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Interacting diffusions on sparse graphs:
hydrodynamics from local weak limits
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Abstract

We prove limit theorems for systems of interacting diffusions on sparse graphs. For
example, we deduce a hydrodynamic limit and the propagation of chaos property
for the stochastic Kuramoto model with interactions determined by Erdös-Rényi
graphs with constant mean degree. The limiting object is related to a potentially
infinite system of SDEs defined over a Galton-Watson tree. Our theorems apply more
generally, when the sequence of graphs (“decorated" with edge and vertex parameters)
converges in the local weak sense. Our main technical result is a locality estimate
bounding the influence of far-away diffusions on one another. We also numerically
explore the emergence of synchronization phenomena on Galton-Watson random trees,
observing rich phase transitions from synchronized to desynchronized activity among
nodes at different distances from the root.
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1 Introduction

The results of this paper were inspired by a concrete problem. Let n ∈ N and
0 < p(n) ≤ 1. Define the Erdős-Rényi random graph Gn = G(n, p(n)) as the random
graph with vertex set [n] := {1, . . . , n} where two vertices are adjacent with probability

p(n), independently of all other pairs. Write i ∼(n) j if i, j ∈ [n] are adjacent and let d(n)
i

denote the degree of i in Gn. We consider the stochastic Kuramoto model [16] over each
realization of the graph Gn, which is defined as a system of interacting diffusions indexed
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Interacting diffusions on sparse graphs

by i ∈ [n], solutions of the following system of Itô Stochastic Differential Equations (SDEs)
in time interval [0, T ]:

dθ
(n)
i (t) =

1

d
(n)
i

∑
j∈[n] : j∼(n)i

sin(θ
(n)
j (t)− θ(n)

i (t))dt+ ωi dt+ dBi(t). (1.1)

Here the Bi are independent Brownian motions, and the initial positions θ(n)
i (0) and

“natural frequencies” ωi are sampled from some product measure independently from
the Bi and Gn. We adopt the convention that the first term in the RHS of (1.1) is zero in
the case that d(n)

i = 0.
The following question arises.

Problem: What is the bulk behavior of this system when n→ +∞ for different choices
of p(n)?

More precisely, we want to understand the behavior of the empirical measure of
particle trajectories over a time interval [0, T ]:

Ln :=
1

n

∑
v∈[n]

δ
θ
(n)
v (·),

that is a random measure over the space of continuous functions from [0, T ] to R, the
space C([0, T ];R). Our problem is potentially interesting because the graph Gn can be
very different depending on p(n). For instance, when n→ +∞, Gn is typically connected
if p(n)� log n/n and typically disconnected if p(n)� log n/n.

As it turns out, all that matters for our problem is the behavior of np(n) as n→ +∞,
which is the expected degree of a vertex in Gn (up to a small error). In a recent paper
[26], we proved that np(n) → +∞ implies that Ln has the same a.s. limit and obeys
the same large deviations principle as in the case p(n) ≡ 1 of a complete interaction
graph. In particular, the limit of Ln is the law of a McKean-Vlasov diffusion, a Markovian
process with trajectories in C([0, T ];R).

In this paper we complement the result for np(n)→ +∞ by describing what happens
when np(n) → c ∈ R+. We prove that Ln converges to the law of a non-Markovian
process, which is described by a system of the form (1.1) on a potentially infinite Galton-
Watson (GW) tree. The mechanism behind this fact is a general theorem relating the
local weak convergence of networks to the hydrodynamics of systems of diffusions on
these networks.

Remark 1.1. To the best of our knowledge, the preprint version of this paper was the
first work to explicitly relate systems of interacting diffusions to local weak convergence.
However, an earlier paper by Maclaurin [22] obtained stronger large deviation results in
the specific setting of diffusions over discrete tori, which converge to a system over Zd.
In that sense, Maclaurin’s result anticipates some aspects of our work. A few months
after the present paper appeared in the Arxiv, Lacker et al. [17, 18] independently
arrived at more systematic (and essentially more general) results of the same kind. More
details about this related work are discussed in Section 3.2.

Finally, we numerically investigate synchronization phase transitions for the stochas-
tic Kuramoto Model on GW trees. In particular, we compute synchronization levels
among nodes at different distances from the root, by varying the coupling strength be-
tween oscillators, as well as their natural frequencies and initial conditions. In contrast
with the full interaction case of the complete graph, we generally observe the emergence
of desynchronization phenomena at distant nodes in the sparse setting.

In section 2, we give an informal description of our main results. In section 3,
we make comments about the proofs, review past results, and give the outline of the
remainder of the paper.
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Interacting diffusions on sparse graphs

2 Informal definitions and main results

2.1 Infinite networks and interacting diffusions

We will need the concept of a network. Informally, this is an object of the form

N = (G,µ,ω,θ(0)),

where:

1. G = (V,E) is a locally finite graph with countable vertex set V and edge set E.

2. µ = (µe)e∈E is a vector of positive weights µe > 0 for the edges of G.

3. ω = (ωv)v∈V is a vector of “media variables” ωv ∈ R associated with the vertices.

4. θ(0) = (θv(0))v∈V is a vector of initial conditions θv(0) ∈ R for each vertex.

We wil call µ the edge marks and ω,θ(0) the vertex marks. We will say that a network N
is finite if the graph G is finite. We will often abuse notation and write “v ∈ N” instead
of “v ∈ V ”. We also write µvu = µuv := µe for the weights of pairs e = {v, u} ∈ E, and set
µvu = 0 if vu is not an edge.

Suppose N is given. Let ψ : R2 → R, φ : R4 → R be Lipschitz functions with only φ
bounded, and define for each v ∈ V , the total weight

µv :=
∑
u∈V

µuv.

Assume that we have a collection (Bv(·))v∈V of i.i.d. standard Brownian motions associ-
ated with the vertices of N . A system of interacting diffusions on the network N (with
this choice of functions ψ, φ) is a random vector

θN (·) = (θNv (·))v∈V ∈ C([0, T ];R)|V |

which is a strong solution of the following system of Itô Stochastic Differential Equations
(SDEs): for each v ∈ N ,

dθNv (t) =
1

µv

∑
u∈V

µuvφ(θNu (t), θNv (t);ωv, ωu)dt+ ψ(θNv (t);ωv)dt+ dBv(t), (2.1)

in the time interval [0, T ] and with initial conditions (θv(0))v∈N . Heretofore, we adopt
the convention that the first term in the RHS of (2.1) is 0 whenever µv = 0.

When N is finite, our conditions on ψ and φ are more than sufficient to imply existence
and uniqueness for this problem. Our first finding is that the same holds for infinite
networks with at-most-exponential growth.

Theorem 2.1 (Loose statement of Theorem 6.7). Suppose N is infinite, but there exists
a vertex o ∈ N such that balls around o grow at most exponentially. Also assume that
the weights µvu 6= 0 are uniformly bounded away from 0 and +∞. Then there exists a
system of interacting diffusions over N that is the unique strong solution of (2.1).

2.2 Local weak limits and hydrodynamics

To state our next result, we need the concepts of local metric and local weak conver-
gence of networks. Both of these concepts are defined precisely in Section 5; for now,
we only give an informal description.

The local metric is defined on rooted networks, that is, on pairs (N, o) where N is a
network and o ∈ N . According to this metric, two networks (N, o) and (N ′, o′) are close if
there are large balls around o and o′ where both the graphs and the corresponding marks
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can be matched nearly exactly. Note that, for this to make sense, we need to consider
these networks up to “rooted isomorphisms”; see Section 5 for details.

Now, given a sequence of finite networks

{Nn = (Gn,µn,ωn,θ(0)n)}n∈N,

let on be a node of Nn chosen uniformly at random, for each n ∈ N. Let L(Nn, on) denote
the law of the random rooted network (Nn, on); all the randomness comes from the
choice of on. We say that {Nn}n∈N converges in the local weak sense to a distribution ν
over rooted networks if the probability laws L(Nn, on) converge weakly to ν.

Remark 2.2. If we forget about the marks µn, ωn and θ(0)n, this is nothing but the
better known concept of local weak convergence of graphs. In this case, it is known
e.g. that n-cycles converge to the deterministic rooted graph δ(Z,0); that the Erdős-Rényi
graph G(n, c/n) a.s. converges to a Poisson GW tree with parameter c; and that random
d-regular graphs on n vertices a.s. converge to the infinite d-regular tree. We show in
Section 5.2.1 that if the marks are chosen independently, with each vector µn,ωn,θ(0)n
i.i.d., then the corresponding networks converge a.s. in the local weak sense.

Now note that, for a arbitrary network N , if we can define a system of interacting
diffusions over N this gives rise to a random network

Nθ = (G,µ,ω,θN(·)),

where the initial conditions are replaced by the particle trajectories in the time interval
[0, T ]. We are abusing notation by calling by the name network two different classes of
objects.

Coming back to the sequence of finite networks (Nn)n∈N, the next theorem relates
the local weak convergence of Nθ

n to that of Nn.

Theorem 2.3 (Loose statement of Theorem 6.8 and Corollary 6.10). Assume that ν is a
probability measure on rooted networks which is supported over pairs (N, o) satisfying
the assumptions of Theorem 2.1. Then for almost all samples (N, o) ∼ ν we can solve the
system of interacting diffusions (cf. (2.1)) as in Theorem 2.1 to consider (Nθ, o).

Now consider a sequence of networks {Nn}n∈N, each Nn with n vertices, which
converges in the local weak sense to ν. Assume also that the largest vertex degree in Nn
is no(1) for large n. Then, almost surely, the sequence {Nθ

n}n∈N of networks marked with
the diffusions is locally weakly convergent to the law of (Nθ, o) when (N, o) ∼ ν. As a
consequence, the empirical measures

Ln :=
1

n

n∑
i=1

δθNni (·)

converge almost surely to the distribution of θNo (·) when (N, o) is sampled from ν.

Our results also imply a propagation-of-chaos property (see Corollary 6.12).

2.3 Synchronization phenomena and sparsity

We come back to the particular case of stochastic Kuramoto model. Our results from
theorems 2.1 and 2.3 motivate us to explore synchronization phenomena on finite GW
trees, since they appear as the limit object from a sequence of random Erdös-Rényi
graphs. If we denote T as the random GW tree with m vertices rooted at vertex 1, we
consider the system of SDEs: for each i ∈ [m],

dθTi (t) = K

m∑
j=1

aij sin(θTj (t)− θTi (t))dt+ ωidt+ εdBi(t),
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where θTj (t) and ωj represent the angular phase and natural frequency of the oscillator
indexed by j ∈ {1, 2, . . . ,m}, respectively. The parameter K ∈ R+ represents the
coupling strength between nodes, and aij = 1 if nodes i and j are connected in T
or aij = 0 otherwise. In our numerical analysis, we do not divide the summation
over neighbours of i by the degree of i. We sample both initial conditions θTj (0) and
natural frequencies ωi from distinct distributions, and by changing the coupling strength
between nodes, we compute synchronization levels between the root and those nodes at
different distances. In our simulations, we chose two different models for generating the
GW trees:

1. Binomial model: The offspring is a binomial random variable with distribution
Bin(n, p).

2. D-regular model: The root node has C children, while the other ones have exactly
C − 1 children.

In Section 10, we describe our numerical methods and results in details. Interest-
ingly, we observe how desynchronization emerges among distant nodes, depending on
the choice of the model parameters. These findings enlighten our understanding of
synchronization in complex networks and pave the way for new phase transition studies
on Kuramoto dynamics.

3 Comments, references and organization

3.1 Comment on proofs

We now briefly comment on our proofs. The key step is to show that our system (cf.
(2.1)) satisfies a locality property, Lemma 7.1 below. Loosely speaking, this property
states that information does not propagate too fast over the graph in systems like (2.1).
To prove this Lemma, we rely on a linear Gronwall argument, which leads to a matrix
exponential. A nice wrinkle in the proof is that this exponential can be related to a
heat kernel for a random walk over a network, which we can analyze via the Carne-
Varoupoulos bound. With this Lemma in hand, our main results follow easily from general
principles, including the definition of weak convergence.

One last comment is that it seems clear that our result is an exemplar of a more
general principle. One can gather from our arguments that “local” systems of particles
on graphs should have a “local hydrodynamic limit” whenever the sequence of underlying
graphs converges. In this sense, our main technical contributions consist of formulating
this principle precisely and proving the required locality estimate in our setting.

3.2 Discussion

As stated above, our motivation was to understand what happens to interacting
difusions in the simple case of an Erdös-Rényi graph with a constant average degree.
Our recent preprint [26] showed that the entire regime of a diverging average degree
has the same behavior, even at the level of large deviations, as the complete graph
(mean-field interactions). Of course, proving an LDP in the setting of the present paper
is an interesting topic for further study.

We continue with a very brief review of the literature, referring to [26, Section 1.2]
for more details. The study of our class of systems over complete graphs is a classical
topic; see e.g. [28, 25] for early results. Recent papers have obtained hydrodynamic
limits in settings with singular interactions [20, 21] or Gaussian couplings and delays
[9, 7, 8]. More recently, several authors [11, 23, 14] have explicitly considered the case
of relatively sparse random graphs. A recent preprint by Coppini et al. [13] obtains
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an LDP under a stronger degree condition than in our paper [26], but with otherwise
weaker or incomparable assumptions.

To the best of our knowledge, the present work is the first paper to explore how
interacting diffusions behave in the bulk of relatively general graphs of constant average
degree. However, we have recently become aware of earlier work [22] by Maclaurin.
In that paper, the author proved a large deviation principle for interacting diffusions
indexed by subsets of the lattice Zd. In the present paper, we only obtain a law of large
numbers for the diffusion. However, Maclaurin’s methods rely on the specific structure
of Zd, whereas our results apply more broadly.

A few months after the first version of our paper appeared in the Arxiv, Lacker,
Ramanan and Wu [17, 18] posted two preprints where they consider related systems of
interacting diffusions over sparse graphs. Outside of our considering weighted edges,
their results greatly generalize ours, by allowing the drift and diffusion coefficients
of a vertex to depend nonlinearly on the empirical measures of neighboring vertices.
Additionally, they make weaker requirements on the sequences of graphs. One technical
difference is that our proofs give more quantitative estimates on correlation decay,
whereas they rely on “softer” weak convergence tools. Their preprint [18] obtain closed-
form descriptions of the non-Markovian dynamics of a vertex and its neighbors.

From the synchronization viewpoint, our study introduces novel results for the
Kuramoto Model on GW trees. Over the past years, many studies have analyzed synchro-
nization phenomena on various network topologies ([2, 19]), yet little attention has been
given to sparse random trees. More recently, Chiba et al. [12] studied transitions to
synchronization for a large family of random graphs, relating their onset of synchroniza-
tion and the well-known phase transition for the fully connected network. With a more
computational approach, Sokolov and Ermentrout [27] related network structure with
global stability of phase-locked solutions. For power-law random networks, Medvedev
and Tang [24] studied the effects of scale-free connectivity and compared the synchro-
nization thresholds with dense graphs. In contrast with all those recent findings, our
analysis on GW-trees allows to investigate the emergence of desynchronizaton among
nodes that are distant from the root, which illustrates how full synchronization is not
always achievable by increasing the coupling strength beyond a fixed value.

3.3 Organization of the paper

The remainder of the work is organized as follows: Section 4 reviews notation of
functions and measures. In Section 4 we also present some preliminaries about graphs.
Section 5 reviews networks and local weak convergence. The reader familiar with
networks and local weak convergence just need to read this section to know what
notation we adopted here. Section 6 states in full details our main results.

We prove the Locality lemma in Section 7, and the other main results are derived from
this lemma in subsequent sections. We solve the infinite system of SDEs in Section 8,
and we address the hydrodynamic limit in Section 9.

Finally, in Section 10 we present numerical simulations to discuss the synchronization
phenomena. Auxiliary results are found in the Appendix, starting at section A.

4 Preliminaries

In this section we fix notation and briefly review some important concepts.

4.1 Numbers

N is the set of nonnegative integers. For a natural number n ∈ N\{0}, we let
[n] := {1, . . . , n}. We define the maximum and minimum of two numbers x, y ∈ R by x ∨ y
and x ∧ y, respectively. We define R+ = {x ∈ R : x > 0}.
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4.2 Functions and spaces of probability measures

Let (S, d) be a Polish metric space. We define

C(S;R) := {h : S → R : h is continuous},

and for a map h : S → R, we have the norms:

‖h‖∞ := sup
x∈S
|h(x)|;

‖h‖Lip := sup
x,y∈S : x 6=y

|h(x)− h(y)|
d(x, y)

;

‖h‖BL := ‖h‖∞ + ‖h‖Lip .

We let P(S) denote the set of probability measures over (the Borel sets of) S. If X ∈ S
is a random element we denote δX ∈ P(S) the Dirac measure at X which is a random
measure.

Given a measure µ ∈ P(S) and a Borel function h : S → R we write

µ(h) =

∫
S

hdµ.

If X ∈ S is a random element, and E [ · ] is the expectation in the probability space
that X is defined, we write L(X) ∈ P(S) for its law:

L(X)(h) = E [h(X)] .

The topology of weak convergence in P(S) is metrized by the Bounded-Lipschitz metric
defined for µ, ν ∈ P(S):

dBL(µ, ν) := sup {µ(h)− ν(h) : h : S → R, ‖h‖BL ≤ 1} .

If X and Y are random elements in S defined on the same probability space and
L(X) = µ and L(Y ) = ν then

dBL(µ, ν) ≤ E [d(X,Y ) ∧ 2] . (4.1)

4.3 Graphs

In this paper, a graph G = (V,E) has vertex set V and unoriented edge set E. The set
V is either finite or countably infinite. We write x ∼ y to denote that xy = yx := {x, y} ∈
E. Notice that we allow x ∼ x (i.e. a loop edge). The degree dx of x ∈ V is the number
of y ∈ V with y ∼ x. When we need to specify the dependency on G we write VG, EG,
x ∼G y, and dGx . We always assume G is locally finite, i.e. dx < +∞ for all x ∈ V . We
write |G| and e(G) for the number of vertices and edges in G, respectively.

Given a subgraph H ⊂ G we define

1. ∂H = {v ∈ H : ∃u ∈ G \H with v ∼ u},
2. We write dist(v, u) for the distance between v, u ∈ V , i.e., the size of the shortest

path between v and u in G,

3. dist(v, ∂H) = infu∈∂H dist(v, u), and

4. For a subset of vertices H0 ⊂ H we define

dist(H0, ∂H) = inf
v∈H0

dist(v, ∂H).
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We will also consider weighted graphs. For a graph G = (V,E) the vector µ = (µe)e∈E
is a vector of weights for G if µe > 0 for any e ∈ E. To each vector of weights µ we can
associate a matrix (µvu)v,u∈V such that for v, u ∈ V

• if e = {v, u} ∈ E then µvu = µuv = µe, and

• if {v, u} /∈ E then µvu = µuv = 0.

We write µv =
∑
u∈V µvu for the total weight of v. We say that (G,µ) is a weighted graph

and we identify the vector µ with the associated matrix (µvu)v,u∈V .

4.4 Models of random graphs

Some examples of our theory are related to random graph models. Given n ∈ N,
p ∈ [0, 1], the Erdös-Rényi random graph G(n, p) is the random graph with vertex set
[n] with no loops, where any two distinct x, y ∈ [n] are adjacent with probability p,
independently of all other pairs. We consider (as is customary) sequences of random
graphs G(n, p) where p = p(n) may depend on n.

Given n ∈ N and d = (d1, . . . , dn) ∈ Nn, we let G(n,d) denote a random graph with
degree sequence d, i.e. a graph that is chosen uniformly at random from the set of
graphs G with V (G) = [n], no loops, and dGv = dv for each v ∈ [n]. This makes sense
only for certain sequences d. One important particular case is that of random d-regular
graphs, where d = (d, d, . . . , d) for some d ≥ 3 and we only need to assume dn even.

5 Local metrics and weak convergence of networks

In this section, we review the basic aspects of the local topology and local weak
convergence of networks. We start with the case of graphs, which is better known. We
then discuss the case of networks with more details. Our main references are the survey
by Aldous and Steele [1], the lecture notes by Bordenave [5], and the paper [4].

5.1 Rooted graphs and local weak convergence

When we consider sparse random graphs, we will need to consider their local weak
limits.

A rooted graph (G, o) consists of a (countable, locally finite) graph G with a dis-
tinguished vertex o ∈ VG. Two rooted graphs (G, o), (H, p) are rooted isomorphic
((G, o) ∼= (H, p)) if there exists a bijection f : VG → VH mapping o to p and preserving
edges. The space G∗ of rooted graphs considered up to isomorphisms can be endowed
with a metrizable “local topology” that makes it a Polish space. Therefore, we may speak
of random elements in this space (we will define a more general metric on networks
below).

Given r ∈ N, (G, o)r is the rooted graph with root o that contains the vertices
x ∈ VG within distance r from o, and all the edges between these vertices. [G, o]r is the
equivalence class of (G, o)r. We write G(v) for the connected component of v in G. We
write (G(v), v) for the graph G(v) rooted at v and [G(v), v] for its equivalence class up to
isomorphism.

Definition 5.1. For each finite graph G ∈ G we define the empirical neighbourhood
distribution:

U(G) =
1

|VG|
∑
v∈VG

δ[G(v),v].

We say that a sequence of finite graphs Gn converges locally weakly to the measure
ρ ∈ P(G∗) if

U(Gn)→ ρ in the weak topology of P(G∗).
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If the sequence of finite graphs Gn is random then we say Gn converges almost surely to
ρ in the local weak sense if the locally weakly convergence of Gn to ρ holds in a set of
probability 1 with respect to the law of the sequence Gn.

Example 5.2. Cycle graphs Cn with n vertices locally weakly converge to δ(Z,0).

Example 5.3. Suppose that, for each n, Gn has the law of the Erdös-Rényi random
graph G(n, c/n) for c > 0 constant. Then for almost all realizations of Gn, the sequence
Gn locally weakly converges to the rooted GW tree with Poisson offspring distribution
with mean c.

Example 5.4. Suppose that for each n ∈ N we have a vector

dn = (dn,1, . . . , dn,n) ∈ Nn.

Assume the sequence dn has max1≤i≤n di,n ≤ nεn with εn → 0 and the measures

Pn :=
1

n

n∑
i=1

δdi,n

converge weakly to some P with finite first moment. If we sample Gn from G(n,dn),
then for almost all realizations of Gn, Gn locally weakly converges to the unimodular
rooted GW tree UGW (P ), where the root has offspring distribution P , and all other
nodes have offspring distribution

P̂ (k) :=
(k + 1)P (k + 1)∑∞

i=1 iP (i)
(k ∈ N).

In particular, if dn = (d, d, d, . . . , d) for all n, UGW (P ) is the infinite (deterministic)
d-regular tree rooted at a node.

5.2 Rooted networks and local weak convergence

Roughly speaking, a network is a graph G = (V,E) with parameters (or marks)
associated to the vertices and edges of G. The parameters (or marks) lie in some metric
space.

More specifically, let (Υ,dΥ) and (Ξ,dΞ) be two Polish metric spaces. A network
N = (V,E,υ, ξ) is a graph G = (V,E) together with the vectors

υ = (υv)v∈V ∈ Υ|V | and ξ = (ξe)e∈E ∈ Ξ|E|

that gives marks to the vertices and edges of G, respectively. We write N(Υ,Ξ) for the
space of all theses networks with the mark spaces fixed.

We say that N = (V ,E,υ, ξ) is a sub-network of N if (V ,E) is a induced sub-graph of
(V,E), the vector υ is the restriction of υ to V and ξ is the restriction of ξ to E. In this
case we also say that the sub-network N is induced by the sub-graph (V ,E).

When we write a graph property for a network N = (V,E,υ, ξ) it is implicitly assumed
that this property holds for the underlying graph. For example, VN := VG, EN := EG and
for a vertex v ∈ N , dNv = dGv . The boundary of a sub-network N of N is the boundary of
the corresponding graphs.

Consider two networks N = (V,E,υ, ξ) and N ′ = (V ′, E′,υ′, ξ′) belonging to N(Υ,Ξ).
A network isomorphism Ψ between N and N ′ is a bijection Ψ : V → V ′ between the
vertex sets that preserves edges and marks:

• {u, v} ∈ E if and only if {Ψ(u),Ψ(v)} ∈ E′,
• υ′Ψ(u) = υu, ∀u ∈ V , and ξ′{Ψ(u),Ψ(v)}) = ξ{u,v}, ∀{u, v} ∈ E.
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A rooted network (N, o) is a network N with a distinguished vertex o. Two rooted
networks (N, o) and (N ′, o′) are rooted isomorphic if there is a network isomorphism that
sends o to o′.

Given a rooted network (N, o) and a radius r ∈ N let (N, o)r be the network induced
by (G, o)r rooted at the vertex o. Sometimes we identify the rooted network (N, o)r with
its underlying network (without the root).

For a rooted network (N, o) with N ∈ N(Υ,Ξ) we associate its equivalence class [N, o]

of rooted isomorphism. Define

N ∗(Υ,Ξ) = {[N, o] : (N, o) is a rooted network with mark spaces (Υ,Ξ)}.

We now define a notion of distance over rooted networks up to isomorphism. This
is not the exact same notion as in [5], but it is equivalent to it, as a simple calculation
shows.

Consider two rooted networks (N, o) = (V,E,υ, ξ, o) and (N ′, o′) = (V ′, E′,υ′, ξ′, o′)

belonging to N ∗(Υ,Ξ). Given r ∈ N and δ > 0, we say that the pair (r, δ) is good for
(N, o), (N ′, o′) if there exists a rooted isomorphism Ψ between (N, o)r and (N ′, o′)r such
that the corresponding marks are close by δ:

• dΥ(υv, υ
′
Ψ(v)) < δ, ∀ v ∈ (N, o)r, and

• dΞ

(
ξ{u,v}, ξ

′
{Ψ(u),Ψ(v)}

)
< δ, ∀ {u, v} ∈ (N, o)r.

The distance between [N, o] and [N ′, o′] is defined by

dN∗
(Υ,Ξ)

([N, o], [N ′, o′]) = inf

{
1

1 + r
+ δ : (r, δ) is good for (N, o), (N ′, o′)

}
. (5.1)

One can show that (N ∗(Υ,Ξ),dN∗(Υ,Ξ)
) is Polish (cf. [5]).

Given two classes of rooted networks, we can define the distance between them using
any representatives of these classes. This is well defined since the distance between
rooted networks in invariant up to rooted isomorphism.

Sometimes we identify a rooted network with its equivalence class.
For a network N and a vertex v ∈ V we associate the rooted network (N(v), v) that is

the network induced by the connected component of v rooted at v.
We write [N(v), v] for the equivalence class of the rooted network (N(v), v). For a

finite network N with vertex set V we define the empirical measure neighbourhood:

U(N) =
1

|V |
∑
v∈V

δ[N(v),v].

Definition 5.5 (Local weak convergence). Consider a sequence of networks

Nn = ([n], En,υn, ξn) ∈ N(Υ,Ξ).

Let ρ ∈ P
(
N ∗(Υ,Ξ)

)
. We say that Nn converges locally weakly to ρ if

U(Nn)→ ρ

in the sense of weak convergence. If the sequence of finite networks Nn is random then
we say that Nn converges almost surely to ρ in the local weak sense if the locally weakly
convergence of Nn to ρ holds in a set of probability 1 with respect to the law of the
sequence Nn.
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5.2.1 Networks with i.i.d. marks that converge locally weakly

Now we give examples of networks that satisfy Definition 5.5.
Let G = (V,E) be a graph. In Section 2 we introduced the networks

N = (G,µ,ω,θ(0))

where we have the vector of weights µ = (µe)e∈E ∈ R|E|+ that are marks for the edges
of G, environment or “media” variables ω = (ωv)v∈V ∈ R|V |, and a vector of initial
conditions θ(0) = (θv(0))v∈V ∈ R|V | that are marks for the vertices of G.

Definition 5.6. We write N for the collection of networks N = (G,µ,ω,θ(0)) with edge
marks in R+ and vertex marks in R×R. When we distinguish a root for N we write N ∗
for the collection of rooted networks up to isomorphism.

Our first goal is to show that for a sequence of graphs (Gn)n∈N and under some
additional conditions we can construct interesting examples of random networks Nn ∈ N
and a probability measure ν ∈ P(N ∗) such that the sequence (Nn)n∈N converges to ν in
the local weak sense, for almost all realization of the marks.

For any fixed graph G = (V,E) we construct a probability space where we can define
the vectors

µ = (µe)e∈E ,ω = (ωv)v∈V , and θ(0) = (θv(0))v∈V and they are independent.

When we need to explicit the dependency on G we write µG, ωG, and θ(0)G.
Fix the measures π, λ ∈ P(R). For a fixed vertex v, π is the distribution of the media

variables ωv and λ is the distribution of the initial conditions θv(0). Fix a measure
µ ∈ P(R+) for the distribution of the weights µe for an edge e ∈ E.

We define by NG ∈ N ∗ the random network obtained from G by adding these random
marks.

In this way we have a transition kernel that associate to each rooted graph (G, o) the
law of the random rooted network (NG, o)

M : G∗ → P(N ∗)
(G, o) 7→ L(NG, o)

,

that is, M(G, o)(h) = Ẽ
(
h(G, o,µG,ωG,θ(0)

G
)
)

where Ẽ (·) is the expectation of the

probability space where the marks for G were defined and h : N ∗ → R is a bounded
measurable function.

The proofs of the following results are given in the appendix because they are easier
version of our main results (Theorem 6.7 and Theorem 6.8, respectively).

Proposition 5.7 (Proof in Section A.1). The transition kernelM is continuous.

With this result at hand, for any probability measure ρ over G∗ we can define ρM∈
P(N ∗) via the formula

ρM(h) =

∫
M(G, o)(h)dρ

for any bounded measurable function h : N ∗ → R.

Theorem 5.8 (Proof in Section A.2). Consider a sequence {Gn}n∈N ⊂ G of finite graphs
where each Gn has vertex set [n]. Assume also the following

1. Local weak convergence: {Gn}n is locally weakly convergent to a probability
measure ρ (in the sense of Definition 5.1).

2. Small maximum degree: for each n, maxv∈[n] d
Gn
v = nεn where εn → 0 as n→ +∞.

Then the sequence of random networks {Nn}n ⊂ N defined by Nn := NGn , containing
the random marks, converges to ρM in the local weak sense and almost surely with
respect to the law of the random marks.
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6 Interacting diffusions on finite networks

In this section, we introduce our main objects of interest, and give formal versions of
Theorem 2.1 and Theorem 2.3.

Fix functions ψ : R2 → R and φ : R4 → R. In our model, ψ represents a drift term
that depends on the current position and the media variable, whereas φ corresponds to
pairwise interactions that represent single-term drift and the interaction between the
particles. As we can always suppose V ⊂ N we consider (Bv)v∈N a collection of i.i.d.
Standard Brownian Motions.

Definition 6.1. Let N = (G,µ,ω,θ(0)) be a network belonging to the set N in Defi-
nition 5.6. A system of interacting diffusions on the network N (with the choice of
functions ψ, φ) is a random vector

θ(·) = (θv(·))v∈V ∈ C([0, T ];R)|V |

which is a strong solution of the following system of Itô Stochastic Differential Equations
(SDEs): for each v ∈ V ,

dθv(t) =
1

µv

∑
u∈V

µuvφ(θu(t), θv(t);ωv, ωu)dt+ ψ(θv(t);ωv)dt+ dBv(t), (6.1)

where the first term in the RHS in (6.1) is zero if µv = 0, and the initial conditions
are given by θ(0) = (θv(0))v∈V . When we need to make explicit the dependency on the
network we will write θ(·) =: θN (·).

When the network N is finite the standard theory of Itô SDEs guarantees that the
system (6.1) has a unique strong solution with continuous trajectories whenever ψ and
φ are Lipschitz-continuous (see [15], Theorem 2.9, Chapter 5). In the remainder of
this work, ψ is assumed to be Lipschitz-continuous and φ is assumed to be Lipschitz-
continuous and bounded. We will argue that, under certain conditions, we also can solve
(6.1) simultaneously with infinite equations (on infinite networks).

For each network N , if there exists a system of interacting diffusions over N , we
can replace the initial conditions θ(0) by the vector of random continuous functions
θN (·) ∈ C([0, T ];R) as new marks. This brings us to the following definitions.

Definition 6.2. Given a network N = (G,µ,ω,θ(0)) ∈ N and a vector of continuous
functions

α(·) = (αv(·))v∈G ∈ C([0, T ];R)|G|

we write C for the collection of networks (G,µ,ω,α(·)) with continuous functions replac-
ing the vector θ(0) as new marks. That is, C has edge marks in R+ and vertex marks
in R × C([0, T ];R). When we distinguish a root for (G,µ,ω,α(·)) we write C∗ for the
collection of these rooted networks up to isomorphism.

Definition 6.3. When N ∈ N is such that a system of interacting diffusions θN (·) can be
defined, we let Nθ = (G,µ,ω,θN (·)) be the corresponding random element of C defined
above. Note that the law of Nθ is invariant by network isomorphisms.

To present our main results, we need some additional definitions. We first restrict
ourselves to the space of finite networks.

Definition 6.4. Let Nf be the collection of finite networks contained in N . We write N ∗f
when considering finite rooted networks of N ∗ up to isomorphism.

Finally, we define a map associating to each finite network [N, o] the law of [Nθ, o].

Definition 6.5. For each rooted finite network [N, o] ∈ N ∗f , we let Θ([N, o]) ∈ P(C∗)
denote the law of the random network [Nθ, o] (up to isomorphism). This is well-defined
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because the law of Nθ is invariant under isomorphisms of N . Therefore, Θ defines a map
from N ∗f (the space of finite networks) to P(C∗) (the space of probability measures over
C∗).

6.1 Main results

In this section we state our main results. Our results hold when the sequence
{Nn}n∈N converges to something “nice”.

Definition 6.6 (“Nice” networks). For each rooted network (N, o) ∈ N ∗ define µ∗(N)

(resp. µ∗(N)) as the infimum (resp. supremum) of the set {µe : e ∈ EN}. Let (G, o) be
the underlying rooted graph of (N, o). Call (N, o) nice if:

1. Graph grows at most exponentially: there exists a > 0 such that

|∂(G, o)r| ≤ aear for all r ≥ 1; and

2. Weights bounded away from 0 and +∞: 0 < µ∗(N) ≤ µ∗(N) < +∞.

We let B∗ ⊂ N ∗ denote the set of nice rooted networks (this is a Borel set). Observe that
N ∗f ⊂ B∗.

See Section A.3 for examples of nice networks.
Our first main result ensures that systems of interacting diffusions may be defined

over nice networks (N, o) as limits, taking r →∞, of systems over the finite networks
(N, o)r.

Theorem 6.7 (Extension of Θ, proof in Section 8). We can extend Θ to a continuous
transition kernel Θ : B∗ → P(C∗). More specifically, given (N, o) ∈ B∗ there exists the
unique strong solution of the (possibly infinite) system of SDEs in (6.1) defined over N .
Furthermore, Θ(N, o) is the law of (Nθ, o) ∈ C∗ defined replacing the initial conditions
θ(0) by θN (·).

In our next result, we use Theorem 6.7 to identify hydrodynamic limits of systems
of interacting diffusions. We first note that, if ν is a probability measure over B∗, the
continuity (in particular measurability) of Θ allows us to define νΘ by the formula:

νΘ(h) =

∫
Θ([N, o])(h) dν([N, o]) =

∫
E
[
h(Nθ, o)

]
dν([N, o]), (6.2)

where h : C∗ → R is a bounded measurable function and the expectation E [ · ] is with
respect to the Brownian motions.

Theorem 6.8 (Hydrodynamic limit, proof in Section 9). Consider a sequence

{Nn}n∈N ⊂ Nf

of finite networks where each Nn has vertex set [n]. Make the following additional
assumptions.

1. Local weak convergence: {Nn}n∈N is locally weakly convergent to a probability
measure ν (in the sense of Definition 5.5).

2. Good limiting network: the measure ν is supported on nice networks (cf. Defini-
tion 6.6).

3. Small maximum degree: the largest degree in Nn satisfies maxv∈[n] d
Nn
v = nεn

where εn → 0 as n→ +∞.

Then the sequence of random networks {Nθ
n}n∈N ⊂ C containing the random trajec-

tories of the interacting diffusions converges to νΘ ∈ P(C∗) in the local weak sense and
almost surely with respect to the law of the Brownian motions.
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Remark 6.9. We show in Section A.3 that taking (Gn)n∈N from the examples 5.2, 5.3
and 5.4 of almost surely (with respect to the graph randomness) local weak convergence
we can construct networks Nn that satisfy the assumptions of Theorem 6.8 for almost all
realizations of marks and almost all realizations of the sequence Gn. In particular, the
theorem is true for the case of Erdös-Rényi and GW trees with probability 1 with respect
to the law of the Erdös-Rényi graphs.

The hydrodynamic limit is in general stated for the empirical measure over particle
trajectories.

Ln =
1

n

∑
v∈Nn

δθNnv (·) ∈ P(C([0, T ];R)).

We can obtain θNo as a projection of (Nθ, o). Using that the projection is continuous
we obtain the following corollary.

Corollary 6.10 (Proof omitted). In the conditions of Theorem 6.8, Ln converges almost
surely to the law of θNo in the weak topology of P(C([0, T ];R)).

Remark 6.11. To see that the limiting object is not Markovian consider the case when
ν is supported on a deterministic rooted d-regular tree (T, o). Then the evolution θTo (s)

in the time interval t ≤ s ≤ T depends also on the values {θTv (t) : v ∼T o} (see (6.1)).
Observe however that the full vector θN = (θNv ) is Markovian. Since it is a strong solution
then θN (t+ s)− θN (t) is independent of Ft = σ(Bv(u) : 0 ≤ u ≤ t, v ∈ N) conditionally
on θN (t).

As shown in [28, Propostion 2.2], the hydrodynamic limit immediately implies the
Propagation of Chaos (cf. [28, Definition 2.1]). For completeness, we show a self-
contained proof in Appendix D.

Corollary 6.12 (Propagation of Chaos). Let k ∈ N and

f1, · · · , fk : C∗ → R, such that ‖fi‖BL ≤ 1,∀1 ≤ i ≤ k.

Consider (Ni, oi) i.i.d. with law ν. Under our assumptions,

lim
n→∞

E

[
k∏
i=1

U(Nθ
n)(fi)

]
→

k∏
i=1

E
[
fi(N

θ
i , oi)

]
.

7 The locality lemma

In this section, we introduce the main technical tool in our proofs, the Locality lemma.
It will be present in the proofs of all the results in Section 6.1.

The Locality lemma basically establishes that our interacting diffusions over a finite
subset H0 of vertices are indifferent to parts of the network that are far away from H0.

Lemma 7.1 (Locality). Consider a rooted network

(N, o) = (G,µ,ω,θ(0), o)

according to Definition 5.6. Let H0 and H be finite subgraphs of G with H0 ⊂ H. Let N
be the sub-network induced by H (cf. Section 5.2). Fix functions ψ, φ that are Lipschitz
with φ bounded. Let (Bv)v∈V be i.i.d. Brownian motions associated with the vertices of
G.

Following Definition 6.1, assume that we can define a system of interacting diffusions
θN (·) over N from the (Bv)v∈V (with ψ and φ fixed above and in the time interval [0, T ]).

Also build a system θN (·) over N with the same Brownian motions (this works because
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N is finite). Then the following holds: there exist C, r0 > 0 depending only on T , ‖ψ‖Lip
and ‖φ‖BL such that, almost surely on the Brownian motion randomness,

if r := dist(H0, ∂H) ≥ r0, then max
v∈H0

(
sup
t≤T
|θNv (t)− θNv (t)|

)
≤ C|∂H| exp (−r log r) .

The rest of the section will be devoted to the proof of Lemma 7.1. However, if the
reader so wishes, she or he can skip the proof and go directly to Section 8. In this section
the only randomness comes from the diffusions. So every “almost surely” statement in
this section is with respect to the law of the Brownian motions.

The general idea of the proof is the following: In §7.1 we rewrite the diffusions θN (·)
and θN (·) so that they can be compared easily. In §7.2, we prove a linear Gronwall
inequality for the difference between the two systems. The proof is finished in §7.3. At
this step, we need to analyze a certain matrix exponential. We do so via the theory of
continuous-time random walks, most importantly Carne-Varoupoulos heat kernel bound
[3, Section 5.1].

As noted in the introduction, Lacker et al. [17, 18] essentially bypass locality esti-
mates in their proofs. We strongly believe that the same locality estimates can be proven
in their framework.

7.1 Preliminaries

To avoid cumbersome notation, we adopt the following notation conventions. Objects
related to the network N = (G,µ,ω,θ(0)) are written without superscripts. Degrees of
vertices are indicated via dv. We define a matrix P indexed by the vertices V of N via:

Puv :=
µuv
µv

I{µv>0}.

With this notation, we are assuming the existence of the interacting diffusions over N
that may be written as

dθv(t) =
∑
u∈G

Pu,vφ(θu(t), θv(t);ωv, ωu)dt+ ψ(θv(t), ωv)dt+ dBv(t). (7.1)

The network N = (H,µ |H ,ω |H ,θ(0) |H) is induced by the sub-graph H ⊂ G. We
will write the corresponding process somewhat differently. Define µuv := µuvI{v,u∈H}
and µv :=

∑
u µuv. We set:

Puv :=
µuv
µv

I{µv>0}.

This matrix is in general different from P if v or u are either outside of H or in ∂H.
We may define another system of diffusions satisfying:

dθv(t) =
∑
u∈G

Pu,vφ(θu(t), θv(t);ωv, ωu)dt+ ψ(θv(t), ωv)dt+ dBv(t) (7.2)

for each v ∈ V (and not just the vertices in H), with initial conditions θv(0) = θv(0).
With this definition, the diffusions inside H do not interact with those outside H. Since
H is finite, the system inside H has a unique strong solution, so the θv(·) with v ∈ H
correspond exactly to the θNv (·) in the statement of the Lemma.

Our goal then is to bound supt≤T |θv(t)−θv(t)| for v ∈ H0. More specifically, it suffices
to prove the next result

Lemma 7.2. Let v ∈ H. Then almost surely

if dist(v, ∂H) =: r ≥ r0, then sup
t≤T

(
θv(t)− θv(t)

)
≤ C|∂H| exp (−r log r) .

Indeed, once we have this, Lemma 7.1 follows if we take the supremum over v ∈ H0.
The remainder of this section is dedicated to the proof of Lemma 7.2.
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7.2 A Gronwall bound

The next proposition will be used in our Grownwall argument. To state it, we let H̃
denote the set of vertices within distance at most 1 of H, that is

H̃ = {u ∈ G : u ∈ H or ∃ v ∈ H with v ∼ u}.

Also, we write I for the identity matrix.

Proposition 7.3. Let v ∈ H. The following inequality holds almost surely for all t ∈ [0, T ],

|θv(t)− θv(t)| ≤ C
∫ t

0

∑
u∈H̃

(P + I)uv|θu(s)− θu(s)|ds+ 2CT I{v∈∂H},

where C > 0 depends only on ‖ψ‖Lip and ‖φ‖BL.

Proof. Since the initial conditions are coupled to be equal they cancel when we calculate
θv(t)− θv(t). The Brownian motion also cancels. From Equation 7.1 we obtain

θv(t)− θv(t) =

∫ t

0

∆1(v, s) + ∆2(v, s) + ∆3(v, s)ds

where

∆1(v, s) :=
∑
u∈G

(Puv − Puv)φ(θu(s), θv(s);ωu, ωv),

∆2(v, s) :=
∑
u∈G

Puv(φ(θu(s), θv(s);ωu, ωv)− φ(θu(s), θv(s);ωu, ωv)),

∆3(v, s) := ψ(θv(s);ωv)− ψ(θv(s);ωv).

First observe that the sums involving P and P for u ∈ G are in fact over u ∈ H̃ since
v ∈ H. This is due the fact this matrices have non-zero entries P·,v, P ·,v just for neighbors
of v. In this way we have the following bounds

|∆1(v, s)| ≤ ‖φ‖∞

∑
u∈H̃

|Puv − Puv|

 ,

|∆2(v, s)| ≤
∑
u∈H̃

Puv ‖φ‖Lip
(
|θv(s)− θv(s)|+ |θu(s)− θu(s)|

)
, and

|∆3(v, s)| ≤ ‖ψ‖Lip |θv(s)− θv(s)|.

Now we bound the RHS of the first inequality. For this, we note that if v 6∈ ∂H or
µv = 0, then Puv = Puv for all u. On the other hand, if v ∈ ∂H and µv > 0, then:∑

u∈H̃

|Puv − Puv| =
∑
u∈H
|Puv − Puv|+

∑
u/∈H

|Puv − Puv|

(u /∈ H =⇒ Puv = 0) =
∑
u∈H
|Puv − Puv|+

∑
u/∈H

|Puv|

(u ∈ H =⇒ µuv = µuv) =
∑
u∈H

µuv

∣∣∣∣ 1

µv
− 1

µv

∣∣∣∣+
∑
u/∈H

|Puv|

≤ µv

∣∣∣∣ 1

µv
− 1

µv

∣∣∣∣+ (µv − µv)
1

µv

(µv ≤ µv) = 2

(
1− µv

µv

)
≤ 2.
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In any case we have that, ∑
u∈H̃

|Puv − Puv| ≤ 2Iv∈∂H .

Combining these bounds, we obtain the result.

7.3 End of proof

We now finish the proof of Lemma 7.2, which implies Lemma 7.1. We will apply the
Linear Gronwall’s Inequality (Corollary C.2) to finish the proof of Lemma 7.2.

Going back to Proposition 7.3 we observe that H̃ is finite. In particular, the matrices
P and I considered are finite-dimensional. So we can apply Corollary C.2 with:

1. u(t) = (|θv(t)− θv(t)|)v∈H̃ , which have continuous entries,

2. a(t) = a :=
(
CT I[v∈∂H]

)
v∈H̃ , and we observe that each entry of this vector is

non-negative, and

3. M(t)uv = Muv = C(P + I)uv, for u, v ∈ H̃ and we observe that this matrix does not
depend on time t, it is entry-wise non-negative and it is finite dimensional.

In vector notation, we obtain:

u(t) ≤
∫ t

0

(Mu(s) + a) ds

and the Corollary says that u(t) ≤ exp(tM)a entrywise. This is the same as saying that,
for each v ∈ H

|θv(t)− θv(t)| ≤ CT
∑
u∈∂H

exp(Ct (P + I))uv ≤ CTe2T
∑
u∈∂H

exp(Ct (P − I))uv.

To bound this last expression, we note that

exp(Ct (P − I))uv = µu qCt(u, v)

where qCt(u, v) is the heat kernel at time Ct of a continuous time random walk over H
with transition rates equal to 1 and reversible transition probabilities Puv (reversibility
follows from symmetry of µuv). The Carne-Varoupoulos bound for the heat kernel
(Theorem 5.17 of [3, Section 5.1]) implies that for any time s ≥ 0 and any v, u ∈ H with
R = dist(v, u) ≥ es (e is the Euler constant)

qs(v, u) ≤ 1

µv ∨ µu
exp

(
−s−R log

R

es

)
≤ 1

µu
exp

(
−s−R log

R

es

)
.

We apply this with s = Ct ≤ CT , and obtain that, if R = dist(v, ∂H) ≥ eCT , then:

sup
t≤T
|θv(t)− θv(t)| ≤ |∂H|CTe2T exp

(
−Ct−R log

R

eCT

)
.

So we finish by taking r0 = deCT e and adjusting C accordingly.

8 Interacting diffusions over infinite graphs

In this section, we prove Theorem 6.7. We first give a sketch of the argument.

1. Our main task will be to construct our system of diffusions over infinite networks
via limits of systems over finite sub-networks. More precisely, for an infinite rooted
network (N, o) and a radius r ≥ 1 we have the finite rooted network (N, o)r (cf.
Section 5.2). It is clear that the sequence ((N, o)r)r≥1 converges in the local
topology towards to (N, o).
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2. The random networks (N, o)θr ((N, o)θr 6= (Nθ, o)r, see Definition 6.3) are well defined
since the networks (N, o)r are finite. We will use the fact that (N, o) is nice (cf.
Definition 6.6) and Lemma 7.1 to show that the sequence (N, o)θr (considering o as
the root) has a limit in distribution. We will then show that the limit is the rooted
network (Nθ, o) replacing the initial conditions by θN (·) that is the unique strong
solution of the infinite system of SDEs in (6.1) for N .

3. To prove the continuity of the map (N, o) nice 7→ Law of (Nθ, o) we will also need
to use that for finite networks the map (N, o) finite 7→ Law of (Nθ, o) is continuous
(Lemma B.1).

We give the formal proof of Theorem 6.7 over the next subsections.

8.1 Proof of existence

Throughout the proof, we will assume that we are given i.i.d. standard Brownian
motions (Bv)v∈V defined on the vertices of our network. The equalities and estimates
in all Section 8 will hold almost surely with respect to the law of the Brownian motions.
For each r ≥ 0, we have a finite network (N, o)r with Brownian motions attached to its
vertices. Following Definition 6.1, we can build a system of interacting diffusions over
the vertices v ∈ (N, o)r via:

dθ(r)
v (t) =

1

µ
(r)
v

∑
u∈(N,o)r

µuvφ(θ(r)
u (t), θ(r)

v (t);ωv, ωu)dt+ ψ(θ(r)
v (t);ωv)dt+ dBv(t), (8.1)

with the weights µ = (µvu)vu∈EG , media variables ω = (ωv)v∈VG and initial conditions
θ(r)(0) = (θv(0))v∈VG determined by the network (N, o)r. We also use the notation

µ
(r)
v :=

∑
u∈(N,o)r

µuv. The point of this construction is that it couples our interacting
diffusions over (N, o)r for all r simultaneously.

We now apply Lemma 7.1, with H0 = (N, o)s for some s ≥ 0, H = (N, o)r for r ≥ s,
and with the network N replaced by a finite ball (N, o)r′ with r′ ≥ r. Since (N, o)r′ is
always finite, the solution to the system is well defined and we can indeed apply the
Lemma. We have that dist((N, o)s, ∂(N, o)r) = r − s. Moreover, since (N, o) is nice, there
exist a > 0 independent of r with |∂(N, o)r| ≤ aear. We conclude that

∀r′ ≥ r ≥ s+ r0, max
v∈(N,o)s

(
sup
t≤T
|θ(r)
v (t)− θ(r′)

v (t)|
)
≤ Ca exp(ar − (r − s) log(r − s)).

The fact that the RHS goes to 0 for fixed s and r′, r → +∞ implies that, for each
v ∈ V , θ(r)

v (·) is a Cauchy sequence (in the uniform norm over [0, T ]) and converges over
[0, T ] to a continuous function θNv (·). We also have the estimate:

∀r ≥ s+ r0, max
v∈(N,o)s

(
sup
t≤T
|θ(r)
v (t)− θNv (t)|

)
≤ Ca exp (ar − (r − s) log(r − s)) , (8.2)

and we will show now that this estimate implies that θN = (θNv (·))v∈V is a system of
interacting diffusions over N in the sense of Definition 6.1. To do this first observe that
µ

(r)
v = µv for large r. For any fixed r ≥ 1 we have from (8.1)

θ(r)
v (t) = θ(r)

v (0) +
1

µ
(r)
v

∑
u∈(N,o)r

µuv

∫ t

0

φ(θ(r)
u (s), θ(r)

v (s);ωv, ωu)ds+

+

∫ t

0

ψ(θ(r)
v (s);ωv)ds+Bv(s).

(8.3)
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The estimate (8.2) says that for all u neighbour of v it holds that θ(r)
u converges to θNu in

the supremum norm and almost surely. Using the basic fact that if fn converges in the
supremum norm to f then

∫ t
0
fn(s)ds→

∫ t
0
f(s)ds we obtain from (8.3) that the following

holds almost surely

θNv (t) = θNv (0) +
1

µNv

∑
u∈N

µuv

∫ t

0

φ(θNu (s), θNv (s);ωv, ωu)ds+

+

∫ t

0

ψ(θNv (s);ωv)ds+Bv(s),

as we wanted.

8.2 Proof of uniqueness

The above implies existence of a system of interacting diffusions over N . Uniqueness
of such a process is also easy to obtain. Indeed, suppose βN is another strong solution
to the same system of equations defined in terms of the same Brownian motions (Bv)v∈V .
Then an application of the locality result, Lemma 7.1, to H0 = {v}, H = (N, o)r for large
r, and N , reveals that (8.2) must also hold with βNv replacing θNv . Therefore,

∀v ∈ V : βNv (·) = lim
r→+∞

θ(r)
v (·) = θNv (·).

8.3 Proof of continuity

What we have seen so far is that for each nice rooted network (N, o) one may uniquely
define a system of interacting diffusions θN (·). Let [Nθ, o] ∈ C∗ be the resulting random
network when one replaces the initial condition for the diffusions as new marks to the
vertices (in the sense of Definition 6.3). So let Θ[N, o] denote the law of [Nθ, o] ∈ C∗
(Definition 6.5). The uniqueness statement above implies that Θ extends the definition
of Θ over finite networks.

We must now show that Θ is a continuous map from B∗ (the set of nice networks) to
P(C∗) (the set of probability measures over C∗ with the BL metric). We start with some
preliminaries. We note once again that, due to Lemma 7.1, we have the more precise
estimate:

∀r ≥ s+ r0, max
v∈(N,o)s

(
sup
t≤T
|θ(r)
v (t)− θNv (t)|

)
≤ C|∂(N, o)r| exp (−(r − s) log(r − s)) . (8.4)

This bound immediately translates to a bound for the distance between (Nθ, o) and
(N, o)θr in the space C∗. Furthermore, this construction of (Nθ, o), and (N, o)θr is a coupling
of the measures Θ[N, o] and Θ[N, o]r, and we obtain:

∀r ≥ s+ r0, dBL(Θ[N, o],Θ[N, o]r) ≤
1

1 + s
+ C|∂(N, o)r| exp (−(r − s) log(r − s)) . (8.5)

The important point is that (8.5) is applicable to all [N, o] ∈ B∗.
Now consider a sequence [Nn, on] of networks converging to [N, o]. We wish to show

that dBL(Θ[N, o],Θ[Nn, on]) → 0. To do this, we use the following observation: for any
fixed r, the probability laws corresponding to [Nn, on]r converge to those of [N, o]r:

dBL(Θ[N, o]r,Θ[Nn, on]r)→ 0. (8.6)

Indeed, this is true because [N, o]r and [Nn, on]r are finite. This is discussed in detail
in Section B of the Appendix.
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The triangle inequality gives:

dBL(Θ[N, o],Θ[Nn, on]) ≤ dBL(Θ[N, o]r,Θ[Nn, on]r)

+dBL(Θ[N, o]r,Θ[N, o])

+dBL(Θ[Nn, on],Θ[Nn, on]r).

When n → +∞, the first term in the RHS shrinks to 0. Using (8.5) to bound the other
two terms, we obtain:

lim sup
n→∞

dBL(Θ[N, o],Θ[Nn, on]) ≤ 1

1 + s
+ C|∂(N, o)r| exp (−(r − s) log(r − s))

+ lim sup
n→∞

(
1

1 + s
+ C|∂(Nn, on)r| exp (−(r − s) log(r − s))

)
.

The local convergence of [Nn, on] to [N, o] implies that |∂(Nn, on)r| → |∂(N, o)r|, so:

lim sup
n→∞

dBL(Θ[N, o],Θ[Nn, on]) ≤ 2

1 + s
+ 2C|∂(N, o)r| exp (−(r − s) log(r − s)) .

Since r ≥ r0 + s are arbitrary (and r0 is constant), we may let s = r/2 and make r → +∞
to obtain

lim sup
n→∞

dBL(Θ[N, o],Θ[Nn, on]) ≤ 0,

as desired.

9 Hydrodynamic limit

In this section we will prove Theorem 6.8.
Our goal is the following. Given that U(Nn) → ν in the space P(N ∗) and up to

some additional conditions we want to show that U(Nθ
n) → νΘ in P(C∗) almost surely.

In this section “almost surely” means “almost surely with respect to the law of the
Brownian motions”. By a standard argument, it suffices to show that for any test function
h : C∗ → R with ‖h‖BL ≤ 1,

Goal: U(Nθ
n)(h)→ νΘ(h) almost surely,

with respect to the law of the Brownian motions. It will be useful to consider the
intermediate expression:

U(Nn)Θ(h) = E
[
U(Nθ

n)(h)
]

where the expectation E [ · ] is with respect to the Brownian motions. Since Θ : B∗ →
P(C∗) is continuous (by Theorem 6.7) and U(Nn)→ ν weakly, one may easily show that

U(Nn)Θ(h)→ νΘ(h). (9.1)

Therefore, our goal is tantamount to showing that:

Goal (restated): U(Nθ
n)(h)− E

[
U(Nθ

n)(h)
]
→ 0 almost surely, (9.2)

with respect to the law of the Brownian motions, where we recall ‖h‖BL ≤ 1. The proof
idea for (9.2) is to use the fact that U(Nθ

n)(h) is a function of independent Brownian
motions. If we could control the effect of replacing one of the Brownian motions, then
we can prove concentration by Azuma’s inequality. To make this work, we will need to
consider a truncated process for r fixed given by the networks:

(Nn(v), v)θr
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replacing the initial conditions for the interacting diffusions θ(Nn(v),v)r (·). With this
motivation we define the r-neighborhood empirical measure

U (r)(Nθ
n) =

1

n

n∑
v=1

δ(Nn(v),v)θr
(9.3)

After considering these networks for r fixed we will need to return to our original
network. In what follows we will need to use Azuma’s inequality.

Theorem 9.1 (Azuma’s inequality, Theorem 6.2, [6]). Let X be a measurable space.
Assume that the function f : Xn → R satisfies the bounded differences assumption: for
each 1 ≤ i ≤ n,

sup
x1,··· ,xn∈X

x′i∈X

|f(x1, · · · , xi−1, xi, xi+1, · · · , xn)− f(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn)| ≤ ci

and define ν̃ = 1
4

∑n
i=1 c

2
i . Let Z = f(X1, ..., Xn) where the Xi ∈ X are independent.

Then
P (Z − E [Z] > t) ≤ e−t

2/(2ν̃).

Lemma 9.2. For any r ∈ N fixed, the following holds almost surely, with respect to the
law of the Brownian motions,

lim sup
n→∞

∣∣∣U (r)(Nθ
n)(h)− E

[
U (r)(Nθ

n)(h)
]∣∣∣ = 0.

Proof. Recall that the assumptions on our networks imply:

max
v∈[n]

dNnv = nεn with lim
n→∞

εn = 0. (9.4)

From (9.3) we have that

U (r)(Nθ
n)(h) =

1

n

n∑
v=1

h[(Nn(v), v)θr],

and the randomness of the rooted network (Nn(v), v)θr is the random vector

(θ(Nn(v),v)r
u (·))u∈(Nn(v),v)r , for v ∈ [n].

The strong solution assumption implies that for each v ∈ [n] there exists a measurable
function

gv : C([0, T ];R)|(Nn(v),v)r| → C∗ such that

gv
(
(Bz(·))z∈(Nn(v),v)r

)
= (Nn(v), v)θr.

Therefore,

U (r)(Nθ
n)(h) =

1

n

n∑
v=1

h[(Nn(v), v)θr]

=
1

n

n∑
v=1

h
(
gv
(
(Bz(·))z∈(Nn(v),v)r

))
=: f(B1(·), · · · , Bn(·)).

Now fix a vertex w ∈ [n] and suppose we change the function Bw(·). Then whenever
w /∈ (Nn(v), v)r the function gv

(
(Bz(·))z∈(Nn(v),v)r

)
is unchanged. That is, the only
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functions gv that are changed are those with v ∈ (Nn(w), w)r. Using that ‖h‖∞ ≤ 1 we
can conclude that f satisfy the bounded difference inequality (Theorem 9.1) with

cw =
|(Nn(w), w)r|

n
.

From (9.4) the size of (Nn(w), w)r is bounded by n(r+1)εn (to see this write the ball as
the union of spheres). In this way,

ν̃ :=
1

4

n∑
w=1

c2w ≤
1

4

n∑
w=1

(
n(r+1)εn

n

)2

=
1

4

n2(r+1)εn

n
.

Theorem 9.1 applied twice implies

P
(∣∣∣U (r)(Nθ

n)(h)− E
[
U (r)(Nθ

n)(h)
]∣∣∣ > t

)
≤ 2 exp

(
− 2t2n

n2(r+1)εn

)
.

This bound is summable in n for any r ≥ 1 and t > 0 fixed because εn → 0. Therefore,
Borel-Cantelli Lemma finishes the proof.

To continue, we must compare the truncated network in this Lemma with the original
Nn. We first bound:

U(Nθ
n)(h)− U (r)(Nθ

n)(h),

which is an average of differences:

h([Nθ
n(v), v])− h([Nn(v), v]θr)

over v ∈ [n]. Since ‖h‖BL ≤ 1, we have:

|h([Nθ
n(v), v])− h([Nn(v), v]θr)| ≤ dC∗

(
[Nθ

n(v), v], [Nn(v), v]θr
)
∧ 2.

Let r0 be the constant of Lemma 7.1. From this Lemma, we have the bound:

dC∗
(
[Nθ

n(v), v], [Nn(v), v]θr
)
≤ 1

1 + s
+ C|∂(Nn(v), v)r| exp(−(r − s) log(r − s)) (9.5)

whenever r ≥ s+ r0. Averaging over v ∈ [n], we conclude

|U (r)(Nθ
n)(h)− U(Nθ

n)(h)| ≤ 1

n

∑
v∈[n]

(
1

1 + s
+ C|∂(Nn, v)r| e−(r−s) log(r−s)

)
∧ 2 (9.6)

for all r ≥ s+ r0.
We know Nn converges in the local weak sense to ν. The measure ν is supported on

nice networks. That is, we have that ν(∪+∞
a=1B∗a) = 1 with

B∗a := {(N, o) ∈ B∗ : |∂(N, o)r| ≤ aear,∀r ≥ 1}. (9.7)

Since the B∗a are increasing, we have ν(B∗a) → 1 as a → +∞. Also, by local weak
convergence:

1

n

∑
u∈[n]

I{|∂(Nn,u)r|>aear} → ν({([N, o] : |∂(N, o)r| > aear}) = 1− ν(B∗a).

We bound the terms in the RHS of (9.6) according to whether |∂(Nn, v)r| is either bounded
by aear or not; in the latter case the terms are simply bounded by 2. We deduce that,
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when n→ +∞:

|U (r)(Nθ
n)(h)− U(Nθ

n)(h)| ≤ 1

1 + s
+ Caear−(r−s) log(r−s) (9.8)

+
2

n

∑
u∈[n]

I{|∂(Nn,u)r|>aear}

→ 1

1 + s
+ Caear−(r−s) log(r−s) + 2(1− ν(B∗a)).

The same bound holds for the difference of the expectations

|E
[
U (r)(Nθ

n)(h)− U(Nθ
n)(h)

]
|.

Now, for each fixed r, s, a as above:

|U(Nθ
n)(h)− E

[
U(Nθ

n)(h)
]
| ≤ |U(Nθ

n)(h)− U (r)(Nθ
n)(h)|

+|E
[
U (r)(Nθ

n)(h)− U(Nθ
n)(h)

]
|

+|U (r)(Nθ
n)(h)− E

[
U (r)(Nθ

n)(h)
]
|.

When n→ +∞, the first two terms in the RHS may be controlled via (9.8). The last term
goes to 0 by Lemma 9.2. We obtain:

lim sup
n→∞

|U(Nθ
n)(h)− E

[
U(Nθ

n)(h)
]
| ≤ 2

1 + s
+ 2Caear−(r−s) log(r−s) + 2(1− ν(B∗a)).

We may now let r → +∞, then s→ +∞ and a→ +∞ (in this order) to obtain:

lim sup
n→∞

|U(Nθ
n)(h)− E

[
U(Nθ

n)(h)
]
| ≤ 0.

This implies our goal (9.2) and finishes the proof of the hydrodynamic limit.

10 Numerical simulations for the stochastic Kuramoto model on
Galton-Watson trees

10.1 Introduction

In this section, we explain how we performed the numerical simulations for the
stochastic Kuramoto model on Galton-Watson (GW) trees. The equations are given by

dθi =

ωi +K

N∑
j=1

aij sin(θj − θi)

 dt+ εdW i
t .

For this system, θj(t) and ωj represent the angular phase and natural frequency of the
oscillator indexed by j ∈ {1, 2, . . . , N}. The parameter K ∈ R+ represents the coupling
strength between nodes, and aij = 1 if nodes i and j are connected or aij = 0 otherwise.
We assume that {W j

t }t≥0 are independent brownian motions for each node j, while the
noise intensity is given by ε > 0. In our simulations, we chose two different models for
generating the GW trees:

1. Binomial model: The offspring is a binomial random variable with distribution
Bin(n, p).

2. D-Regular model: The root node has C children, while the other ones have exactly
C − 1 children.

In what follows, we fixed n = 3 and p = 2
3 for the Binomial model (mean offspring

equals to 2) and C = 3 for the D-Regular model. We also considered the time interval
t = [0, 100] (arbitrary units) with step ∆t = 0.01, and noise intensity ε = 0.05.
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The synchronization level

We defined the synchronization level Sync = Sync(h,K) between the root and those
nodes at a distance h , given the coupling strength K. If N denotes the total number of
nodes and j = 1 is defined as the root index, we define the set

D(h) = {j ∈ {2, ..., N}| node of index j is at distance h from the root}

and the order parameter

rh(t) =

∣∣∣∣∣e
iθ1(t) +

∑
j∈D(h) e

iθj(t)

1 + #D(h)

∣∣∣∣∣
where # denotes set cardinality.

Our variable Sync is then defined as a time average of the last 5% values assumed by
rh(t). More precisely, if we have a total of tn, the set of last 5% time indexes is given by
J = {b0.95tnc , ..., tn}. Therefore, we define

Sync :=

∑
j∈J rh(tj)

#J

as our synchronization level parameter.

10.2 Numerical simulations

We present the details of our numerical simulations, considering the Binomial and
D-Regular models. In both cases, our goal is to calculate an average synchronization
parameter 〈Sync〉 between the root and those nodes at different distance values h, for
distinct coupling strength (K) values. For all simulations, we considered GW trees with
13 generations (h ∈ {1, 2, · · · , 13}), andK ∈ [0, 10] with steps ∆K = 0.2. We performed all
numerical solutions with the classic Euler-Maruyama scheme for stochastic differential
equations. In what follows, we describe the step-by-step algorithms for each GW model.

• Binomial model. We produce a total of 100 simulations. In each of them, we
generate a GW tree with N nodes and define the natural frequencies ωi, as well
as the initial conditions θi(0) (i ∈ 1, 2, . . . , N ). We then simulate the stochastic
Kuramoto model with the Euler-Maruyama scheme, computing Sync(h,K) for the
chosen h and K values (see above). Finally, we average the synchronization levels
across the 10 simulations, obtaining 〈Sync〉(h,K).

• D-Regular model. In this case, the GW is not random. Then we produce a total
of 100 simulations, only re-sampling the initial conditions θi(0) and natural fre-
quencies ωi (i ∈ 1, 2, . . . , N ). For each simulation, we compute the synchronization
level (Sync(h,K)) for the selected K and h values. We then compute the average
synchronization level 〈Sync〉(h,K) across the 100 simulations.

10.3 Results

We present our results in Fig. 1 a, b. We compared two possible cases for the initial
phases: θi(0) = 0 or θi(0) uniformly distributed on [0, 2π], for i ∈ {1, 2, . . . , N}. For the
natural frequencies, we chose ωi = 1, or ωi normally distributed with mean and variance
equal to 1, or ωi uniformly distributed on [0, 2π], for i ∈ {1, 2, . . . , N}.

For both Binomial and D-Regular GW models, the average level of synchronization
〈Sync〉 significantly decreased, as the distance from the root h increased, for all consid-
ered choices of initial conditions θi(0) and natural frequencies ωi. The parameter regions
of high synchronization (red-colored in the heatmaps, which correspond to 〈sync〉 > 0.8)
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. .
 .

 D-Regular Galton-Watson tree

root

. .
 .

. .
 .

. .
 .

 Binomial Galton-Watson tree
root

. .
 . . .

 .

a.

b.

Figure 1: Stochastic Kuramoto Dynamics in GW trees: average synchronization
levels between the root and different nodes. a. In the Binomial model, the offspring
was given by a binomial random variable with distribution Bin(3, 2

3 ). b. In the D-Regular
model, the root has 3 children, while the other nodes have only 2 children. In the top
left of Panels a. and b., we exhibit schematic illustrations of both GW tree models, with
nodes at different distances from the root. The parameter K represents the coupling
strength between any two connected nodes (see text for details). We assumed two
distinct distributions for the initial phases θi(0) (all equal or uniformly distributed), while
the natural frequencies ωi were assumed equal to 1, or normally distributed with mean
and variance equal to 1, or uniformly distributed on [0, 2π]. For different K values, we
estimated the loss of synchronization between the root vertex and those at different
distances h, as h increased from 1 to 13. We observed clear transition patterns between
high and low synchronization regions in the h×K plane.
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were only found for low h values (h ≤ 4 in the binomial model and h ≤ 2 in the D-regular
model). It is important to notice that the synchronization levels did not substantially
increased even for higher values of the coupling strength K, which in our study was
allowed to range from 0 to 10. This result indicates that desynchronization may be a
predominant phenomenon in GW trees with the chosen average offspring values.

From the GW model perspective, a simple visual inspection indicates that the Binomial
model promoted a higher synchronization for lower h values than the D-Regular. For
each one of the five combinations of the initial condition and natural frequencies, the
comparison between models shows a significant higher synchronization in the binomial
model. Further analysis would be required for us to understand the causes of such effect.
However, we hypothesize that the variability in the offspring number that is present in
the binomial model could be a major factor to explain this increase in synchronization.

A Weak local convergence and nice networks

The goal of this section is to prove Proposition 5.7, Theorem 5.8 and show that we
have examples that satisfy the assumptions of Theorem 6.8 (cf. Remark 6.9).

A.1 Proof of Proposition 5.7

Proposition 5.7 is a simpler version of Theorem 6.7.
Start with a sequence of rooted graphs {(Gk, ok)}k∈N that converges in the local

topology to (G, o) ∈ G∗. We want to show that the respective laws of the random rooted
networks, (NGk , ok) also converges to the law of (NG, o), that is,M(Gk, ok)→M(G, o)

in the BL-distance.
From the convergence (Gk, ok) → (G, o) in G∗ we know that for any r ∈ N fixed

(Gk, ok)r = (G, o)r for k sufficiently large.
When we construct the random networks NG and NGk we can couple the marks to

be equal in (Gk, ok)r = (G, o)r. In particular, (NGk , ok)r = (NG, o)r almost surely.
Therefore, by definition and almost surely

dN∗
(
[NG, o], [NGk , ok]

)
≤ 1

1 + r

for k big enough. This bound immediately translates to a bound for their laws and we
finish the proof.

A.2 Proof of Theorem 5.8

Theorem 5.8 is a simpler version of Theorem 6.8.
We have a sequence of graphs {Gn}n∈N that converges locally weakly to the measure

ρ ∈ G∗. We want to show that defining the random networks Nn := NGn by adding the
i.i.d. marks, we have that U(Nn)→ ρM almost surely in P(N ∗). We are assuming that
maxv∈[n] d

Gn
v ≤ nεn with εn → 0 as n→∞.

Let E [ · ] be the expectation in the space where the marks of the sequence of the
networks (Nn)n∈N can be defined. We can easily check that

E [U(Nn)] = U(Gn)M.

In particular, from the continuity ofM it is simple to deduce that E [U(Nn)]→ ρM.
So we just need to show that almost surely

lim
n→∞

|U(Nn)(h)− E [U(Nn)(h)]| = 0

for any borel measurable function h : N ∗ → R with ‖h‖BL ≤ 1.
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The idea, as in Theorem 6.8, is to concentrate U(Nn)r around its mean, where

U(Nn)r =
1

n

n∑
v=1

δ[Nn(v),v]r . (A.1)

Throughout the remainder of this section we have a bounded measurable test function
h : N ∗ → R with ‖h‖BL ≤ 1.

The same arguments in Section A.1 says that

|U(Nn)(h)− U(Nn)r(h)| ≤ 1

1 + r

that also holds in mean:

|E [U(Nn)(h)]− E [U(Nn)r(h)] | ≤ 1

1 + r
.

Now we will use Azuma’s inequality (cf. Theorem 9.1) to show that U(Nn)r(h) is
concentrated around its mean. From (A.1)

U(Nn)r(h) =
1

n

n∑
v=1

h([Nn(v), v]r)

that is a function of the independent variables (ωv, θv(0))v∈[n] and (µe)e∈En , where En is
the edge set of Gn.

If we change one of these marks on the vertex w, the only networks that are changed
are those [Nn(v), v]r with w ∈ (Gn(v), v)r, that is, v ∈ (Gn(w), w)r. Therefore, U(Nn)r(h)

changes by at most the size of (Gn(w), w)r over n. By assumption |(Gn(w), w)r| ≤ n(r+1)εn .
Observe that U(Nn)(h) is a function of 2n+ En independent random variables.

From Azuma inequality we have that

P (|U(Nn)r(h)− E [U(Nn)r(h)] | > t) ≤ 2 exp

(
− 2t2n2

(2n+ En)n2(r+1)εn

)
.

To see that this bound is summable we use that the number of edges is one half of
the sum of degrees to bound:

En ≤
1

2
nmax
v∈[n]

dGnv ≤ 1

2
nnεn .

Using the triangle inequality several times and the previous bounds we see that

lim
n→∞

|U(Nn)(h)− E [U(Nn)(h)] | = 0

for any h with ‖h‖BL ≤ 1.

A.3 Good examples

In this section we want to see that we have examples that satisfy the assumptions in
Theorem 6.8.

From Theorem 5.8, the Assumption 1 in the Theorem 6.8 is satisfied almost surely for
any of the graphs in Example 5.2, 5.3 and 5.4 when we add i.i.d. marks.

The Assumption 3 of Theorem 6.8 is satisfied trivially for graphs with bounded degree
(Example 5.2). We impose in Example 5.4 that uniformly graphs with a given degree
sequence also satisfy maxv∈[n] d

Gn
v ≤ nεn with εn → 0 as n→∞.

Now we will check that Erdös-Rényi graphs (Example 5.3) also satisfy Assumption 3
of Theorem 6.8, almost surely.

EJP 25 (2020), paper 110.
Page 27/35

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP505
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Interacting diffusions on sparse graphs

By the union bound, and Chernoff bound (Theorem 2.3.1, [29])

P

(
max
v∈[n]

dGnv > nεn
)
≤ nP

(
dGn1 > nεn

)
≤ exp (−nεn log nεn)

for n big enough. Since this bound is summable (we can impose nεn →∞ as n→∞), a
sequence of Erdös-Rényi graphs satisfy the assumption almost surely.

It remains to see that in the Examples 5.2, 5.3 and 5.4, the local weak limit is
supported in nice graphs, that is, the local weak limit of theses sequences are supported
in rooted graphs that satisfy

|∂(G, o)r| ≤ aear, for some a > 0. (A.2)

It is clear that (A.2) is achieved when the local weak limit measure is supported in
graphs with uniform bounded degree. So we are done with Example 5.2.

Now we will check (A.2) for the GW tree. This will show that we are done with
Examples 5.3 and 5.4 because a Unimodular GW tree is equal to a GW tree after the first
generation.

Given a probability distribution P on N with mean µ ∈ (0,+∞) consider GW (P )

the GW distribution on the set of rooted trees. It means that in each generation each
individual has i children with probability P (i) independent of the other individuals. Let
Zn be the number of individuals at generation n, Z0 = 1. We know that Zn/(µ)n is a
martingale. In particular E [Zn] = µn. But we also have that |∂(G, o)n| = Zn if (G, o) has
distribution GW (P ).

Therefore,

P (|∂(G, o)r| ≥ (2µ)r) ≤ E [|∂(G, o)r|]
(2µ)r

=
1

2r
,

which is summable in r. Therefore, |∂(G, o)r| ≤ e(log 2µ)r for r big enough, almost surely.
Choosing a big enough we see that |∂(G, o)r| ≤ aear for any r ≥ 1 and for almost all
realizations of (G, o).

B Appendix - Continuity for finite graphs

The goal of this section is to justify (8.6):

dBL(Θ[N, o]r,Θ[Nn, on]r)→ 0.

We think that this can be derived from the standard theory of Ordinary Differential
Equations. For completeness we provide a prove in this section. Our notation follows
that one in Section 8.1.

We will use the following Lemma.

Lemma B.1 (Proof in Section B.1). Consider a graph G and two finite networks Ni =

(G,µ(i),ω(i),θ(i)(0)) ∈ N , i = 1, 2. Suppose that all marks are close by ε:

sup
vu∈EG

|µ(2)
vu − µ(1)

vu | ≤ ε, sup
v∈VG

|ω(2)
v − ω(1)

v | ≤ ε, and sup
v∈VG

|θv(0)(2) − θv(0)(1)| ≤ ε.

Then there exists a constant C depending on ‖φ‖BL, ‖ψ‖Lip, T , and N such that almost
surely with respect to the law of the Brownian motions

sup
v∈G

sup
t≤T

(
|θN1
v (t)− θN2

v (t)|
)
≤ Ce(G)ε.

From the convergence of [Nn, on] to [N, o] we know that for any r and for n large
enough

[Nn, on]r = [N, o]r.
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So we can apply Lemma B.1 with N1 = (N, o)r, N2 = (Nn, on)r, and

ε = dN∗ ([N, o]r, [Nn, on]r)

to obtain the bound

sup
v∈(N,o)r

sup
t≤T
|θ(N,o)r
v (t)− θ(Nn,on)r

v (t)| ≤ Ce([N, o]r)dN∗ ([N, o]r, [Nn, on]r) . (B.1)

In that way, we use that the networks coincide at any radius and the bound in (B.1)
to conclude that almost surely (cf. (5.1))

dC∗
(
[N, o]θr, [Nn, on]θr

)
≤ Ce([N, o]r)dN∗ ([N, o]r, [Nn, on]r)

and the RHS of the last bound goes to zero as n→∞. This is enough to finish.

B.1 Proof of Lemma B.1

In this section, we prove Lemma B.1. The prove follows similar ideas of the proof of
Lemma 7.1.

For ease of notation we adopt the following conventions.

Definition B.2. 1. For the objects related to N2 we omit the superscripts and just
write µ, ω, θ(0) and θ.

2. For the objects related to N1 we omit the superscript and write a over-line writing
µ, ω, θ(0) and θ.

3. We also write Puv = µuv/µv and Puv = µuv/µv.

4. We write I for the identity matrix.

5. G has vertex set V and edge set E.

From Definition 6.1 and for v ∈ V , we have that

dθv(t) =
∑
u∈V

Puv(φ(θu(t), θv(t);ωv, ωu)dt+ ψ(θv(t);ωv)dt+ dBv(t) (B.2)

and the analogous formula holds for θv(·) using the objects of N1 but using the same
Brownian motion.

We suppose that the Brownian motions are coupled to be equal in each system.

Proposition B.3. With our conventions, there exists a constant C depending on ‖φ‖BL,
‖ψ‖Lip, T , and 1/µ∗ such that

|θv(t)− θv(t)| ≤ C

(
ε+

∫ t

0

∑
u∈V

(P + I)uv|θu(s)− θu(s)|ds

)

for all v ∈ V .

Proof. From (B.2),

θv(t)− θv(t) = θv(0)− θv(0) +

∫ t

0

∆1(v, s) + ∆2(v, s) + ∆3(v, s)ds

where

∆1(v, s) :=
∑
u∈V

(Puv − Puv)φ(θu(s), θv(s);ωu, ωv),

∆2(v, s) :=
∑
u∈V

Puv(φ(θu(s), θv(s);ωu, ωv)− φ(θu(s), θv(s);ωu, ωv)),

∆3(v, s) := ψ(θv(s);ωv)− ψ(θv(s);ωv)
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and the following bounds hold

|θv(0)− θv(0)| ≤ ε

|∆1(v, s)| ≤ ‖φ‖∞
∑
u∈V
|Puv − Puv|,

|∆2(v, s)| ≤
n∑
u=1

Puv ‖φ‖Lip (|θv(s)− θv(s)|+ |θu(s)− θu(s)|+ 2ε) , and

|∆3(v, s)| ≤ ‖ψ‖Lip (|θv(s)− θv(s)|+ ε).

Now we estimate Sv :=
∑
u∈V |Puv − Puv|. Remember that supvu∈E |µvu − µvu| ≤ ε. It

is clear that Sv = 0 if v is an isolated vertex. If v is not isolated, then

Sv =
∑
u∈V

∣∣∣∣µuvµv − µuv
µv

∣∣∣∣
≤
∑
u∈V

1

µv
|µuv − µuv|+ µuv

∣∣∣∣µv − µvµvµv

∣∣∣∣ ≤ εdv
µv

+
|µv − µv|

µv
≤ 2εdv

µv
.

The assumption that the network is nice says that µ∗ ≤ µuv whenever uv ∈ E. That
is, dvµ∗ ≤ µv.

Combining these bounds we obtain the result.

We now use Corollary C.2 with

1. u(t) := (|θv(t)− θv(t)|)v∈V .

2. a(t) := (Cε)v∈V , and each entry of this vector is non-negative.

3. M(t) = M := C(P + I), and this matrix does not depend on time t, it is entrywise
non-negative, and it is finite dimensional since G is finite.

Therefore, for any v ∈ V

|θv(t)− θv(t)| ≤ Cε exp
(
tC(P + I)

)
v

To relate this bound with the Random Walk in (G,µ) observe that

exp
(
tC(P + I)

)
= eCt exp

(
tCP

)
= e2Cte−Ct exp

(
tCP

)
.

In the context of [3, Section 5.1] we have that

qs(v, w) :=
1

µw
e−s exp

(
sP
)
vw

(B.3)

is the continuous time Heat Kernel for the Simple Random Walk in (G,µ).

Therefore, since qs(v, w) ≤ 1, for all v, w ∈ V , then e−s exp
(
sP
)
vw
≤ µw ≤ µ∗dw

implies that

|θv(t)− θv(t)| ≤ Cµ∗εe2CT
∑
w∈G

dw = 2Cµ∗e2CT e(G)ε.

Notice that this bound is uniform in t ∈ [0, T ]. This is enough to finish the proof.
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C Linear Gronwall’s inequality

Proposition C.1 (Corollary 2 of [10]). Let the vector a(t) ∈ Rn and the non-negative
(entrywise) n×n matrices O(t), M(t) be continuous functions of the single scalar variable
t for t0 ≤ t. Assume that M(t)O(t) and

∫ t
t0
M(s)O(s)ds commute for t0 ≤ t. If

u(t) ≤ a(t) +O(t)

∫ t

t0
M(s)u(s)ds, t0 ≤ t

then

u(t) ≤ a(t) +O(t)

∫ t

t0
exp

(∫ t

s

M(r)O(r)dr

)
M(s)a(s)ds, t0 ≤ t.

Corollary C.2. Assume the hypothesis in Proposition C.1 and additionally suppose that
O(t) = Id and a(t) is entrywise non-decreasing in each entry. In this case

u(t) ≤ a(t) +

∫ t

t0
M(s)u(s)ds, t0 ≤ t (C.1)

implies

u(t) ≤ exp

(∫ t

t0
M(s)ds

)
a(t), t0 ≤ t. (C.2)

Proof. From Proposition C.1, and the fact that the exponential of a non-negative matrix
is non-negative (every entry of each power is non-negative) we can compute

u(t) ≤ a(t) +

∫ t

t0
exp

(∫ t

s

M(r)dr

)
M(s)a(s)ds

(a(s) ≤ a(t) whenever s ≤ t) ≤ a(t) +

(∫ t

t0
exp

(∫ t

s

M(r)dr

)
M(s)ds

)
a(t)

= a(t) +

(∫ t

t0

d

ds
exp

(∫ t

s

M(r)dr

)
ds

)
a(t)

= a(t)− a(t) + exp

(∫ t

t0
M(s)ds

)
a(t)

= exp

(∫ t

t0
M(s)ds

)
a(t).

D Propagation of chaos

The goal of this section is to prove Corollary 6.12. As above, we will assume that the
vertex set of Nn is [n].

Let f1, . . . , fk : C∗ → R be bounded Lipschitz functions with ‖fi‖BL ≤ 1. Our goal is
to show that:

E

[
k∏
i=1

U(Nθ
n)(fi)

]
→

k∏
i=1

νΘ(fi)

as n→ +∞. This is true for k = 1, as shown in (9.1). Therefore, it suffices to show that:

Goal: E

[
k∏
i=1

U(Nθ
n)(fi)

]
−

k∏
i=1

E
[
U(Nθ

n)(fi)
]
→ 0 as n→ +∞. (D.1)

The strategy to prove this goal is to use a similar argument as in Lemma 9.2 to exploit
independence. For these reasons our first task is to compare

E

[
k∏
i=1

U(Nθ
n)(fi)

]
with E

[
k∏
i=1

U (r)(Nθ
n)(fi)

]
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and
k∏
i=1

E
[
U(Nθ

n)(fi)
]

with
k∏
i=1

E
[
U (r)(Nθ

n)(fi)
]
.

We write the difference of products as a telescoping sum switching the terms in
the product one by one. We may apply the bound in (9.8) for each term recalling that
‖fi‖BL ≤ 1, we deduce that when r ≥ s ≥ r0 for some constant r0,∣∣∣∣∣E

[
k∏
i=1

U(Nθ
n)(fi)

]
− E

[
k∏
i=1

U (r)(Nθ
n)(fi)

]∣∣∣∣∣
≤ k

1 + s
+ kCaear−(r−s) log(r−s) +

2k

n

∑
u∈[n]

I[|∂(Nn,u)r|>aear]

→ k

1 + s
+ kCaear−(r−s) log(r−s) + 2k(1− ν(B∗a))

as n goes to infinity and the exactly same bound holds for the other expression of interest
(the expectation inside).

As before we can make, r →∞, s→∞ and a→∞ in this order and it is clear that
we can restate our goal:

Goal (D.1) restated: E

[
k∏
i=1

U (r)(Nθ
n)(fi)

]
−

k∏
i=1

E
[
U (r)(Nθ

n)(fi)
]
→ 0 as n→ +∞.

(D.2)
To achieve this goal, we write:

E

[
k∏
i=1

U (r)(Nθ
n)(fi)

]
=

1

nk

∑
u1,...,uk∈[n]

E

[
k∏
i=1

fi([Nn(ui), ui]
θ
r)

]
;

k∏
i=1

E
[
U (r)(Nθ

n)(fi)
]

=
1

nk

∑
u1,...,uk∈[n]

k∏
i=1

E
[
fi([Nn(ui), ui]

θ
r)
]
.

We deduce that the difference in (D.2) is the average of:

E

[
k∏
i=1

fi([Nn(ui), ui]
θ
r)

]
−

k∏
i=1

E
[
fi([Nn(ui), ui]

θ
r)
]

(D.3)

over (u1, . . . , uk) ∈ [n]k.
Now fix a radius r ≥ 1. We split the set [n]k into two parts.

Ekn(r) := {(v1, . . . , vk) ∈ [n]k : dist(vi, vj) > r for all 1 ≤ i < i ≤ k}

and F kn (r) := [n]k\Ekn(r).
Notice that for (u1, . . . , uk) ∈ Ekn(r) the trucated networks

[Nn(ui), ui]
θ
r : 1 ≤ i ≤ k

are independent, as they are deterministic functions of independent Brownian Motions
(cf. Lemma 9.2). Therefore:

∀(u1, . . . , uk) ∈ Ekn(r) : E

[
k∏
i=1

fi([Nn(ui), ui]
θ
r)

]
=

k∏
i=1

E
[
fi([Nn(ui), ui]

θ
r)
]
.
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Since the functions fi are also bounded by 1, we obtain:∣∣∣∣∣E
[
k∏
i=1

fi([Nn(ui), ui]
θ
r)

]
−

k∏
i=1

E
[
fi([Nn(ui), ui]

θ
r)
]∣∣∣∣∣ ≤ 2I{(u1,...,uk)∈Fkn (r)} (D.4)

for all (u1, . . . , uk) ∈ [n]k.

Recall from (D.3) that the difference we need to consider to achieve our goal (D.2) is
an average over u1, . . . , uk ∈ [n] of the terms in the LHS of (D.4). This implies:∣∣∣∣∣E

[
k∏
i=1

U (r)(Nθ
n)(fi)

]
−

k∏
i=1

E
[
U (r)(Nθ

n)(fi)
]∣∣∣∣∣ ≤ 2|F kn (r)|

nk
.

The RHS of the display may be interpreted that, out of k uniformly random vertices
u1, . . . , uk ∈ Nn, at least some pair is at distance ≤ r from one another. This is the same
as saying that there exists a uj ∈ (Nn, ui)2r for some pair 1 ≤ i < j ≤ k. So:

|F kn (r)|
nk

≤
(
k

2

)
1

n

∑
u∈[n]

|(Nn, u)2r|
n

. (D.5)

Claim: For any k, r ∈ N fixed the RHS of (D.5) goes to 0 as n→ +∞.

We prove the Claim in the end of this section. We deduce:

lim sup
n→∞

∣∣∣∣∣E
[
k∏
i=1

U (r)(N (θ)
n )(fi)

]
−

k∏
i=1

E
[
U (r)(N (θ)

n )(fi)
]∣∣∣∣∣ ≤ 0

for any k, r ≥ 1 fixed and the result follows.

Now we prove the Claim.

Fixed a constant M > 0 the sum on the RHS in (D.5) can be split whether |(Nn, u)2r| ≤
M or > M . In the case |(Nn, u)2r| > M we remember that the bound |(Nn, u)2r| ≤ n

always holds. We obtain

1

n

∑
u∈[n]

|(Nn, u)2r|
n

≤ M

n
+

1

n

∑
u∈[n]

I{|(Nn,u)2r|>M}. (D.6)

It is simple to check that (N, o) ∈ N ∗ 7→ I{|(N,o)2r|>M} is a bounded continuous
function in the local topology. Therefore, from the local weak convergence of {Nn}n∈N
to ν we have that

1

n

∑
u∈[n]

I{|(Nn,u)2r|>M} → ν{(N, o) : |(N, o)2r| > M}.

In this way, taking the limit n→∞ in the RHS of (D.5) we obtain that

lim sup
n→∞

|F kn (r)|
nk

≤
(
k

2

)
ν{(N, o) : |(N, o)2r| > M}.

When we take M →∞ the RHS of the previous display goes to 0 since ν is supported in
networks with locally finite underlying graph. This is enough to finish.
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