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Abstract

Random union sets Z associated with stationary Poisson processes of k-cylinders inRd

are considered. Under general conditions on the typical cylinder base a concentration
inequality for the volume of Z restricted to a compact window is derived. Assuming
convexity of the typical cylinder base and isotropy of Z a concentration inequality
for intrinsic volumes of arbitrary order is established. A number of special cases are
discussed, for example the case when the cylinder bases arise from a random rotation
of a fixed convex body. Also the situation of expanding windows is studied. Special
attention is payed to the case k = 0, which corresponds to the classical Boolean model.
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1 Introduction

The stationary Boolean model is one of the most versatile models considered in
stochastic geometry. Its numerous applications range, for example, from coverage
optimization in telecommunication networks to questions related to virtual material
design. While mean value formulas for the intrinsic volumes of the Boolean model are
rather classical (see, e.g., [18]), only recently a satisfactory description of second-order
properties was derived by Hug, Last and Schulte [12] together with an accompanying
central limit theory. In addition, building on a concentration inequality for Poisson
functionals on abstract phase spaces Gieringer and Last [5] obtained concentration
inequalities for a class of measures associated with a rather general Boolean model
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in an observation window. On their way they were able to refine earlier estimates
of Heinrich [6] for the volume of a stationary Boolean model in Rd restricted to a
compact observation window, which in turn were obtained by means of sharp bounds
on cumulants.

The aim of the present paper is to prove concentration inequalities for the volume as
well as for the intrinsic volumes associated with the union set of a stationary Poisson
cylinder process in Rd restricted to a compact window. For k ∈ {0, 1, . . . , d − 1} we
understand by a k-cylinder the Minkowski sum of a k-dimensional linear subspace in Rd

and a compact set in its orthogonal complement. A Poisson process of k-cylinders (or
Poisson cylinder process for short) is a Poisson process on the space of k-cylinders in Rd.
We refer to Section 2.2 for a formal description of the model. In this paper we consider
the union set Z associated with such a Poisson cylinder process, which is observed in
a compact window W ⊂ Rd. It is assumed throughout that Z is a stationary random
closed set. In this case the distribution of Z is determined by an intensity parameter
γ ∈ (0,∞) as well as the distribution Q of the pair (Ξ,Θ), where Ξ describes the base
and Θ the direction of the typical cylinder. It is worth pointing out that the concept of a
Poisson cylinder process generalizes that of the Boolean model discussed above, which is
included as the special case k = 0. In this situation Ξ is the typical grain of the Boolean
model and the random direction Θ has no relevance. Poisson cylinder processes were
formally introduced by Matheron [14], Miles [15] and Weil [21]. More recently, central
limit theorems for stationary Poisson processes of cylinders were studied by Heinrich
and Spiess [7, 8]. Under an exponential moment assumption on the (d− k)-volume of
the typical cylinder base they obtained in [7] a central limit theorem for the volume of
Z in a sequence of growing windows, that is, for Z ∩Wr, where Wr = rW , as r → ∞.
More precisely, using sharp bounds on cumulants they were able to deduce a rate of
convergence as well as Cramér-type large deviations. In a subsequent paper [8] they
were able to relax the moment assumptions and to add a central limit theorem for the
surface content. Characteristic quantities like volume fraction, covariance function and
contact distribution functions of anisotropic Poisson cylinder processes were investigated
by Spiess and Spodarev [19], while Bräu and Heinrich [3] investigated mixing properties
of Poisson cylinder processes. In addition, percolation and connectivity properties
related to Poisson cylinder processes with spherical bases and k = 1 were studied by
Tykesson and Windisch [20], Hilario, Sidoravicius and Teixeira [9] as well as Borman
and Tykesson [2].

The aim of the present paper is to derive tail bounds for the volume as well as for
the intrinsic volumes of the random union set Z associated with a stationary Poisson
cylinder process restricted to a compact observation window. More precisely, under
rather general assumptions on the distribution of the typical cylinder base we derive
bounds for the upper and lower tail of the volume (d-dimensional Lebesgue measure)
F := λd(Z ∩W ) of Z ∩W , where W ⊂ Rd is a compact set with positive volume. Our
bounds generalize in a natural way the results for the Boolean model from [5]. A number
of special cases are discussed separately. For example, we consider the case where
the cylinder bases are random rotations of a fixed convex body. We will see that in this
situation our tail bounds are of the form

P(F − EF ≥ r) ≤ exp(−Θ(r log r)), r ≥ 0, (1.1)

P(F − EF ≤ −r) ≤ exp(−Θ(r2)), 0 ≤ r ≤ EF, (1.2)

where Θ(r log r) stands for a quantity from O(r log r) ∩ Ω(r log r) in the usual Lan-
dau notation, where for two functions f, g : [0,∞) → R one writes f = O(g) if
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Figure 1: Left panel: Simulation of an isotropic Poisson cylinder process in R3 with
spherical cylinder base. Right panel: Simulation of an anisotropic Poisson cylinder
process in R3 with rectangular cylinder base. Both simulations were provided by Claudia
Redenbach, Kaiserslautern.

lim sup
r→∞

|f(r)/g(r)| < ∞ and f = Ω(g) provided that lim sup
r→∞

|f(r)/g(r)| > 0. As for the

Boolean model this constitutes a significant improvement compared to the bounds that
can be deduced by means of the general limit theorems for large deviations [17] from
the cumulant estimates provided in [7]. For comparison of estimates (1.1) and (1.2) with
analogous results in the case of sums of independent random variables we refer reader
to [1].

Beside the volume of Z ∩W we also study the intrinsic volumes of Z ∩W under the
assumption that the cylinder bases are convex and that the union set Z is a stationary and
isotropic random closed set. We emphasize that the intrinsic volumes are of particular
importance since every continuous, additive and motion-invariant functional on the
class of convex bodies can be represented as a linear combination of intrinsic volumes
(this is the content of Hadwiger’s theorem). We remark that compared to the volume
case the intrinsic volumes are more difficult to handle. This partially relies on the
fact that even mean value formulas for intrinsic volumes of (stationary and isotropic)
Poisson cylinder processes are not available in the existing literature and needed to be
developed in the present paper as well. In addition, for the case of intrinsic volumes,
isoperimetric inequalities have to be used in order to bring the bounds in a convenient
form. As for the volume we consider especially the case where the cylinder bases are
random rotations of a fixed convex body and deduce bounds which are comparable
to (1.1) and (1.2). We remark that our results for intrinsic volumes are new even for
the special case of the Boolean model for which only the case of the surface content
was previously studied in [4] under quite restrictive assumptions on the typical cylinder
base.

The remaining parts of this paper are structured as follows. In Section 2.1 we gather
some notation and in Section 2.2 we recall the formal definition and description of a
Poisson cylinder process and its associated union set. In particular, we derive there a
necessary and sufficient criterion under which the union set is isotropic. A concentration
inequality for general Poisson functionals from [5] is presented in Section 2.3. Tail
bounds for the volume are the content of Section 3 and a number of special cases are
discussed in Section 4. We present concentration properties for the class of intrinsic
volumes in the final Section 5.
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2 Preliminaries

2.1 General notation

For d ∈ N we let λd be the Lebesgue measure on Rd. The s-dimensional Hausdorff
measure is denoted by Hs, s ≥ 0. A centered Euclidean ball in Rd with radius r > 0 is
denoted by Bdr . The volume of the d-dimensional unit ball is given by κd := λd(B

d
1 ) =

πd/2

Γ(1+d/2) . We let C′(Rd) be the space of non-empty compact subsets of Rd and recall that

by a convex body K ⊂ Rd we understand a compact convex set with non-empty interior.
For k ∈ {0, 1, . . . , d} and a convex body K ⊂ Rd we let Vj(K) be the j-th intrinsic volume
of K. In particular, Vd(K) = λd(K), Vd−1(K) = 1

2H
d−1(∂K) and V1(K) is a constant

multiple of the mean width of K. We use the symbol diam(A) to indicate the diameter
of a set A ⊂ Rd. For a (possibly lower-dimensional) convex set K ⊂ Rd we denote
by K∗ = −K the reflection of K at the origin. Moreover, the linear hull of A ⊂ Rd is
denoted by lin(A). By Pd−k : Rd → Rd−k we denote the orthogonal projection of Rd to
Rd−k, i.e., the projection to the first d − k coordinates. By Od and SOd we denote the
group of orthogonal d× d matrices and of orthogonal d× d matrices with determinant 1,
respectively. Given two numbers x, y ∈ R we denote by x ∧ y := min(x, y) the minimum
of x and y.

2.2 Poisson cylinder processes

Let d ≥ 2 and k ∈ {0, 1, . . . , d − 1}. Further, we let G(d, k) be the Grassmannian
of k-dimensional linear subspaces of Rd. By a k-cylinder in Rd one understands the
Minkowski sum of some L ∈ G(d, k) with a non-empty compact subset of L⊥, the
orthogonal complement of L. We identify a subspace L ∈ G(d, k) with the unique
element φL of the equivalence class ΦL of orthogonal matrices φ ∈ SOd satisfying
L = φEk, where Ek = lin(ed−k+1, . . . , ed) and e1, . . . , ed is the standard orthonormal
basis in Rd. In fact, one can choose for φL the lexicografically smallest element of
the compact set ΦL, which yields a one-to-one correspondence between G(d, k) and
SOd,k := {φL = lex min ΦL : L ∈ G(d, k)} up to orientation of the subspaces, cf. [7, 8]. In
particular, this allows us to regard SOd,k as a compact homogeneous space for SOd.

Fix γ ∈ (0,∞) and let η be a stationary Poisson process on lin(e1, . . . , ed−k) ⊂ Rd
with intensity γ. Let C′d−k be the space of non-empty compact subsets of lin(e1, . . . , ed−k).
Here and in what follows, we identify lin(e1, . . . , ed−k) with Rd−k ⊂ Rd. We define
Md,k := SOd,k × C′d−k and let Q be a probability measure on Md,k. By ξ we denote an
independent Q-marking of η, which is a Poisson process on the product spaceRd−k×Md,k

with intensity measure γ λd−k ⊗Q, cf. [13]. Further we denote by (Θ,Ξ) a random pair
with distribution Q. It represents the (not necessarily independent) distribution of the
direction and the base of the typical cylinder in the usual sense of Palm theory. By a
stationary Poisson process of k-cylinders with intensity γ and base-direction distribution
Q we understand the point process

ξ̃ :=
∑

(x,θ,K)∈ξ

δZ(x,θ,K), Z(x, θ,K) = θ((K + x)× Ek)

on the space of k-cylinders in Rd, where δ( · ) denotes the Dirac measure, cf. [7, 8]. In
this paper we are interested in the random union set

Z :=
⋃
X∈ξ̃

X =
⋃

(x,θ,K)∈ξ

Z(x, θ,K)

induced by the stationary marked Poisson process ξ or the stationary Poisson cylinder
process ξ̃, respectively, where we write X ∈ ξ̃ to indicate that X belongs to the support
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of ξ̃. It is known from [7, 8] that Z is a random closed subset of Rd in the usual sense of
stochastic geometry [18, Chapter 2], provided that

Eλd−k(Ξ +Bd−kε ) <∞ for some ε > 0. (2.1)

In this case, F := λd(Z ∩W ) is a well-defined random variable for any compact subset
W ⊂ Rd. In what follows we shall assume that (2.1) is always satisfied.

Another point we shall discuss here is the isotropy property of the random union
set Z, which means that ρZ has the same distribution as Z for all ρ ∈ SOd. While for
the Boolean model an isotropy criterion is well known, surprisingly we were not able to
locate a necessary and sufficient condition for isotropy of Z in the existing literature.

Lemma 2.1. The random closed set Z is isotropic if and only if Q(SOd,k × · ) is an
Od−k-invariant probability measure on C′d−k and Q( · × C′d−k) is the SOd-invariant Haar
probability measure on SOd,k.

Proof. We recall that the capacity functional TX of a random closed set X is given by
TX(C) := P(X ∩ C 6= ∅), C ∈ C′(Rd). According to [18, Theorem 2.4.5] a random closed
set X is isotropic if and only if its capacity functional is rotation invariant, that is, if
TX(C) = TX(ρC) holds for all ρ ∈ SOd and C ∈ C′(Rd). The capacity functional TZ of Z
is known and given by

TZ(C) = 1− exp
(
− γEλd−k(Pd−k(ΘTC) + Ξ∗)

)
according to [19, Lemma 1] or the results in [7, Section 5]. Now, for ρ ∈ SOd consider

1− TZ(ρC) = exp
(
− γEλd−k(Pd−k(ΘT (ρC)) + Ξ∗)

)
and note that

Eλd−k
(
Pd−k(ΘT (ρC)) + Ξ∗

)
=

∫
Md,k

λd−k
(
Pd−k(θT (ρC)) +K∗

)
Q(d(θ,K))

=

∫
Md,k

λd−k
(
Pd−k((ρT θ)T (C)) +K∗

)
Q(d(θ,K)). (2.2)

It was mentioned in [7] that the space SOd,k is the same as the space of representatives
of the quotient space SOd/S(Od−k ×Ok), where S(Od−k ×Ok) can be identified with the
following space of block matrices:

S(Od−k ×Ok) =

{(
A 0

0 B

)
: A ∈ Od−k, B ∈ Ok, detA = detB

}
.

By construction of SOd,k as a space of canonical representatives, this means that every
element ρ ∈ SOd admits a unique decomposition

ρT = ρd,kρd−kρk (2.3)

where ρd,k ∈ SOd,k, ρd−k ∈ Õd−k and ρk ∈ Õk. Here, Õd−k and Õk are the sets of block
matrices given by

Õd−k :=

{(
A 0

0 Ik

)
: A ∈ Od−k

}
, Õk :=

{(
Id−k 0

0 B

)
: B ∈ Ok

}
with In being n × n identity matrix, n ∈ N. For any θ ∈ SOd,k there are uniquely

determined elements ρθd,k ∈ SOd,k, ρθd−k ∈ Õd−k and ρθk ∈ Õk such that

ρT θ = ρθd,kρ
θ
d−kρ

θ
k. (2.4)
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Plugging this into (2.2) yields

Eλd−k
(
Pd−k(ΘT (ρC)) + Ξ∗

)
=

∫
Md,k

λd−k
(
Pd−k((ρθd,kρ

θ
d−kρ

θ
k)T (C)) +K∗

)
Q(d(θ,K))

=

∫
Md,k

λd−k
(
Pd−k((ρθk)T (ρθd−k)T (ρθd,k)T (C))+K∗

)
Q(d(θ,K))

=

∫
Md,k

λd−k
(
Pd−k((ρθd,k)T (C)) + (ρθd−k)(K∗)

)
Q(d(θ,K))

=

∫
Md,k

λd−k
(
Pd−k((ρθd,k)T (C)) +K∗

)
Q(d(θ,K)).

Here, to obtain the third equality we used the fact that (ρθk)T does not influence the
projection Pd−k( · ), that ρθd−k acts in Rd−k and thus commutes with the projection Pd−k,
and that the Lebesgue measure λd−k is Od−k-invariant. Moreover, the last equality
follows from the fact that Q(SOd,k × · ) is Od−k-invariant by assumption.

To simplify the last expression further, we apply twice the change-of-basis formula
from linear algebra. This implies the relations

ρθd−k = θT ρd−kθ and ρθk = θT ρkθ.

Putting this together with (2.3) and (2.4) we conclude that

ρd,kρd−kρkθ = ρT θ = ρθd,k(θT ρd−kθ)(θ
T ρkθ) = ρθd,kθ

T ρd−kρkθ,

and hence ρθd,k = ρd,kθ. From this we obtain

1− TZ(ρC) = exp
(
− γ

∫
Md,k

λd−k
(
Pd−k((ρd,kθ)

T (C)) +K∗
)
Q(d(θ,K))

)

= exp
(
− γ

∫
Md,k

λd−k
(
Pd−k(θT (C)) +K∗

)
Q(d(θ,K))

)
= 1− TZ(C),

where we have used our assumption thatQ( · ×C′d−k) is the SOd-invariant Haar probability
measure on SOd,k. This concludes the proof.

For a measurable set M ⊆Md,k and ρ ∈ SOd we define

ρM := {(ρθd,k, ρθd−kK) : (θ,K) ∈M},

where we applied the decomposition ρθ = ρθd,kρ
θ
d−kρ

θ
k with ρθd,k ∈ SOd,k, ρθd−k ∈ Õd−k and

ρθk ∈ Õk using the notation introduced in the previous proof. We say that a probability
measure Q onMd,k is rotation invariant, provided that Q(ρM) = Q(M) for all measurable
M ⊆Md,k. Repeating the same argument as in the proof of Lemma 2.1 we can conclude
that Q is rotation invariant if and only if Q(SOd,k × · ) is an Od−k-invariant probability
measure on C′d−k and Q( · ×C′d−k) is the SOd-invariant Haar probability measure on SOd,k.
Especially, from Lemma 2.1 we conclude that the random union set Z is isotropic if and
only if Q is rotation invariant.
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2.3 Concentration inequalities for general Poisson functionals

In this section we rephrase a general concentration inequality for Poisson functionals
that was recently proved in [5] using a covariance identity for functionals of Poisson
processes on abstract phase spaces and a classical Chernoff-type argument. For this we
let (X,X ) be a measurable space and Λ be some σ-finite measure on X. By η we denote
a Poisson process on X with intensity measure Λ, which is defined over some probability
space (Ω,A,P), cf. [13]. By N = N(X) we denote the space of σ-finite counting measures
on X, which is supplied with the σ-field N induced by the vague topology on N. We
denote the distribution on N of a Poisson process with intensity measure Λ by ΠΛ. Finally,
by a Poisson functional we understand a random variable F P-almost surely satisfying
F = f(η) for some measurable function f : N→ R, called a representative of F .

For a measurable function f : N → R and a point x ∈ X we define the first-order
difference (or add-one-cost) operator by

Dxf(µ) = f(µ+ δx)− f(µ), µ ∈ N.

In particular, for a Poisson functional F with representative f we write DxF for Dxf(η).
For a square-integrable Poisson functional F ∈ L2(P) we define

sF := sup{s ≥ 0 : esF ∈ L2(P), DesF ∈ L2(P⊗ Λ)} ∈ [0,∞], (2.5)

and for s ∈ [0, sF ) we put

VF (s) :=

∫
X

(esDxF − 1)

1∫
0

∫
N

Dxf(ηt + µ) Π(1−t)Λ(dµ) dtΛ(dx), (2.6)

where ηt, t ∈ [0, 1] denotes a t-thinning of η (which is a Poisson process onX with intensity
measure tΛ). We are now in the position to rephrase the concentration inequality from
[5, Corollary 2.3].

Lemma 2.2. Let F = f(η) ∈ L2(P) be a Poisson functional such that DF ∈ L2(P ⊗ Λ).
Assume that P-almost surely VF (s) ≤ v(s) for some measurable function v : [0, sF )→ R.
Then

P(F − EF ≥ r) ≤ exp
(

inf
s∈[0,sF )

( s∫
0

v(u) du− rs
))
, r ≥ 0.

As already remarked in [5] a similar inequality holds for the lower tail of the dis-
tribution of F if sF and VF (s) from (2.5) and (2.6) are replaced by s

(lt)
F := s−F and

V
(lt)
F (s) := V−F (s), respectively. In particular, note that for s ∈ [0, s

(lt)
F ) the identity

V
(lt)
F (s) =

∫
X

(1− e−sDxF )

1∫
0

∫
N

Dxf(ηt + µ) Π(1−t)Λ(dµ) dtΛ(dx)

holds.

Lemma 2.3. Let F = f(η) ∈ L2(P) be such that DF ∈ L2(P⊗ Λ). Assume that P-almost

surely V (lt)
F (s) ≤ v(s) for some measurable function v : [0, s

(lt)
F )→ R. Then

P(F − EF ≤ −r) ≤ exp
(

inf
s∈[0,s

(lt)
F )

( s∫
0

v(u) du− rs
))
, r ≥ 0.
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3 A concentration inequality for the volume

Our goal in this section is to apply the concentration inequalities for general Poisson
functionals from Section 2.3 to the volume of the union set of a stationary Poisson
cylinder process within a bounded window. More precisely, we let Z be the union set
of a stationary Poisson process of k-cylinders in Rd with intensity γ ∈ (0,∞) and base-
direction distribution Q. We assume that all random quantities considered are defined
over some probability space (Ω,A,P). Moreover, we let W ⊂ Rd be a compact set with
λd(W ) > 0. We are interested in the Poisson functional

F := λd(Z ∩W ),

i.e., F is the total volume (d-dimensional Lebesgue measure) of all cylinders within W .
In this section and the next section we assume that the volume of the typical cylinder
base has positive and finite first moment, i.e.,

md−k := Eλd−k(Ξ) ∈ (0,∞).

In order to check the assumptions of Lemma 2.2, an analysis of the first-order
difference operator of F is necessary. We start by observing that the additivity of the
Lebesgue measure implies that, for (λd−k ⊗ Q)-almost all (x, θ,K) ∈ Rd−k ×Md,k, the
following equality

D(x,θ,K)F = λd((Z ∪ Z(x, θ,K)) ∩W )− λd(Z ∩W )

= λd(Z ∩W ) + λd(Z(x, θ,K) ∩W )− λd(Z ∩ Z(x, θ,K) ∩W )− λd(Z ∩W )

= λd(Z(x, θ,K) ∩W )− λd(Z ∩ Z(x, θ,K) ∩W )

holds P-almost surely. Using this representation for the difference operator, we can
prove the following technical result, where we recall the definition of the quantity sF
from (2.5) and also that s(lt)

F = s−F .

Lemma 3.1. Under the assumptions mentioned above we have that F ∈ L2(P), DF ∈
L2(P⊗ λd−k ⊗Q), sF =∞ and s(lt)

F =∞.

Proof. Corollary 18.8 in [13] shows that

E(F 2) ≤ (E(F ))2 + γ

∫
Rd−k

∫
Md,k

E[(D(x,θ,K)F )2]Q(d(θ,K))λd−k(dx)

≤ λd(W )2 + γ

∫
Rd−k

∫
Md,k

λd(Z(x, θ,K) ∩W )2Q(d(θ,K))λd−k(dx)

≤ λd(W )2+γ λd(W )2 (λd−k ⊗Q)
(
{(x, θ,K) ∈ Rd−k ×Md,k : Z(x, θ,K) ∩W 6= ∅}

)
<∞,

since W is compact and λd−k ⊗Q is a locally finite measure on Rd−k ×Md,k. This shows
that F ∈ L2(P) and at the same time DF ∈ L2(P⊗ λd−k ⊗Q).

Next, we let s ≥ 0 and observe that P-almost surely and for (λd−k ⊗ Q)-almost all
(x, θ,K) ∈ Rd−k ×Md,k,

D(x,θ,K)e
sF = esλd((Z∪Z(x,θ,K))∩W ) − esλd(Z∩W ) = esF

(
esD(x,θ,K)F − 1

)
.
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Thus,

E

∫
Rd−k

∫
Md,k

(
D(x,θ,K)e

sF
)2
Q(d(θ,K))λd−k(dx)

=

∫
Rd−k

∫
Md,k

E
[(
esF (esD(x,θ,K)F − 1)

)2]
Q(d(θ,K))λd−k(dx)

≤ E[e2sF ]

∫
Rd−k

∫
Md,k

(
esλd(Z(x,θ,K)∩W ) − 1

)2
Q(d(θ,K))λd−k(dx)

≤ e2sλd(W )
(
esλd(W ) − 1

)2
(λd−k ⊗Q)

(
{(x, θ,K) ∈ Rd−k ×Md,k : Z(x, θ,K) ∩W 6= ∅}

)
.

Since the last expression is finite for all s ≥ 0, we conclude that DesF ∈ L2(P⊗λd−k⊗Q).
Moreover, using that

Ee2sF ≤ e2sλd(W ),

we obtain the assertion that sF =∞. To prove that s(lt)
F =∞, we first observe that, since

P-almost surely e−sF ≤ 1, necessarily e−sF ∈ L2(P) for any s ≥ 0. In addition, similarly
to the above argument, we have that

E

∫
Rd−k

∫
Md,k

(
D(x,θ,K)e

−sF )2Q(d(θ,K))λd−k(dx)

≤ (λd−k ⊗Q)
(
{(x, θ,K) ∈ Rd−k ×Md,k : Z(x, θ,K) ∩W 6= ∅}

)
<∞

for any s ≥ 0. This shows that s(lt)
F =∞.

Recall that

EF = λd(W )(1− e−γ md−k) =: λd(W ) p, (3.1)

where p = 1− e−γ md−k is the volume fraction of the random union set Z, see [7, 19]. The
main result of this section is the following bound for the upper and the lower tail of the
volume of the union set of a stationary Poisson cylinder process in a window W .

Theorem 3.2. For all r ≥ 0, one has that

P(F − EF ≥ r)

≤ exp
(

inf
s≥0

( p

md−k
E
[
λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)

]
− rs

))
,

and for 0 ≤ r ≤ EF one has that

P(F − EF ≤ −r)

≤ exp
(

inf
s≥0

( p

md−k
E
[
λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(−sλWd−k(Ξ) diam(W )k)

]
− rs

))
,

where Ψ(x) := ex − x− 1, x ∈ R, and λWd−k(Ξ) := (λd−k(Ξ) ∧ diam(W )d−k).

Remark 3.3.

(i) Note that the condition 0 ≤ r ≤ EF in the inequality for the lower tail is not strictly
necessary. However, the inequality becomes trivial for all r > EF , since F can only
take non-negative values.
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(ii) Taking k = 0, Z is nothing else than a Boolean model based on a stationary Poisson
point process on Rd with intensity γ and typical grain Ξ. In this case the two
inequalities in Theorem 3.2 reduce to

P(F − EF ≥ r) ≤ exp
(

inf
s≥0

( p

md
E[λd(W + Ξ∗)Ψ(sλWd (Ξ))]− rs

))
, (3.2)

for r ≥ 0 and to

P(F − EF ≤ −r) ≤ exp
(

inf
s≥0

( p

md
E[λd(W + Ξ∗)Ψ(−sλWd (Ξ))]− rs

))
,

for 0 ≤ r ≤ EF . In this form they are known from [4, 5] and our result can be seen
as a natural generalization to k ∈ {1, . . . , d− 1}.

(iii) Consider the degenerate case where P-almost surely Ξ = {0}, which is not covered
by Theorem 3.2. Then Z is the union set associated with a stationary Poisson
process of k-flats in Rd, see [18, Section 4.4]. For simplicity assume that Z is
isotropic. In this case one can consider for compact and convex W ⊂ Rd with
λd(W ) > 0 the k-dimensional Hausdorff measure F = Hk(Z ∩W ). The difference
operator is then given by Hk(W ∩ θ(x + Ek)), independently of Z. One can thus
apply the general concentration inequality [23, Proposition 3.1] in combination
with Crofton’s formula [18, Theorem 5.1.1] from integral geometry to conclude
that

P(F − EF ≥ r) ≤ exp
(
− r

2b
log
(

1 +
br

a2

))
, r ≥ 0

with b =
(diam(W )

2

)k
κk and a = γ

κ3
kκd−k

(dk)κd

(diam(W )
2

)2k
Vd−k(W ). With different con-

stants a and b this can also be established along the lines of the proof of Theo-
rem 3.2.

Proof of Theorem 3.2 – Upper tail. In the first step, we deduce an upper bound for the
function VF (s), s ≥ 0, defined in (2.6). We start by putting Λ := γ λd−k⊗Q and considering
the term

Tt :=

∫
N

D(x,θ,K)f(ηt + µ) Π(1−t)Λ(dµ), t ∈ [0, 1],

where we denote by f a representative of F . By the superposition property of Poisson
processes, the inequality

D(x,θ,K)f(ηt + µ) ≤ D(x,θ,K)f(µ)

holds for (λd−k ⊗Q)-almost all (x, θ,K) and all t ∈ [0, 1]. Thus, we have that

Tt ≤ λd(Z(x, θ,K) ∩W )−
∫
N

λd(Z(µ) ∩ Z(x, θ,K) ∩W ) Π(1−t)Λ(dµ)

= λd(Z(x, θ,K) ∩W )− λd(Z(x, θ,K) ∩W )
(
1− e−(1−t) γ Eλd−k(Ξ)

)
= λd(Z(x, θ,K) ∩W ) e−(1−t)γ md−k .
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As a consequence and by using Fubini’s theorem, we find that

VF (s) ≤ γ
∫

Rd−k

∫
Md,k

(
esλd(Z(x,θ,K)∩W ) − 1

) 1∫
0

Tt dtQ(d(θ,K))λd−k(dx)

≤ γ
∫

Rd−k

∫
Md,k

(
esλd(Z(x,θ,K)∩W ) − 1

)

×
1∫

0

λd(Z(x, θ,K) ∩W ) e−(1−t)γ md−k dtQ(d(θ,K))λd−k(dx)

=
p

md−k
v(s),

where

v(s) :=

∫
Rd−k

∫
Md,k

(
esλd(Z(x,θ,K)∩W ) − 1

)
λd(Z(x, θ,K) ∩W )Q(d(θ,K))λd−k(dx)

and we recall that p = 1− e−γ md−k is the volume fraction of the random set Z.

In the next step, we shall provide an upper bound for the integral

w(s) :=
p

md−k

s∫
0

v(u) du.

We have that

md−k

p
w(s)

=

∫
Rd−k

∫
Md,k

s∫
0

(
euλd(Z(x,θ,K)∩W ) − 1

)
λd(Z(x, θ,K) ∩W ) duQ(d(θ,K))λd−k(dx)

=

∫
Rd−k

∫
Md,k

[
esλd(Z(x,θ,K)∩W ) − sλd(Z(x, θ,K) ∩W )− 1

]
Q(d(θ,K))λd−k(dx).

Since

λd(Z(x, θ,K) ∩W ) ≤ (λd−k(K) diam(W )k ∧ λd(W ))

≤ (λd−k(K) ∧ diam(W )d−k) diam(W )k

= λWd−k(K) diam(W )k

(3.3)

we obtain, using Fubini’s theorem and the fact that the function Ψ(x) = ex − x − 1 is
increasing for x > 0, that

md−k

p
w(s) ≤

∫
Md,k

[
esλ

W
d−k(K) diam(W )k − sλWd−k(K) diam(W )k − 1

]

×
∫

Rd−k

1{Z(x, θ,K) ∩W 6= ∅}λd−k(dx)Q(d(θ,K)).

EJP 25 (2020), paper 128.
Page 11/27

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP529
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration inequalities for Poisson cylinder processes

Now, for any fixed θ ∈ SOd,k we have that∫
Rd−k

1{Z(x, θ,K) ∩W 6= ∅}λd−k(dx)

=

∫
Rd−k

1{(K + x) ∩ Pd−k(θTW ) 6= ∅}λd−k(dx)

= λd−k(Pd−k(θTW ) +K∗).

(3.4)

Thus, we obtain

w(s) ≤ p

md−k

∫
Md,k

λd−k(Pd−k(θTW ) +K∗) Ψ(sλWd−k(K) diam(W )k)Q(d(θ,K))

=
p

md−k
E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)].

Combining now the general concentration inequality in Lemma 2.2 with Lemma 3.1 and
the above inequality finishes the proof for the upper tail.

Proof of Theorem 3.2 – Lower tail. A slight adaption of the proof for the upper tail also
shows the following bound for V (lt)

F (s), which will be used to control the lower tail of the
Poisson functional F . Namely, replacing F by −F we have already shown in the proof of
the bound for the upper tail that

V
(lt)
F (s) ≤ p

md−k
v(lt)(s),

where

v(lt)(s) =

∫
Rd−k

∫
Md,k

(
1− e−sλd(Z(x,θ,K)∩W )

)
λd(Z(x, θ,K) ∩W )Q(d(θ,K))λd−k(dx).

Now, we compute

md−k

p
w(lt)(s)

:=
md−k

p

s∫
0

v(lt)(u) du

=

∫
Rd−k

∫
Md,k

[
e−sλd(Z(x,θ,K)∩W ) + sλd(Z(x, θ,K) ∩W )− 1

]
Q(d(θ,K))λd−k(dx).

Using (3.3), Fubini’s theorem, the fact that the function Ψ(x) is decreasing for x < 0,
and (3.4) we find that

md−k

p
w(lt)(s) ≤

∫
Md,k

[
e−sλ

W
d−k(K) diam(W )k + sλWd−k(K) diam(W )k − 1

]

×
∫

Rd−k

1{Z(x, θ,K) ∩W 6= ∅}λd−k(dx)Q(d(θ,K))

=

∫
Md,k

λd−k(Pd−k(θTW ) +K∗) Ψ(−sλWd−k(K) diam(W )k)Q(d(θ,K))

= E[λd−k(Pd−k(ΘTW ) + Ξ∗) Ψ(−sλWd−k(Ξ) diam(W )k)].

Combining this with Lemma 2.3 and Lemma 3.1 we finish the proof of the lower tail.
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4 Special cases

In this section we will consider a number of special choices for the window W as
well as for the distribution of the typical cylinder base Ξ when the general estimates in
Theorem 3.2 can be made more explicit. To simplify the discussion, we will also assume
that the window W and the typical cylinder base Ξ are convex bodies (P-almost surely).

4.1 Randomly dilated and rotated cylinder bases

We start with the situation in which the cylinder bases are random rotations and
dilatation of a fixed convex body M ⊂ Rd−k. More precisely, if U is a uniform random
rotation in Rd−k (distributed according to the unique rotationally invariant Haar proba-
bility measure νd−k on SOd−k) and if R is a non-negative random variable with law PR
then Ξ = U(RM), where we assume that U and R are independent. In addition, we
assume that the direction Θ of the typical cylinder base is also uniformly distributed
on SOd,k according to the unique SOd-invariant Haar probability measure νd,k on SOd,k,
independently of U and R. We note that in this situation md−k = λd−k(M)ERd−k and

p = 1− e−γλd−k(M)ERd−k .

Corollary 4.1. Let the assumptions just described prevail. Assume that E[Rd−k] <∞,
and assume that λd−k(M) ∈ (0,∞). Then

P(F − EF ≥ r) ≤ exp
(

inf
s≥0

[ p

md−k

d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M)

× E[Rd−k−jΨ(αs(R ∧ diam(W ))d−k)]− rs
])

for any r ≥ 0, where α := λd−k(M) diam(W )k. Moreover, for any 0 ≤ r ≤ E[F ] we have
that

P(F − EF ≤ −r) ≤ exp
(

inf
s≥0

[ p

md−k

d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M)

× E[Rd−k−jΨ(−αs(R ∧ diam(W ))d−k)]− rs
])
.

Proof. We need to investigate the term

E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)],

which shows up in the exponents in Theorem 3.2. Using Fubini’s theorem, the assumed
independence properties of Θ and Ξ, the scaling property of the Lebesgue measure and
the invariance of the Lebesgue measure under rotations we have that

E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)]

=

∞∫
0

∫
SOd−k

∫
SOd,k

λd−k(Pd−k(θTW ) + %(rM∗)) Ψ(sλWd−k(%(rM)) diam(W )k)

× νd,k(dθ) νd−k(d%)PR(dr)

≤
∞∫

0

∫
SOd,k

∫
SOd−k

λd−k(Pd−k(θTW ) + %(rM∗))

×Ψ(sλd−k(M) diam(W )k(r ∧ diam(W ))d−k)νd−k(d%) νd,k(dθ)PR(dr).
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Since Ψ(sλd−k(M) diam(W )k(r ∧ diam(W ))d−k) is independent of %, the inner integral
can be evaluated by means of the rotational integral formula from [18, Theorem 6.1.1].
This yields ∫

SOd−k

λd−k(Pd−k(θTW ) + %(rM∗)) νd−k(d%)

=

d−k∑
j=0

κd−k−jκj(
d−k
j

)
κd−k

Vj(Pd−k(θTW )) rd−k−j Vd−k−j(M),

where we also used the homogeneity of the intrinsic volumes. Thus,

E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)]

≤
d−k∑
j=0

κd−k−jκj(
d−k
j

)
κd−k

Vd−k−j(M)

∞∫
0

rd−k−jΨ(sλd−k(M) diam(W )k(r ∧ diam(W ))d−k)

×
∫

SOd,k

Vj(Pd−k(θTW )) νd,k(dθ)PR(dr).

Using now the mean projection formula for intrinsic volumes [18, Theorem 6.2.2] we
conclude from the definition of SOd,k and the uniqueness of Haar measures that∫

SOd,k

Vj(Pd−k(θTW )) νd,k(dθ) =

∫
G(d,d−k)

Vj(PL(W )) νG(d,d−k)(dL)

=

(
d−j
k

)
κd−jκd−k(

d
k

)
κd−k−jκd

Vj(W ),

where PL(W ) denotes the orthogonal projection of W onto L ∈ G(d, d− k) and νG(d,d−k)

stands for the unique rotationally invariant Haar probability measure on the Grassman-
nian G(d, d− k). As a consequence, we conclude that

E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)]

≤
d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M)

×
∞∫

0

rd−k−jΨ(sλd−k(M) diam(W )k(r ∧ diam(W ))d−k)PR(dr)

=

d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M)E[Rd−k−jΨ(αs(R ∧ diam(W ))d−k)].

In the same way one shows that

E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(−sλWd−k(Ξ) diam(W )k)]

≤
d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M)E[Rd−k−jΨ(−αs(R ∧ diam(W ))d−k)].

Together with Theorem 3.2 this yields the result.

Remark 4.2. It should be pointed out that there are only few examples of convex bodies
for which the intrinsic volumes are available explicitly. For polytopes, they may be
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expressed in terms of the volumes of lower-dimensional faces together with the external
angle at these faces. For example, for the cube one has that

Vj([0, 1]d) =

(
d

j

)
, j ∈ {0, 1, . . . , d}.

On the other hand, for the d-dimensional unit ball Bd one easily verifies that

Vj(B
d) =

κd
κd−j

(
d

j

)
, j ∈ {0, 1, . . . , d}.

4.2 Randomly rotated cylinder bases

In this section we assume that the window W is a general convex body in Rd, but we
strengthen the assumptions on the typical cylinder base by assuming that Ξ arises from
a fixed convex body M ⊂ Rd−k by a uniform random rotation in Rd−k, that is, we assume
that Ξ = UM , where U is a random rotation distributed according to the Haar measure
νd−k on SOd−k . Note that in this case md−k = λd−k(M) and p = 1− e−γλd−k(M).

Corollary 4.3. Let the assumptions just described prevail. Then, one has

P(F − EF ≥ r) ≤ exp

(
r

α
−
(
β +

r

α

)
log

(
1 +

r

αβ

))
, r ≥ 0,

and

P(F − EF ≤ −r) ≤ exp

(
− r
α
−
(
β − r

α

)
log

(
1− r

αβ

))
, 0 ≤ r ≤ EF,

where

α = λd−k(M) diam(W )k and β =
p

λd−k(M)

d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M). (4.1)

Proof. We apply Corollary 4.1 and assume in addition that R = 1 P-almost surely. In this
case

p

md−k

d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M)E[Rd−k−jΨ(αs(R ∧ diam(W ))d−k)] ≤ βΨ(αs),

and hence,

P(F − EF ≥ r) ≤ exp
(

inf
s≥0

(βΨ(αs)− rs)
)

= exp
(

inf
s≥0

(β(eαs − αs− 1)− rs)
)
.

It is easy to verify that the infimum is attained at s = 1
α log(1 + r

αβ ). This gives

P(F − EF ≥ r) ≤ exp
( r
α
−
( r
α

+ β
)

log
(

1 +
r

αβ

))
for any r ≥ 0. This completes the proof for the upper tail.

Similarly, consider the lower tail

P(F − EF ≤ −r) ≤ exp
(

inf
s≥0

(βΨ(−αs)− rs)
)

= exp
(

inf
s≥0

(
β(e−αs + αs− 1)− rs

) )
.

In case r < αβ the infinum is attained at s = − 1
α log(1− r

αβ ) and the proof is completed.
It just remains to be justified that αβ ≥ EF for any convex M and W , and k ≥ 0.
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Due to the fact that intrinsic volumes are non-negative functionals on the family of
convex bodies we conclude that

αβ = p diam(W )k
d−k∑
j=0

κjκd−j(
d
j

)
κd

Vj(W )Vd−k−j(M)

≥ p diam(W )k
κd−kκk(
d

d−k
)
κd
Vd−k(W )

= p diam(W )d
κd−kκk(
d

d−k
)
κd
Vd−k(W̃ ),

where W̃ = diam(W )−1W and, thus, Vd(W̃ ) ≤ 1. From the isoperimetric inequality for
intrinsic volumes of convex bodies (see, e.g., [18, Equation (14.31)]) we conclude that

κk
(
d

d−k
)−1

Vd−k(W̃ ) ≥ κ
k
d

d Vd(W̃ )1− kd ≥ κ
k
d

d Vd(W̃ ).

Substituting this into above inequality we get

αβ ≥ p diam(W )d
κd−k

κ
1−k/d
d

Vd(W̃ ) =

(
κdd−k

κd−kd

)1/d

p Vd(W ) =

(
κdd−k

κd−kd

)1/d

EF.

It remains to show that
κdd−k

κd−kd

≥ 1, which is equivalent to

Γ (1 + d/2)
1/d ≥ Γ (1 + (d− k)/2)

1/(d−k)
. (4.2)

However, this follows from the fact that the function g(x) := Γ (1 + x/2)
1/x, x > 0, is

strictly increasing according to [16, Theorem 1]. This completes the proof.

4.3 Spherical windows

Our general concentration inequality in Theorem 3.2 simplifies if we assume the
shape of our observation window W to be spherical. More precisely, we assume that
W = BdR is a centered Euclidean ball of some fixed radius R > 0.

Corollary 4.4. Let the general assumptions of Section 3 prevail, and let W = BdR.
Assuming that E[Vj(Ξ)] <∞ and all j ∈ {0, 1, . . . , d− k} we have that, for r ≥ 0,

P(F − EF ≥ r)

≤ exp
(

inf
s≥0

[ p

md−k

d−k∑
j=0

Rd−k−jκd−k−jE[Vj(Ξ)Ψ(s(2R)k(λd−k(Ξ) ∧ (2R)d−k))]− rs
])
,

and for 0 ≤ r ≤ EF ,

P(F − EF ≤ −r)

≤ exp
(

inf
s≥0

[ p

md−k

d−k∑
j=0

Rd−k−jκd−k−jE[Vj(Ξ)Ψ(−s(2R)k(λd−k(Ξ) ∧ (2R)d−k))]−rs
])
.

Proof. We have to analyze the term

E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)]

appearing in Theorem 3.2, where now W = BdR. Since Pd−k(θTBdR) = Bd−kR for any
θ ∈ SOd,k and since diam(BdR) = 2R we have that

E[λd−k(Pd−k(ΘTW ) + Ξ∗)Ψ(sλWd−k(Ξ) diam(W )k)]

= E[λd−k(Bd−kR + Ξ∗)Ψ(s(2R)k(λd−k(Ξ) ∧ (2R)d−k))].
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We are now in the position to apply Steiner’s formula [18, Equation (14.5)] in Rd−k.
Together with Fubini’s theorem and the reflection invariance of the intrinsic volumes
this yields

E[λd−k(Bd−kR + Ξ∗)Ψ(sλd−k(Ξ)(2R)k)]

=

d−k∑
j=0

Rd−k−jκd−k−jE[Vj(Ξ)Ψ(s(2R)k(λd−k(Ξ) ∧ (2R)d−k))].

This proves the claim for the upper tail, the lower tail is similar.

If in addition the typical cylinder base is spherical as well, the inequalities simplify
further. We assume that P-almost surely Ξ = Bd−kρ for some fixed 0 < ρ < R. Then

Vj(B
d−k
ρ ) =

κd−k
κd−k−j

(
d− k
j

)
ρj , j ∈ {0, 1, . . . , d− k}.

Thus,

d−k∑
j=0

Rd−k−jκd−k−jE[Vj(Ξ)Ψ(s(2R)k(λd−k(Ξ) ∧ (2R)d−k))]

= κd−kΨ(sκd−kρ
d−k(2R)k)

d−k∑
j=0

(
d− k
j

)
Rd−k−jρj

= κd−kΨ(sκd−kρ
d−k(2R)k)Rd−k

(
1 +

ρ

R

)d−k
.

Putting

a := κd−kρ
d−k(2R)k and b :=

p

md−k
κd−kR

d−k(1 +
ρ

R
)d−k

it is easy to check that the function f(s) := b
(
eas − as− 1

)
− rs attains its infimum over

the set {s ≥ 0} at s = 1
a log(1 + r

ab ). Together with the previous corollary this yields the
following result.

Corollary 4.5. If W = BdR and P-almost surely Ξ = Bd% for some fixed R ∈ (0,∞),
0 < % < R then

P(F − EF ≥ r) ≤ exp
( r
a
−
(
b+

r

a

)
log
(

1 +
r

ab

))
, r ≥ 0,

and
P(F − EF ≤ −r) ≤ exp

(
− r

a
−
(
b− r

a

)
log
(

1− r

ab

))
, 0 ≤ r ≤ EF.

4.4 Discussion

Let us discuss the quality of the bounds we derived in the previous sections, where
we restrict our attention to Corollary 4.3. Since

− r
α
−
(
β − r

α

)
log

(
1− r

αβ

)
≤ − r2

2α2β
, 0 ≤ r ≤ αβ,

we infer for the lower tail that

P(F − EF ≤ −r) ≤ exp
(
− r2

2α2β

)
, 0 ≤ r ≤ EF.

Next, we discuss the upper tail. As r →∞, we obtain that

P(F − EF ≥ r) ≤ exp(−Θ(r log r)), (4.3)
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where we recall that Θ(r log r) denotes a quantity in O(r log r)∩Ω(r log r) and our window
W does not depend on r.

Although no concentration inequality for F is explicitly available in the literature,
such an inequality easily follows from the sharp cumulant estimates carried out in [7].
In fact, applying [17, Lemma 2.4] to these estimates yields a bound for the upper tail of
the form

P(F − EF ≥ r) ≤ exp(−Θ(r)),

as r → ∞. Clearly, this is weaker than the bound (4.3) we got. Moreover, if X is a
Poisson random variable with parameter λ > 0 then

P(X − EX ≥ r) ≤ exp
(
r − (λ+ r) log

(
1 +

r

λ

))
, r ≥ 0,

which is asymptotically tight, as r →∞, up to a factor (2π(λ+ r))−1/2, see [11]. A com-
parison with Corollary 4.3 thus shows that, for a fixed window W , our bound for the
upper tail is essentially of the same order as the one for a Poisson random variable. This
leads us to the conclusion that the exponential order in r of our bound is presumably
optimal.

It is a remarkable observation that the bound (4.3) is of the same order as the one
for the stationary Boolean model in Rd discussed in [4, 5]. This might be somewhat
surprising, since the correlation structure of the union set of a stationary Boolean model
and of a stationary Poisson cylinder process are quite different. In fact, while for k = 0

the functional F is of volume-order, for k ≥ 1 the random set Z admits strong long-range
correlations, which are propagated by the infinitely long cylinders over the whole space.
This is also well reflected, for example, by the growth of the variance of the total volume
of Z for a sequence of growing windows Wr = rW , r > 0. For example, it is known from
[7] that the variance of λd(Z ∩Wr) is of order rd+k, which for k ≥ 1 is strictly larger than
the volume-order rd. To relate this discussion to our inequalities, we shall now consider
the case when the window is growing with r. In fact, we consider the situation in which
the window is of the form r1/dW for fixed convex body W ⊂ Rd. This choice corresponds
to a linear growth of the volume of the window with r. Moreover, we assume that the
typical cylinder base arises from a fixed convex body M ⊂ Rd−k by a uniform random
rotation in Rd−k. Then, recalling (4.1), we have that

α = 2kVd−k(M)rk/d and β =
p

md−k

d−k∑
j=0

κjr
j/dVd−k−j(M).

We note that, as r → ∞, α = Θ(rk/d), while β = Θ(r(d−k)/d). Plugging this into
Corollary 4.3 we find that

P(F − EF ≥ r) ≤ exp(−Θ(r1−k/d)), (4.4)

as r → ∞. This bound clearly reflects the dependence on the dimension parameter k
and also shows that the bound becomes weaker the bigger k is chosen.

5 Concentration inequalities for intrinsic volumes

The purpose of this section is to prove a concentration inequality for the intrinsic
volumes associated with the union set Z of a stationary and isotropic Poisson process
of k-cylinders in Rd. For this we assume in this section that the typical cylinder base
Ξ is convex P-almost surely and also that the base-direction distribution Q is rotation
invariant. In view of Lemma 2.1 and the following discussion, this implies that Z is
a stationary and isotropic random closed set. We also assume that the window W is
convex.
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5.1 Mean value formulas

The proof of our tail bounds relies on the general concentration inequalities from
Section 2.3 as well as on a mean value formula for the intrinsic volumes of Z ∩W . While
such formulas are well known for the Boolean model (see, e.g., [18, Theorem 9.1.3]),
we were not able to locate a corresponding result for the union set of Poisson cylinder
processes in the existing literature (for the closest results in this direction we refer
to [10, Section 5] and [22, Section 7]). The purpose of this section is to provide such
formulas under the assumption that Q is rotation invariant. In particular, this assumption
allows us to use the principal kinematic formula for cylinders from [18, Chapter 6.3].

Proposition 5.1. Let W ⊂ Rd be convex body with Vd(W ) > 0 and let 0 ≤ j =: j0 ≤ d be
some integer. Suppose that Ξ is convex P-almost surely and that Q is rotation invariant.
Assume further that mi := EVi(Ξ) <∞ for j − k ≤ i ≤ d− k. Then

EVj(Z ∩W )

=

∞∑
`=1

(−1)`−1γ`

`!

min(d,d+j0−k)∑
j1=j0

· · ·
min(d,d+j`−1−k)∑

j`=j`−1

cj`j0Vj`(W )
∏̀
i=1

c
d+ji−1−ji
d md−k+ji−1−ji ,

where cpr =
p!κp
r!κr

. If additionally j ≥ k, then

EVj(Z ∩W ) = Vj(W )
(
1− e−γ md−k

)
− e−γ md−k

d−j∑
m=1

cm+j
j Vm+j(W )

m∑
p=1

(−1)pγp

p!

∑
q1,...,qp>0
q1+...+qp=m

p∏
i=1

cd−qid md−k−qi ,

where the empty sum is interpreted as zero.

Remark 5.2. We emphasize that for j = d and j = d− 1 the formula in Proposition 5.1
can considerably be simplified. In fact, we have that

EVd(Z ∩W ) = Vd(W )(1− e−γmd−k),

see (3.1), and

EVd−1(Z ∩W ) = γ Vd(W )md−k−1 e
−γ md−k + Vd−1(W )(1− e−γ md−k).

Proof of Proposition 5.1. By definition of Z, the inclusion-exclusion principle and the
multivariate Mecke formula (see [13, Theorem 4.4]) we have that

EVj(Z ∩W ) = EVj

( ⋃
(x,θ,K)∈ξ

Z(x, θ,K) ∩W
)

=

∞∑
`=1

(−1)`−1

`!
γ`
∫

M`
d,k

∫
(Rd−k)`

Vj(Z(x1, θ1,K1) ∩ . . . ∩ Z(x`, θ`,K`) ∩W )

× λ`d−k(d(x1, . . . , x`))Q
`(d((θ1,K1), . . . , (θ`,K`))).

To evaluate the `-fold integral overRd−k we make use of the following principal kinematic
formula for cylinders, which can be found in [18, Corollary 6.3.1]. Namely, for fixed
(θ,K) ∈Md,k one has that

∫
SOd

∫
Rd−k

Vj(%Z(x, θ,K) ∩W )λd−k(dx)νd(d%) =

min(d,d+j−k)∑
p=j

cpj c
d−p+j
d Vp(W )Vd−k+j−p(K),

EJP 25 (2020), paper 128.
Page 19/27

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP529
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration inequalities for Poisson cylinder processes

where νd is the unique rotationally invariant Haar probability measure on SOd. A recur-
sive application of this integral formula and Fubini’s theorem yields that, for fixed ` ∈ N
and (θ1,K1), . . . , (θ`,K`) ∈Md,k,

∫
(SOd)`

∫
(Rd−k)`

Vj(%1Z(x1, θ1,K1) ∩ . . . ∩ %`Z(x`, θ`,K`) ∩W )

× λ`d−k(d(x1, . . . , x`)) ν
`
d(d(%1, . . . , %`))

=

min(d,d+j0−k)∑
j1=j0

· · ·
min(d,d+j`−1−k)∑

j`=j`−1

cj`j0Vj`(W )
∏̀
i=1

c
d+ji−1−ji
d Vd−k+ji−1−ji(Ki),

where we recall that j0 = j. Thus, from the assumed rotational invariance of Q and
Fubini’s theorem we conclude

EVj(Z ∩W )

=

∞∑
`=1

(−1)`−1

`!
γ`
∫

M`
d,k

∫
(SOd)`

∫
(Rd−k)`

Vj(%1Z(x1, θ1,K1) ∩ . . . ∩ %`Z(x`, θ`,K`) ∩W )

× λ`d−k(d(x1, . . . , x`)) ν
`
d(d(%1, . . . , %`))Q

`(d((θ1,K1), . . . , (θ`,K`)))

=

∞∑
`=1

(−1)`−1

`!
γ`

min(d,d+j0−k)∑
j1=j0

· · ·
min(d,d+j`−1−k)∑

j`=j`−1

cj`j0Vj`(W )
∏̀
i=1

c
d+ji−1−ji
d md−k+ji−1−ji .

This proves the first claim.

If j ≥ k, the above formula can be simplified further. To this end, let us introduce the

notation qi := ji − ji−1. Then
∑̀
i=1

qi = j` − j0 and we obtain that

EVj(Z ∩W )

=

∞∑
`=1

(−1)`−1

`!
γ`

d∑
j1=j0

· · ·
d∑

j`=j`−1

cj`j0Vj`(W )
∏̀
i=1

c
d+ji−1−ji
d md−k+ji−1−ji

=

∞∑
`=1

(−1)`−1

`!
γ`

×
d−j0∑
q1=0

d−j0−q1∑
q2=0

· · ·
d−j0−q1−...−q`−1∑

q`=0

cq1+...+q`+j0
j0

Vq1+...+q`+j0(W )
∏̀
i=1

cd−qid md−k−qi

= Vj(W )(1− e−γmd−k) +

d−j∑
m=1

cm+j
j Vm+j(W )Sm

with

Sm :=

∞∑
`=1

(−1)`−1

`!
γ`

∑
q1,...,q`≥0
q1+...+q`=m

∏̀
i=1

cd−qid md−k−qi .

Assume further that ` = r+ p, 1 ≤ p ≤ m, r ∈ {0, 1, 2, . . .} and q1, . . . , qp ∈ N, qp+1 = . . . =
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q` = 0. Then the infinite sum S can be evaluated explicitly. Indeed, we have that

Sm =

∞∑
`=1

(−1)`−1

`!
γ`

∑
q1,...,q`≥0
q1+...+q`=m

∏̀
i=1

cd−qid md−k−qi

=

m∑
p=1

∞∑
r=0

(−1)r+p−1γr+p

(r + p)!

(
r + p

r

)
mr
d−k

∑
q1,...,qp>0
q1+...+qp=m

p∏
i=1

cd−qid md−k−qi

= −e−γmd−k
m∑
p=1

(−1)pγp

p!

∑
q1,...,qp>0
q1+...+qp=m

p∏
i=1

cd−qid md−k−qi

and the proof is complete.

5.2 Concentration inequality

For fixed j ∈ {0, 1, . . . , d} we consider the Poisson functional

Fj := Vj(Z ∩W ).

We start by dealing with the first-order difference operator of Fj . Due to the additivity of
the intrinsic volumes, for (λd−k ⊗Q)-almost all (x, θ,K) ∈ Rd−k ×Md,k we have that

D(x,θ,K)Fj = Vj ((Z ∪ Z(x, θ,K)) ∩W )− Vj(Z ∩W )

= Vj (Z(x, θ,K) ∩W )− Vj(Z ∩ Z(x, θ,K) ∩W )

holds P-almost surely.
In order to derive a bound for the upper tail and the lower tail of the functional Fj

we will apply the technique already used in Section 3 for the case of the volume. For this
we need to make sure that the conditions of Lemma 2.2 hold for Fj .

Lemma 5.3. For any j ∈ {0, 1, . . . , d} we have that Fj ∈ L2(P), DFj ∈ L2(P⊗ λd−k ⊗Q)

and sFj = s
(lt)
Fj

=∞.

Proof. Since the intrinsic volumes Vj are non-negative and monotone under set inclusion
on the family of convex bodies we have that P-almost surely

D(x,θ,K)Fj ≤ Vj (Z(x, θ,K) ∩W ) ≤ Vj (W )

for all (x, θ,K) ∈ Rd−k ×Md,k. The rest of the proof is now analogous to the proof of
Lemma 3.1.

Theorem 5.4. Let W ⊂ Rd be a convex body with Vd(W ) > 0, Ξ be convex P-almost
surely and assume that Q is rotation invariant. Also, suppose that j ≥ k and mi ∈ (0,∞)

for all j − k ≤ i ≤ d− k. Then, for all r ≥ 0, one has that

P(Fj − EFj ≥ r) ≤ exp
(

inf
s≥0

(
E
[
Vd−k(Pd−k(ΘTW ) + Ξ∗)

×Ψ
(
s(Vj(W ) ∧

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(Ξ))

)

×
d−j∑
m=0

βm

(
Vj(W ) ∧

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(Ξ)

)m/j]
− rs

))
,
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and for 0 ≤ r ≤ EFj one has that

P(Fj − EFj ≤ −r) ≤ exp
(

inf
s≥0

(
E
[
Vd−k(Pd−k(ΘTW ) + Ξ∗)

×Ψ
(
− s(Vj(W ) ∧

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(Ξ))

)

×
d−j∑
m=0

βm

(
Vj(W ) ∧

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(Ξ)

)m/j]
− rs

))
,

where Ψ(x) = ex − x− 1, x ∈ R, and

β0 :=
1− e−γmd−k

md−k
, β1 = 0,

βm :=
κ

1+m/j
d−j

(
d

j+m

)
cm+j
j

κ
m/j
d κd−j−m

(
d
j

)1+m/j

bm2 c∑
p=1

m−2p−1
d−k

(
1− e−γmd−k

2p∑
i=0

(γmd−k)2p−i

(2p− i)!

)

×
∑

q1,...,q2p>0
q1+...+q2p=m

2p∏
i=1

cd−qid md−k−qi

for m ∈ {2, . . . , d− j}.
Remark 5.5.

(i) We specialize the result of Theorem 5.4 for j = d and j = d − 1, where the
concentration inequality takes simpler form. For simplicity, we restrict ourselves
to the bound for the upper tail. If j = d we obtain, for r ≥ 0,

P(Fd − EFd ≥ r)

≤ exp
(

inf
s≥0

( p

md−k
E
[
Vd−k(Pd−k(ΘTW ) + Ξ∗)

×Ψ(s(Vd(W ) ∧ diam(W )kVd−k(Ξ)))
]
− rs

))
,

which corresponds to the bound we derived in Section 3 under more general
conditions, since Vd−k(K) = λd−k(K) for a convex body K ⊂ Rd−k and Vd(W ) ≤
(diam(W ))d. Moreover, choosing j = d− 1 we obtain, again for r ≥ 0,

P(Fd−1 − EFd−1 ≥ r)

≤ exp
(

inf
s≥0

( p

md−k
E
[
Vd−k(Pd−k(ΘTW ) + Ξ∗)

×Ψ
(
sdiam(W )k−1([diam(W )Vd−k−1(Ξ) + kVd−k(Ξ)] ∧ (diam(W ))d−k)

)]
− rs

))
.

(ii) Taking k = 0, which corresponds to the Boolean model, and j = d− 1 we deduce
that for r ≥ 0

P(Fd−1−EFd−1 ≥ r) ≤ exp
(

inf
s≥0

( p

md
E
[
Vd(W+Ξ∗)Ψ(s(Vd−1(Ξ)∧Vd−1(W ))

]
−rs

))
,

which should be compared to the corresponding inequality (3.2) for Fd. Note that
the reason behind this simple form is the fact that the constant β1 in Theorem 5.4 is
equal to zero. Since this is not the case for βm with m ∈ {2, . . . , d− j}, the resulting
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inequalities become a bit more involved. In fact, for j ∈ {0, 1, . . . , d− 1} we have
that for r ≥ 0

P(Fj − EFj ≥ r) ≤ exp
(

inf
s≥0

(
E
[
Vd(W + Ξ∗)Ψ(s(Vj(Ξ) ∧ Vj(W )))

×
d−j∑
m=0

βm(Vj(Ξ) ∧ Vj(W ))m/j
]
− rs

))
.

Proof of Theorem 5.4. As in the proof of Theorem 3.2 we start by deriving an upper
bound for the function VFj (s) defined by (2.6). Considering the term Tt, t ∈ [0, 1], and
applying Proposition 5.1 we have that, putting Λ := γ λd−k ⊗Q,

Tt ≤ Vj(Z(x, θ,K) ∩W )−
∫
N

Vj(Z(µ) ∩ Z(x, θ,K) ∩W ) Π(1−t)Λ(dµ)

= e−γ(1−t)md−k
(
Vj(Z(x, θ,K) ∩W )

+

d−j∑
m=1

cm+j
j Vm+j(Z(x, θ,K) ∩W )

m∑
s=1

(−γ(1− t))s

s!

∑
q1,...,qs>0
q1+...+qs=m

s∏
i=1

cd−qid md−k−qi

)
,

where for µ ∈ N, Z(µ) stands for the union set induced by µ. Hence,

1∫
0

Tt dt ≤ Vj(Z(x, θ,K) ∩W )I0 +

d−j∑
m=1

cm+j
j Vm+j(Z(x, θ,K) ∩W )

×
m∑
p=1

Ipγ
p

∑
q1,...,qp>0
q1+...+qp=m

p∏
i=1

cd−qid md−k−qi ,

where

Ip : =
1

p!

1∫
0

(t− 1)peγ(t−1)md−k dt =
(−1)p

(γmd−k)p+1

(
1− e−γmd−k

p∑
i=0

(γmd−k)p−i

(p− i)!

)
.

Let us introduce the following additional notation in order to simplify our subsequent
computations:

α0 :=
1− e−γmd−k

md−k
, α1 = 0,

αm := cm+j
j

bm2 c∑
p=1

m−2p−1
d−k

(
1− e−γmd−k

2p∑
i=0

(γmd−k)2p−i

(2p− i)!

) ∑
q1,...,q2p>0
q1+...+q2p=m

2p∏
i=1

cd−qid md−k−qi

for m ≥ 2. Using the notation above and applying Fubini’s theorem and the fact that
intrinsic volumes are non-negative functionals on the family of convex bodies we conclude
that

VF (s) ≤ v(s), s ≥ 0,

with v(s) given by

v(s) =

∫
Md,k

∫
Rd−k

(esVj(Z(x,θ,K)∩W ) − 1)

d−j∑
m=0

αmVm+j(Z(x, θ,K) ∩W )λd−k(dx)Q(d(θ,K)).
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In the next step we investigate the integral

w(s) :=

s∫
0

v(u) du.

For that purpose we notice that in the definition of w(s) we can multiply the integrand
with the indicator function 1{Z(x, θ,K) ∩ int(W ) 6= ∅}. In fact, Z(x, θ,K) ∩ int(W ) 6= ∅
is equivalent to Vj(Z(x, θ,K) ∩ int(W )) > 0 and, additionally,

λd−k({x ∈ Rd−k : Z(x, θ,K) ∩W 6= ∅ and Z(x, θ,K) ∩ int(W ) = ∅}) = 0

holds by our convexity assumption on the cylinder bases K. We can thus write

w(s) : =

s∫
0

v(u) du

=

∫
Md,k

∫
Rd−k

[esVj(Z(x,θ,K)∩W ) − sVj(Z(x, θ,K) ∩W )− 1]1{Z(x, θ,K) ∩ int(W ) 6= ∅}

×
d−j∑
m=0

αm
Vm+j(Z(x, θ,K) ∩W )

Vj(Z(x, θ,K) ∩W )
λd−k(dx)Q(d(θ,K))

=

∫
Md,k

∫
Rd−k

Ψ(sVj(Z(x, θ,K) ∩W ))

d−j∑
m=0

αm
Vm+j(Z(x, θ,K) ∩W )

Vj(Z(x, θ,K) ∩W )

× 1{Z(x, θ,K) ∩ int(W ) 6= ∅}λd−k(dx)Q(d(θ,K)),

where Ψ(x) = ex − x− 1, x ∈ R. Let us note here that the function Ψ(x) is increasing for
x ≥ 0 and that all coefficients αm are non-negative. Thus, the integrand is an increasing
function in Vm+j(Z(x, θ,K) ∩W ), 1 ≤ m ≤ d− j. From the isoperimetric inequalities for
intrinsic volumes of convex bodies (see, e.g., [18, Equation (14.31)]) we deduce that, for
(x, θ,K) ∈Md,k,

Vm+j(Z(x, θ,K) ∩W ) ≤
κ

1+m/j
d−j

(
d

j+m

)
κ
m/j
d κd−j−m

(
d
j

)1+m/j
Vj(Z(x, θ,K) ∩W )m/j+1.

Provided that Z(x, θ,K) ∩ int(W ) 6= ∅, this implies

w(s) ≤
∫

Md,k

∫
Rd−k

Ψ(sVj(Z(x, θ,K) ∩W ))

×
d−j∑
m=0

βmVj(Z(x, θ,K) ∩W )m/j λd−k(dx)Q(d(θ,K)), (5.1)

with the coefficients β0, . . . , βd−j given by

βm :=
αmκ

1+m/j
d−j

(
d

j+m

)
κ
m/j
d κd−j−m

(
d
j

)1+m/j
, m ∈ {0, 1, . . . , d− j}.

Note that we can from now on omit the indicator function that Z(x, θ,K) ∩ int(W ) 6= ∅.
Using again the fact that the window W as well as the cylinder bases K are convex and
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that the intrinsic volumes are monotone under set inclusion on the family of convex
bodies and invariant with respect to translation and rotation we get

Vj(Z(x, θ,K) ∩W ) ≤ (Vj(K + diam(W )Ck) ∧ Vj(W )),

where Ck ⊂ Ek denotes the k-dimensional unit cube. Applying now [18, Lemma 14.2.1]
we conclude that

Vj(Z(x, θ,K) ∩W ) ≤
(
Vj(W ) ∧

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(K)

)
.

Substituting this into (5.1) and proceeding as in the proof of Theorem 3.2 we obtain

w(s) ≤
∫

Md,k

Vd−k(Pd−k(θTW ) +K∗) Ψ
(
s(Vj(W ) ∧

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(K))

)

×
d−j∑
m=0

βm

(
Vj(W ) ∧

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(K)

)m/j
Q(d(θ,K)).

This completes the proof for the upper tail, the proof for the lower tail is similar.

5.3 The special case of randomly rotated cylinder bases

The result of Theorem 5.4 can be simplified further if we additionally assume that the
cylinder bases are random rotations of a fixed convex body M ⊂ Rd−k and the direction
Θ of the typical cylinder base is uniformly distributed on SOd,k according to the unique
rotationally invariant Haar probability measure νd,k on SOd,k, independently of U (recall
Sections 4.1 and 4.2). More explicitly, this means that Ξ = UM , where U is a random
rotation distributed according to the Haar measure νd−k on SOd−k, and that Ξ and Θ are
independent.

Corollary 5.6. Under the assumptions just described we have that, for all integers
k ≤ j ≤ d,

P(Fj − EFj ≥ r) ≤ exp

(
r

α
−
(
β +

r

α

)
log

(
1 +

r

αβ

))
, r ≥ 0,

and

P(Fj − EFj ≤ −r) ≤ exp

(
− r
α
−
(
β − r

α

)
log

(
1− r

αβ

))
, 0 ≤ r ≤ EFj ,

where

α =

min{d−k,j}∑
i=j−k

diam(W )j−i
(
k
j−i
)
Vi(M)

and

β =

d−k∑
i=0

κiκd−i(
d
i

)
κd

Vi(W )Vd−k−i(M)

d−j∑
m=0

βmα
m/j ,

with βm defined as in Theorem 5.4.

Proof. The proof is analogous to the proof of Corollary 4.1 and Corollary 4.3 due to
invariance of intrinsic volumes under rotations.
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Remark 5.7. As in Section 4.4 we consider the special case when the window is of the
form r1/dW for some fixed convex body W ⊂ Rd. For this, we fix j ∈ {k, . . . , d− 1} and
use that log(1 + x) behaves like x for small values of x. Then one can easily check that,
as r →∞,

P(Fj − EFj ≥ r) ≤ exp
(
−Θ(r1−k/d)

)
,

which is independent of j. This should be compared to the bound (4.4) for the volume in
this situation.

References

[1] Bercu, B., Delyon, B. and Rio, E.: Concentration inequalities for the sums and martingales.
Springer (2015). MR-3363542

[2] Broman, E.I. and Tykesson, J.: Connectedness of Poisson cylinders in Euclidean space. Ann.
Inst. H. Poincaré Probab. Statist. 52, 102–126 (2016). MR-3449296

[3] Bräu, C. and Heinrich, L.: Mixing properties of stationary Poisson cylinder models. Stochastics
89, 753–763 (2017). MR-3640793

[4] Gieringer, F.: Konzentrationsungleichungen für Poisson- und Binomialfunktionale in der
Stochastischen Geometrie. Dissertation KIT, Karlsruhe (2016).

[5] Gieringer, F. and Last, G.: Concentration inequalities for measures of a Boolean model. ALEA,
Lat. Am. J. Probab. Math. Stat. 15, 151–166 (2018). MR-3765368

[6] Heinrich, L.: Large deviations of the empirical volume fraction for stationary Poisson grain
models. Ann. Appl. Probab. 15, 392–420 (2005). MR-2115047

[7] Heinrich, L. and Spiess, M.: Berry-Esseen bounds and Cramér-type large deviations for the
volume distribution of Poisson cylinder processes. Lithuanian Math. J. 49, 381–398 (2009).
MR-2591874

[8] Heinrich, L. and Spiess, M.: Central limit theorems for volume and surface content of
stationary Poisson cylinder processes in expanding domains. Adv. Appl. Probab. 45, 312–331
(2013). MR-3102453

[9] Hilario, M.R., Sidoravicius, V. and Teixeira, A.: Cylinders percolation in three dimensions.
Probab. Theory Relat. Fields 163, 613–642 (2015). MR-3418751

[10] Hoffmann, L.M.: Mixed measures of convex cylinders and quermass densities of Boolean
models. Acta Appl. Math. 105, 141–156 (2009). MR-2470380

[11] Houdré, C.: Remarks on the deviation inequalities for functions of infinitely divisible random
vectors. Ann. Probab. 30, 1223–1237 (2002). MR-1920106

[12] Hug, D., Last, G. and Schulte, M.: Second-order properties and central limit theorems for
geometric functionals of Boolean models. Ann. Appl. Probab. 26, 73–135 (2016). MR-3449314

[13] Last, G. and Penrose, M.: Lectures on the Poisson Process. Cambridge University Press
(2018). MR-3791470

[14] Matheron, G.: Random Sets and Integral Geometry. Wiley (1975). MR-0385969

[15] Miles, R.E.: A synopsis of Poisson flats in Euclidean spaces. In: Stochastic Geometry. A Tribute
to the Memory of Rollo Davidson, edited by Harding, E.F. and Kendall D., Wiley (1974). MR-
0357031

[16] Qi, F. and Guo, B.-N.: Complete monotonicities of functions involving the gamma and digamma
functions. RGMIA Research Report Collection 7, article 8 (2004).
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