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Abstract

This article fills a gap in the mathematical analysis of Adaptive Biasing algorithms,
which are extensively used in molecular dynamics computations. Given a reaction
coordinate, ideally, the biasing force in the overdamped Langevin dynamics would be
given by the gradient of the associated free energy function, which is unknown. We
consider an adaptive biased version of the overdamped dynamics, where the biasing
force depends on the past of the trajectory and is designed to approximate the free
energy.

The main result of this article is the consistency and efficiency of this approach.
More precisely we prove the almost sure convergence of the biasing force as time
goes to infinity, and that the limit is close to the ideal biasing force, as an auxiliary
parameter of the algorithm goes to 0.

The proof is based on interpreting the process as a self-interacting dynamics, and
on the study of a non-trivial fixed point problem for the limiting flow obtained using
the ODE method.
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1 Introduction

Let µ‹ be a probability distribution on the d-dimensional flat torus Td (with T “ R{Z),
of the type:

dµ‹pxq “
e´βV pxq

Zpβq
dx , Zpβq “

ż

Td
e´βV pxqdx, (1.1)
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Analysis of an ABF method based on self-interacting dynamics

where dx is the normalized Lebesgue measure on Td. For applications in physics
and chemistry (e.g. in molecular dynamics), µ‹ is referred to as the Boltzmann-Gibbs
distribution associated with the potential energy function V and the inverse temperature
parameter β ą 0. For applications in statistics (e.g. in Bayesian statistics), ´βV is
referred to as the log-likelihood. In this article, the function V : Td Ñ R is assumed to
be smooth.

In order to estimate integrals of the type
ş

ϕdµ‹, with ϕ : Td Ñ R, probabilistic
methods are used, especially when d is large. The Markov Chain Monte Carlo (MCMC)
method consists in interpreting the integral as the (almost sure) limit

ż

ϕdµ‹ “ lim
TÑ8

1

T

ż T

0

ϕpX0
t qdt “ lim

TÑ8

ż

ϕdµ0
T ,

where µ0
t “

1
T

şT

0
δX0

t
dt is the random empirical distribution associated with an ergodic

Markov process
`

X0
t

˘

tě0
, with unique invariant distribution µ‹. The choice of the Markov

dynamics is not unique, and in this work we consider the overdamped Langevin dynamics

dX0
t “ ´∇V pX0

t qdt`
a

2β´1dWt

where
`

Wt

˘

tě0
is a d-dimensional Wiener process. In practice, discrete-time Markov

processes, defined for instance using the Metropolis-Hastings algorithm or an Euler-
Maruyama scheme applied to the overdamped Langevin process, are employed. The
question of discretisation errors for MCMC algorithms is a classical topic that will not
be addressed in this work.

The convergence to equilibrium requires that the Markov process explores the entire
energy landscape, which may be a very slow process. Indeed, in practical problems,
the dimension d, i.e. the number of degrees of freedom in the system, is very large,
and the probability distribution µ‹ is multimodal: the function V admits several local
minima (interpreted as potential energy wells) and β is large. In that situation, the
Markov process is metastable: when it reaches an energy well, it tends to stay there for
a long time (whose expectation goes to infinity when β goes to infinity) before hopping
to another energy well. Asymptotic results for the exit time from energy wells when
β Ñ 8 are given by Eyring-Kramers type formulas [18, 35]. The metastability of the
process substantially slows down the exploration of the energy landscape, hence the
convergence when T Ñ8 towards the target quantity

ş

ϕdµ‹.
In the development of Monte Carlo methods in the last decades, many techniques

have been studied in order to efficiently sample multimodal distributions. The bottom-
line strategy to enhance sampling consists in biasing the dynamics and in reweighting
the averages: indeed, for any smooth function Ṽ : Td Ñ R, one has

ż

ϕdµ‹ “

ş

ϕe´βV
ş

e´βV
“

ş

ϕe´βpV´Ṽ q e´βṼ
ş

e´βpV´Ṽ q e´βṼ
“ lim
tÑ8

şt

0
ϕpX̃sqe

´βpV pX̃sq´Ṽ pX̃sqqds
şt

0
e´βpV pX̃sq´Ṽ pX̃sqqds

,

where the biased dynamics is given by dX̃t “ ´∇Ṽ pX̃tqdt `
a

2β´1dWt. This is noth-
ing but an Importance Sampling method, and choosing carefully the function Ṽ may
substantially reduce the computational cost. Indeed, if the distribution with density
proportional to e´βṼ pxq is not multimodal, the biased process X̃t converges to equilibrium
and explores the state space faster than the unbiased process Xt. In the sequel, we
explain how to choose Ṽ in order to benefit from the importance sampling strategy.

From now on, in order to simplify the notation, β “ 1. In addition, without loss of
generality, assume that

ş

Td
e´V pxqdx “ 1.

Instead of treating the problem in an intractable full generality, we focus on the
typical situation when some additional a priori knowledge on the system is available.
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Precisely, let ξ : Td Ñ Tm be a smooth function, which is referred to as the reaction
coordinate (following the terminology employed in the molecular dynamics community).
Let us stress that the identification of appropriate reaction coordinates is a delicate
question, which depends on the system at hand. The problem of automatic learning of
good reaction coordinates currently generates a lot of research, see for instance [17, 19]
and the recent review [28]. We do not consider this question in the sequel.

The biasing potential in the importance sampling schemes considered in this work
will be of the type Ṽ pxq “ V pxq ´ Apξpxqq, where A : Tm Ñ R. In practice, the number
of macroscopic variables m is very small compared to the dimension d of the model
(which describes the full microscopic system). As will be explained below, without
loss of generality, we assume that ξpxq “ ξpy, zq “ z for all x “ py, zq P Td´m ˆ Tm.
This expression for the reaction coordinate simplifies the presentation of the method,
however considering more general reaction coordinates ξ is possible up to adapting
some definitions below. To explain the construction of the method and to justify its
efficiency, we assume that the reaction coordinate is representative of the metastable
behavior of the system: roughly, this means that only the exploration in the z variable is
affected by the metastability, whereas the exploration in the y variable is much faster
(see the discussion at the end of Section 2.3).

In this framework, the fundamental object is the free energy function A‹ defined as
follows: for all z P Tm,

A‹pzq “ ´ log
´

ż

Td´m
e´V py,zqdy

¯

. (1.2)

For general considerations on the free energy and related computational aspects, we
refer to [39, 40]. By construction, if X “ pY, Zq is a random variable with distribution µ‹,
then the marginal distribution of Z is given by

dν‹pzq “ e´A‹pzqdz.

Introduce the notation pY 0
t , Z

0
t q “ X0

t for the solution of the overdamped Langevin
dynamics

#

dY 0
t “ ´∇yV pY

0
t , Z

0
t qdt`

?
2dW

pd´mq
t ,

dZ0
t “ ´∇zV pY

0
t , Z

0
t qdt`

?
2dW

pmq
t ,

where Wt “ pW
pd´mq
t ,W

pmq
t q. If ν0

t “
1
t

şt

0
δZ0

s
ds denotes the empirical distribution for the

variable Z0, then almost surely

ν0
t Ñ
tÑ8

ν‹,

in the sense of weak convergence in the set PpTmq of probability distributions on Tm.
Since the reaction coordinate is representative of the metastability of the system, this
convergence shares the same computational issues as when considering the full process
X0.

A much better performance can be attained considering the following biased dynam-
ics, where V pxq is replaced by Ṽ‹pxq “ V pxq ´A‹pξpxqq:

#

dY ‹t “ ´∇yV pY
‹
t , Z

‹
t qdt`

?
2dW

pd´mq
t ,

dZ‹t “ ´∇zV pY
‹
t , Z

‹
t qdt`∇A‹pZ‹t qdt`

?
2dW

pmq
t .

(1.3)

Define the associated empirical measures on Td and Tm respectively:

µ‹t “
1

t

ż t

0

δX‹s ds , ν‹t “
1

t

ż t

0

δZ‹sds,
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where X‹s “ pY
‹
s , Z

‹
s q. As explained above,

ş

ϕdµ‹ can then be computed by the reweight-
ing procedure. Observe that by ergodicity for

`

X‹t
˘

tě0
and the definition of A‹, one

has

ν‹t Ñ
tÑ8

dz,

i.e. at the limit the distribution of Z‹t is uniform on Tm. This observation, which is
referred to as the flat histogram property in the literature devoted to applications,
means that the process X‹ does not suffer from slow convergence to equilibrium due to
energy barriers, compared to the process X0 (see the end of Section 2.3 for more details
on this question).

In practice, the free energy function A‹ is not known, thus the ideal approach
described above is not applicable. In fact, in many applications, the real objective is the
computation of the free energy function. One of the important features of many free
energy computation algorithms, such as the one studied in this work, is to compute an
approximation of the free energy function on-the-fly, and to use this approximation to
enhance sampling. Checking that such adaptive algorithms are efficient and consistent
requires careful mathematical analysis.

In this article, we consider a class of adaptive biasing methods, where the dynamics
is of the form

#

dYt “ ´∇yV pYt, Ztqdt`
?

2dW
pd´mq
t ,

dZt “ ´∇zV pYt, Ztqdt`∇AtpZtqdt`
?

2dW
pmq
t ,

(1.4)

where the function At depends on time t, approximates A‹ when tÑ8, and is defined
in terms of the empirical measure

µt “
1

t

ż t

0

δXsds. (1.5)

The process
`

Xt

˘

tě0
“
`

Yt, Zt
˘

tě0
is not a Markov process, instead it is a self-interacting

diffusion process. The precise construction of the algorithm studied in this article is
provided below.

This article is organized as follows. The construction of the algorithm (2.5) studied
in this work is presented in Section 2 below. The main result, Theorem 2.3, is stated in
Section 2.3, and a comparison with the literature is given. Section 3 gives a proof of the
well-posedness of the self-interacting dynamics (2.5) (Proposition 2.2). Section 4 exhibits
the limiting flow (obtained by applying the ODE method) and establishes the asymptotic
pseudotrajectory property. Finally, Section 5 provides the final crucial ingredients for
the proof of the main result, Theorem 2.3: a PDE estimate which provides some uniform
bounds, and a global asymptotic stability property for the limiting flow.

2 The Adaptive Biasing Force algorithm

The objectives of this section are to define the Adaptive Biasing Force method [22]
studied in this article, and to state the main results.

Recall the definitions (1.1) and (1.2) of the target distribution µ‹ and of the free
energy A‹ respectively. The potential energy function V is assumed to be of class C8.

The reaction coordinate ξ : Td Ñ Tm satisfies ξpy, zq “ z for all x “ py, zq P Td.
This expression substantially simplifies the presentation compared with a more general
choice of ξ : Td Ñ Rm. In applications, this is not restrictive, and consists in considering
the so-called extended ABF algorithm [27]. Precisely, an auxiliary variable Z is added
to the state space, the extended potential energy function for X “ pX,Zq is given by
V pXq “ V pXq` 1

2σ2 |ξpXq´Z|2, where σ ą 0 is a small parameter, and one sets ξpXq “ Z.
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2.1 Construction

The definition of the algorithm requires us to make precise how in the evolution
equation (1.4), the biasing potential function At, or its gradient ∇At, is determined in
terms of the empirical distribution µt given by (1.5). The algorithm is based on the
following identity: the gradient ∇A‹ of the free energy function A‹ defined by (1.2) is
given by

∇A‹pzq “
ş

Td´m
∇zV py, zqe

´V py,zqdy
ş

Td´m
e´V py,zqdy

“ Eµ‹
“

∇zV pY, Zq
ˇ

ˇ Z “ z
‰

. (2.1)

More generally, let A : Tm Ñ R be a smooth function, and let dµA‹ pxq9e
Apzqdµ‹py, zq be

the ergodic invariant distribution of
#

dY At “ ´∇yV pY
A
t , Z

A
t qdt`

?
2dW

pd´mq
t ,

dZAt “ ´∇zV pY
A
t , Z

A
t qdt`∇ApZAt qdt`

?
2dW

pmq
t .

Then one has the identity

∇A‹pzq “ EµA‹
“

∇zV pY, Zq
ˇ

ˇ Z “ z
‰

. (2.2)

The expressions for the gradient of the free energy function in equations (2.1) and (2.2)
are simpler than (for instance) the expressions (5) and (6) in [38] which hold for a general
reaction coordinate mapping ξ, whereas we consider only the case ξpy, zq “ z.

The occupation measures µt defined by (1.5) are in general singular with respect to
the Lebesgue measure on Tm. In order to define the mapping µt ÞÑ At, we introduce a
regularization kernel Kε, depending on the parameter ε P p0, 1s, such that

∇A‹pzq “ lim
εÑ0

ť

Td
∇zV py, z

1qKεpz
1, zqdµ‹py, z

1q
ť

Td
Kεpz1, zqdµ‹py, z1q

.

Indeed, formally, the expression (2.1) for ∇A‹ is obtained with the kernel Kεpz, z
1q

replaced by a Dirac distribution δpz´z1q. See Assumption 2.1 below for precise conditions
on the kernel function Kε.

For every ε P p0, 1s and µ P PpTdq, define the mapping F εrµs : Tm Ñ Rm as follows:

F εrµsp¨q “

ť

∇zV py, zqKεpz, ¨qdµpy, zq
ť

Kεpz, ¨qdµpy, zq
. (2.3)

Due to the action of the regularization kernel Kε, in general F εrµs cannot be written as
a gradient. For instance if m “ 1, a smooth function F : TÑ R is a gradient if and only
if its average value is zero

ş

F pzqdz “ 0; in general,
ş

F εrµspzqdz ‰ 0.
The last ingredient in the construction is a projection operator P, such that one

defines ∇Aεrµs “ PpF εrµsq. More precisely, for every ε P p0, 1s and µ P PpTdq, define the
mapping Aεrµs as follows:

Aεrµs “ argmin
APH1pTmq,

ş

Apzqdz“0

ż

ˇ

ˇF εrµspzq ´∇Apzq
ˇ

ˇ

2
dz , (2.4)

where H1pTmq is the Sobolev space W 1,2pTmq of real-valued square integrable functions
on Tm, whose gradient belongs to L2pTmq. As will be explained below, Aεrµs is solution
of an elliptic PDE. Note that F εrµs and Aεrµs are functions depending only on z P Tm,
with a dimension m much smaller than d the total number of degrees of freedom of the
system. Typically, one has m P t1, 2, 3u, which makes it possible to use the algorithm in
practice.
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We are now in position to define the process considered in this article: it is the
solution of the system

$

’

’

’

’

&

’

’

’

’

%

dYt “ ´∇yV pYt, Ztqdt`
?

2dW
pd´mq
t ,

dZt “ ´∇zV pYt, Ztqdt`∇AtpZtqdt`
?

2dW
pmq
t ,

At “ Aεrµts,

µt “
1
t

şt

0
δpYs,Zsqds.

(2.5)

Arbitrary (deterministic) initial conditions Y0 “ y0 P T
d´m, Z0 “ z0 P T

m (and thus
µ0 “ δpy0,z0q and A0 “ Aεrµ0s) are provided. This process belongs to the class of self-
interacting diffusions, see [13, 14, 15, 16] for standard references. Note that such
processes (also called reinforced dynamics) have been used and studied for other
stochastic algorithms, for instance for approximating quasi-stationary distributions of
killed Markov processes [41, 11]. In particular, although we stick in the present work to
continuous-time settings, we remark that arguments similar to ours can be applied to
discrete-time chains, as in [10].

2.2 Well-posedness of the system (2.5)

Recall that V : Td Ñ R is assumed to be of class C8. Let us first state the assumptions
satisfied by the kernel function Kε.

Assumption 2.1. For any ε P p0, 1s, the mapping Kε : Tm ˆ Tm Ñ p0,8q is of class C8
and positive.

For all z P Tm, one has
ż

Kεpz, z
1qdz1 “

ż

Kεpz
1, zqdz1 “ 1.

In addition, if ψ : Td Ñ R is a continuous function, one has
ĳ

Td

ψpy, z1qKεpz
1, zqdydz1 Ñ

εÑ0

ż

Td´m
ψpy, zqdy , @ z P Tm.

Finally, there exists cK P p0,8q, such that

sup
zPTm

ż

Tm
|z ´ z1|2

`

Kεpz
1, zq `Kεpz, z

1q
˘

dz1 ď cKε.

Define mε “ min
z,z1PTm

Kεpz
1, zq and M

pkq
ε “ max

z,z1PTm
|∇k

zKεpz
1, zq| ` max

z,z1PTm
|∇k

z1Kεpz
1, zq|,

where k is a nonnegative integer and ∇k denotes the derivative of order k. Owing to
Assumption 2.1, one has mε ą 0 and M pkq

ε ă 8 for all ε P p0, 1s. However these estimates

are not uniform with respect to ε, i.e. inf
εPp0,1s

mε “ 0 and sup
εPp0,1s

M
pkq
ε “ 8. Indeed, assume

that a uniform bound 0 ď m ď Kεpz, z
1q ď M ď 8 for all z, z1 P Tm and all ε ą 0 holds,

with m “ inf
εPp0,1s

mε and M “ sup
εPp0,1s

mε. Using the bounds and passing to the limit εÑ 0,

then one obtains m ď
ψpzq

ş

ψpz1qdz1
ď M for every non-negative function ψ and all z P Tm.

Taking the infimum and supremum over all such functions ψ gives m “ 0 and M “ 8.
Note that to establish the well-posedness of the system (2.5), where ε P p0, 1s is

fixed, upper bounds are allowed to depend on ε. However, it will be crucial in Section 5
to derive some upper bounds which are uniform with respect to ε in order to prove
the convergence when t goes to infinity of µt and At (to a limit depending on ε), see
Proposition 5.3.
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The exact form of the kernel function Kε has no influence on the analysis below. Let
us give an example: let Kεpz

1, z2q “
śm
j“1 kε

`

z2
j ´ z

1
j

˘

, where for all z P T“ R{Z,

kεpzq “ Z´1
ε exp

`

´
sin2

pπzq

ε2{2

˘

is the so-called von-Mises kernel.
Owing to Assumption 2.1, it is straightforward to check that F εrµs is of class C8,

for any µ P PpTdq. Then the mapping Aεrµs is the solution of the elliptic linear partial
differential equation

∆Aεrµs “ divpF εrµsq

and standard elliptic regularity theory implies that Aεrµs is also of class C8. See
Lemma 3.1 below for quantitative bounds (depending on ε).

Proposition 2.2. Under Assumption 2.1, for any initial conditions x0 “ py0, z0q P T
d, the

system (2.5) admits a unique solution, which is defined for all times t ě 0.

The proof of Proposition 2.2 is postponed to Section 3

2.3 Main result and discussion

The free energy is in fact defined up to an additive constant. Above, A‹ has been
normalized so that

ş

Tm
e´A‹dz “ 1, while At is such that

ş

Tm
Atdz “ 0. Denote Ā‹ “

A‹ ´
ş

Tm
A‹pzqdz. The standard norm on the Sobolev space W 1,ppTmq, for p P r2,8q, is

denoted by } ¨ }W 1,p .

Theorem 2.3. Under Assumption 2.1, there exists ε0 ą 0 and, for all p P r1,`8q,
there exists Cp P r0,`8q such that, for all ε P p0, ε0s, there exists a unique probability
distribution µε8 P PpTdq which satisfies

dµε8pxq “ dµ
Aεrµε8s
‹ pxq9eA

ε
rµε8spzqdµ‹py, zq.

In addition, one has the error estimate

}Ā‹ ´A
εrµε8s}W 1,p ď Cp

?
ε ,

and, for any initial conditions x0 “ py0, z0q P T
d, almost surely, one has the convergence

}At ´A
εrµε8s}W 1,p ÝÑ

tÑ8
0

µt ÝÑ
tÑ8

µε8 ,

the latter in the sense of weak convergence in the set PpTdq.
The first identity in Theorem 2.3 means that the limit µε8 of µt is the fixed point of

the mapping µ ÞÑ µ
Aεrµs
‹ , see Section 4. Equivalently, the limit Aεrµε8s of At is the fixed

point of the mapping A ÞÑ AεrµA‹ s, where we recall that dµA‹ pxq “ eApzqdµ‹py, zq.
The almost sure convergence results of Theorem 2.3 may be loosely rephrased as

follows
lim
εÑ0

lim
tÑ8

At “ A‹ , lim
εÑ0

lim
tÑ8

µt “ µA‹‹ ,

and implies that the empirical distribution νt “
1
t

şt

0
δξpXsqds satisfies the approximate

asymptotic flat-histogram property

lim
εÑ0

lim
tÑ8

νt “ dz.

We stress that µε8 is not close (when ε Ñ 0) to the multimodal target distribution µ‹:
with the notation above one has µ‹ “ µ0

‹ ‰ µA‹‹ . However, the algorithm gives a way to
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approximate
ş

ϕdµ‹ by reweighting: using the Cesaro Lemma, it is straightforward to
check that one has

lim
tÑ8

şt

0
ϕpXsqe

´AspZsqds
şt

0
e´AspZsqds

“ lim
tÑ8

şt

0
ϕpXsqe

´Aεrµε8spZsqds
şt

0
e´A

εrµε8spZsqds

“

ş

ϕpy, zqe´A
ε
rµε8spzqdµε8py, zq

ş

e´A
εrµε8spzqdµε8py, zq

“

ż

ϕdµ‹,

for any smooth ϕ : Td Ñ R. Indeed, by the Sobolev embedding W 1,ppTmq Ă C0pTmq if
p ą m, At converges to Aεrµε8s uniformly on Tm.

Up to an error depending only on the width ε ą 0 of the kernel function Kε, the
adaptive algorithm (2.5) is thus a consistent way to approximately compute

ş

ϕdµ‹, as
well as the free energy function A‹. The approximate asymptotic flat-histogram property
stated above shows that the sampling in the slow, macroscopic variable z is enhanced,
hence the efficiency of the approach. Such results are a mathematical justification for
the use of the ABF method based on self-interating dynamics in practical computations.

Remark 2.4. From Theorem 2.3, we expect the following Central Limit Theorem to hold:
for all bounded ϕ on Td,

?
t

ˆ
ż

ϕdµt ´

ż

ϕdµε8

˙

law
ÝÑ
tÑ8

N p0, σ2
ϕq

where σ2
ϕ is the asymptotic variance obtained by considering the process with a constant

biasing force ∇Aεrµε8s. Nevertheless, the proof of such a result, extending [25, Theorem
4.III.5] at the cost of technical considerations, exceeds the scope of the present article.

Remark 2.5. The convergence of At to Aεrµε8s when tÑ8 in fact holds for Ck norms,
for all integers k. However, the convergence of Ā‹ ´Aεrµε8s when εÑ 0 can be obtained
only in W 1,p, for all p P r2,8q (hence in C0 due to a Sobolev embedding, for p ą m).
In fact, higher-order derivatives of F εrµs (and of Aεrµs) are expected to blow up when
εÑ 0.

The ABF has originally been introduced in [23] in the molecular dynamics community,
where it is widely used, see [29, 24, 22]. An example of application in statistics is
developed in [21]. Another popular related biasing algorithm is the metadynamics
algorithm [33], [5], [31], [9].

From a theoretical point of view, several variants of the ABF algorithm have been
considered in various works. In a series of papers [38, 1, 37, 36], Lelièvre and his
co-authors considered a process similar to (2.5) except that µt is replaced by the law
of Xt. This corresponds to the mean-field limit of a system of N interacting particles
as N goes to infinity [30]. The law of Xt then solves a non-linear PDE, and long-time
convergence is established through entropy techniques. In practice in fact, the biasing
potential At is obtained both from interacting particles and from interaction with the
past trajectories, so that µt is the empirical distribution of a system of N replicas of the
system pXt, Ytq that contributes all to the same biasing potential At.

The case of adaptive biasing algorithm with a self-interacting process is addressed in
[26] for the ABF algorithm and in [7, 8] for the related adaptive biasing potential (ABP)
algorithm. We emphasize on the fact that in these works, µt is replaced by a weighted
empirical measure µ̄t given, in the spirit of an importance sampling scheme, by

µ̄t “

ˆ
ż t

0

e´AspZsqds

˙´1 ż t

0

δXse
´AspZsqds .
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Contrary to µt in Theorem 2.3, this weighted empirical measure converges toward
µ‹. This makes the theoretical study simpler than in the present case. However, in
practice, there should be no reason to use this weighting procedure for ABF due to
the identity (2.2). Indeed, provided that At converges to some A8, in the idealized
case where Kε is a Dirac mass, then (2.2) implies that necessarily A8 “ A‹. This is no
longer true as soon as ε ą 0 (which is necessary for the well-posedness of the algorithm),
and one of the main motivation of the present work was to determine whether the
convergence of the natural (non re-weighted) version of ABF, which is the one used in
practice, was robust with respect to the regularization step. Our results shows that this
is true, provided ε is small enough.

Note that in the basic versions of the ABF algorithms, the biasing force is directly
F εrµts, without the projection to a gradient. This is not so important for one-dimensional
reaction coordinates, but otherwise without projecting it is not possible to use the im-
portance sampling reweighting procedure. Moreover, as studied in [2], the projection
reduces the variance of the estimation. Finally, from a theoretical point of view, consider-
ing an overdamped Langevin diffusion with non-gradient drift of the form ´∇V ` F εrµs
(say for a fixed µ) leads to additional difficulties with respect to the gradient case. In
particular, the invariant measure has no explicit form, which in our work is used several
times, for instance for proving the crucial quantitative estimate of Proposition 5.7. It
may be possible that the proof of Theorem 2.3 can be adapted to some extent to this
non-gradient case, with explicit expressions replaced by general estimates on invariant
measures of diffusions in terms of their drift, but at any rate this is not straightforward.

While the compact periodic case is rather standard in practical cases for molecular
dynamics, applications in Bayesian stastistics like in [21] are more naturally set in Rd.
The general strategy of the proof of Theorem 2.3 has already been applied to some
self-interacting processes, see [32]. There are two possible ways to give sense to the
ABF algorithm in a non-compact state: either the process is defined in the whole space
but the biasing force is restricted to a compact subset (see [21, Section 3.4]), in which
case adapting most of our proofs (under some suitable growth conditions on V at infinity)
should not raise any particular difficulties; or alternatively the process and the adaptive
force are both defined in the whole space, in which case an additional biasing confining
potential is required (since the Lebesgue measure on a non-compact set has infinite mass,
see the discussion in [38]). This second theoretical solution is not really practicable as
it would require to keep in memory a function over a non-compact set. The case of a
non-compact space with a biasing force defined in a compact subset is addressed for the
ABP algorithm in [8].

Theorem 2.3 is only a qualitative result on the consistency of the algorithm, and
as such it is not sufficient for comparing the efficiency of the algorithm with respect
to classical non-adaptive MCMC. Quantitative results (like explicit convergence rates),
which are classical for Markov processes, are much more difficult to establish for self-
interacting processes. In view of Remark 2.4, as far as the asymptotic quadratic risk of
the estimator of

ş

ϕdµ‹ is concerned, the question of efficiency is expected to boil down
to the question of efficiency of the ideal importance sampling scheme where the biasing
force is constant equal to ∇A‹, namely the solution of (1.3). The answer may depend
on the observable ϕ but, for reversible processes such as the overdamped Langevin
diffusion, bounds on the asymptotic variance are classically obtained from the spectral
gap of the process. As the algorithm is meant to tackle metastability issues, a natural
frame to discuss its efficiency is the low temperature regime. The question is thus to
compare the Poincaré constant of the probability measures with respective log-density
βV and βpV ´A‹q as β Ñ `8. In the first case (the classical process) it is well-known
to scale (up to a sub-exponential factor) as expp´βc˚q where c˚ is the so-called critical
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depth of the potential. On the other hand, applying the results of [34], we see that
the spectral gap of (1.3) can be obtained from the Poincaré inequality satisfied by the
marginal law of the reaction coordinates on the one hand and by the conditional laws
for fixed values of the reaction coordinates. The marginal law being uniform on the
torus for all β, the scaling in β of the spectral gap of (1.3) is given by the scaling of
the Poincaré inequality of the conditional laws, i.e. only the “orthogonal” metastability
intervenes. The spectral gap of (1.3) then scales as expp´β supzPTd c˚pzqq where c˚pzq
is the critical depth of y ÞÑ V py, zq. For a good choice of reaction coordinate, this can
drastically improve the sampling rate. As a matter of fact, the ABF algorithm has been
proving its efficiency for nearly 20 years in a large number of empirical studies, see e.g.
[23, 29, 24, 22].

Finally, let us discuss the parameter ε. The proof of Theorem 2.3 furnishes an explicit
expression for ε0. Nevertheless, it is not completely clear that this provides a useful
insight for a practical choice of the parameters. First, the explicit expressions of ε0

and Cp obtained from the proof have no reasons to be sharp, and moreover it is not
clear whether our restriction on sufficiently small ε is a real limitation or simply an
avatar of our particular theoretical proof. Second, the practical issue of the choice of the
regularization kernel is closely related to the question of space discretisation, which is
not addressed in Theorem 2.3 (see the discussion in [26, Section 4]). In order to design
an asymptotically unbiased estimator of the free energy A‹, at least at the theoretical
level, one could consider a process similar to (2.5) but with the constant parameter ε
replaced by a vanishing function t ÞÑ εptq. Provided that the decay of this function is
sufficiently slow, and at the cost of additional technical arguments, it should be possible
to extend the proof of Theorem 2.3 to this case. Again, the practical consequence
that can be drawn from such a consideration are not straightforward. This may be
investigated in future works.

2.4 Notation

Let N “ t1, . . .u and N0 “ N Y t0u, and let k P N0 be a nonnegative integer. Let
CkpTn1 ,Rn2q be the space of functions of class Ck on Tn1 with values on Rn2 . The
derivative of order k is denoted by ∇k. The space CkpTn1 ,Rn2q is equipped with the
norm } ¨ }Ck , defined by

}φ}Ck “
k
ÿ

`“0

}∇`φ}C0 ,

with }φ}C0 “ max
zPTn1

}φpxq}. To simplify, the dimensions n1 and n2 are omitted in the

notation for the norm } ¨ }Ck .

If φ : Tn1 Ñ Rn2 is a Lipschitz continuous function, its Lipschitz constant is denoted
by Lippφq.

The space PpTdq of probability distributions on Td (equipped with the Borel σ-field)
is equipped with the total variation distance dTV and with the Wasserstein distance dW1

.
Recall that one has the following characterizations:

dTV pµ1, µ2q “ sup
ψ:TdÑR,}ψ}8ď1

1

2

ˇ

ˇ

ż

ψdµ2 ´

ż

ψdµ1

ˇ

ˇ,

dW1
pµ1, µ2q “ sup

ψ:TdÑR,Lippψqď1

ˇ

ˇ

ż

ψdµ2 ´

ż

ψdµ1

ˇ

ˇ

where for the total variation distance the supremum is taken over bounded measurable
functions ψ.
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The space PpTdq is also equipped with the following distance, which generates the
topology of weak convergence:

dwpµ1, µ2q “
ÿ

nPN

1

2n

ˇ

ˇ

ş

fndµ2 ´
ş

fndµ1

ˇ

ˇ

1`
ˇ

ˇ

ş

fndµ2 ´
ş

fndµ1

ˇ

ˇ

,

where the sequence S “ tfnunPN is dense in C0pTd,Rq, and, for all n P N, one has fn P C8
and }fn}C0 ď 1.

3 Proof of the well-posedness result Proposition 2.2

The objective of this section is to prove Proposition 2.2, which states that the sys-
tem (2.5) is well-posed. Some auxiliary estimates are provided, where the upper bounds
are allowed to depend on the parameter ε. Lemma 3.1 provides estimates for F εrµs and
Aεrµs, in Ck, uniformly with respect to µ. Lemma 3.2 provides some Lipschitz continuity
estimates with respect to µ, in total variation and Wasserstein distances.

3.1 Auxiliary estimates

Lemma 3.1. For all ε P p0, 1s and k P N0, there exists Cε,k P p0,8q such that one has

sup
µPPpTdq

´

}F εrµs}CkpTm,Rmq ` }A
εrµs}CkpTm,Rq

¯

ď Cε,k.

Proof of Lemma 3.1. Observe that

F εrµs “
Fauxrµ,∇zV s

Fauxrµ, 1s
,

where F εauxrµ, ψs “
ť

ψpy, zqKεpz, ¨qdµpy, zq.
Owing to Assumption 2.1, one has

F εauxrµ, 1s ě mε

ż

dµ “ mε ą 0,

for all µ P PpTdq. In addition, for all k P N0, one has

∇kF εauxrµ, ψs “

ĳ

ψpy, zq∇kKεpz, ¨qdµpy, zq,

thus, one obtains
}F εauxrµ, ψs}Ck ď }ψ}C0M pkq

ε ă 8,

owing to Assumption 2.1.
Using the estimate above with ψ “ ∇zV and ψ “ 1, it is then straightforward to

deduce that

}F εrµs}Ck “ }
Fauxrµ,∇zV s

Fauxrµ, 1s
}Ck ď Cε,k.

This concludes the proof of the estimates for F εrµs. To prove the estimates for Aεrµs,
observe that Ãεrµs solves the Euler-Lagrange equation associated with the minimization
problem in (2.4),

∆Ãεrµs “ div
`

F εrµs
˘

.

Using the result proved above, and standard elliptic regularity theory and Sobolev
embeddings (see for instance [20]), one obtains the required estimates for Ãεrµs: for all
ε P p0, 1s and k P N0, there exists Cε,k P p0,8q such that for all µ P PpTdq,

}Ãεrµs}CkpTm,Tq ď Cε,k.
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Since Aεrµs and Ãεrµs only differ by an additive constant, it only remains to prove that

}Aεrµs}C0pTm,Tq ď Cε,0.

This is a straightforward consequence of the estimate }Ãεrµs}C0pTm,Tq ď Cε,0 and of (2.4).
This concludes the proof of Lemma 3.1.

Lemma 3.2. For all ε P p0, 1s and k P N0, there exists Lε,k P p0,8q such that, for all
µ1, µ2 P PpTdq, one has

}F εrµ2s´F
εrµ1s}CkpTm,Rmq`}A

εrµ2s´A
εrµ1s}CkpTm,Rq ď Lε,k

`

dTVpµ1, µ2q^dW1
pµ1, µ2q

˘

.

Proof of Lemma 3.2. First, observe that

F εrµ2s ´ F
εrµ1s “

ť

∇zV py, zqKεpz, ¨qdpµ2 ´ µ1qpy, zq
ť

Kεpz, ¨qdµ2py, zq

´

ť

∇zV py, zqKεpz, ¨qdµ1py, zq
ť

Kεpz, ¨qdpµ2 ´ µ1qpy, zq
ť

Kεpz, ¨qdµ1py, zq
ť

Kεpz, ¨qdµ2py, zq
.

Using the characterizations of total variation and Wasserstein distances and the
regularity properties of V and Kε (Assumption 2.1), proceeding as in the proof of
Lemma 3.1 then yields

}F εrµ2s ´ F
εrµ1s}CkpTm,Tmq ď Lε,kdpµ1, µ2q,

for all µ1, µ2 P PpTdq, with Lε,k P p0,8q, with d “ dW1 and d “ dTV .
It remains to apply the same arguments as in the proof of Lemma 3.1 to obtain

}Ãεrµ2s ´A
εrµ1s}CkpTm,Tq ` }A

εrµ2s ´A
εrµ1s}CkpTm,Tq ď Lε,kdpµ1, µ2q,

which concludes the proof of Lemma 3.2.

3.2 Well-posedness

Let T P p0,8q be an arbitrary positive real number. Introduce the Banach spaces

Cpr0, T s,Tdq , E “ L2
`

Ω, Cpr0, T s,Tdq
˘

,

equipped with the norms defined by

}x}α “ sup
0ďtďT

e´αt|xptq| , ~X~α “
´

E
“

}X}2α
‰

¯
1
2

,

depending on the auxiliary parameter α P p0,8q. Let Φ : E Ñ E be defined as follows:
for all x “

`

yt, zt
˘

tě0
, let µxt “

1
t

şt

0
δxsds and Axt “ Aεrµxt s, for all t ě 0. Then X “ Φpxq is

the solution X “
`

Y ptq, Zptqqtě0 of

#

dY ptq “ ´∇yV pyt, ztqdt`
?

2dW pd´mqptq,

dZptq “ ´∇zV pyt, ztqdt`∇Axt pztqdt`
?

2dW pdqptq,

with initial condition pY p0q, Zp0qq “ x0 P T
d, which is fixed.

If α is sufficiently large, then the mapping Φ is a contraction, due to Lemma 3.3
stated below.

Lemma 3.3. There exists C P p0,8q such that for all α P p0,8q, and for all x1, x2 P E,

~Φpx2q ´ Φpx1q~α ď
C

α
~x2 ´ x1~α.
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Proof of Lemma 3.3. Let x1 “ py1, z1q and x2 “ py2, z2q be two elements of E, and set
X1 “ Φpx1q, X2 “ Φpx2q. Then

d

dt

`

Y 2ptq ´ Y 1ptq
˘

“ ∇yV py
1
t , z

1
t q ´∇yV py

2
t , z

2
t q

and
d

dt

`

Z2ptq ´ Z1ptq
˘

“ ∇zV py
1
t , z

1
t q ´∇zV py

2
t , z

2
t q `∇A2

t pz
2
t q ´∇A1

t pz
1
t q,

where Ait “ Aεrµits and µit “
1
t

şt

0
δxisds.

First, since V is of class C2, for all t ě 0, one has the almost sure estimate

e´αt|Y 2ptq ´ Y 1ptq| ď Ce´αt
ż t

0

`

|y2
s ´ y

1
s | ` |z

2
s ´ z

1
s |
˘

ds

ď Ce´αt
ż t

0

eαsds}x2 ´ x1}α

ď
C

α
}x2 ´ x1}α.

Second, similarly one has, for all t ě 0,

e´αt|Z2ptq ´ Z1ptq| ď
C

α
}x2 ´ x1}α ` e

´αt

ż t

0

|∇A2
spz

2
sq ´∇A1

spz
1
sq|ds

ď
C

α
}x2 ´ x1}α ` e

´αt

ż t

0

|∇A2
spz

2
sq ´∇A2

spz
1
sq|ds

` e´αt
ż t

0

|∇A2
spz

1
sq ´∇A1

spz
1
sq|ds

ď
C

α
}x2 ´ x1}α ` e

´αt

ż t

0

}A2
s ´A

1
s}C1ds,

owing to Lemma 3.1. In addition, owing to Lemma 3.2, one has

}A2
s ´A

1
s}C1 “ }Aεrµ2

ss ´A
εrµ1

ss}C1

ď Lε,1dW1
pµ1
s, µ

2
sq ď Lε,1

1

s

ż s

0

|x2prq ´ x1prq|dr

ď Lε,1
1

s

ż s

0

eαrdr}x2 ´ x1}α

ď eαs
Lε,1p1´ e

´αsq

αs
}x2 ´ x1}α.

Finally, one obtains the almost sure estimate,

}Φpx2q ´ Φpx1q}α “ sup
tě0

e´αt|X2ptq ´X1ptq| ď
C

α
}x2 ´ x1}α,

then taking expectation concludes the proof of Lemma 3.3.

The proof of Proposition 2.2 is then straightforward.

Proof of Proposition 2.2. Observe that the following claims are satisfied.

• Owing to Lemma 3.1, for all x P E, one has the almost sure estimate sup
tě0

}∇Axt }C0 ď

Cε,0, and owing to Lemma 3.2, the mapping t ÞÑ Axt is Lipschitz continuous. Thus
the mapping Φ is well-defined.
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• The process
`

Y ptq, Zptq, At, µt
˘

tě0
solves (2.5) if and only if X “ pY,Zq is a fixed

point of Φ.

• The mapping Φ : E Ñ E is a contraction if α is sufficiently large, and admits a
unique fixed point X, owing to Lemma 3.3.

Since the initial conditions x0 and µ0, and the time T P p0,8q are arbitrary, these
arguments imply that the global well-posedness of (2.5) and this concludes the proof.

4 The limiting flow

Define the mapping Πε : µ P PpTdq ÞÑ Πεrµs P PpTdq, for ε P p0, 1s, as follows:

Πεrµs “ Zεrµs´1e´V py,zq`A
ε
rµspzqdydz,

with Zεrµs “
ť

e´V py,zq`A
ε
rµspzqdydz. The notation V εµ py, zq “ V py, zq´Aεrµspzq is used in

the sequel. The probability measure Πεrµs is the unique invariant distribution for the
system

#

dY At “ ´∇yV pY
A
t , Z

A
t qdt`

?
2dW

pd´mq
t ,

dZAt “ ´∇zV pY
A
t , Z

A
t qdt`∇ApZAt qdt`

?
2dW

pmq
t

with A “ Aεrµs. With notations used above, Πεrµs “ µ
Aεrµs
‹ .

The objectives of this section are twofold. First, one proves that, for every π P PpTdq,
there exists a unique solution

`

Φεpt, πq
˘

tě0
of the equation

Φεpt, πq “ e´tπ `

ż t

0

es´tΠεrΦεps, πqsds.

In addition, πεt “ Φεpt, πq solves, in a weak sense, the following ordinary differential
equation

9πεt “ Πεrπεt s ´ π
ε
t , πε0 “ π.

Second, one relates the properties of the empirical measure
`

µt
˘

tě0
in the regime tÑ8,

with the behavior of the limit flow, using the notion of Asymptotic Pseudo-Trajectories
introduced in [12].

4.1 Well-posedness of the limiting flow

Let M ε “ sup
µPPpTdq

}Aεrµs}C0pTm,Rq, and M‹ “ }A‹}C0pTm,Rq. Note that M ε ă 8 due to

Lemma 3.1. Recall that L0,ε is defined in Lemma 3.2.

Lemma 4.1. Let Lpεq “ 2Lε,0e
4pMε

`M‹q. Then for all µ1, µ2 P PpTdq, one has

dTV
`

Πεrµ1s,Πεrµ2s
˘

ď LpεqdTV pµ
1, µ2q.

Proof of Lemma 4.1.

dTV
`

Πεrµ1s,Πεrµ2s
˘

“

ĳ

Td

e´V py,zq
ˇ

ˇ

eA
ε
rµ1
spzq

Zεrµ1s
´
eA

ε
rµ2
spzq

Zεrµ2s

ˇ

ˇdydz

“

ż

Tm
e´A‹pzq

ˇ

ˇ

eA
ε
rµ1
spzq

Zεrµ1s
´
eA

ε
rµ2
spzq

Zεrµ2s

ˇ

ˇdz

ď

ż

Tm

e´A‹pzq

Zεrµ1s

ˇ

ˇeA
ε
rµ1
spzq ´ eA

ε
rµ2
spzq

ˇ

ˇdz

`

ż

Tm

eA
ε
rµ2
spzq´A‹pzq

Zεrµ1sZεrµ2s
dz
ˇ

ˇZεrµ1s ´ Zεrµ2s
ˇ

ˇ.

EJP 25 (2020), paper 88.
Page 14/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP490
http://www.imstat.org/ejp/


Analysis of an ABF method based on self-interacting dynamics

Using the lower bound

Zεrµs “

ĳ

Td

e´V py,zq`A
ε
rµspzqdydz “

ż

Tm
e´A‹pzq`A

ε
rµspzqdz ě e´M‹´M

ε

,

and the upper bound

ˇ

ˇZεrµ1s ´ Zεrµ2s
ˇ

ˇ ď eM
ε
`M‹

ż

Tm
|Aεrµ1spzq ´Aεrµ2spzq|dz,

one obtains

dTV
`

Πεrµ1s,Πεrµ2s
˘

ď 2e4pMε
`M‹q

ż

Tm
|Aεrµ1spzq ´Aεrµ2spzq|dz

ď 2e4pMε
`M‹q}Aεrµ1s ´Aεrµ2s}C0

ď 2Lε,0e
4pMε

`M‹qdTVpµ1, µ2q,

where the last inequality follows from Lemma 3.2. This concludes the proof of Lemma 4.1.

Proposition 4.2. Let π P PpTdq. Then there exists a unique solution
`

Φεpt, πq
˘

tě0
, with

values in C
`

r0,8q,PpTdq
˘

(where PpTdq is equipped with the total variation distance
dTV ), of the equation

Φεpt, πq “ e´tπ `

ż t

0

es´tΠεrΦεps, πqsds.

Proof. Uniqueness is a straightforward consequence of Lemma 4.1 and of Gronwall
Lemma.

Existence is obtained using a Picard iteration argument. Precisely, introduce the
mapping Ψ : C

`

r0,8q,PpTdq
˘

Ñ C
`

r0,8q,PpTdq
˘

, be defined by

Ψpπqptq “ e´tπ `

ż t

0

es´tΠεrπssds,

for π “
`

πt
˘

tě0
.

Let dαpπ1, π2q “ sup
tě0

e´αtdTV pπ
1
t , π

2
t q, where α ą 0 is chosen below. Then, using

Lemma 4.1, one has

dα
`

Ψpπ1q,Ψpπ2q
˘

ď
Lpεq

α
dαpπ

1, π2q.

Choose α “ 2Lpεq, and define

π0 “
`

π0
t “ π

˘

tě0
, πn`1 “ Ψpπnq, n ě 0,

using the Picard iteration method. Let T P p0,8q be an arbitrary positive real number.
Since C

`

r0, T s,PpTdq
˘

is a complete metric space (equipped with the distance dα), then
`

πn
˘

nPN
converges when n Ñ 8, and the limit π8 solves the fixed point equation

π8 “ Ψpπ8q, which proves the existence of a solution, and concludes the proof.

By construction, the flow Φε : R` ˆ PpTdq Ñ PpTdq is continuous, when PpTdq is
equipped with the total variation distance dTV. Adapting the proof of [13, Lemma 3.3],
one checks that it is also a continuous mapping when PpTdq is equipped with the distance
dw.
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Analysis of an ABF method based on self-interacting dynamics

4.2 The asymptotic pseudotrajectory property

Recall that a continuous function ζ : R` Ñ PpTdq is an asymptotic pseudotrajectory
for Φε, if one has

sup
sPr0,T s

dw
`

ζpt` sq,Φεps, ζptqq
˘

Ñ
tÑ8

0,

for all T P R`. See for instance [6] for details.

The following result is the rigorous formulation of the link between the dynamics of
the empirical measures µt in the ABF algorithm, and of the limit flow.

Theorem 4.3. The process
`

µet
˘

tě0
is almost surely an asymptotic pseudotrajectory for

Φε.

The proof requires auxiliary notations and results. For every ε ą 0 and µ P PpTdq, let

V εµ py, zq “ V py, zq ´Aεrµspzq,

and define the infinitesimal generator

Lεµ “ ∆´∇V εµ ¨∇.

Introduce the projection operator defined by Kε
µf “ f ´

ş

fdΠεrµs and let
`

P ε,µt
˘

tě0
be

the reversible semi-group generated by Lεµ on L2pTdq (see e.g. [4, Chapter 3]). Finally,
let

Qεµ “

ż 8

0

P ε,µt Kε
µdt .

Then one has the following result.

Lemma 4.4. For every ε ą 0, there exists Cε P p0,8q, such that

}Qεµf}C1 ď Cε}f}C0 , (4.1)

for all f P C0pTd,Rq and all µ P PpTdq. Moreover, LεµQεµ “ ´Kε
µ.

We refer to [13, Lemma 5.1] for a similar statement. A detailed proof is provided
below since the structure of the self-interaction is different. Note that several references
to [4] are made in the proof.

Proof. Remark that, from Lemma 3.1, V εµ P C8pTdq, from which it is classical to see that
P ε,µt f P C8pTdq for all f P C8pTdq. In particular, C8pTdq is a core for Lεµ, see [4, Section
3.2] and thus it is enough to prove the result for f P C8pTdq.

As a first step, for all ε P p0, 1s there exists Rε ą 0 such that for all µ P PpTdq, Πεrµs

satisfies a log-Sobolev inequality and a Sobolev inequality both with constant Rε, in the
sense that for all positive f P C8pTdq,

ż

Td
f ln fdΠεrµs ´

ż

Td
fdΠεrµs ln

ż

Td
fdΠεrµs ď Rε

ż

Td

|∇f |2

f
dΠεrµs

}f}2LppΠεrµsq ď Rε}f}
2
H1pΠεrµsq ,

where p “ 2d
d´2 . Indeed, from Lemma 3.1, the density of Πεrµs with respect to the

Lebesgue measure is bounded above and below away from zero uniformly in µ P PpTdq.
The inequalities are then obtained by a perturbative argument from those satisfied by
the Lebesgue measure, see [4, Proposition 5.1.6]).
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As a second step, these inequalities imply the following estimates: for all ε P p0, 1s
there exists R1ε ą 0 such that for all PpTdq, f P C8pTdq and t ě 0,

}P ε,µt Kε
µf}L2pΠεrµsq ď e´Rεt{2}Kε

µf}L2pΠεrµsq

}P ε,µt f}8 ď
R1ε

maxp1, td{2q
}f}L2pΠεrµsq

}∇P ε,µt f}8 ď
R1ε

maxp1,
?
tq
}f}8.

Indeed, the first estimate is a usual consequence of the Poincaré inequality, implied
by the log-Sobolev one (see [4, Theorem 4.2.5 and Proposition 5.1.3]). The second
one, namely the ultracontractivity of the semi-group, is a consequence of the Sobolev
inequality (see [4, Theorem 6.3.1]). The last one can be established thanks to the Bakry-
Emery calculus (see [4, Section 1.16] for an introduction), by showing that Lεµ satisfies a
curvature estimate. More precisely, denote

Γε,µpf, gq “
1

2

`

Lεµpfgq ´ fLεµg ´ gLεµf
˘

Γε,µ2 pfq “
1

2
Γε,µpfq ´ Γε,µpf,Lεµfq,

with Γε,µpfq :“ Γε,µpf, fq. Straightforward computations yield

Γε,µpfq “ |∇f |2

Γε,µ2 pfq ě ´|∇2V εµ ||∇f |2 ě ´cεΓ
ε,µpfq

for some cε ą 0 which does not depend on µ P PpTdq thanks to Lemma 3.1. According to
[4, Theorem 4.7.2], this implies that

Γε,µpP ε,µt fq ď

˜

1´ e´c
1
εt

c1ε

¸´1

P ε,µf f2 ď

˜

1´ e´c
1
εt

c1ε

¸´1

}f}28,

which concludes the proof of the third estimate.
As a third step, we bound (using that }P ε,µt f}8 ď }f}8 for all t ě 0)

ż 8

0

}P ε,µt Kε
µf}8dt ď

ż 1

0

}Kε
µf}8dt`

ż 8

1

}P ε,µt Kε
µf}8dt

ď 2}f}8 `R
1
ε

ż 8

1

}P ε,µt´1K
ε
µf}L2pΠεrµsqdt

ď 2}f}8 `R
1
ε

ż 8

0

e´Rεs{2}Kε
µf}L2pΠεrµsqdt

ď

ˆ

2`
4R1ε
Rε

˙

}f}8 ,

and similarly

ż 8

0

}∇P ε,µt Kε
µf}8dt ď

ż 2

0

R1ε
maxp1,

?
tq
}Kε

µf}8dt`R
1
ε

ż 8

2

}P ε,µt´1K
ε
µf}8dt

ď 6R1ε}f}8 `R
1 2
ε

ż 8

0

e´Rεs{2}Kε
µf}L2pΠεrµsqdt

ď

ˆ

6R1ε `
4R1 2ε
Rε

˙

}f}8 ,
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from which Qεµf is well defined for f P C8pTdq and satisfies (4.1) for some Cε. Finally,

LεµQεµf “

ż 8

0

LεµP
ε,µ
t Kε

µfdt

“

ż 8

0

Bt
`

P ε,µt Kε
µf

˘

dt “ ´Kε
µf ,

where we used again that }P ε,µt Kε
µf}8 ď R1εe

´Rεpt´1q{2}Kε
µf}L2pΠεrµsq for t ě 1, which

vanishes at infinity.

Proof of Theorem 4.3. First, note that the claim is equivalent to the following statement
(see [13, Proposition 3.5]):

sup
sPr0,T s

|εtpsqf | Ñ
tÑ8

0,

for all f P S and T P Q`, where

εtpsq “

ż et`s

et

δXτ ´Πεrµτ s

τ
dτ

and we recall that S “ tfnunPN is a dense sequence in C0pTd,Rq such that, for all n P N,
one has fn P C8 and }fn}C0 ď 1.

Using a Borel-Cantelli argument, and the fact that S is a countable set, it is sufficient
to establish that there exists Cε P p0,8q, such that

E
“

sup
sPr0,T s

|εtpsqf |
2
‰

ď Cεe
´t}f}2C0 ,

for all t ě 0 and f P S.
Let f P S and introduce the function F : p0,8qˆTd Ñ R defined by F pt, xq “ t´1Qεµtf .

Then F is of class C1,2 on p0,8q ˆ Td. Indeed, first, it is straightforward to check that
t ÞÑ F εrµts P CkpTd,Rmq is of class C1, for all k P N0, since t ÞÑ µt P PpTdq (equipped with
the Wasserstein distance) is of class C1. Second, Aεrµs is solution of the Euler-Lagrange
equation ∆Aεrµs “ divpF εrµsq, which establishes that t ÞÑ Aεrµts P CkpTm,Rq is also of
class C1. Finally, it remains to apply standard arguments to establish the C1 regularity of
t ÞÑ Qεµtf .

Applying Itô formula yields, for all t ě 0 and s P r0, T s, the equality

F pet`s, Xet`sq “ F pet, Xetq `

ż et`s

et

`

Bτ ` Lεµτ
˘

F pτ,Xτ qdτ `
?

2

ż et`s

et
x∇F pτ,Xτ q, dW pτqy.

Observing that LεµτF pτ,Xτ q “ τ´1LεµτQ
ε
µτ pXτ qf “ ´τ

´1
`

fpXτ q´
ş

fdΠεrµτ s
˘

, one obtains

εtpsqf “ ε1
t psqf ` ε

2
t psqf ` ε

3
t psqf ` ε

4
t psqf,

where

ε1
t psqf “ e´t

´

Qεµtf ´ e
´sQεµt`sf

¯

,

ε2
t psqf “

ż et`s

et
´τ´2QεµtτfpXτ qdτ,

ε3
t psqf “

ż et`s

et
τ´1 d

dτ
Qεµτ fpXτ qdτ,

ε4
t psqf “

?
2

ż et`s

et
τ´1x∇Qεµτ fpXτ q, dW pτqy.
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First, it is straightforward to check that the error terms ε1
t psqf and ε2

t psqf are upper
estimated as follows: almost surely,

sup
0ďsďT

|ε1
t psqf | ` sup

0ďsďT
|ε2
t psqf | ď Cεe

´t}f}8.

To treat the error term ε3
t psqf , it suffices to upper estimate the Lipschitz constant of

t ÞÑ Qεµtf . Let t1, t2 P p0,8q, then one has

Kε
µt1
f ´Kε

µt2
f “ Lεµt2Q

ε
µt2
f ´ Lεµt1Q

ε
µt1
f

“ Lεµt1
´

Qεµt2 f ´Q
ε
µt1
f
¯

`

´

Lεµt2 ´ Lεµt1
¯

Qεµt2 f,

thus one obtains
Qεµt2 f ´Q

ε
µt1
f “ Qεµt1 δ

ε
t1,t2f,

where the auxiliary function δεt1,t2f is defined as

δεt1,t2f “ Kε
µt1
f ´Kε

µt2
f ´

´

Lεµt2 ´ Lεµt1
¯

Qεµt2 f,

and satisfies the centering condition
ż

δεt1,t2fdΠεrµt1s “

ż

Lεµt1
´

Qεµt2 f ´Q
ε
µt1
f
¯

dΠεrµt1s “ 0.

One has the estimate

}Qεµt2 f ´Q
ε
µt1
f}8 ď Cε}δ

ε
t1,t2f}8.

On the one hand, one has

}Kε
µt1
f ´Kε

µt2
f}8 “

ˇ

ˇ

ż

fdΠεrµt1s ´

ż

fdΠεrµt2s
ˇ

ˇ

ď }f}8dTVpΠ
εrµt1s,Π

εrµt2sq

ď Lpεq}f}8dTVpµt1 , µt2q,

owing to Lemma 4.1.
On the other hand, one has

}
`

Lεµt2 ´ Lεµt1
˘

Qεµt2 f}8 “ }x∇A
εrµt2s ´∇Aεrµt1s,∇zQ

ε
µt2
fy}8

ď }Aεrµt2s ´A
εrµt1s}C1}Qεµt2 f}C

1

ď L1,εCε}f}8dTVpµt1 , µt2q.

Finally, it is straightforward to check that

dTVpµt1 , µt2q ď
2|t2 ´ t1|

t1 ^ t2
,

using the identity 9µt “
1
t pδXt ´ µtq.

As a consequence, one obtains

sup
0ďsďT

|ε3
t psqf | ď

ż et`T

et
τ´1|

d

dτ
Qεµτ fpXτ q|dτ

ď Cε

ż et`T

et
τ´2dτ}f}8

ď Cεe
´t}f}8.
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It remains to deal with the error term ε4
t psqf . Using Doob inequality implies

E
“

sup
0ďsďT

|ε4
t psqf |

2
‰

ď C

ż et`T

et
τ´2E

“

|∇Qεµτ fpXτ q|
2
‰

dτ

ď Cεe
´t}f}28.

This concludes the proof of the claim,

E
“

sup
sPr0,T s

|εtpsqf |
2
‰

ď Cεe
´t}f}2C0 ,

for all t ě 0 and f P S.
Applying a Borel-Cantelli argument then concludes the proof.

5 Proof of Theorem 2.3

The objective of this section is to give a detailed proof of Theorem 2.3. There are
two main ingredients. The first one is Proposition 5.3 below, which provides a uniform
estimate over ε ą 0 for Aεrµs, in the C0 norm (compare with Lemma 3.1 where the upper
bound may depend on ε). The second key ingredient is Proposition 5.7, which states a
contraction property for the mapping Πε, for an appropriate distance, for sufficiently
small ε, when restricted to an attracting set identified below (compare with Lemma 4.1
which is valid on the entire state space, but where no upper bound for Lpεq holds).

Combining these two ingredients provides a candidate for the limit as tÑ8, using a
standard Picard iteration argument. Using Theorem 4.3 (asymptotic pseudo-trajectory
property) then proves the almost sure convergence of µt to this candidate limit.

5.1 Uniform estimate

The following PDE estimate is crucial for the analysis.

Proposition 5.1. Let m P N. For every p P r2,8q, there exists Cp P p0,8q, such that the
following holds: let F : Tm Ñ Rm be a continuous function, then the solution A of the
elliptic PDE ∆A “ divpF q, with the condition

ş

Apzqdz “ 0, satisfies

}A}W 1,ppTm,Rq ď Cp}F }C0pTm,Rmq,

and if p ą m, then
}A}C0pTm,Rq ď Cp}F }C0pTm,Rmq.

Proof. The proof combines three arguments.

• If p ą m, then by Sobolev embedding properties, one has

}A}C0pTm,Rq ď Cp}A}W 1,ppTm,Rq,

with Cp P p0,8q.

• By the Poincaré inequality (using the condition
ş

Apzqdz “ 0, one has

}A}W 1,ppTm,Rq ď Cp}∇A}LppTm,Rmq,

with Cp P p0,8q, see [3, Theorem 1.13].

• By elliptic regularity theory, one has

}∇A}LppTm,Rmq ď Cp}F }LppTm,Rmq ď Cp}F }C0pTm,Rmq,

with Cp P p0,8q, see [3, Theorem 15.12].
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Remark 5.2. If m “ 1, the proof is straighforward: indeed for all z P T, one has the
identity Apzq “

şz

0
F pz1qdz1 ´ z

ş1

0
F pz1qdz1.

Using Proposition 5.1, one gets the following crucial estimate, which is uniform for
ε ą 0 (contrary to those given in Lemmas 3.1, 3.2 and 4.1 above).

Proposition 5.3. One has the following estimate:

M0 “ sup
εą0

sup
µPPpTdq

}Aεrµs}C0pTm,Rq ă 8.

Proof. Using Proposition 5.1 above, it suffices to check that

sup
εą0

sup
µPPpTdq

}F εrµs}C0pTm,Rmq ă 8.

That estimate is a straightforward consequence of the definition 2.3, of the boundedness
of ∇zV , and of the positivity of the kernel function Kε.

5.2 Attracting set

Introduce the following notation: for all B P CpTm,Rq, let

dµBpy, zq “ Z´1
B e´V py,zq`Bpzqdydz P PpTdq,

with ZB “
ť

e´V py,zq`Bpzqdydz “
ş

e´A‹pzq`Bpzqdz.
First, for probability distribution of the form µB, one has the following useful identity

for F εrµBs.

Lemma 5.4. For every B P CpTm,Rq, one has

F εrµBs “

ş

∇A‹pzqKεpz, ¨qe
Bpzq´A‹pzqdz

ş

Kεpz, ¨qeBpzq´A‹pzqdz
.

Proof. This is a straightforward consequence of the two identities below: for all z P Tm,

ż

e´V py,zqdy “ e´A‹pzq,

ż

∇zV py, zqe
´V py,zqdy “ ´∇

ˆ
ż

e´V py,zqdy

˙

“ e´A‹pzq∇A‹pzq.

The set of the probability distribution of the type µB is an attractor for the dynamics
of the limit flow, more precisely one has the following result.

Proposition 5.5. One has the following result: for all t ě 0,

sup
εą0

sup
µPPpTdq

inf
BPCpTm,Rq

dTVpΦ
εpt, µq, µBq ď 2e´t.

Proof. For all t ě 0 and µ P PpTdq, one has

Φεpt, µq “ etµ`

ż t

0

es´tΠεrΦεps, µqsds “ e´tµ` p1´ e´tqΨεpt, µq,

where Ψεpt, µq “ 1
1´e´t

şt

0
es´tΠεrΦεps, µqsds “ µB for some B P CpTm,Rq, owing to the

definition of Πε.
Then

inf
BPCpTm,Rq

dTVpΦ
εpt, µq, µBq ď dTVpΦ

εpt, µq,Ψεpt, µqq ď e´t}µ´Ψεpt, µq}TV ď 2e´t.

EJP 25 (2020), paper 88.
Page 21/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP490
http://www.imstat.org/ejp/


Analysis of an ABF method based on self-interacting dynamics

Lemma 5.6. For every p P r2,8q, there exists Cp P p0,8q, such that for every ε ą 0, and
every B P CpTm,Rq, one has

}AεrµBs ´ Ā‹}W 1,ppTmq ď Cp
?
εe2

`

}B}C0`}A‹}C0

˘

. (5.1)

Recall that Ā‹ “ A‹ ´
ş

Tm
A‹dz.

Proof. Using Proposition 5.1, one has the following inequality:

}AεrµBs ´ Ā‹}W 1,ppTm,Rq ď Cp}F
εrµBs ´∇A‹}C0pTm,Rmq.

Owing to Lemma 5.4 and using the Lipschitz continuity of A‹, for all z P Tm, one has

ˇ

ˇF εrµBspzq ´∇A‹pzq
ˇ

ˇ ď

ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeBpz

1
q´A‹pz

1
qdz1

ş

Kεpz1, zqeBpz
1q´A‹pz1qdz1

ˇ

ˇ

ˇ

ď C

ş

|z ´ z1|Kεpz
1, zqdz1e}B}C0`}A‹}C0

ş

Kεpz1, zqdz1e´}B}C0´}A‹}C0

ď C
?
εe2p}B}C0`}A‹}C0 q,

owing to Assumption 2.1. This inequality concludes the proof.

5.3 Contraction property on the attracting set

Let M P p0,8q. Introduce the set

BM “

"

B P C0pTm,Rq,

ż

Bpzqdz “ 0, }B}C0 ďM

*

.

Owing to Proposition 5.3, if M ěM0, then Aεrµs P BM for every µ P PpTdq and ε ą 0.

Introduce the notation

hBpy, zq “ Z´1
B e´V py,zq`Bpzq and Π̃εrhBs “ hAεrµBs ,

so that hB and Π̃εrhBs are the density with respect to the lebesgue measure of, respec-
tively, µB and ΠεrµBs.

To state the following result, the notation }h}2 “
`ş

hpxq2dx
˘

1
2 is used.

Proposition 5.7. For every M P p0,8q, there exists CM P p0,8q, such that for all ε ą 0

and all B1, B2 P BM , one has

}Π̃εrhB1s ´ Π̃εrhB2s}2 ď CM
?
ε}hB1 ´ hB2}2.

Proof. Let B1, B2 P BM . Using Proposition 5.3, one has

}Π̃εrhB1s ´ Π̃εrhB2s}2 “ }hAεrµB1 s ´ hAεrµB2 s}2 ď C}AεrµB1s ´AεrµB2s}2.

In addition, using the Poincaré inequality and the definition of Aεrµs as the orthogonal
projection in L2 of F εrµs, one has

}AεrµB1s ´AεrµB2s}2 ď C}F εrµB1s ´ F εrµB2s}2.
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Then, using Lemma 5.4, one obtains, for all z P Tm,

|F εrµB1spzq ´ F εrµB2spzq|

“

ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeB

1
pz1q´A‹pz

1
qdz1

ş

Kεpz1, zqeB
1pz1q´A‹pz1qdz1

´

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeB

2
pz1q´A‹pz

1
qdz1

ş

Kεpz1, zqeB
2pz1q´A‹pz1qdz1

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zq

´

eB
1
pz1q ´ eB

2
pz1q

¯

e´A‹pz
1
qdz1

ş

Kεpz1, zqeB
1pz1q´A‹pz1qdz1

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ş`

∇A‹pz1q ´∇A‹pzq
˘

Kεpz
1, zqeB

2
pz1q´A‹pz

1
qdz1

ş

Kεpz
1, zq

´

eB
1
pz1q ´ eB

2
pz1q

¯

e´A‹pz
1
qdz1

ş

Kεpz1, zqeB
1pz1q´A‹pz1qdz1

ş

Kεpz1, zqeB
2pz1q´A‹pz1qdz1

ˇ

ˇ

ˇ

ď Ce}B
1
}C0pT,Rq

ż

|z1 ´ z|Kεpz
1, zq|eB

1
pz1q ´ eB

2
pz1q|dz1

` Ce}B
1
}C0pT,Rq`2}B2

}C0pT,Rq

ż

|z1 ´ z|Kεpz
1, zqdz1

ż

Kεpz
1, zq|eB

1
pz1q ´ eB

2
pz1q|dz1,

using Lipschitz continuity of ∇A‹, and the lower bound
ż

Kεpz
1, zqeB

i
pz1q´A‹pz

1
qdz1 ě e´}B

i
}C0pT,Rq´}A‹}C0pTq

ż

Kεpz
1, zqdz1 “ e´}B

i
}C0pT,Rq´}A‹}C0pTq .

One has }B1}C0 ď M and }B2}C0 ď M . In addition, owing to Assumption 2.1, one
has

ş

|z1 ´ z|Kεpz
1, zqdz1 ď C

?
ε. As a consequence, using the Jensen inequality (since

ş

Kεpz
1, zqdz1 “

ş

Kεpz, z
1qdz1 “ 1 for all z), one obtains

}F εrµB1s ´ F εrµB2s}2 ď CM

ĳ

Kεpz
1, zq|z1 ´ z|2|eB1pz

1
q ´ eB2pz1q|2dzdz1

` CM ε

ĳ

Kεpz
1, zq|eB1pz

1
q ´ eB2pz1q|2dzdz1

ď CM ε

ż

|eB1pz
1
q ´ eB2pz

1
q|2dz1.

It remains to check that
ż

|eB1pz
1
q ´ eB2pz1q|2dz1 ď C}hB1 ´ hB2}

2
2.

On the one hand,

}hB1 ´ hB2}
2
2 “

ĳ

e´2V py,zq
ˇ

ˇ

ˇ

eB1pzq

ş

eB1´A‹
´

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dydz

ě c

ż

ˇ

ˇ

ˇ

eB1pzq

ş

eB1´A‹
´

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz,

with c ą 0. On the other hand, using Young inequality (with auxiliary parameter η ą 0),
one obtains

ż

|eB1pz
1
q ´ eB2pz1q|2dz1 “

ˇ

ˇ

ˇ

ż

eB1´A‹
eB1pzq

ş

eB1´A‹
´

ż

eB2´A‹
eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz

ď 2η2

ż

ˇ

ˇ

ˇ

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz
ˇ

ˇ

ˇ

ż

eB1´A‹ ´

ż

eB2´A‹
ˇ

ˇ

ˇ

2

`
2

η2

`

ż

eB1´A‹
˘2

ż

ˇ

ˇ

ˇ

eB1pzq

ş

eB1´A‹
´

eB2pzq
ş

eB2´A‹

ˇ

ˇ

ˇ

2

dz

ď 2CMη
2

ż

|eB1pz
1
q ´ eB2pz1q|2dz1 `

2CM
η2

}hB1
´ hB2

}22.
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Choosing a sufficiently small parameter η one finally obtains the claim above.
Gathering the estimates finally concludes the proof of the estimate

}Π̃εrhB1s ´ Π̃εrhB2s}2 ď CM
?
ε}hB1 ´ hB2}2.

5.4 Proof of the main result

The first part of this section is devoted to the construction of the candidate limits µε8
and Aε8 “ Aεrµε8s, of µt and At respectively, for small enough ε.

Let ε̄0 “ 1{pC2
Mp0q ` 1q, where M “M p0q is given by Proposition 5.3 and CM is given

by Proposition 5.7.
Let ε P p0, ε̄0s, and consider Ap0q P BMp0q . Define µp0q “ µAp0q , hp0q “ hAp0q , and by

recursion, for all nonnegative integer k, let

µpk`1q “ Πεrµpkqs , hpk`1q “ Π̃εrhpkqs,

and let Apkq “ Aεrµpkqs. Then one has hpkq “ hApkq P BMp0q . We claim that
`

µpkq
˘

kě0
is

a Cauchy sequence in the space PpTdq equipped with the total variation distance dTV.
Indeed, for all k, ` ě 0, one has

dTVpµpkq, µpk``qq ď }hpkq ´ hpk``q}2

ď
`

CMp0q

?
ε
˘k
d2ph

p0q, hp`qq

ď Cρk,

with ρ P p0, 1q. As a consequence, there exists µε8 such that dTVpµpkq, µ
ε
8q Ñ

kÑ8
0.

Owing to Lemma 4.1, the mapping Πε is continuous on PpTdq equipped with dTV, thus
µε8 “ Πεrµε8s. This implies that µε8 “ hAε‹pxqdx where Aε‹ “ Aεrµε8s P BMp0q .

It is then straightforward to check that hε8 “ hAε8 is the unique fixed point of the

mapping Π̃ε (uniqueness is a consequence of Proposition 5.7).
We claim that, for any initial condition of the type µB, then Φεpt, µBq Ñ

tÑ8
µε8, more

precisely one has exponential convergence to the fixed point µε8: there exists cpεq P p0,8q
such that, for all t ě 0, one has

sup
BPB

Mp0q

dTVpΦ
εpt, µBq, µ

ε
8q ď Ce´cpεqt. (5.2)

To prove this claim, observe that for all t ě 0, the probability distribution Φεpt, µBq can
be written as µBt , where Bt P C0, see Proposition 5.5, and without loss of generality
ş

Btpzqdz “ 0. In addition, Bt P BMp1q , for all t ě 0, for some M p1q P p0,8q depending
only on M p0q: indeed, the identity

hBt “ e´thB0
`

ż t

0

e´pt´sqΠ̃εrhBssds

implies, using Proposition 5.3, the bounds

0 ă inf
tě0

inf
xPTd

hBtpxq ď sup
tě0

sup
xPTd

hBtpxq ă 8,

and Btpzq is equal (up to an additive constant defined to respect the condition
ş

Btpzqdz “

0) to A‹pzq ` log
`ş

e´V py,zqdyq.
Let ε0 “ 1{pC2

Mp1q`1q, and assume in the sequel that ε P p0, ε0s. Note that M p1q ěM p0q,
thus ε0 ď ε̄0.
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Then Aε8 is well-defined, hε8 is the unique fixed point of Π̃ε, and one obtains

dTVpΦ
εpt, µBq, µ

ε
8q ď }hBt ´ h

ε
8}2

ď e´t}hB ´ h
ε
8}2 `

ż t

0

e´pt´sq}Π̃εrhBss ´ Π̃εrhε8s}2ds

ď e´t}hB ´ h
ε
8}2 ` CMp1q

?
ε}hBs ´ h

ε
8}2ds,

with CMp1q

?
ε ă 1. Applying the Gronwall Lemma, one obtains

dTVpΦ
εpt, µBq, µ

ε
8q ď }hBt ´ h

ε
8}2 ď e´p1´CMp1q

?
εqt}hB ´ h

ε
8}2,

and it is straightforward to check that sup t}hB ´ h
ε
8}2, B P BMp0qu ă 8. This concludes

the proof of the claim (5.2).
We are now in position to prove give the proof of Theorem 2.3. It is sufficient to focus

on the question of convergence when tÑ8, indeed the estimate for }Aε8 ´∇A‹}W 1,p is
a straightforward consequence of Lemma 5.6, combined with Proposition 5.3, since Aε8
is a fixed point of the mapping A ÞÑ AεrµAs.

The idea of the proof, using concepts and tools developed in [6] may be described as
follows. Since almost surely

`

µt
˘

tě0
is an asymptotic pseudo-trajectory for the semi-flow

Φε, one has the following property: the limit set Lpµq is an attractor free set for the semi-
flow Φε in PpTdq, in particular it is invariant, i.e. for all t ě 0 one has Φεpt, Lpµqq “ Lpµq.
Let us check that Lpµq “ tµε8u. First, introduce the set M “ tµB , B P CpTm,Rqu. Then
Proposition 5.5 provides the inclusion Lpµq ĂM. Indeed, let ν P Lpµq and let t ě 0 be
arbitrary, then by invariance there exists ν̃ P Lpµq such that ν “ Φεpν̃q, thus dpν,Mq “

dpΦεpν̃q,Mq ď 2e´t Ñ
tÑ8

0. Similarly, let ν P Lpµq ĂM, and let t ě 0 be arbitrary, then

ν “ Φεpν̃q for some ν̃ PM. Thus dpν, µε8q “ dpΦεpt, ν̃q,Φεpt, µε8qq ď Ce´ct Ñ
tÑ8

0.

Let us now provide a detailed proof using only the results presented above.

Proof of Theorem 2.3. Let T1, T2 P p0,8q be arbitrary positive real numbers, and T “

T1 ` T2. For every t ě T , one has

dw
`

µet , µ
ε
8

˘

ď dw
`

µet ,Φ
εpT, µet´T

˘

` dw
`

ΦεpT, µet´T q, µ
ε
8

˘

.

Owing to Theorem 4.3, for any fixed T1, T2, one has, almost surely,

dw
`

µet ,Φ
εpT, µet´T q

˘

Ñ
tÑ8

0.

Observe that dwp¨, ¨q ď CdTVp¨, ¨q. In addition, for all B P CpT,Rq, using Lemma 4.1 and
the claim (5.2) above, one has

dTV

`

ΦεpT, µet´T q, µ
ε
8

˘

ď dTV

`

ΦpT1,ΦpT2, µet´T qq,ΦpT1, µBq
˘

` dTV

`

ΦpT1, µBq, µ
ε
8

˘

ď eLpεqT1dTV

`

ΦpT2, µet´T q, µB
˘

` Ce´cpεqT1

This implies that

dTV

`

ΦεpT, µet´T q, µ
ε
8

˘

ď eLpεqT1 sup
BPCpT,Rq

dTV pΦpT2, µet´T q, µBq ` Ce
´cpεqT1

ď 2eLpεqT1e´T2 ` 2e´cpεqT1 ,

owing to Proposition 5.5.

lim sup
tÑ8

dTV

`

ΦεpT, µet´T q, µ
ε
‹

˘

ď 2eLpεqT1e´T2 ` 2e´cpεqT1 .
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Since T1 and T2 are arbitrary, letting first T2 Ñ8, then T1 Ñ8, one has almost surely

lim sup
tÑ8

dwpµet , µ
ε
‹q “ 0,

which concludes the proof of the weak convergence of µt to µε8.
It remains to check that At “ Aεrµts converges to Aε8 “ Aεrµε8s, in Ck, for all k P N.

This is a consequence of the regularity properties of Kε and of V , which proves that
µ P pPpTdq, dwq ÞÑ F εrµs P Ck is continuous for all k P N.

Using Sobolev embedding properties, as in the proof of Lemma 3.1, then concludes
the proof.
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