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Abstract

It has been known since the pioneering paper of Mark Kac [20], that the asymptotics
of Fredholm determinants can be studied using probabilistic methods. We demon-
strate the efficacy of Kac’ approach by studying the Fredholm Pfaffian describing the
statistics of both non-Hermitian random matrices and annihilating Brownian motions.
Namely, we establish the following two results. Firstly, let

√
N + λmax be the largest

real eigenvalue of a random N ×N matrix with independent N(0, 1) entries (the ‘real
Ginibre matrix’). Consider the limiting N → ∞ distribution P[λmax < −L] of the
shifted maximal real eigenvalue λmax. Then

lim
L→∞

e
1

2
√

2π
ζ( 3

2 )LP (λmax < −L) = eCe ,

where ζ is the Riemann zeta-function and

Ce =
1

2
log 2 +

1

4π

∞∑
n=1

1

n

(
−π +

n−1∑
m=1

1√
m(n−m)

)
.

Secondly, let X(max)
t be the position of the rightmost particle at time t for a system of

annihilating Brownian motions (ABM’s) started from every point of R−. Then

lim
L→∞

e
1

2
√

2π
ζ( 3

2 )LP

(
X

(max)
t√
4t

< −L

)
= eCe .

These statements are a sharp counterpart of the results of [22], improved by computing
the O(L0) term in the asymptotic L→∞ expansion of the corresponding Fredholm
Pfaffian.
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1 Introduction and the main result

The present paper continues the investigation of the statistics of the real eigenvalues
for random matrices with independent normal matrix elements (the so-called real Ginibre
ensemble) and particles for the system of annihilating Brownian motions started in [22].

A mathematical way of describing random arrangements of points representing
eigenvalues or particle positions is the theory of point processes, see [9] for a review.
Important subclasses of point processes are determinantal and Pfaffian point processes,
whose correlation functions are given by determinants or Pfaffians of kernels of certain
integral operators. Well known examples of determinantal point processes are the laws
of eigenvalues for random Hermitian, unitary and complex Gaussian matrix models; the
eigenvalue statistics for symmetric, symplectic and real random Gaussian matrices are
described by Pfaffian point processes, see [1], [21] for reviews. Moreover, determinantal
and Pfaffian point processes describe the distribution of particles for a number of
interacting particle systems such as the totally asymmetric simple exclusion process
[19] and reaction-diffusion systems for certain combinations of annihilation, coalescence,
branching and immigration of particles, [17], [18], [26].

Of a particular importance for the current investigation is the fact that the law of the
real eigenvalues for the real Ginibre ensemble is a Pfaffian point process, [5], [14], [24].
Moreover, its bulk scaling limit coincides (up to a diffusive rescaling) with the fixed time
law of annihilating Brownian motions started at every point of the real line [26], its edge
scaling limit coincides with the fixed time law of annihilating Brownian motions started
at every point of the negative part of the real line [17], [6].

The probabilities of ‘gaps’ (regions of space void of any particles) are a fundamental
object for point processes, which in fact characterise the law of a simple one-dimensional
process uniquely. For determinantal and Pfaffian point processes gap probabilities are
given by Fredholm determinants and Pfaffians of integral operators determined by the
kernels of the corresponding processes. A particular instance of gap probability is
the distribution of the rightmost or leftmost particle for the process, for example the
statistics of the largest eigenvalue of a random Hermitian matrix (the Tracy-Widom
distribution, [21]), or the largest real eigenvalue of a real random matrix (the Rider-
Sinclair distribution, [23]).

An exact calculation of a Fredholm determinant or a Pfaffian is impossible in all
but a few special cases (for example the celebrated link between Painlevé functions
and the GOE and GSE ensembles, see [1] Section 3.1). Fortunately, the asymptotics of
gap probabilities in the limit of large empty intervals can be studied in many important
cases. If, for example, the operator is translationally invariant, the asymptotics of the
corresponding Fredholm determinant can be studied using Szegő’s theorem and its
modifications, see [8] for a review. In particular, Szegő’s theorem was used by Derrida
and Zeitak to calculate the asymptotics of a single gap probability in a coalescence-
annihilation model started at every point of the real line [11]. Note that for the purely
annihilating case, Derrida-Zeitak’s calculation is non-rigorous due to the presence
of Fisher-Hartwig singularities in the kernel, but the final answer is believed to be
correct and can be rigorised using an appropriate modification of Szegő’s formula, see
[8], Chapter 6. In [15] Forrester used the Derrida-Zeitak formula and the connection
between the real Ginibre random matrix model and annihilating Brownian motions
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stated above to calculate the asymptotics of gap probabilities for the distribution of real
eigenvalues in the bulk. For us [15] was a crucial paper which inspired our current
research.

In the absence of translational invariance, the situation is more complicated. If the
operator is integrable (as is the case for all point processes describing eigenvalues of
complex Hermitian random matrices), the asymptotics of the distribution of extreme
eigenvalues can be studied by reducing the problem to a matrix Riemann-Hilbert problem
and analyzing the latter, see e.g. [10]. As was discovered recently in [2], the operator K
which defines the Pfaffian point process for the annihilating Brownian motions and the
edge scaling limit of the real Ginibre ensemble is Fourier-conjugated to an integrable
operator. This is a significant development, placing the real Ginibre ensemble firmly in
the realm of integrable systems. Unfortunately, the associated Riemann-Hilbert problem
turned out to be somewhat complicated allowing the calculation of the asymptotics of
the Fredholm Pfaffian only for the operator γK, where γ < 1, thus making it difficult to
relate the answer to the distribution of the largest real eigenvalue (γ = 1). Moreover, the
constant factor Ce is not directly accessible by these methods for any γ. Notice however,
that in the context of particle system, γK for 1

2 ≤ γ ≤ 1 has a clear probabilistic meaning
– it describes the statistics of mixed annihilating-coalescing Brownian motions, [17].

An alternative approach to the asymptotic analysis of Fredholm determinants was
pioneered by Mark Kac [20] who was the first to state and prove a continuous version
of Szegő’s theorem, which originally was formulated for Toeplitz matrices rather than
translationally invariant trace class integral operators. The main idea due to Kac is to
interpret the log-det expansion of the Fredholm determinant of the trace-class integral
operator T acting on L2 functions on I ⊂ R,

log det(I − T ) = −
∞∑
n=1

1

n

∫
In
T (x1 − x2)T (x2 − x3) . . . T (xn − x1) dx1 . . . dxn,

as a certain expectation with respect to the measure of a random walk whose increments
have a (pseudo) distribution T (x)dx. Of course, the result of [20] can be derived directly
by taking the continuous limit of Szegő’s theorem for Toepltiz matrices.

However, as we showed in [22], the probabilistic approach can be used for the
derivation of new results, namely the tails of the distribution of the rightmost real
eigenvalue (the rightmost particle) for the edge scaling limit of the real Ginibre ensemble
(annihilating Brownian motions). This is the most difficult γ = 1 case in the terminology
of [2], see the discussion above. In [22] we already calculated the asymptotic of the
relevant Fredholm Pfaffian up to O(1) errors. In the current paper we will show that by
sticking closer to the original Kac argument we can calculate the constant term as well
as characterise the size of the correction. The calculation turns out to be rather short
and intuitive. It is based on some classical properties of random walks with general
increments, as discussed in [13].

The main result of the paper is the following statement. Let
√
N +λmax be the largest

real eigenvalue for the N × N real Ginibre ensemble. Let EN denote the ensemble
expectation. Let

P(λmax < −L) = lim
N→∞

EN (1(λmax < −L)) (1.1)

be the edge scaling limit of the distribution of the largest real eigenvalue.

Theorem 1.1. For L > 0,

lim
L→∞

e
ζ(3/2)

2
√

2π
L
P (λmax < −L) = eCe , (1.2)

EJP 25 (2020), paper 116.
Page 3/15

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP512
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Fredholm Pfaffians, interacting particle systems and random matrices

where

Ce =
1

2
log 2 +

1

4π

∞∑
n=1

1

n

(
−π +

n−1∑
m=1

1√
m(n−m)

)
. (1.3)

More precisely,

logP (λmax < −L) = −ζ(3/2)

2
√

2π
L+ Ce + o(L−1+), (1.4)

where for o(L−1+): for any µ > 0, limL→∞ L1−µo(L−1+) = 0.

The problem of computing expCe, the constant factor in the asymptotic expansion
of Fredholm determinants, is a known difficult problem in statistical physics, see for
example [3] for the calculation of the constant factor for the partition function of the
six-vertex model and a review of similar cases.

Let us analyse the presented asymptotic formula for the gap probability at the edge
of the spectrum in more detail. Numerically, exp(Ce) ≈ 0.75, which is consistent with its
numerical value obtained in [2]. Let us also compare (1.4) with the bulk scaling limit
of the probabilty P(N(−L, 0) = 0) that the interval (−L, 0) contains no real (unshifted)
eigenvalues. As predicted by the Derrida-Zeitak formula [11] applied to the real Ginibre
ensemble in [15],

logP (N(−L, 0) = 0) = −ζ(3/2)

2
√

2π
L+ Cb + o(L0), (1.5)

where

Cb = log 2 +
1

4π

∞∑
n=1

1

n

(
−π +

n−1∑
m=1

1√
m(n−m)

)
. (1.6)

Comparing (1.5) and (1.4) we see that the leading terms coincide. This is not very
surprising, see [22] for a heuristic explanation. However, there is no reason why the
O(1) terms should be the same. In fact, we see from the above formulae that

lim
L→∞

P (λmax < −L)

P (N(−L, 0) = 0)
= eCe−Cb =

1√
2
. (1.7)

It would be interesting to see if it were possible to derive relation (1.7) without computing
P(λmax < −L) and P(N(−L, 0) = 0) separately.

Interpreted in terms of particle systems, our result reads as follows:

Corollary 1.2. Consider the system of instantaneously annihilating Brownian motions
on the real line started from every point of R− (half-space maximal entrance law). Let

X
(max)
t be the position of the rightmost particle at a fixed time t > 0. Then

lim
X→∞

e
1

2
√

2π
ζ( 3

2 ) X√
4tP

(
X

(max)
t < −X

)
= eCe . (1.8)

The Corollary is a direct consequence of the observation that

X
(max)
t

(d)∼
√

4tλmax. (1.9)

This in turn follows from the fact that the edge scaling limit of the law of real eigenvalues
for the real Ginibre ensemble and the single time distribution of ABM’s with half-space
maximal entrance law rescaled by 1/

√
4t can be characterised by the same Pfaffian point

process, see [5], [6] and [17] for a proof of this fact.
The rest of the paper is organised as follows. In Section 2 we collect the probabilistic

tools necessary to establish our main result, explain the main idea for the argument
and finally prove Theorem 1.1. In Section 3 we prove the probabilistic lemmas used to
derive the statement of the Theorem. For the sake of completeness we also present a
streamlined proof of the key identity due to Kac [20], which underpins our argument.
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2 The proof of Theorem 1.1

The starting point for the proof is the Rider-Sinclair formula [23], which gives a
Fredholm Pfaffian expression for P(λmax < −L). More specifically, we will use a
probabilistic restatement of Rider-Sinclair’s result proved in [22], which can be explained
as follows. Let (Bn, n ≥ 0) be the discrete time random walk with Gaussian N(0, 1/2)

increments started at zero. Let{
τL = infn>0{2n− 1 : B2n−1 ≥ L},
τ0 = infn>0{2n : B2n ≤ 0}. (2.1)

In words: τ0 is the smallest even time such that Bτ0 ≤ 0, τL is the smallest odd time such
that BτL ≥ L. Also, let

M2n = sup{Bk : k is odd, k < 2n} (2.2)

be the supremum of the random walk (Bk)k≥0 taken over all odd times not exceeding
the time 2n. Then

Theorem 2.1.

P(λmax < −L) =
√
P(τL < τ0) e−

L
2 E(δ0(Bτ0))e

1
2E(min(L,Mτ0

)δ0(Bτ0)). (2.3)

Remark 2.2. We use the expression E(Xδy(Y )) to mean a continuous Lebesgue density
for the measure E(X1(Y ∈ dy)) evaluated at y. If y = 0, we sometimes write E(Xδ0(Y ))

as E(X1(Y ∈ d0)).

Remark 2.3. Notice a slight change of notations in (2.2), (2.3) in comparison with
formulae (1.7), (1.9) of [22].

We will also need the following two facts from [22]:

Lemma 2.4. As L→∞,

P[τL < τ0] =
1√
2L

(1 + o(L−1+)). (2.4)

Also,

E (δ0 (Bτ0)) =
ζ(3/2)√

2π
. (2.5)

Formula (2.4) is a slight improvement on Lemma 3.2 of [22], which only claims the
error bound of magnitude O(L−1/2). The improved bound is obtained simply by using
Hölder rather than the Cauchy-Schwarz inequality in the proof, without changing the
rest of the argument. Equation (2.5) is equally straightforward to check and we will do
it below to illustrate the utility of a probabilistic approach, see Remark 3.1 below. In
addition, we need the following key statement due to Mark Kac [20]:

Lemma 2.5 (Mark Kac, 1954). Let (Xi)i≥1 be independent identically distributed random
variables having continuous even density function ρ onR, and Sk = X1+X2+. . .+Xk, k ≥
1. Then

ρ(n)(0)E (max(0, S1, S2, . . . , Sn−1)|Sn = 0) =
n

2

∫ ∞
0

x

n−1∑
k=1

ρ(k)(x)ρ(n−k)(x)

k(n− k)
dx, (2.6)

where ρ(k) denotes the k-fold convolution of ρ with itself or, in other words, the density
function of Sk.

Substituting (2.4, 2.5) into (2.3), we find

logP(λmax < −L) +
ζ(3/2)

2
√

2π
L = R(L), (2.7)
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where

R(L) =
1

2
E (min(L,Mτ0)δ0 (Bτ0))− 1

2
logL− 1

4
log 2 + o(L−1+). (2.8)

It remains to calculate the leading asymptotic of R(L), as L→∞, which turns out to be
O(L0). Decomposing over the values of τ0 = 2n,

E (min(L,Mτ0)δ0 (Bτ0)) =

∞∑
n=1

pn(L), (2.9)

where
pn(L) = E (min(L,M2n)1(τ0 = 2n)δ0 (B2n)) . (2.10)

The summands pn(L), n ≥ 1, can be simplified using the cyclic invariance of the incre-
ments of the random walk B. Namely, we have the following result proved in Section 3.

Lemma 2.6. Let (Sn)n≥1 be a discrete time random walk such that the distribution of
increments has a continuous density. Then

pn(L) =
1

n
E (min (L,M2n −m2n) δ0(S2n)) , (2.11)

where
m2n = inf{Sk : k is even, k ≤ 2n} (2.12)

is the infimum of the random walk taken over even times not exceeding 2n and Mn is
the supremum of the walk over odd times defined in (2.2).

Remark 2.7. Notice that the above statement does not rely on the Gaussianity of
increments. It is a particular instance of a family of results for random walks conditioned
to finish at zero found in [13].

We conclude that pn’s are fully determined by a joint distribution of the maximum,
the minimum and the final position of the random walk. Let us fix ε ∈ (0, 2). Then

E (min(L,Mτ0)δ0 (Bτ0)) =

bL2−εc∑
n=1

pn(L) +

∞∑
bL2−εc+1

pn(L). (2.13)

For n ≤ L2−ε, M2n − m2n < L with probability close to 1. Therefore (2.11) is well
approximated by pn(L) ≈ 1

nE ((M2n −m2n) δ0(B2n)), which can be computed adapting
the original Kac’ argument [20]. This approximation decays as 1/2n at large n’s, leading
to the logarithmic divergence of

∑∞
n=0 pn(L) and thus the necessity for a separate

analysis for large n. Fortunately, for n > L2−ε, the random walk can be well approximated
by a Brownian motion. Then pn(L) can be computed using the classical Levy’s result
for the trivariate distribution of the supremum, the infimum and the final value of the
Brownian motion on an interval, see e.g. [4], [13] for review. Rigorising the argument,
we arrive at the following Lemma proved in Section 3.

Lemma 2.8. For n ≤ L2−ε,

pn(L) =
1

2πn

n−1∑
k=1

1√
k(n− k)

+ E(1)
n (L), (2.14)

where

|E(1)
n (L)| ≤

√
2

πn3
L

e−
2L2

n

1− e−2Lε
. (2.15)

For n ≥ L2−ε,

pn(L) =
1

2n
−
√

2

πn3
L

∞∑
k=1

e−
2k2L2

n + E(2)
n (L), (2.16)
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where, for any fixed γ ∈ (0, 32 ), there exists an n-independent constant Cγ > 0 such that

|E(2)
n (L)| ≤ Cγn−3/2+γ . (2.17)

Substituting (2.14, 2.16) into (2.13) and then into (2.8), we find

R(L) =
1

4π

bL2−εc∑
n=1

1

n

n−1∑
k=1

1√
k(n− k)

+
1

2

∞∑
n=bL2−εc+1

(
1

2n
−
√

2

πn3
LΩ

(
2L2

πn

))

−1

4
log
(
2L2

)
+

1

2

bL2−εc∑
n=1

E(1)
n (L) +

1

2

∞∑
n=bL2−εc+1

E(2)
n (L) + o

(
L−1+

)
, (2.18)

where

Ω(t) :=

∞∑
k=1

e−πk
2t (2.19)

is a function on R closely related to Jacobi’s θ-function, Ω(t) = θ(0,it)−1
2 , see [27] for a

review. It satisfies Ω(t) = O(e−πt) for t → ∞ and Ω(t) = 1
2
√
t
− 1

2 + o(1) for t ↓ 0, which
we use to verify the convergence of integral bounds derived below.

First, let us estimate the error terms in (2.18) using (2.15, 2.17). Notice that the
function f(x) = x−3/2+γ is decreasing on R+, if γ ∈ (0, 32 ), and the function g(x) =

x−3/2 exp(−2k2L2/x) is increasing for 0 < x < L2−ε provided k ≥ 1. Therefore,
∑b
n=a f(n)

and
∑b
n=a g(n) can be bounded above using integrals:

1

2

∣∣∣∣ bL
2−εc∑
n=1

E(1)
n (L) +

∞∑
n=bL2−εc+1

E(2)
n (L)

∣∣∣∣ ≤ Cγ
2

∫ ∞
L2−ε

dx

x3/2−γ
+

√
2L2

π

1

1− e−2Lε
∫ 1+L2−ε

0

e−
2L2

x

x3/2
dx

≤ Cγ
1− 2γ

L−(2−ε)
1−2γ

2 +

√
2L2

π

1

1− e−2Lε
1 + L2−ε

L3−3ε/2 e
− 2L2

1+L2−ε .

Since γ > 0 can be chosen to be arbitrarily small, we conclude from the above that

1

2

∣∣∣∣ bL
2−εc∑
n=1

E(1)
n (L) +

∞∑
n=bL2−εc+1

E(2)
n (L)

∣∣∣∣ = o
(
L−1+ε/2+

)
. (2.20)

Therefore,

R(L) =
1

4π

bL2−εc∑
n=1

1

n

n−1∑
k=1

1√
k(n− k)

+
1

2

∞∑
n=bL2−εc+1

(
1

2n
−
√

2

πn3
LΩ

(
2L2

πn

))

−1

4
log
(
2L2

)
+ o

(
L−1+ε/2+

)
. (2.21)

Using integral bounds it is elementary to establish an estimate, as n→∞,

n−1∑
k=1

1√
k(n− k)

= π +O(n−1/2), (2.22)

which can be used to re-write R(L) as follows:

R(L) =
1

4π

∞∑
n=1

1

n

(
n−1∑
k=1

1√
k(n− k)

− π

)
+

1

2

∞∑
n=bL2−εc+1

(
1

2n
−
√

2

πn3
LΩ

(
2L2

πn

))

+
1

4

bL2−εc∑
n=1

1

n
− 1

4
log
(
2L2

)
+ o

(
L−1+ε/2+

)
. (2.23)
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Recall a classical result for the sum of harmonic series [27], as N →∞,

N∑
n=1

1

n
= logN + γ +O(N−1), (2.24)

where γ is the Euler-Mascheroni constant. Using (2.24) in (2.23) we find

R(L) =
1

4π

∞∑
n=1

1

n

(
n−1∑
k=1

1√
k(n− k)

− π

)
+

1

2

∞∑
n=bL2−εc+1

(
1

2n
−
√

2

πn3
LΩ

(
2L2

πn

))

− ε

4
logL+

γ

4
− 1

4
log 2 + o

(
L−1+ε/2+

)
. (2.25)

An application of the mean value theorem to the terms of the second sum on the right
hand side of (2.25) leads to

∞∑
n=bL2−εc+1

(
1

2n
−
√

2

πn3
LΩ

(
2L2

πn

))
=

∫ ∞
L−ε

(
1

2x
−
√

2

πx3
Ω

(
2

πx

))
dx+ o(L−2+ε)

=
ε

2
logL−

∫ 1

0

dx

√
2

πx3
Ω

(
2

πx

)
+

∫ ∞
1

(
1

2x
−
√

2

πx3
Ω

(
2

πx

))
dx+ o(L−2+ε). (2.26)

Substituting (2.26) into the right hand side of (2.25) we discover that

R(L) =
γ

4
− 1

4
log 2 +

1

4π

∞∑
n=1

1

n

(
n−1∑
k=1

1√
k(n− k)

− π

)
− 1

2

∫ 1

0

√
2

πx3
Ω

(
2

πx

)
dx

+
1

2

∫ ∞
1

(
1

2x
−
√

2

πx3
Ω

(
2

πx

))
dx+o

(
L−1+ε/2+

)
. (2.27)

As ε > 0 is arbitrary, we conclude that the magnitude of the error term is o(L−1+).
In principle, (2.27) gives an answer for the O(1) term in the expansion of P(λmax <

−L). It can however be considerably simplified, which probably means that the calcula-
tion detailed above can also be significantly streamlined. The rest of the proof is an exact
calculation based on the relation between the Euler-Mascheroni constant and Jacobi’s
theta functions.

The calculation is based on the following two remarks: firstly,

γ = log(4π)− 2 + 2

∫ ∞
1

(1 +
√
t)

Ω(t)

t
dt, (2.28)

see [7] containing this as well as a large collection of other expressions for the Euler-
Mascheroni constant. Formula (2.28) follows from combining a more standard expression
for γ in terms of Riemann’s ζ-function,

γ = lim
s→1

[
ζ(s)− 1

s− 1

]
,

see [27] for the derivation, and Riemann’s integral representation of ζ,

ζ(s) =
πs/2

s(s− 1)Γ(s/2)
+

πs/2

Γ(s/2)

∫ ∞
1

(
t(1−s)/2 + ts/2

) Ω(t)

t
dt,

see e.g. [12]. Secondly,
1 + 2Ω

(
t−1
)

=
√
t (1 + 2Ω(t)) , (2.29)
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which follows from the standard transformation properties of the theta function and can
be proved directly using Poisson summation formula, see [27] for review. Now let us
modify the right hand side of (2.27) as follows: express γ using (2.28), change variables
in the penultimate integral according to t = 2

πx , apply (2.29) to the integrand of the last
integral. The result is

R(L)− 1

4π

∞∑
n=1

1

n

(
n−1∑
k=1

1√
k(n− k)

− π

)
+ o(L−1+)

=
1

4
log 2π − 1

2
+

√
1

2π
− 1

2

∫ 1

2/π

Ω(t)√
t
dt+

1

2

∫ π/2

1

Ω(t)

t
dt

=
1

4
log 2π − 1

2
+

√
1

2π
+

1

2

∫ π/2

1

√
tΩ(t)− Ω(t−1)

t3/2
dt

=
1

2
log 2 (2.30)

where the last equality follows from another application of (2.29) to the integral in the
previous expression. Theorem 1.1 is proved.

3 The proof of probabilistic lemmas

3.1 Lemma 2.6

Let (Xk)1≤k≤2n for n = 1, 2, . . ., be a sequence of independent indentically distributed
random variables with a continuous density. Let S = (Sk)0≤k≤2n be the associated
random walk started at zero,

Sk =

k∑
m=1

Xm. (3.1)

We will frequently consider the walk conditioned to be at 0 at time 2n, so that S2n = 0.
Let S(p) be the random walk associated with the cyclic shift of the increments X’s by p
steps to the right,

S
(p)
k =

k∑
m=1

Xm+p, (3.2)

where the addition in the time indices is performed modulo 2n. As it is easy to check,
under the conditioning that S2n = 0,

S
(p)
k = Sk+p − Sp, S(p)

2n = 0. (3.3)

Under the conditioning S2n = 0, for any p, (S
(p)
k )0≤k≤2n is a bridge, whose law is p-

independent,

(S
(p)
k )0≤k≤2n

(d)∼ (S
(q)
k )0≤k≤2n, 0 ≤ p, q ≤ 2n− 1. (3.4)

Recall that τ0 is the first even time the value of the bridge S becomes negative. We write
τ
(p)
0 for the corresponding exit time for the bridge S(p). Similarly, M (p)

2n is the odd time
maximum of the walk S(p). Using the fact that the even time global minimum of the
bridge is unique almost surely, one can easily show that

n−1∑
p=0

1
(
τ
(2p)
0 = 2n

)
= 1 a. s. (3.5)

Notice that the event τ (2p)0 = 2n corresponds to the shift to the time at which the even
time global minimum of the random walk has been achieved. Recall that

m2n = min
0≤k≤n

S2k. (3.6)
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Therefore,

pn(L) := E (min(L,M2n)1(τ0 = 2n)δ0(S2n))

(3.4)
=

1

n

n−1∑
p=0

E
(

min(L,M
(2p)
2n )1(τ

(2p)
0 = 2n) | S(2p)

2n = 0
)

Pr(S
(2p)
2n ∈ d0)

(3.3)
=

1

n

n−1∑
p=0

E
(

min(L,M2n − S2p)1(τ
(2p)
0 = 2n) | S2n = 0

)
Pr(S2n ∈ d0)

(3.6)
=

1

n

n−1∑
p=0

E
(

min(L,M2n −m2n)1(τ
(2p)
0 = 2n) | S2n = 0

)
Pr(S2n ∈ d0)

=
1

n
E

(
min(L,M2n −m2n)

n−1∑
p=0

1(τ
(2p)
0 = 2n) | S2n = 0

)
Pr(S2n ∈ d0)

(3.5)
=

1

n
E (min(L,M2n −m2n) | S2n = 0) Pr(S2n ∈ d0)

=
1

n
E (min(L,M2n −m2n)δ0(S2n)) .

Remark 3.1. Using the notations developed for the proof, it is very easy to rederive
(2.5), even though the computation presented below uses no new ideas in comparison
with [22]:

E (δ0(Sτ0)) =

∞∑
n=1

E (1(τ0 = 2n)δ0(S2n)) =

∞∑
n=1

E (1(τ0 = 2n) | S2n = 0) Pr(S2n ∈ d0)

=

∞∑
n=1

1

n

n−1∑
p=0

E
(
1(τ

(2p)
0 = 2n) | S(2p)

2n = 0
)

Pr(S2n ∈ d0)

=

∞∑
n=1

1

n

n−1∑
p=0

E
(
1(τ

(2p)
0 = 2n | S2n = 0

)
Pr(S2n ∈ d0)

=

∞∑
n=1

1

n
E

(
n−1∑
p=0

1(τ
(2p)
0 = 2n) | S2n = 0

)
Pr(S2n ∈ d0)

(3.5)
=

∞∑
n=1

1

n
E (1 | S2n = 0) Pr(S2n ∈ d0) =

∞∑
n=1

1

n
Pr(S2n ∈ d0)

=

∞∑
n=1

1

n

1√
2πn

=
ζ(3/2)√

2π
.

3.2 Lemma 2.8

3.2.1 n ≤ L2−ε

Starting from formula (2.11) of Lemma 2.6,

pn(L) =
1

n
E ((M2n −m2n) δ0(B2n)) + E(1)

n (L), (3.7)

where

E(1)
n (L) = − 1

n
E
(
(M2n −m2n − L)+ δ0(B2n)

)
, (3.8)

and x+ := x1(x ≥ 0).
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We start with estimating the error term E
(1)
n (L). Let (Bt)t≥0 be the rate-1/2 Brownian

motion. It follows from the definition of M2n, m2n that

M2n ≤ sup
0≤t≤2n

Bt, m2n ≥ inf
0≤t≤2n

Bt. (3.9)

As the function x 7→ x+ is increasing,

|E(1)
n (L)| =

1

n
E
(
(M2n −m2n − L)+ δ0(B2n)

)
≤ 1

n
E

((
sup

0≤t≤2n
Bt − inf

0≤t≤2n
Bt − L

)
+

δ0(B2n)

)

≤ 1

n
E

((
sup

0≤t≤n
Wt − inf

0≤t≤n
Wt − L

)
+

δ0(Wn)

)
, (3.10)

where (Wt)t≥0 is the standard Brownian motion. Thus the error term E
(1)
n (L) is bounded

by an expectation with respect to Wiener measure, which can be computed using the
known joint distribution of the supremum, infimum and the final position of the Brownian
motion,

P

(
inf

0≤t≤n
Wt ≥ a, sup

0≤t≤n
Wt ≤ b,Wt ∈ d0

)
= Ψn(a, b) :=

∑
k∈Z

1√
2πn

(
e−

2k2

n (b−a)2 − e− 2
n (b−k(b−a))2

)
, (3.11)

where a ≤ 0, b ≥ 0, (see for example [4] (9.1)). Applying (3.11) leads, after some work
very similar to the upcoming calculation (3.23), to the equality

E

((
sup

0≤t≤n
Wt − inf

0≤t≤n
Wt − L

)
+

δ0(Wn)

)

=

√
2

πn
L

∞∑
k=1

e−
2k2L2

n −
∫
[−L,L]c

1√
2πn

e−
2b2

t db. (3.12)

Using this for the right hand side of (3.10), approximating e−
2k2L2

n ≤ e−
2kL2

n for k ≥ 1

and then summing the resulting geometric series when n ≤ L2−ε leads to the desired
bound (2.15) of Lemma 2.8.

To finish the proof of (2.14), we need to calculate 1
nE ((M2n −m2n) δ0(B2n)). Using

reflection symmetry,

E (m2nδ0(B2n)) = −E
(

max
0≤k≤n

(B2k)δ0(B2n)

)
= −E

(
max

0≤k≤n
(Wk)δ0(Wn)

)
, (3.13)

where (Wk)k≥0 is the random walk with N(0, 1) increments. Let us denote the increments
of random walk B by X1, X2, . . . ∼ N(0, 1/2), let Y1, Y2, , . . . ∼ N(0, 1) be the increments
of the walk W . Then

E ((M2n) δ0(B2n)) = E

(
max

0≤k≤n−1
(B2k+1)δ0(B2n)

)
=E (max(X1, X1 +X2 +X3, . . . , X1 +X2 + . . .+X2n−1)δ0(B2n))

=E (X1 + max(0, X2 +X3, X2 +X3 +X4 +X5, . . . , X3 +X5 + . . .+X2n−1)δ0(B2n))

=E (max(0, Y1, Y1+Y2, . . . , Y1+Y2+. . .+Yn−1)δ0(Wn))=E

(
max

0≤k≤n
(Wk)δ0(Wn)

)
. (3.14)
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Substituting (3.13) and (3.14) into 1
nE ((M2n −m2n) δ0(B2n)) we find

1

n
E ((M2n −m2n) δ0(B2n)) =

2

n
E( max

0≤k≤n
Wkδ0(Wn)) =

1

2πn

n−1∑
k=1

1√
k(n− k)

, (3.15)

where the last step used formula (1.11a) from [20] (Lemma 2.5 of the present paper).
Formula (2.14) of Lemma 2.8 is proved.

3.2.2 n ≥ L2−ε

For large values of n it is natural to approximate the Gaussian random walk with
Brownian motion to re-write (2.11) as follows:

pn(L) =
1

n
E

(
min

(
L, sup

0≤t≤2n
Bt − inf

0≤t≤2n
Bt

)
δ0 (B2n)

)
+ E(2)

n (L), (3.16)

where the correction term is

E(2)
n (L) (3.17)

=
1

n
E

((
min

(
L, sup
0≤2k+1≤2n

B2k+1 − inf
0≤2k≤2n

B2k

)
−min

(
L, sup

0≤t≤2n
Bt − inf

0≤t≤2n
Bt

))
δ0 (B2n)

)
.

For any L, x, y ∈ R,
|min(L, x)−min(L, y)| ≤ |x− y|,

which allows us to bound (3.17) as below:

E(2)
n (L) ≤ 1

n
E

(∣∣∣∣ sup
0≤t≤2n

Bt − sup
0≤k<n

B2k+1

∣∣∣∣ δ0 (B2n)

)
+

1

n
E

(∣∣∣∣ inf
0≤t≤2n

Bt − inf
0≤k≤n

B2k

∣∣∣∣ δ0 (B2n)

)
. (3.18)

The two terms on the right hand side are very similar and can be bounded by the same
function of the index n. We will present the derivation of the bound for the first term only.
In what follows, (Wt)t≥0 is the standard Brownian motion, (WBt)0≤t≤1 is the Brownian
bridge.

Rescaling time,

1

n
E

(∣∣∣∣ sup
0≤t≤2n

Bt − sup
0≤2k+1≤2n

B2k+1

∣∣∣∣ δ0 (B2n)

)
=

1

n
E

(∣∣∣∣ sup
t∈[0,1]

Wt − sup
t∈{ kn+ 1

2n}
n−1
k=0

Wt

∣∣∣∣ δ0 (W1)

)

=

√
1

2πn2
E

(∣∣∣∣ sup
t∈[0,1]

Wt − sup
t∈{ kn+ 1

2n}
n−1
k=0

Wt

∣∣∣∣ ∣∣∣∣W1 = 0

)

=

√
1

2πn2
E

(∣∣∣∣ sup
t∈[0,1]

WBt − sup
t∈{ kn+ 1

2n}
n−1
k=0

WBt

∣∣∣∣
)
. (3.19)

Recall the following fact about Brownian motions hence the Brownian bridges: for any
fixed γ > 0 there is a non-negative random variable Hγ defined on the same probability
space as the bridge itself such that,

|WBt −WBτ | ≤ Hγ |t− τ |
1
2−γ , for all t, τ ∈ [0, 1]. (3.20)
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Moreover, E(Hγ) < ∞, see e.g. [4]. Exploiting (3.20) to bound the right hand side of
(3.19) one finds that

1

n
E

(∣∣∣∣ sup
0≤t≤2n

Bt − sup
0≤2k+1≤2n

B2k+1

∣∣∣∣ δ0 (B2n)

)
≤ E(Hγ)√

2πn2

(
1

2n

) 1
2−γ

. (3.21)

The second second term on the right hand side of (3.18) obeys the same bound. Thus
combining (3.18) with (3.21) we conclude that

E(2)
n (L) ≤ Cγn−3/2+γ , (3.22)

where Cγ = 2
E(Hγ)√

2π

(
1
2

) 1
2−γ is an n-independent constant. The estimate (2.17) of

Lemma 2.8 is proved.
In order to calculate the leading term in the expression (3.16) for pn(L) we just need

to evaluate the expectation of min
(
L, sup0≤t≤2nBt − inf0≤t≤2nBt

)
using the distribution

Ψn(a, b) given in (3.11). Recall that B is a rate 1
2 Brownian motion. Then, integrating by

parts,

E

(
min

(
L, sup

0≤t≤2n
Bt − inf

0≤t≤2n
Bt

)
δ0 (B2n)

)
= −

∫ 0

−∞

∫ ∞
0

min(L, b− a)
∂2

∂a∂b
Ψn(a, b) db da

=

∫ 0

−∞

∫ ∞
0

1(b− a ≤ L)
∂

∂a
Ψn(a, b) db da+ LΨn(−∞,∞)

= −
∫ L

0

Ψn(b− L, b) db+
L√
2πn

.

To evaluate the boundary term above we have used the facts that Ψn(0, b) = 0 and
Ψn(a, 0) = 0, and that Ψn(a, b) extends to the region a ∈ (−∞, 0], b ∈ [0,∞) where
Ψn(−∞,∞) = 1/

√
2πn. Using the value of Ψn from (3.11) gives

Ψn(b− L, b) =
∑
k∈Z

1√
2πn

(
e−

2k2L2

n − e− 2
n (b−kL)2

)
and this leads to

E

(
min

(
L, sup

0≤t≤2n
Bt − inf

0≤t≤2n
Bt

)
δ0 (B2n)

)
=

1

2
− 2L√

2πn

∞∑
k=1

e−
2k2

n L2

. (3.23)

Formula (2.16) of Lemma 2.8 is proved.

3.3 Lemma 2.5

Fix k < n and define

Ek := E (max(0, S1, . . . , Sk) | Sn = 0) . (3.24)

Decomposing the expectation according to the events Sk < 0 and Sk > 0 we find

Ek = E (1(Sk > 0) max(S1, . . . , Sk) | Sn = 0) + E (1(Sk < 0) max(0, S1, . . . , Sk) | Sn = 0)

= E (1(Sk > 0)X1 | Sn = 0) + (E(1(Sk > 0) max(0, X2, X2 +X3 . . . , Sk −X1) | Sn = 0)

+ E(1(Sk < 0) max(0, S1, . . . , Sk−1) | Sn = 0)) =
1

k
E(1(Sk > 0)Sk | Sn = 0) + Ek−1,
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where the last equality is due to the invariance of the law of the increments X1, X2, . . . Xn

with respect to a permutation of the first k increments and the X → −X symmetry of
the distribution of increments. Solving the resulting difference equations for Ek’s with
the initial condition E0 = 0, we find

E (max(0, S1, . . . , Sn−1) | Sn = 0) =

n−1∑
k=1

1

k
E(1(Sk > 0)Sk | Sn = 0). (3.25)

(Formula (3.25) is attributed in [20] to Freeman Dyson.) Therefore,

ρ(n)(0)E(max(0, S1, . . . , Sn−1) | Sn = 0)
(3.25)

=

n−1∑
k=1

1

k
E(1(Sk > 0)Sk | Sn = 0)ρ(n)(0)

=

n−1∑
k=1

1

k
E((Sk)+δ0(Sn)) =

n−1∑
k=1

1

k

∫ ∞
0

xρ(k)(x)ρ(n−k)(x)dx

=
n

2

n−1∑
k=1

1

k(n− k)

∫ ∞
0

xρ(k)(x)ρ(n−k)(x)dx. (3.26)

Lemma 2.5 is proved.
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