exp〈θ, B(x)〉, x ∈ E, (3.3)

where H ′(θ) = log(γqM ), and L′(x) = L(x)1G(x). In other words, fθ belongs to
an exponential family of dimension ℓ + M with the natural parameter and the
sufficient statistics given by

θ =















θ1

...
θM−1

θM

θM+1















=















k1

...
kM−1

log (1−γ)H(ξ)
γqM

ξ















, B(x) =















1{e1}(x)
...

1{eM−1}(x)
1G(x)

T (x)1G(x)















, x ∈ E. (3.4)
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Note that θM+1 and T (x)1G(x) are ℓ-dimensional vectors, and by definition
B(eM ) = 0 and L′(eM ) = 1. Furthermore, the original parameters ξ, q and γ
are recovered through the formulae

ki = θi, 1 ≤ i < M,

ξ = θM+1,

qi =
eki

ek1 + · · ·+ ekM
, 1 ≤ i ≤ M,

γ =
H(ξ)

H(ξ) + qMeθ1

.

It is worth noticing that in the case of E = {0}∪(0,∞), the formulae (3.3)–(3.4)
reduce to equations (2.4)–(2.5) of the previous section.

3.2. Example of a mixed-state and censored exponential variable

Let Z be an exponential random variable with parameter λ, censored at a known
location K > 0. The probability density function of Z is defined by g(z) =
λe−λz 1(0,K)(z) + e−λKδK (z).

We define the following mixed-state variable X: with probability α, X takes
the value 0 ; with probability 1 − α, X has the distribution of Z. Therefore,
X has masses {α, (1−α)e−λK} on the atoms {0, K}, and a continuous density
function (1 − α)λe−λx on (0, K). Equivalently, X can be viewed as a general
mixed-state variable with the state space E = {0, K} ∪ (0, K) = [0, K] and the
following parameters

γ = α + (1 − α)e−λK ,

q =
1

α + (1 − α)e−λK
(α, (1− α)e−λK),

gλ(x) =
λ

1 − e−λK
e−λx, x ∈ (0, K).

Following (3.3) and (3.4), the distribution of X belongs to an 3-dimensional ex-
ponential family with the following natural parameters and sufficient statistics:

θ =





log α
1−α

+ λK

logλ + λK
λ



 , B(x) =





1{0}(x)
1(0,K)(x)

−x1(0,K)(x)



 , x ∈ E.

4. Results on multi-parameter auto-models

The construction of spatial models for mixed-state observations relies on the
general theory of multi-parameter auto-models developed in [9]. We quote below
its main results which are relevant for the present purpose.
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Let us set some notations. Let S = {1, . . . , n} be a finite set of sites equipped
with a symmetric graph G without loops. We denote by {i, j} a pair of neigh-
bouring sites (in particular, i 6= j). For any subset A of S, let xA = (xi, i ∈ A)
and xA = (xj , j ∈ S \A). The neighbourhood of a site i is ∂i = {j ∈ S : 〈i, j〉 }.
We shall write xi = x{i}. The variates xi take their values in a measurable state
space (E, E , m). Most of the time, E will be a subset of R

p. The configuration
space Ω = ES is equipped with the σ-algebra E⊗S and the product measure
ν := m⊗S . A random field is specified by a probability distribution µ on Ω, and
we assume the positivity condition, that is µ has an everywhere positive density
P with respect to ν. Consequently we write

µ(dx) = P (x)ν(dx) , P (x) = Z−1 exp Q(x) , (4.1)

where Z is a normalisation constant. From the Hammersley-Clifford Theorem,
the energy function Q(x) is a sum of potentials {GA; A ∈ C } indexed by a set C

of cliques. Let us fix a reference configuration, or “ground states”, τ = (τi) ∈ Ω
yielding to the potentials normalisation: for any potential GA(xA) where A ⊂ S,
we have GA(xA) = 0 if xi = τi for some i ∈ A. This implies Q(τ ) = 0 and
Z−1 = P (τ ) in (4.1).

The class of multi-parameter auto-models defined in [9] extends the classical
one-parameter auto-models of J. Besag in its seminal paper [4]. Their construc-
tion rely on the following assumptions.

Assumption 1. The dependence between the sites is pairwise only; in other
words,

Q(x) =
∑

i∈S

Gi(xi) +
∑

{i,j}
Gij(xi, xj) .

Assumption 2. For an integer k ≥ 1 and all i ∈ S, the conditional distribution
of Xi given Xi = xi relies in an exponential family

log fi(xi|x
i) = 〈θi(x

i), Bi(xi)〉 + Ci(xi) + Di(x
i) , θi(x

i) ∈ R
k, Bi(xi) ∈ R

k.

Assumption 3. For all i ∈ S, Span{Bi(xi) : xi ∈ E} = R
k.

The following result of [9] determines the necessary form of the local natu-
ral parameters {θi(.)} to ensure the compatibility of the family of conditional
distributions.

Theorem 1. (Hardouin and Yao [9]). Assume that Assumptions 1–3 are sat-
isfied with the normalisation Bi(τi) = Ci(τi) = 0 in Assumption 2 for all i ∈ S.
Then, necessarily, the functions θi take the form

θi(x
i) = αi +

∑

j 6=i

βijBj(xj) , i ∈ S, (4.2)

where {αi : i ∈ S} is a family of k-dimensional vectors, and {βij : i, j ∈
S, i 6= j} is a family of k× k matrices {βij} satisfying βT

ij = βji. Moreover, the
potentials are given by

Gi(xi) = 〈αi, Bi(xi)〉 + Ci(xi) , (4.3)

Gij(xi, xj) = BT
i (xi)βijBj(xj) . (4.4)
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A model satisfying the assumptions of this theorem is called a multi-parameter
auto-model. For a concrete construction of such a multi-parameter auto-model,
one follows a two steps method: first, specify the family of cliques (Assumption
1), and the family of conditional distributions (Assumption 2); secondly, find the
admissible set of parameters {αi, βij} which ensures the integrability condition:

∫

Ω

eQ(x)ν(dx) < ∞. (4.5)

We refer the reader to [9] and the references therein for more account on this
new family of auto-models.

Another important question about the model is that of spatial symmetry. The
general formulation given above does not impose any symmetry, and hence it can
be useful for modelling random fields on arbitrary or oriented graphs. However,
in the case of a spatially symmetric random field, all potentials Gij(xi, xj) are
necessarily symmetric functions; equivalently, all the matrices βij are symmetric.

5. Auto-models for mixed state variables

5.1. The construction

Following the general theory of multi-parameter auto-models quoted above, we
now construct auto-models for general mixed-state variables X = {Xi, i ∈ S}
on a finite set S. The state space for each variable Xi is E = F ∪ G as defined
in §3. We let the configuration space Ω = ES = (F ∪ G)S be supplied with the
product measure ν = m⊗S , where m is defined by (3.1).

We assume that Assumptions 1–3 are satisfied, where in Assumption 2, the
family of conditional distributions fi(xi | ·) belongs to the family of mixed-state
distribution given in (3.3). In other words,

fi(xi | xi) = H ′
i(x

i)L′
i(xi) exp〈θi(x

i), Bi(xi)〉 (5.1)

with θi(·) ∈ R
ℓ+M and Bi(·) ∈ R

ℓ+M satisfying (3.4).
Note that by definition, Bi(eM ) = 0 and L′(eM ) = 1. Therefore, the state

eM serves as a reference state for coordinates Xi and the reference configuration
becomes τ = (eM , . . . , eM) for the application of Theorem 1.

Following Theorem 1, there exist a family of (ℓ + M)−dimensional vectors
{αi : i ∈ S} and a family of (ℓ + M) × (ℓ + M) matrices {βij : i, j ∈ S, i 6= j}
satisfying βij = βT

ji, such that

θi(x
i) = αi +

∑

j 6=i

βijBj(xj) , i ∈ S. (5.2)

The families of potentials are given by

Gi(xi) = 〈αi, Bi(xi)〉 + log L′
i(xi),

Gij(xi, xj) = BT
i (xi)βijBj(xj).
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Let us note that two variables Xi and Xj are (spatially) conditionally in-
dependent, given {Xk, k 6= i, j}, if (and only if) βij = 0. In this case, we
say that the sites i and j are neighbours. Thus the neighbourhood ∂i of i is
the set {j : βij 6= 0}. Moreover we can substitute xi by x∂i in the previous
equations (5.1) and (5.2).

These auto-models for mixed state variables are completely and well defined
once we choose admissible parameters {αi, βij} that ensure the integrability
condition (4.5).

5.2. Spatial cooperation behaviour

In many practical situations, we need to investigate the properties of local in-
teractions of the system. Indeed, we want to know whether the field is spatially
cooperative or spatially competitive (or neither of them). A standard defini-
tion of spatial cooperation (respectively, competition) is that at each site i,
the conditional expectation E

[

Xi | xi
]

increases (respectively, decreases) with
each neighbouring value xj , j 6= i. For mixed-state auto-models valued in
ES = (F ∪ G)S , we must adapt these definitions. For each i we define the
function xi −→ R(xi) = E

[

Xi1G(Xi) | xi
]

and we study its variations in each
coordinate xj of xi, where xj ∈ G and xj ∈ ∂i. Then we define spatial coopera-
tion (or competition) similarly as the classical definition by substituting R(xi)
for E [Xi | x∂i]. Let us note that this definition coincides with the classical one
in the case E = G.

In the particular case where E = {0}∪ (0,∞) with F = {0} and G = (0,∞),
for any random mixed state variable X on E as defined in §2 with density
function (2.2), we have

E[X] = (1 − γ)

∫ ∞

0

x g(x) dx = (1 − γ)E[X|1X>0] = E[X1G(X)].

Then we conclude that for mixed state variables in ES = ({0} ∪ (0,∞))S,
the generalised definition for spatial cooperation (competition) above meets the
classical one. This will not occur anymore in the case of an atomic value different
from zero.

5.3. A translation invariant and symmetric mixed-state auto-model
with the four nearest neighbours system

Let us consider the four nearest neighbours system on a two-dimensional lattice,
S = [1, M ] × [1, N ]: each site i ∈ S has four neighbours denoted by {ie =
i + (0, 1), iw = i − (0, 1), in = i − (1, 0), is = i + (1, 0)}, with obvious neighbour
adjustments near the boundary. We assume translation invariance in the sense
that the parameters are functions of the displacement between sites; we assume
spatial symmetry, which implies that the matrices βij = βji are symmetric; we
allow possible anisotropy between the horizontal and vertical directions. Under
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all these conditions and from the result above, there exist a (ℓ+M)−dimensional
vector α and two (ℓ + M)× (ℓ + M) symmetric matrices {β(1), β(2)} such that
for all i, αi = α, and, for all {i, j}, , βij = 0 unless i and j are neighbours, in
which case

βi,ie
= βi,iw

= β(1), βi,in
= βi,is

= β(2).

Moreover, the translation invariance implies that the local conditional density
function fi, hence the functionals θi, Bi , H ′

i and L′
i in (5.1), are independent

of i. The potentials are given by

Gi(xi) = G(xi) = 〈α, B(xi)〉 + logL′(xi),

Gij(xi, xj) = G(xi, xj) =











BT(xi)β
(1)B(xj), i − j = ±(0, 1),

BT(xi)β
(2)B(xj), i − j = ±(1, 0),

0, otherwise.

The natural parameter of fi equals to

θi(x
i) = θ(x∂i) = α + β(1){B(xie

) + B(xiw
)} + β(2){B(xin

) + B(xis
)}. (5.3)

5.4. Parameter estimation

It is well-known that the maximum likelihood method needs intensive compu-
tational approximations for Markov random fields. An efficient remedy relies on
the pseudo-likelihood estimator introduced by [4]. Theoretical results for this
estimator in the general framework of Markov random fields can be found in
e.g. [8]. In the case of multi-parameter auto-models, [9] provide conditions un-
der which this estimator is consistent. We refer the reader to this paper where
this theory is developed in details. In particular, it applies to the present class
of mixed-state auto-models. In the later §7, we will use this pseudo-likelihood
estimator for the modelling of motion measurements from video sequences.

6. Mixed exponential auto-models

In this section, we focus on auto-models with mixed exponential conditional
distributions. The relative simplicity of the model allows us a complete study
of the various properties of the model, without getting bogged down in the
parameters. Moreover, the exponential distribution itself is commonly used for
modelling, e.g., records of pluviometry data.

From Besag’s seminal paper [4], we know that several classical auto-models
imply spatial competition between the neighbouring sites. This is particularly
the case for the auto-exponential scheme. We will see that this fact appears
again for mixed-state auto-model with exponential distributions. To overcome
this limitation, we propose two alternatives by means of data truncation or data
censoring.
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6.1. Mixed state auto-models with exponential conditionals

We consider the mixed state space E = {0} ∪ (0,∞), and we assume that the
conditional distributions fi(xi | ·) belong to the family of mixed state exponen-
tial distributions as defined in Example 1 of §2. We write

fi(xi | xi) = fi(xi | x∂i) = γi(x∂i)δ(xi) + (1 − γi(x∂i))δ
∗(xi)gλi(x∂i)(xi)

= H ′
i(x∂i) exp〈θi(x∂i), B(xi)〉,

where the natural parameter and the sufficient statistics are, noting that
xδ∗(x) = x,

θi(x∂i) = (θ1,i(x∂i), θ2,i(x∂i))
T =

(

log
(1 − γi(x∂i))λi(x∂i)

γi(x∂i)
, λi(x∂i)

)T

,

B(x) = (δ∗(x),−x)T .

Here, the reference state is 0. Besides, obviously, the family of efficient statistics
B(x) verify Assumption 3. Therefore, following the previous general result for
mixed state auto-models: there exist a family of vectors αi = (ai, bi)

T and 2× 2

matrices βij =

(

cij dij

fij eij

)

, with βij = βT
ji, such that the energy function equals

Q(x1, . . . , xn) =
∑

i∈S

(aiδ
∗(xi) − bixi)

+
∑

{i,j}
(cijδ

∗(xi)δ
∗(xj) − dijδ

∗(xi)xj − fijxiδ
∗(xj) + eijxixj) .

We note that the model can be spatially asymmetrical if dij 6= fij . This is
particularly interesting for our mixed state auto-models, where δ∗(xi)xj and
xiδ

∗(xj) may be interpreted as different situations. We can also think about
models with oriented graphs.

The local natural parameters are

θ1,i(x∂i) = ai +
∑

{i,j}
(cijδ

∗(xj) − dijxj) , (6.1)

θ2,i(x∂i) = bi +
∑

{i,j}
(fijδ

∗(xj) − eijxj) . (6.2)

And we also have the reciprocal correspondence

λi(x∂i) = θ2,i(x∂i) , γi(x∂i) =
θ2,i(x∂i)

θ2,i(x∂i) + eθ1,i(x∂i)
.

It remains to make certain the well-definiteness of the model, that is to ensure
the integrability condition (4.5). Necessarily, we must have for all i, γi ∈ [0, 1]
and λi > 0. Since the xj’s belong to [0,∞), this leads to require the following
conditions:
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(A)
(i) for all {i, j}, eij ≤ 0.
(ii) for all i and any subset A ⊂ S\{i}, bi +

∑

j∈A

fij > 0 (in particular bi > 0).

Fortunately enough, these necessary conditions also ensure the integrability
condition (4.5).

Proposition 1. Under Conditions (A), the auto-model with mixed exponential
conditionals is well-defined.

Proof. The configuration space Ω can be decomposed as

Ω =
∑

A⊂S

ΩA, with ΩA = {x : xi > 0, i ∈ A; xi = 0, i /∈ A} .

We have
∫

Ω

exp Q(x)ν(dx) =
∑

A⊂S

∫

ΩA

exp Q(x) m⊗S(dx),

with m(dx) = δ0(dx) + λ(dx). Therefore, Condition (4.5) holds if and only if

∀A ⊂ S,

∫

ΩA

exp Q(x) m⊗S(dx) < +∞.

Moreover for x ∈ ΩA, with fij = dji,

Q(x) =
∑

i∈A

[ai − bixi] +
∑

{i,j}⊂A

(1,−xi)βij(1,−xj)
T

=
∑

i∈A

ai +
∑

i,j∈A,〈i,j〉
cij −

∑

i∈A

xi



(bi +
∑

j∈A:〈i,j〉
fij) −

∑

j∈A:〈i,j〉
eijxj



 .

As eij ≤ 0 , we have for some constant C > 0, and still x ∈ ΩA,

C−1Q(x) ≤ −
∑

i∈A



bi +
∑

j∈A, 〈i,j〉
fij



xi.

Let |A| = card(A). By Conditions (A), bi +
∑

j∈A, 〈i,j〉 fij > 0 and we finally
obtain

∫

ΩA

exp Q(x) m⊗S(dx) =

∫

(0,∞)|A|

exp Q(x)
∏

i∈A

λ(dxi) < ∞.

The proof is complete.

Let us notice that in the context of n “ordinary” variables, [3] claim that
Condition (A) is both necessary and sufficient for n ≥ 2. This is true for n = 2
but the condition is not necessary anymore if n ≥ 3.
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Let us examine local interactions between neighbouring sites. Considering
the generalised definition of spatial cooperation (respectively, competition) for
mixed-state auto-models given in §5.2 , we are looking for the variations of

E [Xi1Xi>0 | x∂i] = (1 − γi(x∂i))
1

θ2,i(x∂i)

=
1

1 + θ2,i(x∂i) exp{−θ1,i(x∂i)}

1

θ2,i(x∂i)
.

Under Conditions (A), in particular eij ≤ 0, we see that the parameter θ2,i(x∂i)
defined in (6.2) is an increasing function of neighbouring values xj > 0. As
E [Xi1Xi>0 | x∂i] is a decreasing function of θ2,i(x∂i), we conclude that the
model cannot be spatially cooperative, although the precise dependence of the
other parameter θ1,i(x

i) in the xj’s will vary according to the values of the
{dij}’s. Similarly to the auto-exponential scheme of [4], this locally non coop-
erative behaviour seems inappropriate in many application fields.

To overcome this drawback, there are two commonly used approaches, namely
data truncation and data censoring. We adapt below these two methods for
mixed exponential auto-models.

6.2. Cooperative mixed exponential auto-models by truncation

First let us define a mixed truncated exponential variable X. The state space is
E = {0}∪(0, K] where K is a given (arbitrary) positive constant. The continuous
component on (0, K] of X follows a truncated exponential distribution with the
probability density function

gλ(x) = H(λ)e−λx1(0,K](x), H(λ) =
λ

1 − e−λK
.

Thus, the probability density function of X equals

fθ(x) = H ′(θ) exp〈θ, B(x)〉

with

θ = (θ1, θ2)
T =

(

log
(1 − γ)H(λ)

γ
, λ

)T

, B(x) = (δ∗(x),−x1(0,K](x))T.

Note that conversely we have

λ = θ2 , γ =
θ2

θ2 + eθ1(1 − e−θ2K)
.

Let us consider a mixed-state auto-model for X = {Xi, i ∈ S}, whose condi-
tional distributions lay in the family of the mixed truncated exponential distribu-
tions above. Here the reference state is 0 and the family of sufficient statistics B
verify Assumption 3. By Theorem 1, there exist a family of vectors αi = (ai, bi)

T
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and 2×2 matrices βij =

(

cij dij

fij eij

)

, with βij = βT
ji, such that the energy func-

tion equals

Q(x1, . . . , xn) =
∑

i∈S

(ai, bi)B(xi) +
∑

{i,j}
B(xi)

TβijB(xj).

Because of the truncation, expQ is always integrable.
The natural parameters of local conditional distributions are written

θi(x∂i) =

(

θi,1(x∂i)
θi,2(x∂i)

)

=

(

ai +
∑

j∈∂i

{

cijδ
∗(xj) − dijxj1(0,K](xj)

}

bi +
∑

j∈∂i

{

fijδ
∗(xj) − eijxj1(0,K](xj)

}

)

(6.3)

As for the conditions on the parameters, we keep the requirement: θi,2(x∂i) >
0 (which implies γi(x∂i) ∈ (0, 1)). This is clearly satisfied under the following

Assumption 4. For all i ∈ S, bi +
∑

j∈∂i min(0, fij, fij − eijK) > 0.

To understand whether the system is spatially cooperative or not, let us
first examine, for the mixed truncated exponential variable X, the variation of
E[X1(0,K](X)] with respect to its parameters {θ1, θ2}. If we denote Z a random
variable following a truncated exponential distribution with the density gλ, a

simple calculus leads to E[Z] = K
(

1
λK − 1

eλK−1

)

, which decreases from 1
2K to

0 when λ raises from 0 to ∞. On the other side, 1−γ is decreasing with respect
to θ2 and increases with θ1. Finally, E[X1(0,K](X)] = (1−γ)E(Z) is decreasing
in θ2 and increasing in θ1.

Gathering this result together with (6.3), we deduce the variation of
E[Xi1(0,K](Xi) | x∂i], relatively to the neighbouring values xj, j ∈ ∂i which
are positives. Let us introduce the following assumptions.

Assumption 5. For all i, j ∈ S, dij ≤ 0, eij ≥ 0.

Assumption 6. For all i, j ∈ S, dij ≥ 0, eij ≤ 0.

We thus have proved the following

Proposition 2. Assume Assumption 4 holds. Then,

(i) The mixed auto-model with mixed truncated exponential conditionals is
well-defined.

(ii) The model is spatially cooperative under Assumption 5.
(iii) The model is spatially competitive under Assumption 6.

Therefore, this family of auto-models can exhibit spatial cooperation as well
as spatial competition.

Let us give an application to the translation invariant and symmetric scheme
with the four nearest neighbours system, as introduced in §5.3, and with the
additional assumption of isotropy. Then the parameters are α = (a, b)T and

β(1) = β(2) =

(

c d
d e

)

.

In this case, Assumptions 4 and 5 reduce to the conditions

d ≤ 0, e ≥ 0, b + 4(d − eK) > 0,
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which makes the model spatially cooperative. Similarly, the model is spatially
competitive under Assumptions 4 and 6 which bring down to

d ≥ 0, e ≤ 0, b > 0.

Note that in the case of spatial cooperation (Assumptions 4 and 5), the
positive parameters eij ’s in θi,2(x∂i), Eq. (6.3), give a measure of the strength
of the spatial cooperation: the bigger are the values of these parameters, the
stronger is the spatial cooperation realized in the model. However, Assumptions
4 and 5 imply 0 ≤ eij < hij/K for some positive constants hij. Therefore if the
truncation level K is large, the implied spatial cooperation becomes limited.

6.3. Cooperative mixed exponential auto-models by censoring

As previously, let K be a fix positive constant. We consider the mixed cen-
sored exponential variable X defined in §3.2. Let us recall the expression of the
corresponding probability density function.

fθ(x) = H ′(θ) exp〈θ, B(x)〉

with

θ = (θ1, θ2, θ3)
T =

(

log
α

(1 − α)
+ λK, logλ + λK, λ

)T

,

B(x) = (1{0}(x), 1(0,K)(x),−x1(0,K)(x))T.

The reference state is K, and we notice that the components of θ are dependent.
Conversely we have

λ = θ3, α =
eθ1−θ3K

1 + eθ1−θ3K
.

Let us consider now a mixed-state auto-model for X = {Xi, i ∈ S}, whose
conditional distributions belong to the family of mixed censored exponential dis-
tributions above. For sake of simplicity, we assume spatial symmetry. Applying
again Theorem 1, there exist a family of 3-dimensional vectors αi = (ri, ai, bi)

T

and 3 × 3 symmetric matrices

βij =





sij uij tij
uij cij dij

tij dij eij



 .

such that the energy function equals to

Q(x1, . . . , xn) =
∑

i∈S

(ri, ai, bi)B(xi) + +
∑

{i,j}
B(xi)

TβijB(xj).

The natural parameters of local conditional distributions are

θi(x∂i) =





θi,1(x∂i)
θi,2(x∂i)
θi,3(x∂i)



 =





ri

ai

bi



+
∑

j∈∂i





sij uij tij
uij cij dij

tij dij eij









1{0}(xj)
1(0,K)(xj)

−xj1(0,K)(xj)





(6.4)
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Because of the censoring, exp Q is always integrable, but the parameters
have to meet the requirement θi,3(x∂i) > 0. This is clearly satisfied under the
assumption

Assumption 7. For all i ∈ S, bi +
∑

j∈∂i min (tij , dij, dij − eijK) > 0.

We turn now to the study of the possible cooperative or competitive features
of the model. We first examine, for the mixed censored exponential variable X,
the variation of E[X1(0,K](X)] with respect to its parameters {θ1, θ2, θ3}. If we
denote Z′ a random variable following a censored exponential distribution, we
have

E[Z′] =
1 − e−λK

λ
,

which decreases from K to 0 when λ raises from 0 to ∞. Therefore,

E[X1(0,K](X)] = (1 − α)E(Z′) =
1

1 + eθ1−θ3K

1 − e−θ3K

θ3
.

If the parameters θ1 and θ3 depend on some real variable η in such a way that
both functions θ3 and θ1 − θ3K are decreasing (respectively, increasing) in η,
then the expectation E[X1(0,K](X)] is an increasing (respectively, decreasing)
function in η.

Coming back to E[Xi1(0,K](Xi) | x∂i], from (6.4), we have

θi,3(x∂i) = bi +
∑

j∈∂i

{tij1{0}(xj) + dij1(0,K)(xj) − eijxi1(0,K)(xj)},

and

(θi,1 − θi,3K)(x∂i) =(ri − biK)

+
∑

j∈∂i

{(sij − tijK)1{0}(xj) + (uij − dijK)1(0,K)(xj)

− (tij − eijK)xi1(0,K)(xj)}.

Let us introduce the following assumptions.

Assumption 8. For all i, j ∈ S, eij ≥ 0, tij − eijK ≥ 0.

Assumption 9. For all i, j ∈ S, eij ≤ 0, tij − eijK ≤ 0.

Proposition 3. Assume Assumption 7 holds.

(i) The mixed auto-model whose local conditional distributions are mixed cen-
sored exponential distributions is well-defined.

(ii) The model is spatially cooperative under Assumption 8.
(iii) The model is spatially competitive under Assumption 9.

The proof is straightforward, directly derived from the definition of spatial
cooperation given in 5.2 and the above expressions of the parameters.

This family of auto-models is able to produce spatial cooperation as well
as spatial competition, and this under rather light conditions, which makes
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the model attractive. To convince, let us look at the translation invariant and
symmetric scheme with the four nearest neighbours system of §5.3, assuming
also spatial isotropy. Therefore, the unique interaction matrix equals

β(1) = β(2) =





s u t
u c d
t d e



 .

In this case, Assumptions 7 and 8 reduce to the conditions

e ≥ 0, t − eK ≥ 0, b + 4 min(t, d− eK) > 0,

that makes the model spatially cooperative. Analogously, Assumptions 7 and 9
reduce to the conditions

e ≤ 0, t − eK ≤ 0, b + 4 min(t, d) > 0,

which guarantee the spatial competition behaviour of the model.

7. An application to motion analysis from video image sequences

7.1. Motion measurements from video sequences

Motion computation and analysis are of central importance in image analysis.
Let {Ii(t)} be an image sequence where i = (i1, i2) ∈ S denotes the pixel
locations and t = 1, . . . , T the time instants in the sequence. Roughly speaking,
a motion map at time t, X(t) = {Xi(t)} = {‖vi(t)‖} is defined as the norm
of the underlying motion field {vi(t)} which is estimated by a “regularised”
minimisation of the sum of squares

∑

i
[Ii+vi(t)(t + 1) − Ii(t)]

2. Usually some

local smoothing procedures are needed to get a more robust motion map and
we refer to [7] for details of these computations.

We consider here video sequences of natural scenes. Figure 1 displays three
sample images from each of two sequences involving a moving escalator and trees
under wind respectively. The corresponding motion maps {Xi(t)} are displayed
in Figure 2. Next, sample histograms from these motion maps are presented in
Figure 3. As a matter of fact, these histograms present a composite picture. An
important peak appears at the origin accounting for regions where no motion is
present, while a continuous component encompasses actual motion magnitudes
in the images.

7.2. An mixed-state auto-model with positive Gaussian distributions

We follow the general construction of mixed states auto-models of §4. First, we
consider a positive mixed-state Gaussian variable X, defined in Example 3 of
§2. Then X has the following density function :

fθ(x) = γδ(x) + (1 − γ)δ∗(x)gξ(x) = exp [〈θ, B(x)〉 + logγ] , (7.1)
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Figure 1. Sample images from two videos. Top row: a moving escalator; bottom row: trees.

Figure 2. Sample motion measures {Xi(t)} from the videos of Figure 1. Top row: a moving
escalator; bottom row: a tree (white=0; black=maximum value).

where ξ = (2σ2)−1, gξ(x) = 2(2πσ2)−1/2 exp{− 1
2σ2 x2}, and

θ = (θ1, θ2)
T =

(

log
(1 − γ)gξ(0)

γ
, ξ

)T

, B(x) = (δ∗(x),−x2)T . (7.2)

To construct auto-models for the motion maps observations {Xi(t)}, we as-
sume that the family of conditional distributions fi(xi|x

i) belongs to the family
of mixed positive Gaussian distribution given in (7.1). By Theorem 1, there ex-
ist a family of vectors αi = (ai, bi)

T ∈ R
2 and a family of 2 × 2 matrices {βij}
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Figure 3. Sample histograms of motion measures {Xi(t)} of Figure 2.

satisfying βij = βT
ji, such that

θi(x
(i)) = αi +

∑

j 6=i

βijB(xj) . (7.3)

Moreover the associated energy function is given by

Q(x1, . . . , xn) =
∑

i∈S

[

aiδ
∗(xi) − bix

2
i

]

+
∑

{i,j}
(δ∗(xi),−x2

i )βij(δ
∗(xj),−x2

j)
T .

(7.4)
To analyse the motion measurements, we consider the specification of §5.3,

namely a translation invariant and spatially symmetric auto-model with the
four-nearest-neighbours system and possible anisotropy between the horizon-
tal and vertical directions. Then the parametrisation reduces to one vector
α = (a, b)T and two 2 × 2 matrices β(1) and β(2) such that ∀i, αi = α, and
∀{i, j}, βij = 0 unless i and j are neighbours in which case

βi,ie
= β(1) =

(

c1 d1

d1 e1

)

= βT
iw ,i, βi,in

= β(2) =

(

c2 d2

d2 e2

)

= βT
is,i.

Moreover, the present context asks for spatial cooperation and we need further
to constrain the parameters dk and ek, k = 1, 2 to be zero. The resulting auto-
model has four parameters φ = (a, b, c1, c2) and is well-defined (admissible)
under an unique condition: b > 0. Here, we use the pseudo-likelihood method
to estimate these parameters.

Let us mention that in the context of image segmentation, Salzenstein and
Pieczynski [12] have previously proposed a fuzzy image segmentation model
where the fuzzy labels are a particular instance of mixed-state variables with
values in [0, 1].

7.3. Experiments

The experiments are conducted in order to evaluate whether the model above
can correctly account for a fundamental characteristic of an homogeneous tex-
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ture, namely spatial isotropy or spatial anisotropy. For the present four-nearest-
neighbours Gaussian mixed-state model, the spatial isotropy occurs if (and only
if) c1 = c2.

We fit this model to several motions maps like those displayed in Figure 2.
First we consider motions from trees (bottom row of the figure). A typical set

of parameter estimates is φ̂ = (â, b̂, ĉ1, ĉ2) = (−5.805, 3.044, 3.057, 2.954). The
parameters c1 and c2 are almost identical with regard to standard deviations
of these estimates computed at other time instants of the same tree sequence.
Therefore, the believed spatial isotropy for these motions is well reflected here.

Next we consider the motion maps from a moving escalator (top row of
Figure 2). Since the motion is a vertical one, we clearly have anisotropy. A typical

set of parameter estimates is φ̂ = (â, b̂, ĉ1, ĉ2) = (−6.512, 0.320, 2.192, 3.598).
Therefore, the difference between c1 and c2 appears to be significant and the
mixed-state model is able to reflect the spatial anisotropy of the considered
motion. More experiments on motion analysis can be found in [5].
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http://hal.archives-ouvertes.fr/hal-00154382/fr/, 2006. Forth-
coming in Biometrika.

[10] Mark S. Kaiser and Noel Cressie. The construction of multivariate distri-
butions from Markov random fields. J. Multivariate Anal., 73(2):199–220,
2000. ISSN 0047-259X. MR1763324

[11] Mark S. Kaiser, Noel Cressie, and Jaehyung Lee. Spatial mixture models
based on exponential family conditional distributions. Statist. Sinica, 12
(2):449–474, 2002. ISSN 1017-0405. MR1902719

[12] Fabien Salzenstein and Wojciech Pieczynski. Parameter estimation in hid-
den fuzzy markov random fields and image segmentation. CVGIP: Graph.
Models Image Process., 59:205–220, 1997.

http://www.ams.org/mathscinet-getitem?mr=1344683
http://hal.archives-ouvertes.fr/hal-00154382/fr/
http://www.ams.org/mathscinet-getitem?mr=1763324
http://www.ams.org/mathscinet-getitem?mr=1902719

	Introduction
	Simple random variables with mixed states
	General random variables with mixed states
	Exponential family case
	Example of a mixed-state and censored exponential variable

	Results on multi-parameter auto-models
	Auto-models for mixed state variables
	The construction
	Spatial cooperation behaviour
	A translation invariant and symmetric mixed-state auto-model with the four nearest neighbours system
	Parameter estimation

	Mixed exponential auto-models 
	Mixed state auto-models with exponential conditionals
	Cooperative mixed exponential auto-models by truncation
	Cooperative mixed exponential auto-models by censoring

	An application to motion analysis from video image sequences
	Motion measurements from video sequences
	An mixed-state auto-model with positive Gaussian distributions
	Experiments

	Acknowledgement
	References

