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Abstract

By combining the coupling by reflection for Brownian motion with the refined basic
coupling for Poisson random measure, we present sufficient conditions for the ex-
ponential ergodicity of general continuous-state nonlinear branching processes in
both the L1-Wasserstein distance and the total variation norm, where the drift term is
dissipative only for large distance, and either diffusion noise or jump noise is allowed
to be vanished. Sufficient conditions for the corresponding strong ergodicity are also
established.
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1 Introduction

In this paper we will study the exponential ergodicity and the strong ergodicity for
general continuous-state nonlinear branching processes, which will be introduced below.
Consider a filtered probability space (Ω,F ,Ft,P) satisfying the usual hypotheses. Let
{Bt}t≥0 be an (Ft)-Brownian motion. Throughout this paper, we write ν (which is allowed
to be zero) for a σ-finite nonnegative measure on (0,∞) such that

∫∞
0

(z ∧ z2) ν(dz) <∞.
Let {N(ds,dz,du) : s, z, u > 0} be an independent (Ft)-Poisson random measure on
(0,∞)3 with intensity ds ν(dz) du, and {Ñ(ds,dz,du) : s, z, u > 0} be a corresponding
compensated measure, i.e., Ñ(ds,dz,du) = N(ds,dz,du)−ds ν(dz) du. We are interested
in a general continuous-state nonlinear branching process, which is described as the
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Exponential ergodicity for nonlinear branching processes

pathwise unique nonnegative solution to the following stochastic differential equation
(SDE):

Xt =X0 +

∫ t

0

γ0(Xs) ds+

∫ t

0

√
γ1(Xs) dBs

+

∫ t

0

∫ ∞
0

∫ γ2(Xs−)

0

z Ñ(ds,dz,du).

(1.1)

Here,

• x 7→ γ0(x) is a continuous function on R+ := [0,∞) such that γ0(0) ≥ 0;

• x 7→ γ1(x) is a continuous function on R+ such that γ1(0) = 0 and γ1(x) ≥ 0 for
x > 0;

• x 7→ γ2(x) is a continuous and non-decreasing function on R+ such that γ2(0) = 0.

Intuitively, such a process can be identified as a continuous-state branching process with
population-size-dependent branching rates and with competition.

If γ0(x) = a+ bx for some a ≥ 0 and b ∈ R and γi(x) = cix (i = 1, 2) for some c1, c2 ≥ 0,
then the solution to (1.1) is reduced to the classical continuous-state branching process
(with constant immigration), see [1, 8, 9, 11, 13] and references therein. We would
mention that, if and only if in this particular case with a = 0, the solution satisfies the
so-called branching property, which means that different individuals act independently
with each other. If γi(x) = cix (i = 1, 2) for some ci ≥ 0 and γ0(x) = b1x − b2x2 with
some b1, b2 > 0, then the solution to (1.1) is called the logistic branching process in
the literature and can be used to model the population dynamics with competition, see
[5, 10] for more details. The quadratic regulatory term in the coefficient γ0(x) has an
ecological interpretation, as it describes negative interactions between each pair of
individuals in the population. Similar equations with general coefficients γ0(x) to model
more general competitions were considered in [22].

Throughout this paper we always assume that (1.1) has a unique non-explosive
strong solution, which is denoted by (Xt)t≥0; see Subsection 2.1 for related discussions.
Let Pt(x, ·) and (Pt)t≥0 be the transition function and the transition semigroup of the
process (Xt)t≥0, respectively. We are going to study the asymptotic behavior of the
L1-Wasserstein distance and the total variation distance between Pt(x, ·) and Pt(y, ·) for
any x, y ∈ R+. As a direct consequence, we will establish sufficient conditions for the
exponential ergodicity and the strong ergodicity of the process (Xt)t≥0.

To the best of our knowledge, there are few known results on this topic. For the
classical branching process (i.e. γ0(x) = a − bx and γi(x) = cix (i = 1, 2) for some
b > 0 and a, ci ≥ 0), by the branching property, [14, Theorem 2.4] proved that the
total variation distance between Pt(x, ·) and Pt(y, ·) decays exponentially fast. Recently,
under uniformly dissipative condition on γ0(x) (see (3.7) in Remark 3.4(1) below) and
finite second moment condition on the measure ν (i.e.

∫
R+

z2 ν(dz) <∞), [6, Theorem

4.2] established the exponential decay between Pt(x, ·) and Pt(y, ·) with respect to the
L1-Wasserstein distance. All known results above are concerned on the case that the drift
term γ0(x) satisfies the uniformly dissipative condition, so the approaches used in [14]
and [6] are essentially based on the synchronous coupling (i.e., two marginal processes
of the coupling are driven by the same noises). Instead, in the present paper we will
use the combination of the coupling by reflection for Brownian motion and the refined
basic coupling for Poisson random measure to establish the exponential ergodicity and
the strong ergodicity for general nonlinear branching processes, where the drift term is
dissipative only for large distances and the associated coefficients for driven noises are
much more general.
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Exponential ergodicity for nonlinear branching processes

To illustrate our main contributions, we present the following statement for the
exponential ergodicity and the strong ergodicity of the process (Xt)t≥0. The reader is
refered to Section 3 for general results. For any probability measures µ1, µ2 on R+, the
L1-Wasserstein distance W1 between µ1 and µ2 is defined by

W1(µ1, µ2) = inf
Π∈C (µ1,µ2)

∫
R+×R+

|x− y|Π(dx, dy),

where C (µ1, µ2) is the family of all probability measures on R+ ×R+ having µ1 and µ2

as marginals. We denote by ‖µ1 − µ2‖Var the total variation norm between probability
measures µ1 and µ2. The process (Xt)t≥0 is called exponentially ergodic both in the
W1-distance and the total variation norm, if there are a unique probability measure µ on
R+ and a constant λ > 0 such that for all x ∈ R+ and t > 0,

W1(Pt(x, ·), µ) ≤ c(x)e−λt

and

‖Pt(x, ·)− µ‖Var ≤ c(x)e−λt,

where c(x) is a nonnegative measurable function on R+. The process (Xt)t≥0 is called
strongly ergodic, if there are a unique probability measure µ on R+ and constants
λ,C > 0 so that for all t > 0,

sup
x∈R+

‖Pt(x, ·)− µ‖Var ≤ Ce−λt.

It is obvious that the strong ergodicity implies the exponential ergodicity in the total
variation norm.

Theorem 1.1. Let (Xt)t≥0 be a unique strong solution to the SDE (1.1) such that as-
sumptions below (1.1) on the coefficients are satisfied. Suppose that there are constants
l0, k1 ≥ 0 and k2 > 0 such that

γ0(x)− γ0(y) ≤

{
k1(x− y) log

(
4l0
x−y

)
, 0 ≤ x− y ≤ l0,

−k2(x− y), x− y > l0.
(1.2)

Then the process (Xt)t≥0 is exponentially ergodic both in the W1-distance and the total
variation norm if one of the following three assumptions holds:

(1) the function γ1(x) is continuous and strictly positive on (0,∞), and satisfies

lim inf
x→0

γ1(x)

xβ
> 0 (1.3)

for some β ∈ [1, 2);

(2) there are constants α ∈ (0, 2) and c0 > 0 such that

ν(dz) ≥ c01{0<z≤1}z
−1−α dz,

and the function γ2(x) is continuous and strictly positive on (0,∞), and satisfies

lim inf
x→0

γ2(x)

xβ
> 0

for some β ∈ [α− 1, α) ∩ (0,∞);
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Exponential ergodicity for nonlinear branching processes

(3) there are constants α ∈ (1, 2) and c0 > 0 such that∫ r

0

z2 ν(dz) ≥ c0r2−α, 0 < r ≤ 1, (1.4)

and the function
γ2(x) = b2x

r2 + γ2,2(x),

where b2 > 0, r2 ∈ [1, α) and γ2,2(x) is a non-decreasing function on R+.

Furthermore, if (1.2) is replaced by

γ0(x)− γ0(y) ≤

{
k1(x− y) log

(
4l0
x−y

)
, 0 ≤ x− y ≤ l0,

−k2(x− y)δ, x− y > l0
(1.5)

for some δ > 1, then, under one of the three assumptions (1)–(3) above, the process
(Xt)t≥0 is strongly ergodic.

(1.2) on the drift term γ0(x) for 0 < x− y ≤ l0 is the standard one-sided non- Lipschitz
continuous condition, while that for x− y ≥ l0 means that γ0(x) satisfies the dissipative
condition for large distances (since l0 is allowed to be any positive constant). By taking
ν(dz) = c0|z|−1−α1{z>0} dz for some c0 > 0 and α ∈ (0, 2), one can regard condition (2)
as the extension of (1) from the Brownian motion case to the one-sided α-stable noise
case. When α ∈ (1, 2), condition (3) on the measure ν is much weaker than condition (2);
for example, (1.4) is satisfied for the singular measure ν(dz) :=

∑∞
j=0 2αjδ2−j (dz) with

α ∈ (1, 2). In this case, it is at price of requiring a stronger assumption on the coefficient
γ2(x). According to Theorem 1.1, we can see that the logistic branching process (i.e.,
γi(x) = cix (i = 1, 2) for some ci ≥ 0 and γ0(x) = b1x − b2x2 with some b1, b2 > 0) is
strongly ergodic; see Example 3.6 below for more general coefficients γ0(x) satisfying
(1.5).

In the following, we will remark that conditions (1.3) and (1.5) are sharp in some
concrete examples.

Remark 1.2. (1) Let γ0(x) = −x2, γ1(x) = 2x2 and γ2(x) = 0; that is,

L = x2 d2

dx2
− x2 d

dx
.

Let (Xt)t≥0 be the corresponding diffusion process. According to [12, the case (i)-
(ib) after Example 2.18, p. 14], we know that Px(τ0 = ∞) = 1 for all x > 0, where
Px(·) = P(·|X0 = x) and τ0 = inf{t > 0 : Xt = 0}. This is, the point 0 can be seen as
the reflection boundary for the diffusion process (Xt)t≥0 associated with the operator
L on [0,∞). On the other hand, define µ(dx) = x−2e−x dx. One can verify that for any
f ∈ C2

b (R+) with f ′(0) = 0, we have µ(Lf) = 0, which implies that µ(dx) is an invariant
measure for the operator L. However,

µ(R+) =

∫ ∞
0

x−2e−x dx ≥ e−1

∫ 1

0

x−2 dx =∞.

Therefore, the process (Xt)t≥0 is not ergodic, see e.g. [2, Table 5.1, p. 100]. Note that,
for this example, (1.3) is satisfied with β = 2, and so this implies that (1.3) with β < 2 in
Theorem 1.1 is optimal.

(2) Let γ0(x) = d− bx with b, d > 0, γ1(x) =
√

2cx with c > 0 and γ2(x) = 0. Then, the
solution to (1.1) is reduced into the famous Cox-Ingersoll-Ross (CIR) model. In this case,
one can easily see that (1.2) and (1) in Theorem 1.1 hold. Therefore, the CIR model is
exponentially ergodic in both the W1-distance and the total variation distance. On the
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other hand, denote by τ1 = inf{t ≥ 0 : Xt = 1}. According to [4, Corollary 9], for any
x > 1,

Ex[τ1] =

∫ ∞
0

e−z − e−xz

bz + cz2
exp

(∫ z

0

d

bu+ cu2
du

)
dz.

By letting x → ∞ in the above equality, we can conclude that supx>1E
x[τ1] = ∞. This

together with [21, Lemma 2.1] yields that the CIR model is not strongly ergodic. In
particular, this implies that (1.5) with δ > 1 for the strong ergodicity in some sense is
sharp.

The approach of our paper is based on recent developments of the couplings for
SDEs with Lévy noises via coupling operators, see [15, 16, 19, 20, 23] for more details.
However, there are a few essential differences between continuous-state nonlinear
branching processes and the settings of [15, 16, 19, 20, 23]. For example, all the quoted
papers above are restricted to the case that the driven noises are pure-jump processes
and the coefficients for driven noises are non-degenerate, while in the present setting,
the diffusion term and the jump noise are allowed to appear simultaneously in the
SDE (1.1), and moreover both coefficients γ1(x) and γ2(x) are degenerate on R+ (since
γ1(0) = γ2(0) = 0). The differences bring out much more difficulties in the present paper
to efficiently apply the coupling techniques as these in [15, 16, 19, 20, 23]. For instance,
due to the presence of non-degenerate diffusion term, to construct the coupling process
here we will take care of couplings for both Brownian motion and Poisson random
measure. Thus, we need to consider the coupling operator that contains both local part
and non-local part of the associated generator (2.1). Because of the degenerate property
of the coefficients, the coupling function (e.g., see (4.2) and (4.19)) and its estimates
(e.g., see the proof of Theorems 3.1) in the applications of coupling process here are
more complex and delicate than those in [15, 16, 19, 20, 23].

The remainder of this paper is arranged as follows. In Section 2, we recall some
results from [7] on the strong solution to the SDE (1.1), and then present a Markovian
coupling of the solution through the construction of a new coupling operator. General
results on the exponential ergodiciy and the strong ergodicity for the SDE (1.1) are
stated in Section 3. The proofs of all main results in Section 3 and Theorem 1.1 are given
in the last section.

2 Unique strong solution and its coupling process

This section consists of two parts. We first recall results from [7] on the existence
and the uniqueness of the strong solution to the SDE (1.1), and then construct a new
Markovian coupling of the solution.

2.1 Existence and uniqueness of strong solution

The statement is taken from [7, Theorem 5.6].

Theorem 2.1 ([7, Theorem 5.6]). Suppose that the coefficients γi, i = 0, 1, 2, satisfy the
following conditions:

(1) there is a constant K > 0 so that

γ0(x) ≤ K(1 + x), x ≥ 0;

(2) there exists a non-decreasing function H(x) on R+ such that

γ1(x) ≤ H(x), x ≥ 0;

(3) the function γ2(x) is nonnegative and non-decreasing on R+;
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(4) γ0(x) = γ0,1(x)−γ0,2(x), where γ0,1(x) is continuous onR+, and γ0,2(x) is continuous
and non-decreasing on R+. For each integer m ≥ 1 there is a non-decreasing
concave function rm(x) onR+ such that

∫ 1

0
rm(z)−1 dz =∞, and for all 0 ≤ x, y ≤ m,

|γ0,1(x)− γ0,1(y)| ≤ rm(|x− y|);

(5) for each integer m ≥ 1 there is a nonnegative and non-decreasing function ρm(x)

on R+ such that
∫ 1

0
ρm(z)−2 dz =∞, and for all 0 ≤ x, y ≤ m,

|
√
γ1(x)−

√
γ1(y)|2 + |γ2(x)− γ2(y)| ≤ ρm(|x− y|)2.

Then, for any initial value X0 = x ≥ 0, there exists a unique strong solution to the SDE
(1.1), and the solution is a strong Markov process (Xt)t≥0 with the generator given by

Lf(x) = γ0(x)f ′(x) +
γ1(x)

2
f ′′(x) + γ2(x)

∫ ∞
0

(
f(x+ z)− f(x)− zf ′(x)

)
ν(dz) (2.1)

for any f ∈ C2
b (R+).

To investigate the exponential ergodicity of the process (Xt)t≥0, we will assume
that the drift term γ0(x) is dissipative for large distance, see (3.1) below. One can see
that condition (1) in Theorem 2.1 holds with K = sup0≤r≤l0 Φ1(r) under (3.1). On the
other hand, we suppose that the function γ1(x) is continuous on R+ such that γ1(0) = 0.
Hence, condition (2) in Theorem 2.1 holds with H(x) := sup0≤y≤x γ1(y). We have already
supposed that condition (3) is satisfied, see assumptions below the SDE (1.1). Therefore,
in the setting of our paper, the SDE (1.1) has a unique strong solution under assumptions
of Theorem 3.1 (or Theorem 3.2), and some locally continuous assumptions on the
coefficients γi(x) for all i = 0, 1, 2 (e.g. conditions (4) and (5) in Theorem 2.1).

2.2 Markovian coupling for continuous-state nonlinear branching process

To study the coupling of the process (Xt)t≥0 determined by (1.1), we begin with the
construction of a new coupling operator for its generator L given by (2.1). Recall that
(Xt, Yt)t≥0 is a Markov coupling of the process (Xt)t≥0 given by (1.1), if (Xt, Yt)t≥0 is a
Markov process on R2

+ such that the marginal process (Yt)t≥0 has the same transition

probability as (Xt)t≥0. Denote by L̃ the infinitesimal generator of the Markov coupling
process (Xt, Yt)t≥0. Then, the operator L̃ satisfies the following marginal property, i.e., if
for any f, g ∈ C2(R+),

L̃h(x, y) = Lf(x) + Lg(y),

where h(x, y) = f(x) + g(y) for x, y ∈ R+, and L is given by (2.1). We call L̃ is a coupling
operator of L. For example, one of the standard couplings, named the synchronous
coupling, is that the driven noises for the marginal process (Yt)t≥0 are the same as those
of (Xt)t≥0, i.e., (Yt)t≥0 is given by

Yt =y +

∫ t

0

γ0(Ys) ds+

∫ t

0

√
γ1(Ys) dBs

+

∫ t

0

∫ ∞
0

∫ γ2(Ys−)

0

z Ñ(ds,dz,du), Y0 = y ∈ R+, t ≥ 0.

In this paper, we will combine the coupling by reflection for Brownian motion and the
refined basic coupling for Poisson random measure. Here the coupling by reflection for
Brownian motion means that we will take (−Bt)t≥0 (which is regarded as a reflection
of (Bt)t≥0) for the process (Yt)t≥0 before two marginal processes meet, see (2.7) below

EJP 25 (2020), paper 125.
Page 6/25

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP528
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Exponential ergodicity for nonlinear branching processes

for the full expression. The readers are referred to [17, 3] for more details on the
coupling by reflection for diffusion processes. To explain the meaning of the refined
basic coupling for Poisson random measure, we would like to use the viewpoint from the
coupling operator. Note that the function γ2(x) is non-decreasing on R+. For a given
parameter κ > 0, set xκ = x ∧ κ for x > 0. Roughly speaking, when x > y ≥ 0, the
jumping system corresponding to the refined basic coupling of the non-local part for the
operator L is given by

(x, y) −→


(x+ z, y + z + (x− y)κ), 1

2γ2(y)µ−(x−y)κ(dz),

(x+ z, y + z − (x− y)κ), 1
2γ2(y)µ(x−y)κ(dz),

(x+ z, y + z), γ2(y)
[
ν(dz)− 1

2µ−(x−y)κ(dz)− 1
2µ(x−y)κ(dz)

]
,

(x+ z, y), [γ2(x)− γ2(y)]ν(dz),

(2.2)

where
µx(dz) = (ν ∧ (δx ∗ ν))(dz) (2.3)

for all x ∈ R. Similarly, we can define the case that 0 ≤ x < y. We briefly explain the
meaning of each row in (2.2) in the spirit of [20, Section 2]. Suppose that 0 ≤ x− y ≤ κ.
Then, in the first row of (2.2), the distance of the two marginals decreases from |x− y|
to |(x+ z)− (y + z + (x− y))| = 0, and this reflects the idea of the basic coupling – but
only with half of the common jump intensity

1

2
γ2(y)µ−(x−y)(dz) ≤

1

2
[(γ2(x)ν(dz)) ∧ (γ2(y)(δy−x ∗ ν)(dz))]

from x to x+ z and y to y + z + (x− y) (due to the increasing property of γ2(x)). In the
second row of (2.2), the distance is doubled after jumping, with the remaining half of
that common jump intensity. We then divide the remaining mass into two parts. One is to
couple synchronously as indicated in the third row of (2.2) with the maximum remaining
mass of y-component, and the other is to couple independently on only x-component
as shown in the last row of (2.2) (also thanks to the increasing property of γ2(x)). If
|x− y| > κ, then the first row of (2.2) shows that the distance after the jump is |x− y| −κ.
Therefore, the parameter κ is the threshold to determine whether the marginal processes
jump to the same point, or become slightly closer to each other. This is a technical point,
but is crucial for our argument to make the refined basic coupling efficient for the Lévy
measure ν with finite-range jumps. See [16, Subsection 3.2] and [15, Section 2] for more
details on the refined basic coupling for SDEs with Lévy jumps.

With the idea above in mind, we then define for any f ∈ C2(R2
+) and x > y ≥ 0 that

L̃f(x, y) =γ0(x)f ′x(x, y) + γ0(y)f ′y(x, y)

+
1

2
γ1(x)f ′′xx(x, y) +

1

2
γ1(y)f ′′yy(x, y)−

√
γ1(x)γ1(y)f ′′xy(x, y)

+
1

2
γ2(y)

∫ ∞
0

(f(x+ z, y + z + (x− y)κ)− f(x, y)

− f ′x(x, y)z − f ′y(x, y)(z + (x− y)κ))µ−(x−y)κ(dz)

+
1

2
γ2(y)

∫ ∞
0

(f(x+ z, y + z − (x− y)κ)− f(x, y)

− f ′x(x, y)z − f ′y(x, y)(z − (x− y)κ))µ(x−y)κ(dz)

+ γ2(y)

∫ ∞
0

(f(x+ z, y + z)− f(x, y)− f ′x(x, y)z

− f ′y(x, y)z)
(
ν − 1

2
µ−(x−y)κ −

1

2
µ(x−y)κ

)
(dz)

+ (γ2(x)− γ2(y))

∫ ∞
0

(f(x+ z, y)− f(x, y)− f ′x(x, y)z) ν(dz).

(2.4)
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Here and in what follows, f ′x(x, y) = ∂f(x,y)
∂x , f ′′xx(x, y) = ∂2f(x,y)

∂x2 and f ′′xy(x, y) = ∂2f(x,y)
∂x∂y ,

and so on. Similarly, we can define L̃f(x, y) for the case that 0 ≤ x < y. By using
the fact that µx = δx ∗ µ−x for any x ∈ R (see [20, Corollary A.2]), one can check that
the generator L̃ constructed above is a coupling operator of L given by (2.1); see [20,
Subsection 2.1].

Next, we will construct the SDE on R2
+ associated with the coupling operator L̃

defined above, and prove the existence of the strong solution to the corresponding SDE.
The idea below is partly motivated by [20, Subsection 2.2]. According to [20, Corollary
A.2 and Remark 2.1], µx = δx ∗ µ−x, and

µx(R+) = µ−x(R+) ≤ 2ν({z ∈ R+ : z > |x|/2}) <∞ (2.5)

for all x ∈ R. Recalling µx = ν ∧ (δx ∗ ν), we define the following control function

ρ(x, z) =
µx(dz)

ν(dz)
∈ [0, 1], x ∈ R, z ∈ R+

with ρ(0, z) = 1 by convention. Consider the following SDE:

Xt = x+

∫ t

0

γ0(Xs) ds+

∫ t

0

√
γ1(Xs) dBs

+

∫ t

0

∫ ∞
0

∫ γ2(Xs−)

0

z Ñ(ds,dz,du)

Yt = y +

∫ t

0

γ0(Ys) ds+

∫ t

0

√
γ1(Ys) dB∗s

+

∫ t

0

∫ ∞
0

∫ 1
2γ2(Ys−)ρ(−(Us−)κ,z)

0

[z + (Us−)κ] Ñ(ds,dz,du)

+

∫ t

0

∫ ∞
0

∫ 1
2γ2(Ys−)[ρ(−(Us−)κ,z)+ρ((Us−)κ,z)]

1
2γ2(Ys−)ρ(−(Us−)κ,z)

[z − (Us−)κ] Ñ(ds,dz,du)

+

∫ t

0

∫ ∞
0

∫ γ2(Ys−)

1
2γ2(Ys−)[ρ(−(Us−)κ,z)+ρ((Us−)κ,z)]

z Ñ(ds,dz,du),

(2.6)

where

B∗t =

{
−Bt, t ≤ T,
−2BT +Bt, t > T,

(2.7)

T = inf{t ≥ 0 : Xt = Yt}, and Ut = Xt − Yt.
Proposition 2.2. For any (x, y) ∈ R2

+, the system of equations (2.6) is well defined, and
has a unique strong solution (Xt, Yt)t≥0. Moreover, we have

(1) the infinitesimal generator of the process (Xt, Yt)t≥0 is just the coupling operator
L̃ defined by (2.4).

(2) Xt = Yt for all t ≥ T , where T = inf{t > 0 : Xt = Yt}.

Proof. Recall that in the setting of our paper, we always assume that (1.1) has a non-
explosive and pathwise unique strong solution (Xt)t≥0. We are going to show that the
sample paths of (Yt)t≥0 given in (2.6) can be obtained by repeatedly modifying those of
the strong solution to the following equation:

Zt =y +

∫ t

0

γ0(Zs) ds+

∫ t

0

√
γ1(Zs) dB∗s +

∫ t

0

∫ ∞
0

∫ γ2(Zs−)

0

z Ñ(ds,dz,du). (2.8)

By the definition of (B∗t )t≥0, we can verify that (B∗t )t≥0 is still an (Ft)-Brownian motion.
Since the driving Poisson random measure for (1.1) and (2.8) is the same, the existence
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of the strong solution (Zt)t≥0 to the equation (2.8) is guaranteed by the pathwise unique
strong solution to (1.1).

We first claim that the process (Yt)t≥0 given in (2.6) is the same as

Yt =y +

∫ t

0

γ0(Ys) ds+

∫ t

0

√
γ1(Ys) dB∗s

+

∫ t

0

∫ ∞
0

∫ γ2(Ys−)

0

z Ñ(ds,dz,du)

+

∫ t

0

(Us−)κ

∫ ∞
0

∫ 1
2γ2(Ys−)ρ(−(Us−)κ,z)

0

N(ds,dz,du)

−
∫ t

0

(Us−)κ

∫ ∞
0

∫ 1
2γ2(Ys−)[ρ(−(Ut−)κ,z)+ρ((Ut−)κ,z)]

1
2γ2(Ys−)ρ(−(Us−)κ,z)

N(ds,dz,du).

(2.9)

Indeed, this immediately follows from the fact that for all z > 0, µz(R+) = µ−z(R+) <∞,
and the identity that for any x, y ∈ R+ with x 6= y,∫ ∞

0

∫ 1
2γ2(y)ρ(−(x−y)κ,z)

0

du ν(dz) =
1

2
γ2(y)µ−(x−y)κ(R+) =

1

2
γ2(y)µ(x−y)κ(R+)

=

∫ ∞
0

∫ 1
2γ2(y)[ρ(−(x−y)κ,z)+ρ((x−y)κz)]

1
2γ2(y)ρ(−(x−y)κ,z)

du ν(dz).

Hence, we next turn to construct the sample paths of (Yt)t≥0 given in (2.9).

Let (Z
(1)
t )t≥0 be the solution to (2.8) with Z

(1)
0 = y. Denote by (pt)t∈Dp the Poisson

point process associated with the Poisson random measure N(ds,dz,du) on (0,∞)2, and

by ∆Xt = Xt −Xt−. Let R(1)
t = R

(1)
1,t +R

(1)
2,t , where

R
(1)
1,t :=

1

2
γ2(Z

(1)
t )ρ(−(Xt − Z(1)

t )κ,∆Xt), R
(1)
2,t :=

1

2
γ2(Z

(1)
t )ρ((Xt − Z(1)

t )κ,∆Xt).

Define the stopping times T1 = inf{t > 0 : Z
(1)
t = Xt}, and

σ1 = inf
{
t ∈ Dp : pt ∈ (0,∞)× (0, R

(1)
t ]
}
.

We consider two cases:
(i) On the event {T1 ≤ σ1}, we set Yt = Z

(1)
t for all t < T1; moreover, by the pathwise

uniqueness of (1.1), we can define Yt = Xt for t ≥ T1.
(ii) On the event {T1 > σ1}, we define Yt = Z

(1)
t for all t < σ1 and

Yσ1 = Z
(1)
σ1− + ∆Xσ1 +

{
(Xσ1− − Yσ1−)κ, pσ1 ∈ (0,∞)× (0, R

(1)
1,t ],

−(Xσ1− − Yσ1−)κ, pσ1
∈ (0,∞)× (R

(1)
1,t , R

(1)
t ].

In the following, we will restrict on the event {T1 > σ1} and consider the following
SDE:

Zt =Yσ1
+

∫ t

σ1

γ0(Zs) ds+

∫ t

σ1

√
γ1(Zs) dB∗s

+

∫ t

σ1

∫ ∞
0

∫ γ2(Zs−)

0

z Ñ(ds,dz,du), t > σ1.

Denote its solution by (Z
(2)
t )t≥σ1

. Similarly, we set R(2)
t = R

(2)
1,t +R

(2)
2,t with

R
(2)
1,t :=

1

2
γ2(Z

(2)
t− )ρ(−(Xt− − Z(2)

t− )κ,∆Xt), R
(2)
2,t :=

1

2
γ2(Z

(2)
t− )ρ((Xt− − Z(2)

t− )κ,∆Xt)]
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for all t > σ1. We further define T2 = inf{t > 0 : Z
(2)
t = Xt}, and

σ2 = inf
{
t ∈ Dp ∩ (σ1,∞) : pt ∈ (0,∞)× (0, R

(2)
t ]
}
.

In the same way, we can define Yt for t ≤ σ2. We then repeat this procedure. Note that

1

2
γ2(Yt−)[µ−(Xt−−Yt−)κ(R+) + µ(Xt−−Yt−)κ(R+)]

is uniformly bounded (thanks to (2.5)) for any t < τm with m = 1, 2, . . . , where

τm = inf{t ≥ 0 : Yt > m or |Xt − Yt| < 1/m}.

Then only finitely many modifications have to be made in the interval (0, t ∧ τm). Finally,
by letting m→∞, we can determine the unique strong solution (Yt)t≥0 to the SDE (2.9)
globally. See also the proof of [15, Proposition 2.6] for the details.

With the construction of (Yt)t≥0 above, we can apply the Itô formula to the SDE (2.6)
to obtain the assertion (1). The assertion (2) immediately follows from the SDE (2.6)
and the assumption that (1.1) has a non-explosive and pathwise unique strong solution
(Xt)t≥0.

In the following, we call (Xt, Yt)t≥0 determined by (2.6) a (Markovian) coupling
process of (Xt)t≥0. To conclude this part, we will give the preserving order property of
the coupling process (Xt, Yt)t≥0.

Corollary 2.3. Let (Xt, Yt)t≥0 be the coupling process determined by (2.6) and with the
starting point (x, y). If x > y, then Xt ≥ Yt for all t > 0 a.s.

Proof. Denote by P(x,y) and E(x,y) the probability and the expectation of the process
(Xt, Yt)t≥0 starting from (x, y), respectively. Let

T̃ := inf{t > 0 : Yt > Xt},

and define fn ∈ C2
b (R2

+) for n ∈ N such that fn ≥ 0, fn(x, y) = 1 if y ≥ x + 1/n, and
fn(x, y) = 0 if y < x. Then, for any x > y and t > 0,

E(x,y)fn(Xt∧T̃ , Yt∧T̃ ) =fn(x, y) + E(x,y)

(∫ t∧T̃

0

L̃fn(Xs, Ys) ds

)
= 0,

where in the last equality we used the fact that L̃fn(x, y) = 0 for all x ≥ y, thanks to the
definition of the coupling operator L̃ given by (2.4) and the assumption that the function
γ2(x) is non-decreasing on R+. Then, for any x > y and t > 0, by the Fatou lemma,

P(x,y)(T̃ < t) = E(x,y) lim inf
n→∞

fn(Xt∧T̃ , Yt∧T̃ ) ≤ lim inf
n→∞

E(x,y)fn(Xt∧T̃ , Yt∧T̃ ) = 0.

Therefore, for any x > y,
P(x,y)(T̃ =∞) = 1.

That is, for any x > y, the coupling process (Xt, Yt)t≥0 associated with the coupling
operator L̃ satisfies that Xt ≥ Yt for all t > 0 a.s.

Remark 2.4. One can use the coupling by reflection of the local part but apply the
synchronous coupling (instead of the refined basic coupling) of the non-local part to
construct another coupling operator for the operator L. For any x > y ≥ 0, the
synchronous coupling of the non-local part for the operator L given by (2.1) is given by

(x, y) −→

{
(x+ z, y + z), γ2(y) ν(dz),

(x+ z, y), (γ2(x)− γ2(y)) ν(dz).
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Then, for any f ∈ C2(R2
+) and x > y ≥ 0, the corresponding coupling operator L∗ is

defined by

L∗f(x, y) =γ0(x)f ′x(x, y) + γ0(y)f ′y(x, y)(x, y)

+
1

2
γ1(x)f ′′xx(x, y) +

1

2
γ1(y)f ′′yy(x, y)−

√
γ1(x)γ1(y)f ′′xy(x, y)

+ γ2(y)

∫ ∞
0

(f(x+ z, y + z)− f(x, y)− f ′x(x, y)z − f ′y(x, y)z) ν(dz)

+ (γ2(x)− γ2(y))

∫ ∞
0

(f(x+ z, y)− f(x, y)− f ′x(x, y)z) ν(dz).

The difference between L̃ and L∗ is that the coupling operator L∗ does not involve
the measures µ(x−y)κ and µ−(x−y)κ . The coupling process associated with the coupling
operator L∗ above can be constructed directly. Actually, putting (1.1) and (2.8) together,
we can check by Itô’s formula that the generator of the Markov process (Xt, Yt)t≥0

defined by (1.1) and (2.8) on R2
+ is just the coupling operator L∗; moreover, Xt = Yt for

t ≥ T , where T = inf{t > 0 : Xt = Yt}. Similarly, we can see that this coupling process
(Xt, Yt)t≥0 also enjoys the preserving order property as in Corollary 2.3.

3 Exponential convergence in the L1-Wasserstein distance and
the total variation distance

In this section, we shall give general results about the exponential ergodicity of
the process (Xt)t≥0 determined by the SDE (1.1), in terms of both the L1-Wasserstein
distance and the total variation norm. To present our main result, we first introduce
some notation. For a strictly increasing function ψ on R+ and two probability measures
µ1 and µ2 on R+, define

Wψ(µ1, µ2) = inf
Π∈C (µ1,µ2)

∫
R2

+

ψ(|x− y|) Π(dx, dy),

where C (µ1, µ2) is the collection of probability measures on R2
+ with marginals µ1 and

µ2. When ψ is concave, the above definition gives rise to a Wasserstein distance Wψ in
the space of probability measures µ on R+ such that

∫
R+

ψ(z)µ(dz) <∞. If ψ(r) = r for

all r ≥ 0, then Wψ is the standard L1-Wasserstein distance as introduced in Section 1.
Another well known example for Wψ is given by ψ(r) = 1(0,∞)(r), which leads to the total
variation distance

Wψ(µ1, µ2) =
1

2
‖µ1 − µ2‖Var :=

1

2
[(µ1 − µ2)+(R+) + (µ1 − µ2)−(R+)].

The following two results give us the exponential convergence in the L1-Wasserstein
distance and the total variation norm for the SDE (1.1), respectively.

Theorem 3.1. Suppose that there are constants l0 ≥ 0, k2 > 0 and a nonnegative
function Φ1 ∈ C[0, 2l0] ∩ C3(0, 2l0] satisfying Φ1(0) = 0, Φ′1 ≥ 0, Φ′′1 ≤ 0 and Φ′′′1 ≥ 0 on
(0, 2l0] such that

γ0(x)− γ0(y) ≤

{
Φ1(x− y), 0 ≤ x− y ≤ l0,
−k2(x− y), x− y > l0.

(3.1)

If one of the following two assumptions holds:

(A1) there exist constants β ∈ [1, 2) and k3 > 0 such that∫ 1

0

Φ1(r)r−β dr <∞
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and

γ1(x) + γ1(y) ≥ k3(x− y)β , 0 ≤ x− y ≤ l0; (3.2)

(A2) there exist constants α ∈ (0, 2), β ∈ [α− 1, α) ∩ (0,∞) and C∗, k3 > 0 such that∫ 1

0

Φ1(r)rα−β−2 dr <∞, (3.3)∫ r

0

z2 ν(dz) ≥ C∗r2−α, 0 < r ≤ 1 (3.4)

and

(γ2(x)− γ2(y)) + γ2(y)1{inf0<z≤κ[zαµz(R+)]≥C∗} ≥ k3(x− y)β , 0 ≤ x− y ≤ l0, (3.5)

where µz is given by (2.3);

then there exist positive constants C and λ so that for all t > 0 and x, y ≥ 0,

W1(Pt(x, ·), Pt(y, ·)) ≤ Ce−λt|x− y|.

Theorem 3.2. Under the assumptions of Theorem 3.1, if additionally the function Φ1 in
(3.1) satisfies

lim sup
r→0

Φ1(r)r1−β = 0

when Assumption (A1) holds, or satisfies

lim sup
r→0

Φ1(r)rα−β−1 = 0 (3.6)

when Assumption (A2) holds, then there exist positive constants C and λ so that for all
t > 0 and x, y ≥ 0,

‖Pt(x, ·)− Pt(y, ·)‖Var ≤ Ce−λt(1 + |x− y|).

We make some comments on the assumptions of Theorems 3.1 and 3.2. First,
(3.1) is the so-called dissipative condition for large distance on the drift term γ0(x).
In applications there are a lot of choices for the function Φ1; for example, Φ1(r) =

Cr corresponds to the standard one-sided locally Lipschitz continuous condition, and
Φ1(r) = Cr log(4l0/r) is the typical one-sided non-Lipschitz continuous condition. Both
functions satisfy assumptions in Theorems 3.1 and 3.2. Secondly, since we assume that
the function γ1(x) is continuous on R+ such that γ1(0) = 0, (3.2) is satisfied when the
function γ1(x) is strictly positive on (0,∞) such that lim infx→0

γ1(x)
xβ

> 0. Thirdly, (3.4)

implies that
∫ 1

0
ν(dz) =∞. Suppose furthermore µx(R+) ≥ C∗x−α for all x ∈ (0, κ]. This

assumption is concerned on the concentration of the Lévy measure ν around zero (small
jump activity), and it implies that the measure ν has a component that is absolutely
continuous with respect to the Lebesgue measure, see [20, Proposition A.5]. Then (3.5)
is equivalently saying that γ2(x) ≥ k3x

β for all 0 ≤ x ≤ l0, which is also equivalent that
γ2(x) is strictly positive on (0,∞) such that lim infx→0

γ2(x)
xβ

> 0. On the other hand, when
γ2(x) − γ2(y) ≥ k3(x − y)β for all 0 < x − y ≤ l0 (this in particular indicates that the
function γ2 is strictly increasing on R+), we only require (3.5), which can be fulfilled
even for singular measures ν, see the remarks below Theorem 1.1.

As direct consequences of Theorems 3.1 and 3.2, we have the following statement for
the exponential ergodicity of the process (Xt)t≥0 in terms of the W1-distance and the
total variation norm. Let P1 be the space of probability measures having a finite first
moment.
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Corollary 3.3. (1) Under assumptions of Theorem 3.1, there exist a unique invariant
probability measure µ ∈ P1 and a constant λ > 0 such that for all t > 0 and
µ0 ∈P1,

W1(µ0Pt, µ) ≤ Cµ0
e−λt,

where Cµ0
is a positive constant depending on µ0.

(2) Under assumptions of Theorem 3.2, there exist a unique invariant probability
measure µ ∈P1 and a constant λ > 0 such that for all t > 0 and µ0 ∈P1,

‖µ0Pt − µ‖Var ≤ Cµ0
e−λt,

where Cµ0 is a positive constant depending on µ0.

Remark 3.4. (1) Recently, under the uniformly dissipative condition on the drift term
γ0(x), i.e., (3.1) holds with l0 = 0, which is equivalent to say that

γ0(x)− γ0(x) ≤ −k2(x− y), 0 ≤ y ≤ x, (3.7)

and the finite second moment condition for the jump measure ν, as well as some
growth conditions on the coefficients γ1(x) and γ2(x), [6, Theorem 4.2] establishes the
exponential ergodicity in the L1-Wasserstein distance for continuous-state nonlinear
branching processes. On the other hand, Theorem 3.1 and Corollary 3.3(1) establish
the exponential ergodicity under the weaker assumptions. Here the drift term is only
required to be dissipative for large distances as indicated by (3.1), or the jump measure
with finite first moment. In particular, Theorem 3.1 and Corollary 3.3(1) are workable for

ν(dz) =
(
|z|−1−α1{0<z≤1} + |z|−1−α11{z>1}

)
dz

with α ∈ (0, 2) and α1 > 1.
(2) We mention that, by the remarks below [12, Example 2.18], one can easily give

examples such that the assumptions of Theorem 3.1 (or Theorem 3.2) are satisfied, but
for any x > 0, Px(τ0 <∞) > 0 (or even =1), where τ0 = inf{t > 0 : Xt = 0}. Therefore,
under assumptions of Theorem 3.1 (or Theorem 3.2) the invariant probability measure
of the process (Xt)t≥0 could be allowed to have an atom at {0}.

The following assertion is furthermore concerned on the strong ergodicity of the
process (Xt)t≥0.

Theorem 3.5. Under assumptions of Theorem 3.2, if (3.1) is strengthened into the
condition that there are a constant l0 ≥ 0 and two nonnegative functions Φ1 and Φ2 such
that

γ0(x)− γ0(y) ≤

{
Φ1(x− y), 0 ≤ x− y ≤ l0,
−Φ2(x− y), x− y > l0,

(3.8)

where Φ1 is the same as that in Theorem 3.2, and Φ2 ∈ C2[l0,∞) satisfies Φ′2 ≥ 0 and
Φ′′2 ≥ 0 on [l0,∞), as well as ∫ ∞

l0

1

Φ2(s)
ds <∞,

then the process (Xt)t≥0 is strongly ergodic, i.e., there exist a unique invariant probability
measure µ and constants C, λ > 0 such that for all t > 0 and x ≥ 0,

‖δxPt − µ‖Var ≤ Ce−λt.

Note that since Φ′′2 ≥ 0 on [2l0,∞), Φ2(r) ≥ Φ2(2l0) + Φ′2(2l0)r. So, (3.8) is stronger
than (3.1) (by choosing l0 > 0 large enough if necessary). A typical example for the
function Φ2 in Theorem 3.5 is that Φ2(r) = c0r

δ with c0 > 0 and δ > 1.
We close this section with the following examples on the coefficient γ0(x).
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Example 3.6. (1) Let γ0(x) = b1x log(1 + 1/x)− b2x with b1, b2 > 0. Then, (3.1) holds
with Φ1(r) = b1r log(1 + 1/r) and k2 = b2/2 for some l0 > 0 large enough.

(2) Let γ0(x) = b1x− b2xδ with δ > 1 and b1, b2 > 0. Then, (3.8) holds with Φ1(r) = b1r

and Φ2(r) = b2r
δ/2 for some l0 > 0.

(3) Let γ0(x) = b1x− b2ecx
δ

with c, δ, b1, b2 > 0. Then, (3.8) holds with Φ1(r) = b1r, and
Φ2(r) = crθ with any θ > 1 and some l0, c > 0.

4 Proofs

4.1 Lemmas

To prove the main results in this paper, we need the following elementary lemmas.

Lemma 4.1. For fixed l0 > 0, let g ∈ C[0, 2l0] ∩ C3(0, 2l0] be satisfying g(0) = 0 and

g′(r) ≥ 0, g′′(r) ≤ 0 and g′′′(r) ≥ 0 for any r ∈ (0, 2l0]. (4.1)

Then for all c1, c2 > 0 the function

ψ(r) =

{
c1r +

∫ r
0
e−c2g(s) ds, r ∈ [0, 2l0],

ψ(2l0) + ψ′(2l0)
2

∫ r−2l0
0

[
1 + exp

( 2ψ′′(2l0)
ψ′(2l0) s

)]
ds, r ∈ (2l0,∞)

(4.2)

satisfies

(1) ψ ∈ C2(R+) such that ψ′ > 0 and ψ′′ < 0 on R+;

(2) ψ′′′ ≥ 0 and ψ(4) ≤ 0 on (0, 2l0]. In particular, for any 0 ≤ δ ≤ r ≤ l0,

ψ(r + δ) + ψ(r − δ)− 2ψ(r) ≤ ψ′′(r)δ2;

(3) for all r > 0,

min
{
c1,

ψ(2l0)

4l0
,
ψ′(2l0)

4

}
r ≤ ψ(r) ≤ (1 + c1)r.

Proof. The assertion (1) follows from the definition of ψ. The assertion (2) has been
proven in [20, Lemma 4.1]. Since ‖ψ′‖∞ = 1 + c1 and ψ(0) = 0, the second inequality
in the assertion (3) holds. On the other hand, for any r ∈ [0, 2l0], ψ(r) ≥ c1r; for any

r ∈ [4l0,∞), ψ(r) ≥ ψ′(2l0)
2 (r − 2l0) ≥ ψ′(2l0)

4 r; for any r ∈ (2l0, 4l0], ψ(r) ≥ ψ(2l0) ≥
ψ(2l0)

4l0
r. Combining with all the estimates above, we can prove the first inequality in the

assertion (3).

We have the following typical choice of functions g in the definition (4.2) for ψ.

Lemma 4.2. For fixed l0 > 0, let Φ1 ∈ C[0, 2l0] ∩ C3(0, 2l0] be a nonnegative function
such that Φ1(0) = 0, Φ′1 ≥ 0, Φ′′1 ≤ 0 and Φ′′′1 ≥ 0 on (0, 2l0]. Suppose that for some
θ ∈ (0, 1], ∫ r

0

Φ1(z)zθ−2 dz <∞, r ∈ [0, 2l0].

For any c0 > 0, set

g(r) := rθ + c0

∫ r

0

Φ1(z)zθ−2 dz.

Then g ∈ C[0, 2l0] ∩ C3(0, 2l0] such that g(0) = 0, and (4.1) holds; moreover,

sup
0<r≤2l0

(
rg′(r)− rg′′(r)

g′(r)

)
<∞.
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Proof. Let g1(r) = rθ and g2(r) = c0
∫ r

0
Φ1(z)zθ−2 dz for some θ ∈ (0, 1] and c0 > 0. It is

clear that g1(0) = 0, and g1 satisfies (4.1). We next claim that g2 also enjoys the property
(4.1). Indeed, by assumptions, it is clear that g2(0) = 0, g′2(r) = c0Φ1(r)rθ−2 ≥ 0, and

g′′2 (r) =c0(θ − 2)Φ1(r)rθ−3 + c0Φ′1(r)rθ−2 = c0r
θ−3 ((θ − 2)Φ1(r) + Φ′1(r)r)

≤c0rθ−3 (−Φ1(r) + Φ′1(r)r) ≤ 0

for r ∈ (0, 2l0], where in the first inequality we used the facts that θ ∈ (0, 1] and Φ1(r) ≥ 0

for all r ∈ (0, 2l0], and the last inequality follows from the facts that Φ1(0) = 0 and
Φ′′1(r) ≤ 0 for r ∈ (0, 2l0]. Furthermore, for r ∈ (0, 2l0],

g′′′2 (r) =c0Φ′′1(r)rθ−2 + 2c0(θ − 2)Φ′1(r)rθ−3 + c0(θ − 2)(θ − 3)Φ1(r)rθ−4

=c0r
θ−4

[
(θ − 2)(θ − 3)Φ1(r) + 2(θ − 2)Φ′1(r)r + Φ′′1(r)r2

]
.

By the facts that Φ1(0) = 0 and Φ′′′1 ≥ 0 on (0, 2l0], and the mean value theorem,

0 =2(2− θ)Φ1(0) ≤ 2(2− θ)Φ1(r)− 2(2− θ)Φ′1(r)r + (2− θ)Φ′′1(r)r2

≤(3− θ)(2− θ)Φ1(r)− 2(2− θ)Φ′1(r)r + Φ′′1(r)r2

for all r ∈ (0, 2l0], where in the second inequality above we used the facts that θ ∈ (0, 1],
Φ1 ≥ 0 and Φ′′1 ≤ 0 on (0, 2l0]. This implies that g′′′2 ≥ 0 on (0, 2l0]. Combining with all the
estimates above, we prove the desired assertion for g2. Since g = g1 + g2, we show that g
satisfies (4.1).

Since g(0) = 0 and g′′(r) ≤ 0 for all r ∈ (0, 2l0], rg′(r) ≤ g(r) for all r ∈ (0, 2l0] and so

sup
r∈(0,2l0]

rg′(r) ≤ sup
r∈(0,2l0]

g(r) = g(2l0).

On the other hand,
g′(r) = θrθ−1 + c0Φ1(r)rθ−2

and

−rg′′(r) = θ(1− θ)rθ−1 + c0(2− θ)rθ−2Φ1(r)− c0rθ−1Φ′1(r)

≤ θ(1− θ)rθ−1 + c0(2− θ)rθ−2Φ1(r),

where we used the fact that Φ′1 ≥ 0 on (0, 2l0]. Thus, by θ ∈ (0, 1],

sup
r∈(0,2l0]

−rg′′(r)
g′(r)

≤ sup
r∈(0,2l0]

θ(1− θ)rθ−1 + c0(2− θ)rθ−2Φ1(r)

θrθ−1 + c0Φ1(r)rθ−2
≤ 2− θ.

Therefore, the proof is complete.

In the following, for any f ∈ C2(R+), L̃f(x− y) := L̃F (x, y), where F (x, y) = f(x− y).

Lemma 4.3. For any n ≥ 1, let ψn ∈ C2(R+) be satisfying ψn(0) = 0 and

L̃ψn(x− y) ≤ −λψn(x− y), 1/n ≤ x− y ≤ n,

where λ > 0 is independent of n, x and y. Then for any t > 0 and x, y ∈ R+,

Wψ(Pt(x, ·), Pt(y, ·)) ≤ ψ(|x− y|)e−λt,

where ψ := lim infn→∞ ψn.

Proof. This lemma follows from the preserving order property for the coupling process
(Xt, Yt)t≥0 associated with the coupling operator L̃ proved in Corollary 2.3, and the
arguments in part (2) of the proof for [20, Theorem 3.1]. So, we omit the details here.
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4.2 Proofs of the main results

Now, we are in a position to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. (1) We first verify the assertion when (A2) is satisfied. At the
beginning we will prove it under the assumption that

µz(R+) ≥ C∗z−α, z ∈ (0, κ]. (4.3)

In this case, (3.5) is reduced to

γ2(x) ≥ k3(x− y)β , 0 ≤ x− y ≤ l0,

which is equivalent to
γ2(x) ≥ k3x

β , 0 ≤ x ≤ l0. (4.4)

Throughout the proof, without loss of generality we can assume that l0 ≥ 1 and κ ∈ (0, 1].
According to the definition (2.4) of the coupling operator L̃, we know that for any
f ∈ C2(R+) and any x > y ≥ 0,

L̃f(x− y) =
1

2
γ2(y)

[
f((x− y) + (x− y)κ) + f((x− y)− (x− y)κ)− 2f(x− y)

]
× µ(x−y)κ(R+)

+ (γ2(x)− γ2(y))

∫ ∞
0

(f(x− y + z)− f(x− y)− f ′(x− y)z) ν(dz)

+ (γ0(x)− γ0(y)) f ′(x− y) +
1

2
(
√
γ1(x) +

√
γ1(y))2f ′′(x− y).

(4.5)

In the following, we will take f to be the function ψ defined by (4.2), where the con-
stants c1, c2 > 0 and the function g will be determined later. According to Lemma 4.1(1),
ψ′′(r) ≤ 0 for all r > 0, and so by the mean value theorem, for any x > y ≥ 0 and z > 0,

ψ(x− y + z)− ψ(x− y)− ψ′(x− y)z ≤ 0; (4.6)

moreover, thanks to Lemma 4.1(2), for 0 < x− y ≤ l0 and 0 < z ≤ l0, we see

ψ(x− y + z)− ψ(x− y)− ψ′(x− y)z ≤ 1

2
ψ′′(x− y)z2 +

1

6
ψ′′′(x− y)z3 (4.7)

and

ψ((x− y) + (x− y)κ) + ψ((x− y)− (x− y)κ)− 2ψ(x− y) ≤ ψ′′(x− y)(x− y)2
κ. (4.8)

Note that for any 0 < r ≤ l0,

ψ′(r) = c1 +e−c2g(r), ψ′′(r) = −c2g′(r)e−c2g(r), ψ′′′(r) = −c2g′(r)e−c2g(r)
[
c2g
′(r) +

g′′(r)

g′(r)

]
.

Then, by (4.7), (3.4) and the increasing property of γ2(x), for any c0 ∈ (0, 1/l0] ⊂ (0, 1]

(whose value will be chosen later), and any x > y ≥ 0 with 0 < x− y ≤ l0,

(γ2(x)− γ2(y))

∫ c0(x−y)

0

(ψ(x− y + z)− ψ(x− y)− ψ′(x− y)z) ν(dz)

≤ (γ2(x)− γ2(y))ψ′′(x− y) · 1

2

∫ c0(x−y)

0

z2 ν(dz)

+
c0(x− y)(γ2(x)− γ2(y))

3
ψ′′′(x− y) · 1

2

∫ c0(x−y)

0

z2 ν(dz)

≤ −c2C∗c
2−α
0

2
(γ2(x)− γ2(y))g′(x− y)e−c2g(x−y)(x− y)2−α

×
[
1− c0(x− y)

3

(
c2g
′(x− y)− g′′(x− y)

g′(x− y)

)]
.
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On the other hand, according to (4.8) and (4.3), for any x > y ≥ 0 with 0 < x− y ≤ l0,

1

2
γ2(y)

[
ψ((x− y) + (x− y)κ) + ψ((x− y)− (x− y)κ)− 2ψ(x− y)

]
µ(x−y)κ(R+)

≤ C∗
2
γ2(y)ψ′′(x− y)(x− y)2−α

κ

≤ −C∗c2
2

κ2−α

l2−α0

γ2(y)g′(x− y)e−c2g(x−y)(x− y)2−α.

Therefore, putting these two estimates and (3.1) in (4.5), we arrive at that for any
c0 ∈ (0, 1/l0] ⊂ (0, 1] and any x > y ≥ 0 with 0 < x− y ≤ l0,

L̃ψ(x− y) ≤1

2
γ2(y)

[
ψ((x− y) + (x− y)κ) + ψ((x− y)− (x− y)κ)− 2ψ(x− y)

]
× µ(x−y)κ(R+)

+ (γ2(x)− γ2(y))

∫ c0(x−y)

0

(ψ(x− y + z)− ψ(x− y)− ψ′(x− y)z) ν(dz)

+ Φ1(x− y)ψ′(x− y) +
1

2
(
√
γ1(x) +

√
γ1(y))2ψ′′(x− y)

≤− C∗c2
2

κ2−α

l2−α0

γ2(y)g′(x− y)e−c2g(x−y)(x− y)2−α

− c2C∗c
2−α
0

2
(γ2(x)− γ2(y))g′(x− y)e−c2g(x−y)(x− y)2−α

×
[
1− c0(x− y)

3

(
c2g
′(x− y)− g′′(x− y)

g′(x− y)

)]
+ Φ1(x− y)(c1 + e−c2g(x−y)),

(4.9)

where in the second inequality we used the fact that ψ′′(r) ≤ 0 for all r ∈ (0, l0].

Next, we choose

g(r) = rα−β + c3

∫ r

0

Φ1(s)sα−β−2 ds,

where the constant c3 will be chosen later. Note that, by (3.3), g(r) is well defined. Set

c0 = min

 1

l0
,

1

sup0<r≤l0
−rg′′(r)
g′(r)

 , c2 =
sup0<r≤l0

−rg′′(r)
g′(r)

sup0<r≤l0 rg
′(r)

, c1 = e−c2g(l0).

Since 0 < α − β ≤ 1, according to Lemma 4.2, we know that c0, c2 ∈ (0,∞). It follows
from the definition of c2 that for 0 < x− y ≤ l0

(x− y)

(
c2g
′(x− y)− g′′(x− y)

g′(x− y)

)
≤ 2 sup

0<r≤l0

−rg′′(r)
g′(r)

.

This along with the definition of c0 in turn immediately yields

1− c0(x− y)

3

(
c2g
′(x− y)− g′′(x− y)

g′(x− y)

)
≤ 1

3
.
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By substituting the above inequality into (4.9) and using the definition of c1, we see

L̃ψ(x− y) ≤− C∗c2
2

κ2−α

l2−α0

γ2(y)g′(x− y)e−c2g(x−y)(x− y)2−α

− C∗c2c
2−α
0

6
(γ2(x)− γ2(y))g′(x− y)e−c2g(x−y)(x− y)2−α

+ 2Φ1(x− y)e−c2g(x−y)

≤− C∗c2
2

min

{
κ2−α

l2−α0

,
c2−α0

3

}
γ2(x)g′(x− y)e−c2g(x−y)(x− y)2−α

+ 2Φ1(x− y)e−c2g(x−y)

≤− C∗c2k3

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}
g′(x− y)e−c2g(x−y)(x− y)2+β−α

+ 2Φ1(x− y)e−c2g(x−y),

(4.10)

where in the second inequality we used the fact that

κ2−α

l2−α0

γ2(y) +
c2−α0

3
(γ2(x)− γ2(y)) ≥ min

{
κ2−α

l2−α0

,
c2−α0

3

}
γ2(x)

and in the last inequality we used (4.4). Furthermore, taking

c3 = 2

[
C∗c2k3

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}]−1

and recalling
g′(r) = (α− β)rα−β−1 + c3Φ1(r)rα−β−2,

we arrive at that for any x, y ∈ R+ with 0 < x− y ≤ l0,

L̃ψ(x− y) ≤ −C∗c2k3(α− β)

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}
e−c2g(x−y)(x− y)

≤ −C∗c2k3(α− β)

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}
e−c2g(l0)(x− y).

(4.11)

On the other hand, by (4.2), for any r > 2l0,

ψ′(r) =
ψ′(2l0)

2

(
1 + exp

(
2ψ′′(2l0)

ψ′(2l0)
(r − 2l0)

)]
≥ ψ′(2l0)

2
.

Then, it follows that ψ′(r) ≥ ψ′(2l0)
2 for any r > 0, since ψ′(r) is decreasing on (0,∞).

Hence, for any x− y > l0, according to (4.5), (4.6), (3.1) and the fact ψ′′ ≤ 0,

L̃ψ(x− y) ≤ 1

2
γ2(y)

[
ψ((x− y) + (x− y)κ) + ψ((x− y)− (x− y)κ)− 2ψ(x− y)

]
× µ(x−y)κ(R+)− k2(x− y)ψ′(x− y)

≤ −k2ψ
′(2l0)

2
(x− y),

(4.12)

where in the last inequality we used the fact that

ψ(r + δ) + ψ(r − δ)− 2ψ(r) ≤ 0, 0 < δ ≤ r, (4.13)

thanks to ψ′′ ≤ 0 again.
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According to (4.11), (4.12) and Lemma 4.1(3), we know that for any 0 < y < x,

L̃ψ(x− y) ≤ −λψ(x− y),

where

λ =
1

1 + c1
min

{
C∗c2k3(α− β)

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}
e−c2g(l0),

k2ψ
′(2l0)

2

}
.

This along with Lemma 4.3 yields that for any t > 0 and x, y ∈ R+,

Wψ(Pt(x, ·), Pt(y, ·)) ≤ ψ(|x− y|)e−λt.

Hence, the required assertion follows from the inequality above and Lemma 4.1(3).
When

γ2(x)− γ2(y) ≥ k3(x− y)β , 0 ≤ x− y ≤ l0, (4.14)

one can follow the arguments above to obtain the desired assertion. Indeed, in this
case we can get rid of the term involving µ(x−y)κ(R+) in estimates for L̃ψ(x− y) for any
x, y ∈ R+ with 0 < x − y ≤ l0, since this term is non-positive. We also note that under
(4.14) we can also directly apply the coupling operator L∗ and the associated coupling
process mentioned in Remark 2.4; however, such a coupling can not deal with the case
that (4.4) is satisfied. This explains the reason why we adopt the refined basic coupling
for the non-local part of the operator L, rather than simply applying the synchronous
coupling.

(2) We next verify the assertion when (A1) is satisfied. Let ψ be the function defined
by (4.2). From the fact ψ′′ ≤ 0 and the increasing property of γ2, we see the first two
terms in the right hand side of (4.5) is non-positive. Then, we get from estimates for ψ,
(3.2) and (3.1) that, for any x > y with 0 < x− y ≤ l0,

L̃ψ(x− y) ≤(γ0(x)− γ0(y))ψ′(x− y) +
k3

2
(x− y)βψ′′(x− y)

≤Φ1(x− y)ψ′(x− y) +
k3

2
(x− y)βψ′′(x− y),

where in the first inequality we used the fact that

(
√
γ1(x) +

√
γ1(y))2 ≥ k3(x− y)β , 0 ≤ x− y ≤ l0,

thanks to (3.2). Furthermore, we choose

g(r) = r2−β + c3

∫ r

0

Φ1(s)s−β ds.

Similarly, with possible choice of constants c1, c2 and c3 in the definition of ψ, one can
follow the argument in part (1) to verify the desired assertion. The details are omitted
here.

Proof of Theorem 3.2. For simplicity, we only verify the case that (A2) is satisfied and
that µz(R+) ≥ C∗z−α for all z ∈ (0, κ] (i.e., (4.3) and so (4.4) holds), since one can prove
the desired assertion similarly (and even easier) for other cases.

Without loss of generality, we assume that l0 ≥ 1 and κ ∈ (0, 1]. For any n ≥ 1, define
fn ∈ C2(R+) such that

fn(r)


= ψ(r), 0 < r ≤ 1/(n+ 1),

≤ 1 + b
(

r
1+r

)θ
+ ψ(r), 1/(n+ 1) < r ≤ 1/n,

= 1 + b
(

r
1+r

)θ
+ ψ(r), r ≥ 1/n,
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where b > 0 will be chosen later, θ = (α−β)/2 ∈ (0, 1), and ψ is defined by (4.2) (which is
the one in part (1) of the proof of Theorem 3.1 with some modification on the associated
constant c3). We will verify that there exists a constant λ > 0 such that for any n ≥ 1 and
x− y > 1/n,

L̃fn(x− y) ≤ −λfn(x− y). (4.15)

If (4.15) holds, then, the assertion follows from Lemma 4.3 and the fact that

lim inf
n→∞

fn(x, y) = 1{x 6=y}(1 + b(|x− y|/(1 + |x− y|))θ + ψ(|x− y|) � 1{x 6=y}(1 + |x− y|),

where for any nonnegative functions f, g on R2
+, f � g means that there is a constant

c ≥ 1 such that c−1f(x, y) ≤ g(x, y) ≤ cf(x, y) for all (x, y) ∈ R2
+.

In the following, let ψ0(r) = b(r/(1 + r))θ. Then,

ψ′0(r) = bθ(1 + r)−2

(
r

1 + r

)θ−1

(4.16)

and

ψ′′0 (r) = bθ

[
(θ − 1)(1 + r)−4

(
r

1 + r

)θ−2

− 2(1 + r)−3

(
r

1 + r

)θ−1
]
. (4.17)

Moreover, it is easy to see ψ′′′0 ≥ 0 and ψ(4)
0 ≤ 0. Following the argument of Lemma 4.1(2)

we know that (4.8) still holds with ψ0 in place of ψ, and can obtain that

ψ0(r + s)− ψ0(r)− ψ′0(r)s ≤ s2

2
ψ′′0 (2r), 0 < s ≤ r. (4.18)

Since ψ0
′′ ≤ 0, (4.6) and (4.13) also hold with ψ0 replaced by ψ. Then, by (4.5), (4.16)

and the fact that θ ∈ (0, 1), for l∗0 ∈ (0, κ] (which is determined later), n ≥ 1 and
1/n ≤ l∗0 ≤ x− y ≤ l0.

L̃ψ0(x− y) ≤Φ1(x− y)ψ′0(x− y) ≤ bθΦ1(x− y)(1 + l∗0)−θ−1(l∗0)θ−1 ≤ bθΦ1(x− y)(l∗0)θ−1.

On the other hand, with the same function ψ (i.e, with the same function g and the
constants c0, c1, c2) in the proof of Theorem 3.1, we find that for n ≥ 1 and 1/n ≤ l∗0 ≤
x− y ≤ l0, the inequality (4.10) still holds. Combining both estimates together, we obtain
that for any n ≥ 1 and 1/n ≤ l∗0 ≤ x− y ≤ l0,

L̃fn(x− y) ≤− C∗c2k3

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}
g′(x− y)e−c2g(x−y)(x− y)2+β−α

+ Φ1(x− y)e−c2g(x−y)(2 + bθec2g(l0)l∗0
θ−1).

Furthermore, choosing b = e−c2g(l0) and noticing that θ ∈ (0, 1), we arrive at

L̃fn(x− y) ≤− C∗c2k3

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}
g′(x− y)e−c2g(x−y)(x− y)2+β−α

+ Φ1(x− y)e−c2g(x−y)(2 + l∗0
θ−1).

Now, replacing the constant c3 in the proof for Theorem 3.1 by

c3 = (2 + l∗0
θ−1)

[
C∗c2k3

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}]−1

,
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we can get that for any n ≥ 1 and 1/n ≤ l∗0 ≤ x− y ≤ l0,

L̃fn(x− y) ≤ −C∗c2k3(α− β)

2
min

{
κ2−α

l2−α0

,
c2−α0

3

}
e−c2g(l0)(x− y).

Next, we turn to the case that 1/n < x − y ≤ l∗0 with any n ≥ 1. According to the
definition of the function ψ and the proof of Theorem 3.1, we know that (4.11) still holds
true for any 0 < x − y ≤ l∗0. On the other hand, according to (4.3) and the facts that
l∗0 ≤ κ and (4.8) holds with ψ0 in place of ψ, we find for any 0 < x− y ≤ l∗0 ≤ κ

1

2
γ2(y)

[
ψ0((x− y) + (x− y)κ) + ψ0((x− y)− (x− y)κ)− 2ψ0(x− y)]µx−y(R+)

≤ C∗
2
γ2(y)ψ′′0 (x− y)(x− y)2−α.

By (3.4) and (4.18), we have for any 0 < x− y ≤ l∗0 ≤ κ

(γ2(x)− γ2(y))

∫ x−y

0

(ψ0(x− y + z)− ψ0(x− y)− ψ′0(x− y)z) ν(dz)

≤ 1

2
(γ2(x)− γ2(y))ψ′′0 (2(x− y))

∫ x−y

0

z2 ν(dz)

≤ C∗
2

(γ2(x)− γ2(y))ψ′′0 (2(x− y))(x− y)2−α.

Note that, by ψ′′′0 (r) ≥ 0 and (4.17), for r ∈ (0, l∗0] and l∗0 ≤ 1,

ψ′′0 (r) ≤ ψ′′0 (2r) ≤ −bθ(1− θ)2θ−2(1 + 2l∗0)−θ−2rθ−2.

Thus, combining with all the estimates above with (4.4), we arrive at for any 0 < x− y ≤
l∗0 ≤ κ,

1

2
γ2(y)

[
ψ0((x− y) + (x− y)κ) + ψ0((x− y)− (x− y)κ)− 2ψ0(x− y)]µx−y(R+)

+ (γ2(x)− γ2(y))

∫ x−y

0

(ψ0(x− y + z)− ψ0(x− y)− ψ′0(x− y)z) ν(dz)

≤ −bθC∗k3(1− θ)2θ−3(1 + 2l∗0)−θ−2(x− y)β−α+θ.

Therefore, by (4.5), (3.1) and the fact that ψ′′0 ≤ 0, for any 1/n < x− y ≤ l∗0 ≤ κ, we see

L̃ψ0(x− y) ≤1

2
γ2(y)

[
ψ0((x− y) + (x− y)κ) + ψ0((x− y)− (x− y)κ)− 2ψ0(x− y)]

× µx−y(R+)

+ (γ2(x)− γ2(y))

∫ x−y

0

(ψ0(x− y + z)− ψ0(x− y)− ψ′0(x− y)z) ν(dz)

+ (γ0(x)− γ0(y))ψ′0(x− y)

≤− bθC∗k3(1− θ)2θ−3(1 + 2l∗0)−θ−2(x− y)β−α+θ + bθΦ1(x− y)(x− y)θ−1

≤bθ(x− y)β−α+θ

[
−C∗k3(1− θ)

216
+ sup

0<r≤l∗0
(Φ1(r)rα−β−1)

]
,

where in the last inequality we used the facts that θ, l∗0 ∈ (0, 1). This along with (3.6)
yields that there is l∗0 ∈ (0, 1] small enough such that for all n ≥ 1 and 1/n < x−y ≤ l∗0 ≤ 1,

L̃ψ0(x− y) ≤ −bθC∗k3(1− θ)
432

(x− y)β−α+θ.
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Recalling that θ = (α− β)/2, we then get that for any n ≥ 1 and 1/n < x− y ≤ l∗0,

L̃fn(x− y) ≤ −bθC∗k3(1− θ)
432

l∗0
−(α−β)/2.

Finally, according to (4.12), (4.5) and the facts that ψ′0 ≥ 0 and ψ′′0 ≤ 0, we find that
for any x− y > l0,

L̃fn(x− y) ≤ L̃ψ(x− y) ≤ −k2(x− y)ψ′(x− y) ≤ −k2ψ
′(2l0)

2
(x− y).

Combining all the estimates above for L̃fn(x− y), we can obtain (4.15), thanks to the
fact that there exists a constant C0 ≥ 1 such that C−1

0 (1 + r) ≤ fn(r) ≤ C0(1 + r) for all
r ∈ R+ and n ≥ 1. The proof is complete.

Proof of Corollary 3.3. Denote by Ex the expectation under the probability measure
Px = P(·|X0 = x), and µPt(A) =

∫
R+

Pt(x,A)µ(dx) for all probability measures µ, t > 0

and A ∈ B(R+). By [7, Proposition 2.3], we see that under assumptions of Theorem 3.1
(or Theorem 3.2), there exist constants C1,K > 0 such that for all x ∈ R+ and t > 0,

ExXt ≤ C1(1 + x)eKt.

This is,
∫
R+

y (δxPt)(dy) ≤ C1(1 + x)eKt < ∞. So δxPt ∈ P1 for any x ∈ R+ and t > 0,
and so µPt ∈P1 for each µ ∈P1, where P1 is the space of all probability measures on
(R+,B(R+)) with the first finite moment. With this at hand, the proof of Corollary 3.3
essentially follows from that of [18, Corollary 1.8]. We omit the details here.

Proof of Theorem 3.5. Similar to the proof of Theorem 3.2, we only verify the case that
(A2) is satisfied and that µz(R+) ≥ C∗z

−α for all z ∈ (0, κ] with C∗, κ > 0 and α ∈ (0, 2)

(i.e., (4.4) holds). To verify the desired assertion, we will use the following test function

ψ(r) =

{
c1r +

∫ r
0
e−c2g(s) ds, r ∈ [0, 2l0],

ψ(2l0) +A
∫ r−2l0

0
1

Φ2(Bs+2l0) ds+ δA
∫ r−2l0

0
1

Φ2(s+2l0) ds, r ∈ (2l0,∞),
(4.19)

where A = ψ′(2l0)Φ2(2l0)
δ+1 , B = −ψ

′′(2l0)Φ2(2l0)(δ+1)
ψ′(2l0)Φ′2(2l0) − δ and δ > 0 is sufficient small such

that B > 0. Note that the modification between the test function ψ given by (4.19) and
the one in the the proof of Theorem 3.1 is only made for r ∈ (2l0,∞). It is easy to see
that ψ ∈ C2(R+) such that ψ′ > 0 and ψ′′ < 0 on R+; moreover, by

∫∞
1

1
Φ2(s) ds < ∞,

ψ ∈ Cb(R+).
With the test function ψ above, we can define a sequence of functions {fn}n≥1 ⊂

C2(R+) such that

fn(r)


= ψ(r), 0 < r ≤ 1/(n+ 1),

≤ 1 + b
(

r
1+r

)θ
+ ψ(r), 1/(n+ 1) < r ≤ 1/n,

= 1 + b
(

r
1+r

)θ
+ ψ(r), r ≥ 1/n,

where b and θ are the same as in the proof of Theorem 3.2. In particular, {fn}n≥1 is
uniformly bounded, i.e. supn≥1 ‖fn‖∞ <∞.

Following the proof of Theorem 3.2, we know (4.15) still holds true with some λ > 0

when 1/n ≤ x − y ≤ l0. Next, we consider the estimate for x − y > l0. First, let
ψ0(r) = (r/(1 + r))

θ. By (4.5) and the facts that ψ′0 ≥ 0, ψ′′0 ≤ 0 and ψ′′ ≤ 0, for any
x− y ≥ 2l0, we have

L̃fn(x− y) ≤ −Φ2(x− y)ψ′(x− y) ≤ −δA.
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On the other hand, for any l0 < x− y ≤ 2l0,

L̃fn(x− y) ≤ −Φ2(x− y)ψ′(x− y) ≤ −c1Φ2(x− y) ≤ −c1Φ2(l0).

Combining with all the estimates above, we obtain that there is a constant λ > 0 such
that for all x, y ∈ R+ with x > y and n ≥ 1,

L̃fn(x, y) ≤ −λ.

This, along with Lemma 4.3 and the fact that there is a constant C0 ≥ 1 such that
C−1

0 1(0,∞)(r) ≤ fn(r) ≤ C01(0,∞) for all n ≥ 1 and r ∈ R+, in turn yields that there exists
a positive constant C so that for all t > 0 and x, y ∈ R+,

‖Pt(x, ·)− Pt(x, ·)‖Var ≤ Ce−λt.

Hence, the desired assertion follows from the proof of Corollary 3.3.

Next, we turn to the

Proof of Theorem 1.1. Condition (1.2) means that (3.1) holds with

Φ1(r) = k1r log

(
4l0
r

)
.

When (1) holds, Assumption (A1) in Theorem 3.1 is satisfied; see the remarks below
Theorem 3.2.

When ν(dz) ≥ c01{0<z≤1}z
−1−α dz for some c0 > 0 and α ∈ (0, 2), by [20, Example

1.2], we know that µz(R+) ≥ C∗z
−α for all z ∈ (0, κ] with some C∗, κ > 0. Then, that

condition (2) holds implies that Assumption (A2) in Theorem 3.1 is satisfied too; see also
the remarks below Theorem 3.2.

For γ2(x) given in (3), we have for all x > y ≥ 0,

γ2(x)− γ2(y) ≥ b2(xr2 − yr2).

Since r2 ∈ [1, α) with α ∈ (1, 2), for all x > y ≥ 0,

xr2 − yr2 ≥ xr2−1(x− y) ≥ (x− y)r2 .

Hence, Assumption (A2) in Theorem 3.1 is satisfied. With all the conclusions above, we
can obtain the desired assertion from Theorems 3.1, 3.2 and 3.5, as well as Corollary 3.3.

Finally, we present the

Proof of Example 3.6. (1) For any x > y > 0,

γ0(x)− γ0(y) =[b1x log(1 + 1/x)− b1y log(1 + 1/y)]− [b2x− b2y]

≤b1(x− y) log(1 + 1/x)− b2(x− y)

≤b1(x− y) log(1 + 1/(x− y))− b2(x− y).

This implies that (3.1) holds with Φ1(r) = b1r log(1 + 1/r) and k2 = b2/2, by setting
l0 > 0 large enough such that b1 log(1 + l−1

0 ) ≤ b2/2. We note that, by some elementary
calculations, Φ1(r) = b1r log(1 + 1/r) satisfies all the assumptions in Theorem 3.1.

(2) Note that for all δ > 1 and x > y ≥ 0,

xδ − yδ ≥ xδ−1(x− y) ≥ (x− y)δ.
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Then,

γ0(x)− γ0(y) =[b1x− b1y]− [b2x
δ − b2yδ]

≤b1(x− y)− b2(x− y)δ.

Hence, we know that (3.8) holds with Φ1(r) = b1r, Φ2(r) = b2r
δ/2 and l0 = (2b1/b2)1/(δ−1).

(3) We consider the function x 7→ ecx
δ

with c, δ > 0 on R+. For any x, y ∈ R+ with
x− y ≥ l0 and some l0 > 0 large enough,

ecx
δ

− ecy
δ

≥ ecx
δ

x
(x− y) ≥ c0xθ(x− y) ≥ c0(x− y)1+θ,

where c0 and θ are positive constants. Here, in the first inequality we used the fact that

the function x 7→ ecx
δ

x is increasing for x > 0 large enough, and the second inequality

follows from the fact that ecx
δ

x ≥ c0xθ for x > 0 large enough, where θ > 0 can be chosen
to be any positive constant. With aid of this inequality, we can prove the desired assertion
by following the argument in (2).
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