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Abstract: When a series of (related) linear models has to be estimated it
is often appropriate to combine the different data-sets to construct more
efficient estimators. We use ℓ1-penalized estimators like the Lasso or the
Adaptive Lasso which can simultaneously do parameter estimation and
model selection. We show that for a time-course of high-dimensional lin-
ear models the convergence rates of the Lasso and of the Adaptive Lasso
can be improved by combining the different time-points in a suitable way.
Moreover, the Adaptive Lasso still enjoys oracle properties and consistent
variable selection. The finite sample properties of the proposed methods
are illustrated on simulated data and on a real problem of motif finding in
DNA sequences.
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1. Introduction

The Lasso [16] has attracted a lot of attention for prediction and variable selec-
tion in linear regression models, including high-dimensional settings where the
number of covariates is much larger than sample size [6, 12, 3, 20, 13, 22]. Not
only has the idea of ℓ1-penalization shown its success in other models [17, 9, 14],
but also many extensions of the Lasso in linear regression models have been pro-
posed, among them are the Fused Lasso [18], the Adaptive Lasso [24] and the
Relaxed Lasso [11].

Also for multivariate regression, penalization estimators have been shown to
be successful [19, 15]. In many problems there is a natural ordering of the re-
sponse space: our new methodology and theory are exploiting this fact. If we
think of time-course data where we observe a response variable over certain
time-points, the relationship between “neighbouring” time-points is expected to
be stronger than between more distant time-points. Instead of separately es-
timating a parameter vector for each time-point, it is often a better strategy
to combine information across different time-points. By putting an appropriate
constraint on the parameter vector, we can control certain characteristics, e.g.
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the smoothness over time. As an advantage, we may get a more efficient estima-
tor: By pooling of information, we reduce the variance, typically at the cost of
some bias, to achieve a lower mean squared error. For multivariate regression, [2]
use the correlation between the responses to construct an estimator with lower
mean squared prediction error. In the discussion of [2], the idea of relevance
weighted likelihood [7] is mentioned [23]. We use this idea for ℓ1-penalized esti-
mators. By using an estimator which also fits well for neighbouring time-points,
we can not only get a smoother behaviour of the parameter vector over time,
but also profit from more efficiency, both in estimation accuracy and in variable
selection.

The rest of this article is organized as follows. In Section 2 we introduce
the Smoothed Lasso estimator and show that it asymptotically reduces the
bound on the mean squared error compared to the univariate Lasso estimator.
In Section 3 we apply the smoothing idea to the Adaptive Lasso and variants
thereof and show that it can consistently select the correct model and has a faster
convergence rate than the univariate estimator. Simulations follow in Section 4
and a real data analysis for motif search in DNA sequences in Section 5. Section
6 contains the discussion. All proofs can be found in the Appendix.

2. Smoothed Lasso

We first start with the definition of the Smoothed Lasso estimator and then
study its theoretical properties.

2.1. Definition

Assume that we observe data at N different time-points and that at each time-
point tr, r = 1, . . . , N , we have a linear regression problem of the form

y(tr) = Xβ(tr) + ε(tr),

where X is the n×p design matrix, y(tr) ∈ R
n is the response vector, β(tr) ∈ R

p

is the parameter vector corresponding to time-point tr and ε(tr) ∈ R
n is the

corresponding error vector: ε(tr), r = 1, . . . , N are assumed to be i.i.d. random
vectors with i.i.d. components having mean zero and finite variance σ2. Note
that the design matrix X does not depend on tr in our setup (but it could), and
hence we consider a multivariate linear model. As commonly used for penalized
estimation, we assume that the columns of X are centered and scaled to have
empirical column means 0 and column variances 1.

Remark 2.1. Generalizations of the methodology and theory include that the
design matrix X depends on tr, i.e. X(tr), and that the errors have correlated
components Cov(ε(tr)) = Σ or arise from a dependent, stationary process with
respect to the time-points.
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The idea of the Smoothed Lasso is to use an ℓ1-penalty and to suitably
combine or smooth the information of the different time-points. It is defined as

β̂λn,w(tr) = arg min
β

N
∑

s=1

w(ts, tr)‖y(ts) −Xβ‖2
2 + λn

p
∑

j=1

|βj | , (2.1)

where w(ts, tr) are weights satisfying
∑N

s=1 w(ts, tr) = 1. A typical choice is

w(ts, tr) ∝ K

(

ts − tr
h

)

,

where K(·) is a univariate kernel, i.e. K(x) ≥ 0, K(x) = K(−x),
∫∞

−∞K(x)dx

= 1, and h is a bandwidth parameter. Thus, the Smoothed Lasso is β̂(tr) =

β̂λn,h(tr), depending on two tuning parameters.
We can rewrite the weighted optimization problem (2.1) as an ordinary Lasso

problem

β̂λn,h(tr) = arg min
β

‖ỹ(tr) −Xβ‖2
2 + λn

p
∑

j=1

|βj | , (2.2)

where

ỹ(tr) =

N
∑

s=1

w(ts, tr)y(ts).

Hence, any algorithm to solve a standard Lasso problem can be used to calculate
the Smoothed Lasso estimator for a given bandwidth h.

By forcing the estimate β̂(tr) to fit also well for “neighbouring” time-points, a

smooth (non-parametric) trend of β̂(tr) as a function of time is usually inherited
(if p < n this is always true because of strict convexity with respect to β and
continuity with respect to tr of the criterion in (2.2)).

Remark 2.2. Another approach would be to use a Fused Lasso penalty which
also penalizes the absolute value of the differences between neighbouring time-
points, i.e. |βj(tr) − βj(tr−1)|. Such an approach has two drawbacks: First, we
have to model all time-points simultaneously, i.e. fit a model with Np parame-
ters. Moreover, the Fused Lasso problem is more difficult to solve than the Lasso
problem. In our approach we fit N Lasso problems with p parameters each. Sec-
ond, if we want to mimick the behaviour of a bandwidth which is locally adaptive
to the underlying true parameter function β(t), we have to introduce a lot of
tuning parameters for the Fused Lasso and search over a high-dimensional grid
when doing cross-validation.

Remark 2.3. We do not assume that the active set (the set of predictors with
nonzero coefficients) stays the same over all time-points. Our methodology allows
for the fact that some predictors enter or leave the active set along the time-
course.

In the next Section we first consider the special case of an orthogonal design
and indeed, we show that the mean squared error is decreased asymptotically.
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2.2. Orthogonal Case

We consider the situation where the number of parameters equals the number
of observations and the design matrix is orthogonal, i.e. XTX = nIn, and
where the errors ε(tr) are Gaussian. We focus on a single time-point of interest
and therefore omit the time-index for notational simplicity. In [5, Theorem 1]

it is shown that the (univariate) soft-threshold estimator β̂ST (with threshold
parameter σ

√

2 log(n)/n), which is equivalent to the Lasso in the orthogonal

case (with penalty parameter λ = 2σ
√

2 log(n)n), satisfies

E[‖β̂ST − β‖2
2] ≤ (2 log(n) + 1)

{

σ2

n
+

n
∑

i=1

min

(

β2
i ,
σ2

n

)

}

(2.3)

for all β ∈ R
n and that this bound is asymptotically sharp in a minimax-sense

[5, Theorem 3]. If the non-zero βi’s are not of too low order (i.e. |βi| ≫ n−1/2),
the order of this bound is log(n) |An| /n, where An = {i | βi 6= 0} denotes the
active set of the time-point of interest. Even though we restrict ourselves to a
class of parameter vectors which stay out of the n−1/2-range, the order of the
bound in (2.3) is sharp because the maximal risk is attained for an element of
this class (see the proof of Theorem 3 in [5]).

The order log(n) |An| /n can be decreased by the smoothed estimator as
shown in Proposition 2.1.

Proposition 2.1. Assume Gaussian errors ε(tr) and the regularity conditions
(RC 1) – (RC 4) described in Appendix A.1. For h = hn ≍ log(n)1/5n−1/5N−1/5

and N = Nn such that Nh→ ∞ (n → ∞) the risk of the Smoothed Lasso from
(2.2) asymptotically satisfies: for λn = 2σ(Nh)−1/2

√

2 log(n)n

E[‖β̂λn,hn
− β‖2

2] ≤ C log(n) |An| /(nNh)
≍ log(n)4/5 |An| /(n4/5N4/5), n→ ∞.

for all β ∈ R
n and some constant C.

A proof is given in Appendix A.2.
For a faster convergence rate than log(n) |An| /n (for the unsmoothed Lasso)

we require Nh to converge to infinity which implies that

N = Nn ≫
(

n

log(n)

)1/4

,

i.e. N can be of much lower order than n for achieving a faster convergence rate
for the minimax bound.

2.3. General Case

Let us now consider the general case, i.e. we do not restrict ourselves to an
orthogonal design matrix. In particular, we allow for high-dimensional situations
where p = pn ≫ n is increasing very fast as n → ∞.
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Using the results in [13] for a fixed design, the univariate Lasso estimator
satisfies under regularity conditions on the design matrix

‖β̂Lasso,λn
− β‖2

2 ≤ OP

(

σ2mλn

n
log(pn)

)

+O

( |An|
mλn

)

, n→ ∞,

where mλn
= Cn2/λ2

n for some constant C. In a certain sense, this bound is
tight, see [13, Remark 1]. We can choose

λn ≍ σ1/2n3/4 log(pn)1/4 |An|−1/4

and arrive at the optimal rate

‖β̂Lasso,λn
− β‖2

2 ≤ OP

(

σn−1/2 log(pn)1/2 |An|1/2
)

, n → ∞. (2.4)

For proving such a result, assumptions on the design matrix are crucial: Various
authors use different conditions, cf. [13, 3, 20, 22]. We refer the reader to [13]
for a detailed description of the regularity conditions for (2.4).

Proposition 2.2. Assume that the univariate Lasso satisfies (2.4) and denote

the bound on the right hand side of (2.4) by an = σn−1/2 log(pn)1/2 |An|1/2
.

Furthermore, assume the regularity conditions (RC1) – (RC4) described in Ap-

pendix A.1. Then, if N = Nn ≫ |An|1/4a
−1/4
n and for some suitable λn and

h = hn:
‖β̂λn,hn

− β‖2
2 = oP (an),

i.e. the Smoothed Lasso has a faster convergence rate than the (tight) bound in
(2.4) for the Lasso.

A proof is given in Appendix A.2. Suitable choices for λn and hn in Propo-
sition 2.2 are

hn ≍ N−1/9 |An|−2/9
a2/9

n

and
λn ≍ σ1/2(Nh)−1/4n3/4 log(pn)1/4|An|−1/4.

Using the notation that is introduced at the beginning of the proof of Proposition
2.1, one can derive other asymptotic properties by linking known results for the
Lasso [6, 3, 20] with the smoothed model

ỹ = Xβ̃ + ε̃

and an analysis of the bias term ‖β̃ − β‖q for q ∈ {1, 2} as in (A.3).
Up to now we only considered the estimation error for β and no variable

selection properties. The smoothing reduces the variance and thus it can be
expected that the Smoothed Lasso selects more (noise) variables than its uni-
variate counterpart. Empirical evidence of this property is given in Section 4.
This problem can be overcome by a second stage which removes many of the
coefficients whose estimates are close to zero. In fact, already the case with a
univariate response often requires such a second stage for consistent variable
selection [24]. We will treat a special case in the next Section.
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3. Smoothed Adaptive Lasso

The Adaptive Lasso [24] weights the penalty for the different coefficients using

an initial estimator β̂init, i.e.

β̂
(β̂init)
λn

= arg min
β

‖y −Xβ‖2
2 + λn

p
∑

j=1

τ̂j |βj | ,

where τ̂j = 1/|β̂init,j|γ for some γ > 0 are weights based on the initial estimator

β̂init. For simplicity we will restrict ourselves to γ = 1. In [24], the ordinary least

squares (OLS) estimator is used for β̂init: here, we will mainly use the Lasso
and versions thereof. Through a re-scaling of the columns of the design matrix,
the Adaptive Lasso estimator can be formulated as an ordinary Lasso problem,
see [24].

We can also apply the smoothing technique of Section 2 to the Adaptive
Lasso. In the smoothed case we again replace the residual sum of squares in the
objective function with its smoothed counterpart in (2.2), i.e.

β̂
(β̂init)
λn,h (tr) = arg min

β
‖ỹ(tr) −Xβ‖2

2 + λn

p
∑

j=1

τ̂j |βj | . (3.1)

In [24], an asymptotic oracle result for the Adaptive Lasso is given for fixed
dimension p. We show that the Smoothed Adaptive Lasso has a faster conver-
gence rate. Again, as we focus on a single time-point, we omit the time-index
for notational simplicity.

We will consider the situation where the number of variables p is kept fixed
as n → ∞. As before, let A be the active set of the true parameter vector at
the current time-point and Ân be its empirical counterpart.

Theorem 3.1. Assume a fixed design with limn→∞
1
nX

TX = C for some

positive definite matrix C. If β̂init − β = OP (a−1
n ) for some sequence an →

∞, λn

√
Nnhn/

√
n → 0, λnan

√
Nnhn/

√
n → ∞, hn = o(n−1/5N

−1/5
n ) and

Nnhn → ∞ (n → ∞), then the Smoothed Adaptive Lasso in (3.1) satisfies
under the regularity conditions (RC1) – (RC4) described in Appendix A.1:

lim
n→∞

P(Ân = A) = 1

and
√

nNnhn(β̂
(β̂init)
λn,hn,A − βA)

d→ N(0, σ2
∗(CAA)−1), n→ ∞,

where σ2
∗ = σ2

∫∞

−∞
K2(x)dx, β̂A, βA are the sub-vectors of β̂, β and CAA is the

sub-matrix of C corresponding to the active set A.

A proof is given in Appendix A.2. Thus, if the initial estimator is consistent,
we can find a sequence λn such that the Smoothed Adaptive Lasso has the
property of consistent model selection and asymptotic normality on the active
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set A. Furthermore, if N = Nn ≫ n1/4, we can choose h = hn = o(n−1/5N
−1/5
n )

such that Nh → ∞. Thus, as already pointed out in Section 2.2, a relatively
small value of N = Nn is sufficient for achieving an improved convergence rate.

Remark 3.1. The optimal convergence rate n−2/5N−2/5 in Theorem 3.1 can
be achieved using hn ≍ n−1/5N−1/5. Then, the limiting normal distribution
becomes N (BA, σ

2
∗(CAA)−1) for some vector BA with 0 ≤ |BA,j | < ∞ for all

j. This is the same distribution as when using local least squares (with kernel
K). Hence, the Smoothed Adaptive Lasso has an oracle property saying that it
is asymptotically as good as local least squares with the true underlying active
set A known beforehand.

3.1. Choice of initial estimator

The choice of the initial estimator will influence the final estimator. In particular,
the sparsity of the final estimator can be maximized by making an appropriate
choice, as discussed below.

We will first focus on univariate estimators, i.e. on estimators which only use
the data of the current time-point. In view of Theorem 3.1, the basic assumption
for the initial estimator is consistency. The ordinary least squares (OLS) method
is a possible choice for low-dimensional problems with fixed dimension p as
it is

√
n-consistent. The Lasso is consistent in an ℓ2-sense, even in the high-

dimensional setting, see Section 2.3. Finally, the Adaptive Lasso is
√
n-consistent

for fixed p [24] and consistent under suitable regularity conditions for p≫ n [8].
For high-dimensional problems the OLS estimator is not appropriate because
it is unstable or even not defined in a p > n situation. The Lasso or Adaptive
Lasso are more appropriate choices.

If the initial estimator is doing variable selection, i.e. some of the coefficients
β̂init,j = 0, the smoothed estimator is at least as sparse as the initial estimator:

a zero-coefficient in the initial estimator, i.e. β̂init,j = 0, results in an infinite
penalty for that component, i.e. τ̂j = ∞, forcing the smoothed estimate to

be zero, i.e. β̂j(tr) = 0. This reduces the computational complexity for the
smoothing stage since some or even many predictors can be excluded from the
model.

For the case that the initial estimator has a tuning parameter, as with the
Lasso and the Adaptive Lasso, one would in practice tune it to be prediction
optimal. For the Lasso, this produces too large models, i.e. many noise variables
are included in the selected model [12]. However, noise variables tend to have
small coefficients and will therefore be heavily penalized in the second smoothing
step of the Smoothed Adaptive Lasso.

It is of course also possible to use a smoothed estimator as initial estimator,
e.g. the Smoothed Lasso. In terms of the number of selected variables, as we
will see in Section 4, this is often worse than directly using the univariate coun-
terpart. Due to the reduced variance, the smoothed initial estimator tends to
select too many variables and not all of them will be eliminated in the second
stage of the Smoothed Adaptive Lasso.
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Fig 1. Parameter functions for model 1 (left) and model 2 (right).

In view of some empirical results in Section 4, we advocate the following:
the initial estimator for the Smoothed Adaptive Lasso is the univariate Adap-
tive Lasso; the latter itself uses the univariate Lasso as initial estimator. This
amounts to be a three-stage procedure where all of the estimations are tuned
to be prediction optimal using e.g. some cross-validation scheme. There is sub-
stantial agreement by now that two or more stages are needed to achieve good
regularization properties in high-dimensional settings [24, 11, 25, 13, 21, 10]. As
a novelty here, our third stage involves an additional smoothing operation.

4. Simulations

In this Section we want to evaluate the finite sample properties of the proposed
estimators.

4.1. Design

We consider the following models, similar to [24]:

Model 1: Some large effects

β(t) = (0.45t, 3 sin(t), 3 cos(t − 3), 0, . . . , 0)

Model 2: Many small effects

β(t) = (0.85 + 0.5 sin(t), 0.85 + 0.5 cos(t), 0.85 + 0.5 sin(t− 1),

0.85 + 0.5 cos(t − 1), . . . , 0.85 + 0.5 sin(t− 3),

0.85 + 0.5 cos(t − 3), 0, . . . , 0)

Figure 1 illustrates the two parameter vectors as a function of time t. We use
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an equidistant grid on the interval [0, 2π], i.e. tr = (r − 1) 2π
N−1 , r ∈ {1, . . . , N},

where N = 18. The design matrix X is simulated from a multivariate nor-
mal distribution with mean zero and covariance matrix Σi,j = 0.5|i−j|. The
standard deviation of the error term is chosen from σ ∈ {2, 4} which corre-
sponds to a signal-to-noise ratio (averaged over N) of approximately {2.7, 0.7}
and {3.8, 0.9} for model 1 and model 2, respectively. We use both a “classical”
setup with n = 50, p = 8 and a high-dimensional setup with n = 100, p = 1000.

The best combination of bandwidth h and penalization parameter λ is being
searched on a two-dimensional grid using an independent validation set of half
the size of the training set. This is done independently for each time-point
which means that we allow for a locally varying bandwidth. The density of
the standard normal distribution is used as kernel function K(·) for the weight
function w(·, ·), see Section 2.1.

For the (Smoothed) Adaptive Lasso with (Smoothed) Lasso as initial estima-
tor, we first determine the optimal penalization parameter for the initial esti-
mator and keep it fixed when searching for the optimal penalization parameter
and bandwidth for the final estimator.

All estimators which we compare are listed in Table 1.

Table 1

Different estimators

Univariate Estimators Smoothed Estimators

1. Lasso 4. Lasso

2. Adapt. Lasso with OLS 5. Adapt. Lasso with smoothed OLS

3. Adapt. Lasso with univ. Lasso 6. Adaptive Lasso with 4.

7. Adaptive Lasso with 3.

4.2. Performance Measures

To measure the goodness of fit and the ability to pick the model of the correct
size we define the following performance measures.

For the mean squared error we use

MSEβ =
1

N

N
∑

r=1

‖β̂(tr) − β(tr)‖2
2.

Moreover, we also report the mean squared prediction error for the regression
function xTβ(tr)

MSEP =
1

N

(

N
∑

r=1

(β̂0(tr) − β0(tr))
2 + (β̂(tr) − β(tr))

T Σ(β̂(tr) − β(tr))

)

,

where β̂0(tr) is the intercept term (and β0(tr) = 0 for our simulations) and Σ is
the covariance matrix of the covariates.
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For the number of variables we define the mean model size

MSize =
1

N

N
∑

r=1

|Â(tr)|

and the mean number of false positives

FP =
1

N

N
∑

r=1

p
∑

j=1

1[β̂j(tr) 6=0]1[βj(tr)=0].

In applied sciences where (possibly expensive) experiments are conducted to
verify the selected variables (e.g. in biology), the number of false positives is a
crucial quantity one wants to minimize in order to keep the costs low.

4.3. Results

The results can be found in Table 2. For the high-dimensional setting we did not
consider OLS initial estimators. Several conclusions can be made. Let us first
focus on the Lasso estimator. In all simulation settings, smoothing improves the
MSEβ score substantially. The downside for the Smoothed Lasso estimator is
that due to the decreased variance, more noise variables tend to enter the model
which results in larger selected models (with more false positives) than for the
univariate Lasso estimator. However, in practice one would assign a variable
importance score to each coefficient and therefore concentrate first on those
with the largest contributions, whereas many of the false positives have small
importance scores only.

Also for the Adaptive Lasso, the MSEβ scores get decreased by smoothing
in all simulation settings. Using a smoothed initial estimator leads to too large
models. Take for example Adaptive Lasso with Smoothed Lasso as initial esti-
mator, i.e. proposal 6 in Table 1. As we have described above, the Smoothed
Lasso tends to select a too large initial model. Although the Adaptive Lasso
can eliminate most noise variables in the second stage due to their large weights
from small coefficients of the initial estimator, the resulting models still get a bit
too large. However, the estimator is very competitive with respect to prediction
performance.

Using a univariate initial estimator, i.e. our proposal 7 in Table 1, to get
more reasonably sized models seems to be a good compromise. It does not only
produce the sparsest models but is often also competitive with respect to MSEβ

and MSEP .

5. Real data: Motif Finding in DNA Sequences

We apply the smoothing methodology to a problem of motif regression [4]. A
motif (typically a 5–15 letter word consisting of letters A, C, G, and T) is
a candidate of a binding site of some functional element, e.g. a transcription
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factor (a protein which regulates gene expression). In [1] a collection of various
gene expression time-course experiments and a set of candidate motifs for yeast
is provided. Gene expression values for a total of 2587 genes are available and
p = 666 motif candidates are used to build the motif scores for each gene. These
measure how well the motifs are represented in the upstream regions of the
genes. We focus on a time-course experiment spanning N = 12 different time-
points. In summary we have 2587 observations of a 666 dimensional predictor
(the motif scores) and a one-dimensional response (the gene expression value) at
each of the 12 time-points. Thus, each row of the design matrix X corresponds
to a gene and each column to a motif score. The element xi,j measures how well
the jth motif score is represented in the upstream region of the ith gene.

To illustrate the smoothing methods and the effect of different sizes for the
training set, we use random subsets of different sizes as training set. An in-
dependent validation set is used to determine the prediction optimal tuning
parameters. The size of the validation set is half the size of the training set. The
remaining data is used as test-set.

The results for a training set of size 1300 is given in Table 3. In terms of
prediction error, there is not much gain when smoothing the estimators for this
data-set, especially for the Adaptive Lasso. A reason for this may be the large
variance of the error term. Note that for a new test observation (xtest, ytest) we
have

Extest,ytest
[(ŷ − ytest)

2] = E[(xT β̂ − xTβ)2] + σ2.

The error variance σ2 is likely to be the dominating quantity since motif re-
gression is known to be very noisy. In terms of variable selection, the smooth-

Table 3

Mean squared prediction error (top) and number of selected variables (bottom) for the
training set of size 1300. Rows: 4 different methods, as described in Table 1. Columns: 12

different time-points.

1 2 3 4 5 6 7 8 9 10 11 12

1. 0.07 0.13 0.44 2.71 1.52 1.66 1.98 2.55 3.17 2.77 3.02 2.92

3. 0.07 0.13 0.45 2.82 1.59 1.75 2.05 2.64 3.26 2.81 3.09 3.04

4. 0.07 0.13 0.44 2.71 1.52 1.66 1.99 2.52 3.17 2.78 3.02 2.91

7. 0.07 0.13 0.45 2.86 1.59 1.76 2.06 2.65 3.27 2.85 3.10 3.06

1. 35 28 74 155 133 157 154 141 124 106 123 109

3. 10 6 29 80 85 35 47 31 40 30 42 49

4. 35 29 70 155 123 157 177 178 124 98 126 112

7. 4 5 21 71 46 29 34 22 29 22 35 43

ing step decreases the model size for the Adaptive Lasso estimator and is po-
tentially reducing the number of false positives: In particular for time-points
tr = 1, 3, 5, 7, 8, 9, 10 the Smoothed Adaptive Lasso yields much sparser model
fits. For the Lasso estimator, the smoothing has a tendency to increase the num-
ber of selected variables resulting in rather large models. This coincides with
our findings in Section 4. If we decrease the training sample size to 200 we see
some small improvement with respect to the mean squared prediction error (not
shown).
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6. Discussion

We propose smoothing techniques for ℓ1-penalized (Lasso-type) estimators for
a time-course of high-dimensional linear models. We show theoretically that for
the Lasso and the Adaptive Lasso, better estimates in terms of the mean squared
error can be obtained by combining the responses of different time-points in a
suitably weighted way. Empirically, the Smoothed Adaptive Lasso estimator
yields the sparsest models with competitive mean squared error performance
when using the univariate Adaptive Lasso as initial estimator. The Smoothed
Lasso estimator has very good performance with respect to the mean squared
error but selects too many noise variables in general. An additional thresholding
stage would be necessary if the primary interest is in variable selection.

The smoothing methodology can also be applied to generalized linear models
(GLM). The main difference is that we can’t rewrite the smoothed estimator
as an ordinary lasso problem as in (2.2). This implies that the computational
burden increases: In the worst case (depending on the support of the kernel and
the bandwidth h), by stacking the response variables and design matrices of the
different time-points, the total sample size is Nn, which can be substantially
larger than n in (2.2), while the dimensionality is still p.

Our methodology applies to more general problems than time-course settings.
For example, we can directly treat the situation of different (heterogeneous)
data-sets (y(t), X), t = 1, . . . , N (or (y(t), X(t)), t = 1, . . . , N) with n(t) × 1
response vectors and n(t)×p design matrices, where t is the index for the various
data-sets. All we need is a suitable pseudo-distance d(t, s) among the different
data-sets indexed by t and s. The weights in (2.2) are then of the form

w(t, s) ∝ K

(

d(t, s)

h

)

.

The pseudo-distance d(·, ·) could be learned from the data, e.g. based on some
pseudo-metrics for clustering different data-sets.

Whether the multivariate view over different time-points (or different data-
sets) pays off for a particular problem is not clear a-priori. However, our method-
ology encompasses the univariate Lasso methods, by choosing the bandwidth
h = 0. Hence, using some cross-validation scheme enables to find out whether
pooling information over different time-points (or data-sets) is worthwhile and
if so, the Smoothed (Adaptive) Lasso from the multivariate approach renders
more accurate estimates.
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Appendix A: Proofs

A.1. Regularity Conditions

We denote by β(t) ∈ R
p the true underlying parameter vector as a function of

time t.

(RC1) Curvature of underlying function

βj(t) is twice continuously differentiable with supj

∣

∣

∣β
′′

j (t)
∣

∣

∣ ≤ C <∞ for

all t and some constant C.
(RC2) Equidistant grid

For the asymptotic implications we assume that we have an equidistant
grid around the time-point of interest tr of the form

ts = tr +
s

N
,

where s = −⌊N/2⌋, . . . , ⌊N/2⌋. Note that we enumerate using negative
values of s as well.

(RC3) Sampling Points

For the time-point of interest tr we assume that if βj(tr) = 0 it follows
that there is an open neighbourhood Uj ∋ tr, such that βj(u) = 0 ∀ u ∈
Uj. Moreover, we require infj diam(Uj) > δ for some δ > 0. I.e. for the
time-point of interest no variable enters or leaves the active set.

(RC4) Compact kernel

The kernel function K(·) is assumed to have compact support on [−1, 1].

A.2. Proofs

Proof of Proposition 2.1

As we focus on a single time-point tr we omit the time index for notational
simplicity, whenever possible. For the smoothed response ỹ we have the model

ỹ = Xβ̃ + ε̃N ,

at the time-point of interest, where

β̃ =

⌊Nh⌋
∑

s=−⌊Nh⌋

w (ts, tr) β (ts)

and

ε̃N =

⌊Nh⌋
∑

s=−⌊Nh⌋

w (ts, tr) ε (ts) .

Note that (ε̃N )1, . . . , (ε̃N )n are i.i.d. with mean zero and variance given below.
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We can now use the decomposition

‖ ˆ̃
β − β‖2

2 ≤ 2‖ ˆ̃
β − β̃‖2

2 + 2‖β̃ − β‖2
2. (A.1)

The first term is “classical”. We can use the theory of [5] with respect to an
error term with reduced variance. For the asymptotic variance we have

Var((ε̃N )i) = Var





⌊Nh⌋
∑

s=−⌊Nh⌋

w (ts, tr) ε (ts)i





= σ2

⌊Nh⌋
∑

s=−⌊Nh⌋

w2
(

tr +
s

N
, tr

)

= σ2

(

1
Nh

)2∑⌊Nh⌋
s=−⌊Nh⌋K

2
(

s/N
h

)

{

1
Nh

∑⌊Nh⌋
s=−⌊Nh⌋ K

(

s/N
h

)}2 .

Using a Riemann sum approximation, we arrive at

Var((ε̃N )i) ∼
σ2

Nh

∫

K2(x)dx, (A.2)

i.e. the error variance is of order 1/(Nh).
Let us now consider the bias term. If βi(tr) = 0 it follows with the com-

pactness assumption of the kernel and (RC3) that for h = hn small enough
β̃i(tr) = 0. If βi(tr) 6= 0 we have

β̃i(tr) =

⌊Nh⌋
∑

s=−⌊Nh⌋

w (ts, tr)βi

(

tr +
s

N

)

=

⌊Nh⌋
∑

s=−⌊Nh⌋

w (ts, tr)

{

βi(tr) + β
′

i(tr)
s

N
+

1

2
β

′′

i (τs)
s2

N2

}

= βi(tr) +

⌊Nh⌋
∑

s=−⌊Nh⌋

w (ts, tr)
1

2
β

′′

i (τs)
s2

N2
,

where |τs − tr| ≤ s
N

.
Hence, by (RC1),

∣

∣

∣
β̃i(tr) − βi(tr)

∣

∣

∣
≤ (Nh)2

N2
C

⌊Nh⌋
∑

s=−⌊Nh⌋

w (ts, tr) = Ch2.

Therefore
‖β̃ − β‖2

2 ≤ |An|C2h4, (A.3)
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for h = hn small enough.
If we choose hn ≍ log(n)1/5n−1/5N−1/5, all terms in (A.1) are of the same

order.
�

Proof of Proposition 2.2

We use the decomposition in (A.1). Since the variance in the smoothed case is
of order 1/(Nh), see (A.2), we obtain

‖ ˆ̃
β − β̃‖2

2 ≤ OP ((Nh)−1/2an). (A.4)

On the other hand, we have by (A.3)

‖β̃ − β‖2
2 ≍ |An|h4. (A.5)

The optimal rate for the bandwidth minimizing the terms in (A.4) and (A.5) is

hopt = N−1/9
n |An|−2/9

a2/9
n → ∞, n → ∞

and we obtain using (A.1), (A.4) and (A.5)

‖ ˆ̃β − β‖2
2 ≤ OP ((Nhopt)

−1/2an). (A.6)

Since
Nhopt ≍ N8/9

n |An|−2/9
a2/9

n → ∞, n → ∞

because Nn ≫ |An|1/4
a
−1/4
n , we see from (A.6) that a faster convergence rate

oP (an) is achieved.
�

Proof of Theorem 3.1

As in the proof of Proposition 2.1, we have the model

ỹ = Xβ̃ + ε̃N

for the smoothed response ỹ. Multiplying both sides with
√
Nh results in

˜̃y = X̃β̃ + ˜̃εN , (A.7)

with ˜̃y =
√
Nhỹ, X̃ =

√
NhX and ˜̃εN =

√
Nhε̃N .

Note that the variance of the error term ˜̃εN depends on N . As can be seen
from (A.2), we have for N → ∞

Var
((

˜̃εN

)

i

)

∼ σ2

∫

K2(x)dx.

Using the rescaled model (A.7), we can now adapt the proof of [24].
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Let us first focus on the problem on the original scale. We re-parameterize
the parameter vector β as

β = β̃ +
u√
nNh

,

or u =
√
nNh(β− β̃) ∈ R

p. The quantity of interest is û =
√
nNh(

ˆ̃
β− β̃), where

û = arg min
u

ψn(u),

with

ψn(u) =

∥

∥

∥

∥

∥

∥

ỹ −
p
∑

j=1

xj

(

β̃j +
uj√
nNh

)

∥

∥

∥

∥

∥

∥

2

2

+ λn

p
∑

j=1

ŵj

∣

∣

∣

∣

β̃j +
uj√
nNh

∣

∣

∣

∣

.

By multiplying ψn(u) with Nh, we can rewrite û = arg min
u

ψ̃n(u), where

ψ̃n(u) =

∥

∥

∥

∥

∥

∥

˜̃y −
p
∑

j=1

x̃j

(

β̃j +
uj√
nNh

)

∥

∥

∥

∥

∥

∥

2

2

+ λ̃n

p
∑

j=1

ŵj

∣

∣

∣

∣

β̃j +
uj√
nNh

∣

∣

∣

∣

,

and λ̃n = Nhλn. Now we can follow the proof of [24]. With slight changes,
because of the non-constant variance of the error-term, we arrive at

√
nNh( ˆ̃βA − β̃A)

d→ N(0, σ2
∗(CAA)−1),

where A is the active set of the unsmoothed parameter vector, i.e. the parameter
vector at the current time-point. Finally, observe that

√
nNh(

ˆ̃
βA − βA) =

√
nNh(

ˆ̃
βA − β̃A) +

√
nNh(β̃A − βA),

and that we get for the second term analogously as in (A.3), using |An| ≤ p <∞,

nNh‖β̃A − βA‖2
2 ≤ CnNh5

for some constant C. If we choose h = o(n−1/5N−1/5), the asymptotic normality
part follows.

The proof of model selection consistency is analogous to [24].
�
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[15] Similä, T. and Tikka, J. (2007). Input selection and shrinkage in multire-
sponse linear regression. Computational Statistics and Data Analysis 52, 1,
406–422.

[16] Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B 58, 1, 267–288.
MR1379242

[17] Tibshirani, R. (1997). The lasso method for variable selection in the cox
model. Statistics in Medicine 16, 385–395.

[18] Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K.

(2005). Sparsity and smoothness via the fused lasso. Journal of the Royal
Statistical Society Series B 67, 1, 91–108. MR2136641

[19] Turlach, B., Venables, W., and Wright, S. (2005). Simultaneous

http://www.ams.org/mathscinet-getitem?mr=1436554
http://www.ams.org/mathscinet-getitem?mr=2312149
http://www.ams.org/mathscinet-getitem?mr=1311089
http://www.ams.org/mathscinet-getitem?mr=2108039
http://www.ams.org/mathscinet-getitem?mr=1944367
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2136641
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