
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 25 (2020), article no. 139, 1–18.
ISSN: 1083-6489 https://doi.org/10.1214/20-EJP540

Recurrence of direct products of diffusion processes
in random media having zero potentials
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Abstract

In this paper, we consider the recurrence of some multi-dimensional diffusion pro-
cesses in random environments including zero potentials. Previous methods on
diffusion processes in random environments are not applicable to the case of such
environments. In main theorems, we obtain a sufficient condition to be recurrent
for the product of a multi-dimensional diffusion process in semi-selfsimilar random
environments and one-dimensional Brownian motion, and also more explicit sufficient
conditions in the case of Gaussian random environments and random environments
generated by Lévy processes. To prove them, we introduce an index which measures
the strength of recurrence of symmetric Markov processes, and give some sufficient
conditions for recurrence of direct products of symmetric diffusion processes. The
index is given by the Dirichlet forms of the Markov processes.
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1 Introduction

Global properties of stochastic processes as well as related problems are important
topics in both probability and potential theories. Among those, recurrence and transience
of Markov processes have been studied by many authors under various probabilistic and
analytic aspects in discrete and in continuous time. For instance, it is well-known that a
d-dimensional Brownian motion consisting of d independent one-dimensional standard
Brownian motions is recurrent if d = 1, 2, and transient otherwise. For more general
diffusion processes, we have also many criteria for their recurrence and transience,
but the criteria are not always so easy to be checked. In general, whether diffusion
processes are recurrent or transient depends on their generators (see [5], [6], [7]). In
this spirit, Ichihara [6] gave elegant criteria for the recurrence and transience of the

*Kumamoto University, Japan. E-mail: daehong@gpo.kumamoto-u.ac.jp
†Kyoto University, Japan. E-mail: kusuoka@math.kyoto-u.ac.jp

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/20-EJP540
https://ams.org/mathscinet/msc/msc2020.html
mailto:daehong@gpo.kumamoto-u.ac.jp
mailto:kusuoka@math.kyoto-u.ac.jp


Direct products of diffusion processes in random media

diffusion process associated with a second order elliptic partial differential operator L
on Rd defined by

L =

d∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
, (1.1)

where aij(x) is a symmetric coefficient function such that the matrixA(x) := (aij(x))1≤i,j≤d
is strictly positive definite on Rd.

LetW be the space of locally bounded Borel measurable functions on Rd vanishing at
the origin and let Q be a probability measure onW. In the present paper, an element of
W is called an environment. Given an environment w, consider Yw = (Yw(t), Pwx , x ∈ Rd),
the diffusion process with generator

1

2
(∆−∇w · ∇) =

1

2
ew

d∑
k=1

∂

∂xk

(
e−w

∂

∂xk

)
.

It is well-known that Yw(t) can be constructed from the diffusion processXw(t) associated
with (1.1) provided aij = 1

2δije
−w through a random time change of Xw(t). We call a

stochastic process Yw = (Yw(t),Q ⊗ Pwx , x ∈ Rd) the diffusion process in a random
environment. In the case where d = 1 and (w,Q) is a Brownian environment, Brox [1]
noticed that the process Yw is a continuous version of Sinai’s walk (see [16]) and showed
that Yw(t) moves very slowly in some sense by the effect of the environment. Later,
Brox’s result was extended to a multi-dimensional diffusion process in a non-negative
Lévy’s Brownian environment (see [8], [12]).

Recurrence and transience of multi-dimensional diffusion processes in various ran-
dom environments have been studied by many authors, in combining Ichihara’s criteria
with the ergodic aspects of measure preserving transformations on the random en-
vironments. The first result on this problem was obtained by Fukushima et al. in a
one-dimensional Brownian environment (see [3]). Tanaka considered the diffusion pro-
cess Yw in a Lévy’s Brownian environment and proved that it is to be recurrent for
almost all environments in any dimension (see [19]), which made the effect of random en-
vironments on this problem quite transparent. After that, Tanaka’s result was extended
to a large class of multi-dimensional random environments (see [9], [11], [17], [18]). In
[11], the authors considered multi-dimensional diffusion processes in multi-parameter
random environments and studied their recurrence and transience. More precisely, the
authors obtained some conditions for the dichotomy of recurrence and transience for
d-dimensional diffusion process Yw(t) = (Y 1

w(t), Y 2
w(t), · · · , Y dw(t)) corresponding to the

generator

1

2

d∑
k=1

ew(xk)
∂

∂xk

(
e−w(xk)

∂

∂xk

)
, (1.2)

where w is a one-dimensional (semi-)stable Lévy process whose values at different d
points are regarded as constituting a multi-parameter environment. In their proof, the
following property of the environments was crucial: for any a0 > 0 and θ ≥ 1

Q

 inf
σ∈Sd−1

d∑
j=1

w(θσj) > a0

 > 0, (1.3)

where Sd−1 denotes the unit sphere in Rd. It turned out that the property (1.3) works
well with Ichihara’s test in studying the recurrence and transience of Yw(t). However, the
property (1.3) does not hold if one component of w takes value identically zero. Indeed,
for the two-dimensional direct product of diffusion process (Y 1

w(t), B(t)) given by the pair
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Direct products of diffusion processes in random media

of the Brox’s diffusion Y 1
w(t) and a one-dimensional Brownian motion B(t) independent

of Y 1
w(t), let w̃ be the environment relative to (Y 1

w(t), B(t)). Then w̃(x1, x2) = w(x1) and
hence w̃(σ) = w(0) = 0 for σ := (0, 1) ∈ S1. In this sense, a (d+ 1)-dimensional diffusion
process in d-parameter random environments

(Yw(t), B(t)) := (Y 1
w(t), Y 2

w(t), · · · , Y dw(t), B(t)) (1.4)

with a one-dimensional Brownian motion B(t) independent of {Y jw(t), j = 1, 2, · · · , d} is
out of the framework of [11] (also of [18]).

The purpose of this paper is to study the recurrence of some multi-dimensional
diffusion processes in random environments including zero potentials. For this, we
introduce a criterion for the recurrence of direct products of symmetric Markov processes
motivated by Okura [13]. In the criterion, the index induced by the Dirichlet forms
plays an important role as representing the strength of recurrence of the associated
Markov processes. The criterion works well in the case of diffusion processes in random
environments, and we are able to show that the diffusion processes in semi-selfsimilar
random environments have very strong recurrence in sense of the index. As a result, we
can show the recurrence of direct products of Markov processes given by the pair of a
d-dimensional diffusion process in almost all environments having usual randomness,
and a one-dimensional Brownian motion (see Theorems 2.1, 2.2 and 2.4).

2 Main results

Now, we state our framework and the main results of the present paper.
LetW be the space of locally bounded and Borel measurable functions on Rd with

the topology generated by the uniform convergence on compact sets. Let B(W) be the
Borel σ-field of W and Q be a probability measure on (W,B(W)). We call an element
w ∈ W an environment and assume that Q(w(0) = 0) = 1. For given w ∈ W, let
Xw = (Xw(t), Pwx , x ∈ Rd) be the diffusion process associated with the generator (1.1)
provided aij = 1

2δije
−w, equivalently, associated with the strongly local Dirichlet form

(Ew,Fw) defined by
Fw :=

{
f ∈ L2(Rd; e−wdx) :

∂f

∂xi
∈ L2(Rd; e−wdx), i = 1, 2, . . . , d

}
,

Ew(f, g) :=
1

2

∫
Rd

∇f(x) · ∇g(x) e−w(x)dx, f, g ∈ Fw,
(2.1)

where the derivatives ∂f/∂xi are taken in the sense of Schwartz distributions.
For r > 1 and α > 0, let T be a mapping fromW toW defined by Tw(x) = r−αw(rx)

for x ∈ Rd. We assume that

Q(A) = Q(TA), A ∈ B(W), (2.2)

which implies that T is a measure preserving transformation of Q. We call a space
(W,B(W),Q) satisfying the condition (2.2) an α-semi-selfsimilar random environment.

Our first result concerns a sufficient condition to be recurrent for the direct product
of a d-dimensional diffusion process in semi-selfsimilar random environments and a
one-dimensional Brownian motion.

Theorem 2.1. Assume that T is weakly mixing and

Q
(
w(1, r2)− w(0, 1) < 2w(1, r2)

)
> 0, (2.3)

where w and w are given by

w(a, b) := sup
a≤|x|≤b

w(x), w(a, b) := inf
a≤|x|≤b

w(x)
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for a, b ≥ 0. Then, the (d+1)-dimensional direct product of diffusion process (Xw(t), B(t))

given by the pair of the d-dimensional diffusion process Xw(t) and a one-dimensional
Brownian motion B(t) independent of Xw(t) is recurrent for almost all environments.

It is known that random environments make a strong effect for the recurrence of
the diffusion process in random environments. Indeed, diffusion processes in various
random environments are recurrent in any dimension under some natural conditions (cf.
[9], [11], [17], [18]). However, we cannot apply the previous methods to prove Theorem
2.1, because the component B(t) of the product process (Xw(t), B(t)) has no effect of
environments. As an alternative to the previous method, we employ a new criterion for
the recurrence of direct products of symmetric Markov processes based on the theory
of Dirichlet forms (Proposition 3.1 below). The criterion will be applied to diffusion
processes in random environments together with Proposition 4.2, which plays a key role
for the proof of Theorem 2.1.

We remark that the (d+ d′)-dimensional direct product process

(Xw(t), B1(t), . . . , Bd
′
(t))

given by the pair of Xw(t) and a d′-dimensional Brownian motion (B1(t), . . . , Bd
′
(t)) inde-

pendent of Xw(t), is transient whenever d′ ≥ 3, because the marginal (B1(t), . . . , Bd
′
(t))

is transient. To our best knowledge, the case d′ = 2 is an open problem but we be-
lieve that it will be transient in view of the result in discrete cases. In fact, a similar
problem was already concerned in discrete cases. In [2], the authors considered d+ d′

independent walks on Z, d of them performing Sinai’s walk and d′ of them performing
simple symmetric random walk, and proved that the direct product is recurrent almost
all environments if and only if d′ ≤ 1, or d = 2 and d′ = 0.

Next, we consider specific laws of random environments. Precisely, we show some
sufficient conditions in the cases that Gaussian random environments and random
environments generated by Lévy processes. Such environments are concerned in [9]
and [11], respectively. By giving some assumptions on laws of environments we are able
to discuss clearer sufficient conditions for the recurrence as follows, while the sufficient
condition given in Theorem 2.1 is somewhat abstract.

Let us consider a probability measure Q on (W,B(W)) as a Gaussian measure.
We assume that Q(w(0) = 0) = 1 and EQ[w(x)] = 0 for x ∈ Rd. Here EQ stands
for the expectation with respect to Q. Let K be the covariance kernel of Q, that is,
K(x, y) = EQ[w(x)w(y)] for x, y ∈ Rd. Since Q is a probability measure on (W,B(W)),
K is a measurable function on Rd ×Rd.
Theorem 2.2. Assume that

sup
1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy − inf
|x|≤1

∫
|y|≤r2

K(x, y)dy < 2 inf
1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy, (2.4)

lim
n→∞

r−αn sup
x,y∈D1

K(rnx, y) = 0. (2.5)

Then, the (d+ 1)-dimensional direct product of diffusion process (Xw(t), B(t)) given by
the pair of Xw(t) and a one-dimensional Brownian motion B(t) independent of Xw(t) is
recurrent for almost all environments.

Note that the condition (2.4) above is stronger than those in Theorem 3.5 in [9],
because we need the strength of the recurrence for Xw(t) to show the recurrence of the
direct product process.

As a direct consequence of Theorem 2.2, we have the following corollary.

Corollary 2.3. The two-dimensional direct product of diffusion process (Yw(t), B(t))

given by the pair of the Brox’s diffusion process Yw(t) and a one-dimensional Brownian
motion B(t) independent of Yw(t) is recurrent for almost all environments.
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A similar problem was concerned in Proposition 3.1 in [11], but the absolute value
of the Brownian environment was taken in the component of the diffusion process in
random environment. The advantage of the method in the present paper is that we are
able to show the recurrence without taking the absolute value. Proofs of Theorem 2.2
and Corollary 2.3 are given in Section 5.1.

Finally, we give the result on the case that random environments generated by
Lévy processes. Let W be the space of functions w on R satisfying the following:
w(0) = 0, w is right (resp. left) continuous with left (resp. right) limits on [0,∞) (resp.
(−∞, 0)). For i = 1, 2, . . . , d, we set a probability measure Qi on (W,B(W)) such that
(w(x), x ∈ [0,∞),Qi) and (w(−x), x ∈ [0,∞),Qi) are independent semi-selfsimilar Lévy
processes with an exponent αi ∈ (0, 2] (see Definitions 13.4 and 13.12 in [14]). Define
the probability measure Q on (Wd,B(W)⊗d) by

Q :=

d⊗
i=1

Qi.

Denote the i th component of w ∈ Wd by wi and write wi+(t) := wi(t) and wi−(t) := wi(−t)
for t ∈ [0,∞).

Theorem 2.4. Let i = 1, 2, . . . , d. If αi = 2 or both wi+ and wi− have positive jumps with
positive probabilities, then the (d+ 1)-dimensional direct product process (Xw(t), B(t))

given by the pair of Xw(t) and a one-dimensional Brownian motion B(t) independent of
Xw(t) is recurrent for almost all environments.

This result can be regarded as an extension of Theorem 1.2 (i) in [11]. Theorem 2.4
implies that diffusion processes in random environments generated by Lévy processes
with positive jumps have very strong recurrence, and even taking a direct product of the
diffusion process and a one-dimensional Brownian motion, the direct product process is
still recurrent. Proof of Theorem 2.4 is given in Section 5.2.

The rest of the present paper is organized as follows. In Section 3, we give criteria
for the recurrence of direct products of general symmetric Markov processes including
a random time changed version, and prove some lemmas on diffusion processes in
non-random environments. In Section 4, we give some sufficient conditions on the
random environment for the recurrence of a multi-dimensional direct product process in
an ergodic random environment. In Section 5, we consider concrete examples for the
result obtained in Section 4 with Gaussian and stable Lévy environments. For notational
convenience, we let a ∧ b := min{a, b} for any a, b ∈ R.

3 Recurrence of products of Dirichlet forms and some lemmas on
diffusion processes in non-random environments

3.1 Recurrence of products of Dirichlet forms

In this section, we give some analytic recurrence criteria for direct products of
symmetric Dirichlet forms (or, of symmetric Markov processes). The result will be
obtained by a simple obsevation for the recurrence of direct products of symmetric
Markov processes due to [4] and [13].

For i = 1, 2, . . . , N , let E(i) be a locally compact separable metric space and m(i)

be a positive Radon measure on E(i) with full support. Let (E(i),F (i)) be a symmetric
regular Dirichlet form on L2(E(i),m(i)) possessing C(i) as its core. It is well-known that

(E(i),F (i)) generates a strongly continuous Markovian semigroup (T
(i)
t )t≥0 of symmetric

operators on L2(E(i),m(i)). Let X(i) = (Ω(i),M(i), X(i)(t), P
(i)

x(i)) be the m(i)-symmetric

Hunt process associated to (E(i),F (i)). We say that (E(i),F (i)) (or X(i)) is irreducible if

any (T
(i)
t )t≥0-invariant set B satisfiess m(i)(B) = 0 or m(i)(E(i) \B) = 0.
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Direct products of diffusion processes in random media

Let X = (Ω,M, X(t), Px) be the process on E defined by the product of X(i), where

Ω = Ω(1) × Ω(2) × · · · × Ω(N), M =M(1) ⊗M(2) ⊗ · · · ⊗M(N),

E = E(1) × E(2) × · · · × E(N),

Px = P
(1)

x(1) ⊗ P
(2)

x(2) ⊗ · · ·P
(N)

x(N) , x = (x(1), x(2), . . . , x(N)) ∈ E,

X(t, ω) =
(
X(1)(t, ω1), X(2)(t, ω2), . . . , X(N)(t, ωN )

)
, ω = (ω1, ω2, . . . , ωN ) ∈ Ω.

We note that the marginal processes {(X(i)(t), t ≥ 0), i = 1, 2, . . . , N} are independent
under Px. Let m be the product measure of {m(i), i = 1, 2, . . . , N}. Assume that X(i) is
irreducible for any i = 1, 2, . . . , N . Then, X is also to be an m-symmetric irreducible
Markov process on E ([4, Proposition 3.1], [13, Theorem 2.6]). Let (E ,F) be the as-
sociated Dirichlet form of X on L2(E,m). Then (E ,F) possesses the linear span of
C(1) ⊗ · · · ⊗ C(N) := {φ(1) ⊗ · · · ⊗ φ(N) : φ(i) ∈ C(i), i = 1, 2, . . . , N} as its core, where
(φ(1) ⊗ · · · ⊗ φ(N))(x) := φ(1)(x(1))φ(2)(x(2)) . . . φ(N)(x(N)). Thus the Dirichlet form (E ,F)

is to be regular and also admits the following expressions: for u(i) ∈ F (i) (i = 1, 2, . . . , N ),
u := u(1) ⊗ · · · ⊗ u(N) ∈ F and

E (u, u) =

N∑
i=1

E(i)
(
u(i), u(i)

) N∏
j=1,j 6=i

(
u(j), u(j)

)
m(j)

(3.1)

where (·, ·)m(i) denotes the inner product on L2(E(i),m(i)) ([13, Theorems 1.3 and 1.4]).

Let X be a locally compact separable metric space and µ a positive Radon measure
on X with full support. A regular Dirichlet form (A,V) on L2(X,µ) (or the corresponding
Markov process M) is non-transient if and only if the following property holds:

(R) There exists a sequence {un}n≥1 ⊂ V such that 0 ≤ un ≤ 1 µ-a.e., limn→∞ un = 1

µ-a.e. and A(un, un)→ 0 as n→∞

(see [5, Theorem 1.6.3]). In particular, it is known that (A,V) (or M) is to be recurrent if
it is irreducible and possesses the property (R) ([5, Lemma 1.6.4]).

Now we give some simple criteria for the non-transience of X through the marginal
processes {X(i), i = 1, 2, . . . , N} in an analytic way.

Proposition 3.1. Let {(E(i),F (i)), i = 1, 2, · · · , N} and (E ,F) be as above. Assume

that there exist sequences {u(i)n }n≥1 ⊂ F (i) such that 0 ≤ u
(i)

n(i)(k)
≤ 1 m(i)-a.e.,

limk→∞ u
(i)

n(i)(k)
= 1 m(i)-a.e., u(i)∞ := 1 m(i)-a.e. (i = 1, 2, . . . , N) and

lim
k→∞

1

k

N∏
i=1

(
u
(i)

n(i)(k)
, u

(i)

n(i)(k)

)
m(i)

= 0 (3.2)

for the index

n(i)(k) := inf

{
n ∈ N : E(i)

(
u(i)n , u(i)n

)
≤ 1

k

(
u(i)n , u(i)n

)
m(i)

}
, k ∈ N. (3.3)

Then the Dirichlet form (E ,F) (or the direct product process X of {X(i), i = 1, 2, . . . , N})
is non-transient.

Proof. Let

un(k) := un(1,...,N)(k) = u
(1)

n(1)(k)
⊗ · · · ⊗ u(N)

n(N)(k)
.
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It is then easy to see that 0 ≤ un(k) ≤ 1 m-a.e. and un(k) → 1 as k →∞ m-a.e. Moreover,
by (3.1) and the assumption (3.2), we have

E
(
un(k), un(k)

)
=

N∑
i=1

E(i)
(
u
(i)

n(i)(k)
, u

(i)

n(i)(k)

) N∏
j=1,j 6=i

(
u
(j)

n(j)(k)
, u

(j)

n(j)(k)

)
m(j)

≤ N

k

N∏
i=1

(
u
(i)

n(i)(k)
, u

(i)

n(i)(k)

)
m(i)
−→ 0 as k →∞.

Hence (E ,F) (or X) is non-transient.

For a strictly positive continuous function g(i) on E(i), let {Y(i), i = 1, 2, . . . , N} be the
time changed processes of {X(i), i = 1, 2, . . . , N} defined by

Y (i)(t) := X(i)
(
τ
(i)
t

)
,

where τ (i)t is the right continuous inverse of the positive continuous additive functional

A
(i)
t =

∫ t
0
g(i)(X(i)(s))ds of X(i), that is, τ (i)t = inf{s > 0 : A

(i)
s > t} (i = 1, 2, . . . , N).

Then, since the fine support of g(i)m(i) equals to E(i), {Y(i), i = 1, 2, . . . , N} are g(i)m(i)-
symmetric Humt processes on E(i). Note that the irreducibility and non-transience are
stable under time-changed transform (see [5, Theorem 6.2.3] and [15, Theorems 8.2
and 8.5]). Hence {Y(i), i = 1, 2, . . . , N} are irreducible and non-transient if {X(i), i =

1, 2, . . . , N} are so. Let {(Ě(i), F̌ (i)), i = 1, 2, . . . N} be the associated Dirichlet forms of
{Y(i), i = 1, 2, . . . , N} on L2(E(i), g(i)m(i)). Then (Ě(i), F̌ (i)) is given by{
F̌ (i) =

{
ϕ ∈ L2

(
E(i), g(i)m(i)

)
: there exists f ∈ F (i)

e such that ϕ = f g(i)m(i)-a.e.
}

Ě(i)(ϕ,ϕ) = E(i)(f, f) for ϕ ∈ F̌ (i) and f ∈ F (i)
e with ϕ = f g(i)m(i)-a.e.,

where F (i)
e is the extended Dirichlet space of F (i) (see [5] for the definition). Then we

can obtain the following corollary as a consequence of Proposition 3.1.

Corollary 3.2. For i = 1, 2 . . . , N , let g(i) be a strictly positive continuous function
on E(i). Assume that the marginal processes {X(i), i = 1, 2, . . . , N} are irreducible

and non-transient. If there exist sequences {u(i)n }n≥1 ⊂ F (i)
e ∩ L2(E(i), g(i)m(i)) such

that 0 ≤ u(i)
n(i)(k)

≤ 1 g(i)m(i)-a.e., u(i)
n(i)(k)

→ 1 as k →∞ g(i)m(i)-a.e. (i = 1, 2, . . . , N) and

lim
k→∞

1

k

N∏
i=1

(
u
(i)

n(i)(k)
, u

(i)

n(i)(k)

)
g(i)m(i)

= 0, (3.4)

for the index

n(i)(k) := inf

{
n ∈ N : E(i)

(
u(i)n , u(i)n

)
≤ 1

k

(
u(i)n , u(i)n

)
g(i)m(i)

}
, (3.5)

then the direct product process Y of {Y(i), i = 1, 2, . . . , N} is recurrent.

3.2 Some lemmas on diffusion processes in non-random environments

Let w be a locally bounded and Borel measurable function on Rd. Consider the
strongly local Dirichlet form (Ew,Fw) defined by (2.1). Denote C∞0 (Rd) by the set of all
smooth functions with compact support in Rd. Note that the local boundedness of w im-
plies that C∞0 (Rd) is dense in Fw, in particular (Ew,Fw) is regular. Let Xw = (Xw(t), Pwx )

be the diffusion process associated with (Ew,Fw). The d-dimensional Brownian motion
is associated to (E0,F0), the Dirichlet form (Ew,Fw) with w ≡ 0.
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For r ∈ (1,∞), let ϕ ∈ C∞0 (Rd) such that 0 ≤ ϕ(x) ≤ 1 on Rd, ϕ(x) = 1 on |x| ≤ 1, and
ϕ(x) = 0 on |x| ≥ r. For fixed r and ϕ, define the sequence {un} ⊂ Fw by

un(x) := ϕ
(
r−nx

)
, x ∈ Rd, n ∈ N ∪ {0}. (3.6)

It is clear that limn→∞ un(x) = 1 for x ∈ Rd. We let

w(a, b) := sup
a≤|x|≤b

w(x), w(a, b) := inf
a≤|x|≤b

w(x)

for a, b ≥ 0 as in Theorem 2.1. Then, it is easy to see by the definition of un and the
assumption on ϕ that for n ∈ N,

C1r
dn exp

(
−w(0, rn+1)

)
≤
∫
Rd

|un(x)|2e−w(x)dx ≤ C1r
dn exp

(
−w(0, rn+1)

)
, (3.7)

where C1 := C1(d, r, ϕ) =
∫
|x|≤r ϕ (x)

2
dx. Moreover, since∫

Rd

|un(x)|2e−w(x)dx ≥ rdn
∫
|x|≤r−`

e−w(rnx)dx

for any ` ∈ N, it also follows that for n ∈ N∫
Rd

|un(x)|2e−w(x)dx ≥ Vd rd(n−`) exp
(
−w(0, rn−`)

)
. (3.8)

In particular ∫
Rd

|un(x)|2e−w(x)dx ≥ Vd exp (−w(0, 1)) , (3.9)

where Vd denotes the volume of the unit ball in Rd. On the other hand, the relation∫
Rd

|∇un(x)|2e−w(x)dx = r(d−2)n
∫
1≤|x|≤r

|∇ϕ (x) |2e−w(rnx)dx

implies that for n ∈ N,

C2r
(d−2)n exp

(
−w(rn, rn+1)

)
≤
∫
Rd

|∇un(x)|2e−w(x)dx ≤ C2r
(d−2)n exp

(
−w(rn, rn+1)

)
,

(3.10)
where C2 := C2(d, r, ϕ) =

∫
1≤|x|≤r |∇ϕ (x) |2dx.

Define a number n(k) ∈ N ∪ {∞} by

n(k) := inf

{
n ∈ N : Ew(un, un) ≤ 1

k

∫
Rd

|un(x)|2e−w(x)dx

}
, k ∈ N.

Lemma 3.3. Let k ∈ N such that n(k) <∞ and Ew(un(k), un(k)) 6= 0. Then we have∫
Rd

|un(k)(x)|2e−w(x)dx <
C2

2
kr(d−2)(n(k)−1) exp

(
−w(rn(k)−1, rn(k))

)
×

(
1 +

(rd − 1)rdn(k) exp
(
−w(rn(k)−1, rn(k)+1)

)
exp (−w(0, 1))

)
.

Proof. We note that the choice of k ∈ N and the definition of n(k) imply∫
Rd

|un(k)−1(x)|2e−w(x)dx <
k

2

∫
Rd

|∇un(k)−1(x)|2e−w(x)dx.
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In view of (3.7), (3.9) and (3.10), we then have∫
Rd

|un(k)(x)|2e−w(x)dx =

∫
Rd |un(k)(x)|2e−w(x)dx∫
Rd |un(k)−1(x)|2e−w(x)dx

∫
Rd

|un(k)−1(x)|2e−w(x)dx

<
1

2

(
1 +

∫
Rd

(
|un(k)|2 − |un(k)−1|2

)
e−w(x)dx∫

Rd |un(k)−1|2e−w(x)dx

)
k

∫
Rd

|∇un(k)−1(x)|2e−w(x)dx

≤ C2

2

(
1 +

∫
rn(k)−1≤|x|≤rn(k)+1 e

−w(x)dx

Vd exp (−w(0, 1))

)
kr(d−2)(n(k)−1) exp

(
−w(rn(k)−1, rn(k))

)
≤ C2

2

(
1 +

(rd − 1)rdn(k) exp
(
−w(rn(k)−1, rn(k)+1)

)
exp (−w(0, 1))

)
× kr(d−2)(n(k)−1) exp

(
−w(rn(k)−1, rn(k))

)
.

Lemma 3.4. Let k ∈ N such that n(k) <∞ and Ew(un(k), un(k)) 6= 0. Then we have∫
Rd

|un(k)(x)|2e−w(x)dx

< C̃kd/2 exp

(
−w(0, rn(k)+1)− d

2
w(rn(k)−1, rn(k)) +

d

2
w(0, rn(k)−2)

)
,

where C̃ := (2Vd)
−d/2C1C

d/2
2 rd(d+2)/2.

Proof. In view of (3.8) for ` = 1 and (3.10), we see that for n ∈ N∫
Rd |∇un(x)|2e−w(x)dx∫
Rd |un(x)|2e−w(x)dx

≤ C2

Vd
r−2n+d exp

(
−w(rn, rn+1) + w(0, rn−1)

)
.

From this inequality and the definition of n(k), we have

1

k
<

C2

2Vd
r−2n(k)+d+2 exp

(
−w(rn(k)−1, rn(k)) + w(0, rn(k)−2)

)
for k ∈ N such that n(k) <∞ and Ew(un(k), un(k)) 6= 0. Hence

rdn(k) =
(
r2n(k)

)d/2
<

(
rd+2C2

2Vd

)d/2
kd/2 exp

(
−d

2
w(rn(k)−1, rn(k)) +

d

2
w(0, rn(k)−2)

)
.

Applying this inequality to the upper estimate in (3.7), we can obtain the assertion.

The condition n(k) < ∞ for any k ∈ N is guaranteed in the case of d-dimensional
Brownian motion (or the Dirichlet form (E0,F0)). Therefore, by virtue of Lemma 3.4, we
have the following fact.

Corollary 3.5. For any k ∈ N, it holds that

k−d/2
∫
Rd

|un(k)(x)|2dx < C̃,

where C̃ is the constant which appeared in Lemma 3.4.
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4 Recurrence of diffusion processes in random environments

LetW be the space of locally bounded and Borel measurable functions on Rd with
the topology generated by the uniform convergence on compact sets. Let B(W) be the
Borel σ-field of W and Q be a probability measure on (W,B(W)). We call an element
w ∈ W an environment and assume that Q(w(0) = 0) = 1. For given w ∈ W, we define
the Dirichlet form (Ew,Fw) by (2.1) and let Xw = (Xw(t), Pwx ) be the associated diffusion
process of (Ew,Fw).

For r > 1 and α > 0, let T be a mapping fromW toW defined by Tw(x) = r−αw(rx)

for x ∈ Rd. We assume the α-semi-selfsimilarity of (W,B(W),Q) by (2.2). We say that a
mapping T is weakly mixing if

lim
n→∞

1

n

n−1∑
k=0

∣∣Q (T kA1 ∩A2

)
−Q(A1)Q(A2)

∣∣ = 0

for A1, A2 ∈ B(W).
As in the proof of Theorem 2.2 in [9], we can prove the following lemma.

Lemma 4.1. Assume that T is weakly mixing. If A ∈ B(W) satisfies Q(A) > 0, then, for
Q-almost every w ∈ W, {n ∈ N : Tnw ∈ A} is an infinite set.

Let ϕ and {un} be the functions defined as in Section 3. For givenN-valued increasing
sequence {n`}`≥1, define `(k) ∈ N ∪ {∞} by

`(k) := `(k,w) = inf

{
` ∈ N : Ew(un`

, un`
) ≤ 1

k

∫
Rd

|un`
(x)|2 e−w(x)dx

}
, k ∈ N.

By using Lemma 4.1 above, we have the estimate as follows.

Proposition 4.2. Assume that T is a weakly mixing and

Q
(
w(1, r2) > a, w(1, r2)− w(0, 1) < b

)
> 0 (4.1)

for 0 < a < b <∞. Then, for Q-almost every w ∈ W, there exists an N-valued increasing
sequence {nw` }`≥1 such that

1

kγ

∫
Rd

∣∣∣unw
`(k)

(x)
∣∣∣2 e−w(x)dx = o

(
exp

(
(b(1− γ)− a+ ε)rα(n

w
`(k)−1)

))
(k →∞)

for any ε > 0 and γ ∈ [0, 1].

Remark 4.3. The assumption (4.1) implies that the probability that w looks like in Figure
1 is positive.

Proof. Set
A :=

{
w ∈ W : w(r−1, r) > ar−α, w(1, r)− w(0, 1) < br−α

}
.

Then we see

Q(A) = Q
(
w(1, r2) > a, w(r, r2)− w(0, r) < b

)
≥ Q

(
w(1, r2) > a, w(1, r2)− w(0, 1) < b

)
> 0

in view of (2.2). In view of Lemma 4.1, there exists N ∈ B(W) such that Q(N ) = 0, and
for w ∈ W \ N , w(0) = 0 and {n ∈ N : Tnw ∈ A} is an infinite set. For w ∈ W \ N , let
{nw` : ` ∈ N} be a strictly increasing sequence in {n ∈ N : Tnw ∈ A}. Then we have

w
(
rn

w
` −1, rn

w
`

)
≥ w

(
rn

w
` −1, rn

w
` +1

)
> arα(n

w
` −1)

w
(
rn

w
` , rn

w
` +1

)
− w

(
0, rn

w
`

)
< brα(n

w
` −1)

w(0, rn`) = w(0, rn`+1).

(4.2)
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Figure 1: For Remark 4.3

For the last equality above, we used the fact that w(0) = 0 implies

w(0, rn`) = min
{
w(0, rn`), arα(n`−1)

}
≤ min

{
w(0, rn`), w(rn`−1, rn`+1)

}
= w(0, rn`+1).

On the other hand, by applying the first inequality in (4.2) to Lemma 3.3, it holds that∫
Rd

∣∣∣unw
`(k)

(x)
∣∣∣2 e−w(x)dx ≤ C2 kr

(d−2)(nw
`(k)−1) exp

(
−arα(n

w
`(k)−1)

)
×

1 +
(rd − 1)rdn

w
`(k) exp

(
−arα(n

w
`(k)−1)

)
exp (−w(0, 1))


for k ∈ N. From this, one can get for sufficiently large k ∈ N that∫

Rd

∣∣∣unw
`(k)

(x)
∣∣∣2 e−w(x)dx ≤ Ckr(d−2)n

w
`(k) exp

(
−arα(n

w
`(k)−1) + w(0, 1)

)
, (4.3)

where C is a constant depending on d, r, α, ϕ and a. Moreover, since

Ew
(
unw

`(k)
, unw

`(k)

)
≤ 1

k

∫
Rd

∣∣∣unw
`(k)

(x)
∣∣∣2 e−w(x)dx, k ∈ N,

we have by (3.7) and (3.10) that for k ∈ N

C2r
−2nw

`(k) exp
(
−w

(
rn

w
`(k) , r

nw
n`(x)

+1
))
≤ 2

k
C1 exp

(
−w

(
0, r

nw
n`(x)

+1
))

. (4.4)
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Then, by virtue of the second and third relations in (4.2), and (4.4)

r−2n
w
`(k) exp

(
−brα(n

w
`(k)−1)

)
≤ r−2n

w
`(k) exp

(
w
(

0, r
nw
n`(x)

)
− w

(
rn

w
`(k) , r

nw
n`(x)

+1
))

= r−2n
w
`(k) exp

(
w
(

0, r
nw
n`(x)

+1
)
− w

(
rn

w
`(k) , r

nw
n`(x)

+1
))

≤ 2C1

kC2
,

hence, for γ ∈ [0, 1] and k ∈ N

r−2(1−γ)n
w
`(k) exp

(
−b(1− γ)rα(n

w
`(k)−1)

)
≤
(

2C1

kC2

)1−γ

.

From this inequality, we see that the right-hand side of (4.3) is dominated by

C

(
2C1

C2

)1−γ

kγr(d−2γ)n
w
`(k) exp

(
(b(1− γ)− a)rα(n

w
`(k)−1) + w(0, 1)

)
.

The proof is completed.

Now we prove Theorem 2.1 by applying Propositions 3.1 and 4.2.

Proof of Theorem 2.1. We note that

Q
(
w(1, r2)− w(0, 1) < 2w(1, r2)

)
= Q

 ⋃
ã∈(0,∞)∩Q

{
w(1, r2) > ã, w(1, r2)− w(0, 1) < 2ã

}
≤

∑
ã∈(0,∞)∩Q

Q
(
w(1, r2) > ã, w(1, r2)− w(0, 1) < 2ã

)
.

In view of this fact, the assumption (2.3) implies that there exists a > 0 such that

Q
(
w(1, r2) > a, w(1, r2)− w(0, 1) < 2a− 4ε

)
> 0 (4.5)

for a sufficiently small ε > 0. Thus, by applying Proposition 4.2 with γ = 1/2 and
b = 2a− ε, we see that

k−1/2
∫
Rd

∣∣∣unw
`(k)

(x)
∣∣∣2 e−w(x)dx −→ 0 as k →∞. (4.6)

Then, by Corollary 3.5 and (4.6),

2

k

(∫
Rd

∣∣∣unw
`(k)

(x)
∣∣∣2 e−w(x)dx

)(∫
R1

∣∣un(k)(x)
∣∣2 dx

)
≤ 2C̃

k1/2

∫
Rd

∣∣∣unw
`(k)

(x)
∣∣∣2 e−w(x)dx −→ 0

as k →∞. Moreover, (4.5) implies Q(w(1, r) > a) > 0 and therefore, Xw(t) is recurrent
for almost all environments in view of [9, Theorem 2.2]. Hence, by virtue of Proposition
3.1, we can conclude that (Xw(t), B(t)) is recurrent for almost all environments.

5 Applications to explicit random environments

In this section, as applications of a random environment appeared in Section 4, we
consider the recurrence of the product of diffusion processes in semi-selfsimilar Gaussian
and Lévy random environments, and show Theorems 2.2 and 2.4, and Corollary 2.3.
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5.1 Gaussian random environments

LetW be the space of locally bounded Borel measurable functions w on Rd, with the
topology generated by the uniform convergence on compact sets. We define a probability
measure Q on (W,B(W)) by a Gaussian measure, that is, (w(x1), w(x2), . . . w(xn)) has
an n-dimensional Gaussian distribution under Q, where x1, x2, . . . , xn ∈ Rd for n ∈ N.
We assume that Q(w(0) = 0) = 1 and EQ[w(x)] = 0 for x ∈ Rd. Here EQ stands
for the expectation with respect to Q. Let K be the covariance kernel of Q, that is,
K(x, y) = EQ[w(x)w(y)] for x, y ∈ Rd. Since Q is a probability measure on (W,B(W)),
K is a measurable function on Rd ×Rd.

It is well-known that the law of a Gaussian measure is determined by the mean and
the covariance kernel. First, we are going to consider a sufficient condition for (2.3) in
Theorem 2.1.

Lemma 5.1. Assume that for r > 1

sup
1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy − inf
|x|≤1

∫
|y|≤r2

K(x, y)dy < 2 inf
1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy.

Then the assumption (2.3) holds.

Proof. The proof is similar to that of [9, Lemma 3.1]. So, we omit the detail and see only
the sketch of the proof. By the general theory of the Gaussian system, for f ∈ L2(Rd,dx)

with compact support,
∫
Rd K(·, y)f(y)dy is in the Cameron-Martin space H associated to

Q on (W,B(W)). In particular, ∫
|y|≤r2

K(·, y) dy ∈ H. (5.1)

On the other hand, since H is dense in the support of Q, for any g ∈ H

Q
(

sup
x∈Rd

|w(x)− g(x)| < ε

)
> 0 for any ε > 0.

This inequality and (5.1) imply

Q

(
sup
x∈Rd

∣∣∣∣∣w(x)−
∫
|y|≤r2

K(x, y) dy

∣∣∣∣∣ < ε

)
> 0. (5.2)

Let

δ := 2 inf
1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy −

(
sup

1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy − inf
|x|≤1

∫
|y|≤r2

K(x, y)dy

)

and choose ε ∈ (0, δ/4). Then, if

sup
x∈Rd

∣∣∣∣∣w(x)−
∫
|y|≤r2

K(x, y)dy

∣∣∣∣∣ < ε,

we have

sup
1≤|x|≤r2

w(x)− inf
|x|≤1

w(x) < 2 inf
1≤|x|≤r2

w(x) + 4ε− δ < 2 inf
1≤|x|≤r2

w(x).

Therefore, by (5.2) we have the assertion.
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Next we consider a sufficient condition for the mixing condition. In the sequel, let
r > 1, α > 0 and T be a mapping fromW toW defined by Tw(x) = r−αw(rx) for x ∈ Rd
satisfying (2.2). We say that T is strongly mixing if

lim
n→∞

Q(TnA1 ∩A2) = Q(A1)Q(A2), A1, A2 ∈ B(W).

It is well known that every strongly mixing transformation is weakly mixing, hence is
ergodic (see [20]). Set D1 := {x ∈ Rd; 1 < |x| < r}. Then, we see the following.

Lemma 5.2 (Lemma 3.3 in [9]). If

lim
n→∞

r−αn sup
x,y∈D1

K(rnx, y) = 0,

then T is strongly mixing.

Now we prove Theorem 2.2 and Corollary 2.3.

Proof of Theorem 2.2. For w ∈ W, let Xw = (Xw(t), Pwx ) be the d-dimensional diffusion
process associated to (Ew,Fw) defined by (2.1). Note that the condition (2.3) implies
Q(w(1, r) > a0) > 0 for some a0 > 0. Thus, if T onW is weakly mixing, Xw is recurrent
for almost all environment ([9, Theorem 2.2]). From this fact with Theorem 2.1, Lemmas
5.1 and 5.2, we have Theorem 2.2.

Proof of Corollary 2.3. Let w be the two-sided Brownian motion on R under Q. In this
case, w and r−1/2w(r ·) have the same law. Furthermore, the covariance kernel K(x, y)

is given by
K(x, y) = (|x| ∧ |y|)1(0,∞)(xy), x, y ∈ R.

Choose r satisfying 1 < r <
√

2 +
√

2. Then, since

sup
1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy =
1

2
r4, inf

|x|≤1

∫
|y|≤r2

K(x, y)dy = 0,

inf
1≤|x|≤r2

∫
|y|≤r2

K(x, y)dy = r2 − 1

2
,

(2.4) is satisfied. Moreover, it is easy to see that (2.5) is satisfied. On the other
hand, we note that the Brox’s diffusion process Yw(t) is a time changed process of the
one-dimensional diffusion process Xw(t) by the positive continuous additive functional∫ ·
0
e−w(Xw(s))ds. Then the Dirichlet form (Ěw, F̌w) corresponding to Yw(t) is given by

(2.1) replacing the underlying measure e−w(x)dx with e−2w(x)dx. It is well-known that
Xw(t) is recurrent (see [19]). Hence, by Corollary 3.2 and Theorem 2.2, we obtain the
assertion.

5.2 Products of environments generated by Lévy processes

LetW be the space of functions w on R satisfying the following: w(0) = 0, w is right
(resp. left) continuous with left (resp. right) limits on [0,∞) (resp. (−∞, 0)). For i =

1, 2, . . . , d we set a probability measure Qi on (W,B(W)) such that (w(x), x ∈ [0,∞),Qi)
and (w(−x), x ∈ [0,∞),Qi) are independent semi-selfsimilar Lévy processes with an
exponent αi ∈ (0, 2] (see Definitions 13.4 and 13.12 in [14]). Define the probability
measure Q on (Wd,B(W)⊗d) by

Q :=

d⊗
i=1

Qi.

Denote the ith component of w ∈ Wd by wi and denote wi+(t) := wi(t) and wi−(t) := wi(−t)
for t ∈ [0,∞).

By a similar argument to the proof of Proposition 2.1 in [10], we have the following.
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Lemma 5.3. Let i = 1, 2, . . . , d. If αi = 2 or both wi+ and wi− have positive jumps with
positive probabilities, then there exists a positive constant M such that for any a > 0

Q
({
wi(0, 1) > −M

}
∩
{(
wi(−1) ∧ wi(1)

)
> a

})
> 0.

Proof. First we prove that there exists M > 0 such that for any a > 0

Q
({

inf
t∈[0,1]

wi+(t) > −M
}
∩
{
wi+(1) > a

})
> 0, i = 1, 2, . . . , d. (5.3)

If αi = 2, then wi+ is a Brownian motion and hence (5.3) holds. Assume that αi ∈ (0, 2). In
this case, we note that the Lévy measure ν of wi+ is not trivial and its Gaussian part is to
be 0. Since wi+ has positive jumps with a positive probability, we can choose ε ∈ (0, 1] such
that ν((ε,∞)) > 0. For i = 1, 2, . . . , d, let vi1, v

i
2 and vi3 be independent Lévy processes

associated to the triplets (0, ν(· ∩ (ε,∞)), 0), (0, ν(· ∩ [−1, ε]), 0) and (0, ν(· ∩ (−∞,−1)), 0),
respectively. Then, the equality in law(

wi+(t), t ∈ [0,∞)
) law

=
(
vi1(t) + vi2(t) + vi3(t) + ct, t ∈ [0,∞)

)
(5.4)

holds for a constant c ∈ R. Note that vi2 is right-continuous with left limits almost surely.
So there exists M > 0 such that

Q

(
sup
t∈[0,1]

∣∣vi2(t)
∣∣ < M − |c|

)
> 0. (5.5)

Also, since ν((ε,∞)) > 0, vi1 ≥ 0 almost surely and we have

Q
(
vi1(1) > a+M + |c|

)
> 0 (5.6)

for any a > 0. On the other hand, the definition of the Lévy measure implies
ν((−∞,−1)) <∞, and hence

Q
(
vi3(t) = 0 for t ∈ [0, 1]

)
> 0. (5.7)

From (5.4), (5.5), (5.7), (5.6) and the independence of vi1, vi2 and vi3, we then obtain

Q
({

inf
t∈[0,1]

wi+(t) > −M
}
∩
{
wi+(1) > a

})
≥ Q

(
{vi1(1) > a+M + |c|} ∩

{
inf

t∈[0,1]
vi2(t) > −M + |c|

}
∩
{
vi3(t) = 0 for t ∈ [0, 1]

})
= Q

(
vi1(1) > a+M + |c|

)
Q
(

inf
t∈[0,1]

vi2(t) > −M + |c|
)
Q
(
vi3(t) = 0 for t ∈ [0, 1]

)
> 0.

Thus, we obtain (5.3). Similarly to above, we also have

Q
({

inf
t∈[0,1]

wi−(t) > −M
}
∩
{
wi−(1) > a

})
> 0. (5.8)

Now, on account of (5.3) and (5.8)

Q
({
wi(0, 1) > −M

}
∩
{
wi(−1) ∧ wi(1) > a

})
= Q

({
inf

t∈[0,1]
wi+(x) > −M

}
∩ {wi+(1) > a}

)
Q
({

inf
t∈[0,1]

wi−(t) > −M
}
∩ {wi−(1) > a}

)
> 0

for any a > 0 and i = 1, 2, . . . , d.
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From this lemma, we have the following.

Lemma 5.4. Let i = 1, 2, . . . , d. If αi = 2 or both wi+ and wi− have positive jumps with
positive probabilities, then there exists â > 0 such that for any ε > 0

Q
(
wi(1, r2) > â, wi(1, r2)− wi(0, 1) < â(1 + ε)

)
> 0.

Proof. It is sufficient to show that there exists â > 0 such that for any ε > 0 and
i = 1, 2, . . . , d,

Q

(
inf

t∈[1,r2]
wi+(t) > â, sup

t∈[1,r2]
wi+(x)− inf

t∈[0,1]
wi+(x) < â(1 + ε)

)
> 0, (5.9)

because the proof of (5.9) for (wi−(x), x ∈ (−∞, 0)) is almost same. Since wi+ is a Lévy
process, (wi+(t)− wi+(1), t ∈ [1,∞)) and (wi+(t), t ∈ [0, 1]) are independent. Then, for any
â > 0 and i = 1, 2, . . . , d, we have

Q

(
inf

t∈[1,r2]
wi+(t) > â, sup

t∈[1,r2]
wi+(t)− inf

t∈[0,1]
wi+(t) < â(1 + ε)

)

= Q
(
â− wi+(1) < wi+(t)− wi+(1) < â(1 + ε)− wi+(1) + inf

t∈[0,1]
wi+(t) for t ∈ [1, r2]

)
≥ Q

({
−εâ

4
< wi+(t)− wi+(1) <

εâ

4
for t ∈ [1, r2]

}
∩
{

inf
t∈[0,1]

wi+(t) > −εâ
4

}
∩
{

(4 + ε)â

4
< wi+(1) <

(2 + ε)â

2

})
= Q

(
−εâ

4
< wi+(t)− wi+(1) <

εâ

4
for t ∈ [1, r2]

)
×Q

({
inf

t∈[0,1]
wi+(t) > −εâ

4

}
∩
{

(4 + ε)â

4
< wi+(1) <

(2 + ε)â

2

})
≥ Q

(
sup

t∈[1,r2]
|wi+(t)− wi+(1)| < εâ

4

)

×Q
({

inf
t∈[0,1]

wi+(t) > −εâ
4

}
∩
{

(4 + ε)â

4
< wi+(1) <

(2 + ε)â

2

})
.

Let M be the constant appeared in Lemma 5.3 and let M̃ > 0 be a constant satisfying

Q

(
sup

t∈[1,r2]

∣∣wi+(t)− wi+(1)
∣∣ < M̃

)
> 0.

Then, by taking â ∈ [4(M ∨ M̃)/ε,∞), we have

Q

(
sup

t∈[1,r2]

∣∣wi+(t)− wi+(1)
∣∣ < εâ

4

)
> 0. (5.10)

On the other hand, by noting the fact that (5.3) holds for any a > 0, we can take â > 0

such that

Q
({

inf
t∈[0,1]

wi+(t) > −εâ
4

}
∩
{

(4 + ε)â

4
< wi+(1) <

(2 + ε)â

2

})
≥ Q

({
inf

t∈[0,1]
wi+(t) > −M

}
∩
{

(4 + ε)â

4
< wi+(1) <

(2 + ε)â

2

})
> 0. (5.11)

Therefore, we can conclude the assertion for â > 0 satisfying both (5.10) and (5.11).
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Now we prove Theorem 2.4 by applying Propositions 3.1 and 4.2, and Lemma 5.4.

Proof of Theorem 2.4. Let define a random function w by

w(x) :=

d∑
i=1

wi
(
x(i)
)
, x = (x(1), x(2), . . . , x(d)) ∈ Rd.

For this w, let Xw = (Xw(t), Pwx ) be the diffusion process associated to the Dirichlet
form (Ew,Fw) given by (2.1). Then, it is the d-dimensional direct products of diffusion
processes in products of random environments generated by one-dimensional semi-
selfsimilar Lévy processes {(wi(x), x ∈ R), i = 1, 2, . . . , d}, that is,

Xw(t) =
(
X1
w1(t), X2

w2(t), . . . , Xd
wd(t)

)
.

We remark that the components of X(w)
t are independent for each environment w,

because

e−w(x)dx =

d∏
i=1

e−w
i(x(i))dx(i)

for x = (x(1), x(2), . . . , x(d)) ∈ Rd. In view of Propositions 3.1 and 4.2, and Lemma 5.4 we
obtain the assertion.
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