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Abstract

We study limits of the largest connected components (viewed as metric spaces)
obtained by critical percolation on uniformly chosen graphs and configuration models
with heavy-tailed degrees. For rank-one inhomogeneous random graphs, such results
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D Limit of exploration process: Proof sketch for Proposition 7.8 57

1 Introduction

Over the last decades, applications arising from complex systems in different fields
have inspired a host of models for networks as well as models of dynamically evolving
networks. One of the major themes in the study of these models has been in the
nature of the emergence of the giant component. A classical example is the percolation
process, where each edge of the network is independently kept with probability p, and
deleted otherwise. As p increases from 0 to 1, the graph experiences a transition in
the connectivity structure, i.e., there exists a "critical percolation value" pc such that
for any ε > 0 and p < pc(1 − ε), the proportion of vertices in the largest component is
asymptotically negligible, while for p > pc(1 + ε), a unique giant component emerges
containing an asymptotically positive proportion of vertices [8, 35, 43, 46, 51].

Understanding the behavior at criticality is one of the key questions in statistical
physics because the components exhibit unique and key features in the critical regime.
In the physics literature, the critical behavior of percolation relates to studying optimal
paths in networks in the so-called strong disorder regime. A wide array of conjectures and
heuristic deductions of the associated critical exponents can be found in [21, 22, 28, 41].
In a nutshell, these conjectures can be described as follows:

The intrinsic nature of the critical behavior does not depend on the exact
description of the model, but only on moment conditions on the degree
distribution. There are two major universality classes corresponding to
the critical regime and the nature of emergence of the giant depending on
whether the degree distribution has asymptotically finite third moment or
infinite third moment. For example, in case of power-law degree distributions
(i.e., P(D ≥ x) ≈ x−(τ−1) the precise nature of the approximation left implicit),
the nature of the critical behavior depends only on the power-law degree
exponent τ : (a) For τ > 4, the maximal component sizes are of the order n2/3

in the critical regime, whilst typical distances in these maximal connected
components scale like n1/3; (b) For τ ∈ (3, 4), the maximal component sizes
are of the order n(τ−2)/(τ−1), whilst distances scale like n(τ−3)/(τ−1).

The above conjectures have inspired a large and beautiful collection of works in probabil-
ity theory. In a seminal work, Aldous [3] provided a detailed understanding for the vector
of rescaled component sizes at criticality for Erdős-Rényi random graphs, and the scaling
limits for component sizes are now well understood under quite general setups in both
finite third-moment [16, 32, 42, 52, 57, 58, 60] and infinite third-moment [17, 31, 42, 52]
settings. We refer the reader to [30, Chapter 1], [44, Chapter 4] for detailed discussions
about this topic. A recent and emerging direction in this literature aims at understanding
the critical component structures, and distances within these components from a very
general perspective. This line of work was pioneered by Addario-Berry, Broutin and
Goldschmidt [1], where the largest connected components were shown to converge when
viewed as metric spaces (see below for exact definitions). Subsequently, [10, 11, 13]
have explored the universality class corresponding to [1], showing that the universality
in the finite third-moment setting holds not only with respect to functionals like com-
ponent sizes, but also the entire metric structure. On the other hand, in the infinite
third-moment setting, a recent result [15] shows that the metric structure turns out to be
fundamentally different. The results in [15] was obtained for one fundamental random
graph model (rank-one model, closely related to the Chung-Lu [26, 27] and Norros-Reittu
model [23]) under the assumption that the weights follow a power-law distribution. In
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this paper, we explore the universality class corresponding to the candidate limit law
established in [15]. Informally, the main contributions of this paper are as follows:

� Universality theorem: We establish sufficient conditions that imply convergence to
the limits established in [15]. This is described later in Theorem 5.4. Since we need to set
up a number of constructs, a formal statement is deferred until all of these objects have
been defined. We refer to Theorem 5.4 as a universality theorem because it identifies
the domain of attraction of the limit laws in [15]. Informally, the theorem implies that
if a sequence of dynamic networks satisfies some entrance boundary conditions in the
barely subcritical regime, and evolves approximately according to the multiplicative
coalescent dynamics over the critical window, then the metric structure of the critical
components are close to those for rank-one inhomogeneous random graphs. Theorem 5.4
is similar in spirit to [10, Theorem 3.4], but our result holds for the infinite third-moment
degrees. Technically, we do not need additional restrictions as in [10, Assumption 3.3],
since we compare the metric structures in the Gromov-weak topology, instead of the
Gromov-Hausdorff-Prokhorov topology. The universality theorem holds under arguably
optimal assumptions (see Remark 5.5).

� Critical percolation on graphs with given degrees: Our primary motivation was
to analyze the critical regime for percolation on the uniform random graph model (and
the closely associated configuration model) with a prescribed degree distribution that
converges to a heavy-tailed degree distribution. Limit laws for the metric structure of
maximal components in the critical regime are described in Theorems 2.3 and 2.4. These
results are proved under Assumption 2.1, which is the most general set of assumptions
under which the component sizes were shown to converge in [31] (see [31, Section 2
and 3] for the applicability and necessity of these assumptions).

� Barely subcritical regime: In order to carry out the above analysis and in particular
to apply the universality theorem for percolation on configuration models, we establish
refined bounds for component sizes, various susceptibility functionals, and diameters of
connected components in the barely subcritical regime of the configuration model which
are of independent interest; these are described in Theorems 2.10 and 2.11.

1.1 Organization of the paper

In Section 2, we describe the configuration model and critical behavior of percolation,
which is the main motivation of this paper, and then describe the main results relevant
to this model. Section 3 has a detailed discussion about the relevance of the results
in this paper, some open problems, and an informal description of the proof ideas. We
provide a full description of the limit objects and various notions of convergence of
metric-space-valued random variables in Section 4. Section 5 describes and proves the
general universality result. Section 6 proves results about the configuration model in
the barely subcritical regime. Finally, Section 7 combines the above estimates with a
coupling of the evolution of the configuration model through the critical percolation
scaling window to finish the proof of Theorem 2.3.

2 Critical percolation on the configuration model

In this section, we state our main results. In Section 2.1, we state the results about
the metric structure of the largest critical percolation clusters of the configuration
model. We defer full definitions of the limit objects as well as notions of convergence
of measured metric spaces to Section 4. In Section 2.2, we state the results about the
barely subcritical regime, and we conclude this section with an overview of the proofs in
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Section 2.3.

2.1 Metric structure of the critical components

The configuration model

Consider n vertices labeled by [n] := {1, 2, ..., n} and a non-increasing sequence of
degrees d = (di)i∈[n] such that `n =

∑
i∈[n] di is even. For notational convenience, we

suppress the dependence of the degree sequence on n. The configuration model on n
vertices having degree sequence d is constructed as follows [18, 56]:

Equip vertex j with dj stubs, or half-edges. Two half-edges create an edge once
they are paired. Therefore, initially we have `n =

∑
i∈[n] di half-edges. Pick any

one half-edge and pair it with a uniformly chosen half-edge from the remaining
unpaired half-edges and keep repeating the above procedure until all the unpaired
half-edges are exhausted.

Let CMn(d) denote the graph constructed by the above procedure. Note that CMn(d)

may contain self-loops or multiple edges. Let UMn(d) denote the graph chosen uniformly
at random from the collection of all simple graphs with degree sequence d. It can be
shown that the conditional law CMn(d), conditioned being simple, is same as UMn(d)

(see [43, Proposition 7.15]). It was further shown in [47] that, if the degree distribution
satisfies a finite second-moment condition (a condition which will hold in the context of
this paper), then the asymptotic probability of the graph being simple converges to a
positive limit.

Let us now describe the assumptions on the degree sequences. For p > 0, define the
metric space

`p↓ =
{

(x1, x2, . . . ) ∈ RN+ : x1 ≥ x2 ≥ . . . ,
∑
i

xpi <∞
}
, (2.1)

with metric d(x,y) =
(∑

i |xi − yi|p
)1/p

. Fix τ ∈ (3, 4). Throughout this paper we use the
following functionals of τ :

α = 1/(τ − 1), ρ = (τ − 2)/(τ − 1), η = (τ − 3)/(τ − 1). (2.2)

Assumption 2.1 (Degree sequence). For each n ≥ 1, let d = dn = (d1, . . . , dn) be a
degree sequence (di’s may depend on n, but we suppress n in the notation for clarity).
We assume the following about (dn)n≥1 as n→∞:

(i) (High-degree vertices) For each fixed i ≥ 1, n−αdi → θi, where θ = (θ1, θ2, . . . ) ∈
`3↓ \ `2↓.

(ii) (Moment assumptions) Let Vn be chosen uniformly from [n] (independently of
CMn(d)), and Dn = dVn . Then Dn converges in distribution to some positive
integer-valued random variable D, and

1

n

∑
i∈[n]

di → µ := E[D],
1

n

∑
i∈[n]

d2
i → µ2 := E[D2], lim

K→∞
lim sup
n→∞

n−3α
n∑

i=K+1

d3
i = 0.

(2.3)

Remark 2.2. Assumption 2.1 is identical to [31, Assumption 1]. We refer the reader
to [31, Sections 2 and 3] for discussions about the relevance and necessity of these
assumptions. It was shown in [31, Section 2] that Assumption 2.1 is satisfied in two
key settings, when (i) the degrees are taken to be an i.i.d. sample from a power-law
distribution, and (ii) the degrees are chosen according to the quantiles of a power-law
distribution. The first setting has been considered in [52], and the latter setting has
been considered for the rank-one inhomogeneous random graphs in [15, 17].
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The component sizes of CMn(d) are known to undergo a phase transition [50, 56]
depending on the parameter

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
→ ν =

E [D(D − 1)]

E [D]
. (2.4)

When ν > 1, CMn(d) is supercritical in the sense that there exists a unique giant
component with high probability, and when ν < 1, all the components have size o(n) with
high probability and CMn(d) is subcritical. In this paper, when considering percolation
on CMn(d), we will always assume that

ν > 1, i.e. CMn(d) is supercritical. (2.5)

Percolation refers to deleting each edge of a graph independently with probability 1− p.
In the case of percolation on random graphs, the deletion of edges is also independent
from the underlying graph. Let CMn(d, pn) and UMn(d, pn) denote the graphs obtained
from percolation with probability pn on the graphs CMn(d) and UMn(d), respectively.
For pn → p, it was shown in [46] that the critical point for the phase transition of the
component sizes is p = 1/ν. The critical window for percolation was studied in [31, 32]
to obtain the asymptotics of the largest component sizes and their surplus edges. In
the infinite third-moment setting, CMn(d, pn) lies in the critical window when, for some
λ ∈ R,

pn = pn(λ) =
1

νn
+

λ

nη
+ o(n−η). (2.6)

We now explain the precise meaning of convergence of components as metric spaces.
Let C p

(i)(λ) denote the i-th largest component of CMn(d, pn(λ)). A measured metric
space is a metric space equipped with a measure on the associated Borel sigma-algebra.
Each component C can be viewed as a measured metric space with (i) the metric
being the graph distance where each edge has length one; (ii) the measure being
proportional to the counting measure, i.e., for any A ⊂ C , the measure of A is given by
µct,i(A) = |A|/|C p

(i)(λ)|, where |A| denotes the cardinality of A. For a generic measured
metric space M = (M, d, µ) and a > 0, aM denotes the measured metric space (M,ad, µ).
We write S∗ for the space of all measured metric spaces equipped with the Gromov-weak
topology (see Section 4.1) and let S N

∗ denote the corresponding product space with
the accompanying product topology. For each n ≥ 1, view

(
n−ηC p

(i)(λ)
)
i≥1

as an object

in S N
∗ by appending an infinite sequence of empty metric spaces after enumerating

the components in CMn(d, pn(λ)). The main results for critical percolation on the
configuration model are as follows:

Theorem 2.3. Consider CMn(d, pn(λ)) satisfying Assumption 2.1, (2.5) and (2.6) for
some λ ∈ R. There exists a sequence of random measured metric spaces (Mi(λ))i≥1

such that on S N
∗ , as n→∞,(

n−ηC p
(i)(λ)

)
i≥1

d−→
(
Mi(λ)

)
i≥1

. (2.7)

Theorem 2.4. Under Assumption 2.1, (2.5) and (2.6) for some λ ∈ R, the convergence
in (2.7) also holds for the components of UMn(d, pn(λ)), with the identical limiting object.

Remark 2.5. The limiting objects are precisely described in Section 4.6.

Remark 2.6. The notion of convergence in Theorems 2.3 and 2.4 implies weak con-
vergence of a wide array of continuous functionals with respect to the Gromov-weak
topology. For example, it implies the joint convergence of the distances between an
arbitrary (but fixed) number of uniformly (and independently) chosen vertices in the i-th
largest component of CMn(d, pn(λ)) or UMn(d, pn(λ)).
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Remark 2.7. The conclusion of Theorem 2.3 holds if the measure µct,i on C p
(i) is re-

placed by more general measures. Indeed, define the probability measure µw,i :=∑
k∈A wk/

∑
k∈Cp

(i)
wk for A ⊂ C p

(i). To prove analogous results as Theorems 2.3 and 2.4

with µw,i’s, we require wi’s to satisfy some regularity conditions (see Assumption 2.9
below). The reason will be discussed in Remark 7.18.

Remark 2.8. The results above can be extended to the case P(Dn ≥ x) ∼ L(x)x−(τ−1),
where L(·) is a slowly-varying function. The scaling limits would be the same, however
the scaling exponents will be different as observed in [31]. In particular, the width of the
scaling window now turns out to be n−ηL1(n)2 (for some slowly varying L1(·)) instead
of n−η, and results identical to Theorem 2.3 can be obtained by scaling the distances
by nηL1(n)−2.

2.2 Mesoscopic properties of the critical clusters: barely subcritical regime

One of the main ingredients in the proof of Theorem 2.3 is a refined analysis of various
susceptibility functions in the barely subcritical regime (see (2.9) below for a definition)
for the percolation process. The barely subcritical and supercritical regimes correspond
to regimes that are just below or above the critical window. For the percolation process
under Assumption 2.1, barely subcritical (supercritical) behavior is observed for p
satisfying nη(p− pn(0)) → −∞ (nη(p− pn(0)) → ∞), where pn(0) is defined in (2.6) for
λ = 0. These behaviors are well understood for Erdős-Rényi random graphs [49, Section
23], [19, 51] and configuration models in the Erdős-Rényi universality class [40, 53, 60].
For barely supercritical configuration models in the heavy-tailed setting, the size of the
emerging giant component was obtained in [45]. We provide a detailed picture about
the component sizes and susceptibility functions in the subcritical regime below.

We will prove general statements about the susceptibility functions applicable not
just to percolation on the configuration model, but rather to any barely subcritical
configuration model. Since percolation on a configuration model yields a configuration
model [35, 46], the above yields susceptibility functions for percolation on configuration
model as a special case. To set this up we need a little more notation, where each
vertex in the network is associated with both degree and weight, satisfying the following
assumptions:

Assumption 2.9 (Barely subcritical degree sequence). Let d′ = (d′1, . . . , d
′
n) be a degree

sequence and let w(·) : [n] 7→ R be a non-negative weight function such that the following
conditions hold:

(i) Assumption 2.1 holds for d′ with some c ∈ `3↓ \ `2↓, and

lim
n→∞

1

n

∑
i∈[n]

d′i = µd, lim
n→∞

1

n

∑
i∈[n]

wi = µw, lim
n→∞

1

n

∑
i∈[n]

d′iwi = µd,w. (2.8)

(ii) maxi∈[n] wi = O(nα),
∑
i∈[n] w

2
i = O(n) and

max
{∑

i∈[n] w
3
i ,
∑
i∈[n] d

′2
i wi,

∑
i∈[n] d

′
iw

2
i

}
= O(n3α).

(iii) (Barely subcritical regime) The configuration model is at the barely subcritical
regime, i.e., there exists 0 < δ < η and λ0 > 0 such that

ν′n =

∑
i∈[n] d

′
i(d
′
i − 1)∑

i∈[n] d
′
i

= 1− λ0n
−δ + o(n−δ). (2.9)

EJP 25 (2020), paper 47.
Page 7/57

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP408
http://www.imstat.org/ejp/


Universality for critical heavy-tailed networks

Let C ′(j) denote the connected component of CMn(d′) containing vertex j, and define

C ′i =

{
C ′(i), if i ≤ j, ∀j ∈ C ′(i),

∅, otherwise,
(2.10)

and Wi =
∑
k∈C ′i

wk. Define the weight-based susceptibility functions as

s?r =
1

n

∑
i≥1

W r
i for r ≥ 1, s?pr =

1

n

∑
i≥1

Wi × |C ′i |. (2.11)

The definition in (2.10) takes care of the double counting in the definition of susceptibility
functions. Also, define the weighted distance-based susceptibility as

D?n =
1

n

∑
i,j∈[n]

wiwjd(i, j)1 {i, j are in the same connected component} , (2.12)

where d denotes the graph distance. The goal of the next result is to show that the
component sizes and the susceptibility functions defined in (2.11) and (2.12) satisfy
asymptotic conditions such as the entrance boundary conditions for the multiplicative
coalescent [4]:

Theorem 2.10 (Susceptibility functions). Under Assumption 2.9, as n→∞,

n−δs?2
P−→

µ2
d,w

µdλ0
, n−δs?pr

P−→ µd,w
λ0

, n−(α+δ)Wj
P−→ µd,w

µdλ0
cj ,

n−3α−3δ+1s?3
P−→
(
µd,w
µdλ0

)3 ∞∑
i=1

c3i , n−2δD?n
P−→

µ2
d,w

µdλ2
0

.

(2.13)

For a connected graph G, ∆(G) denotes the diameter of the graph, and for any arbi-
trary graph G, ∆max(G) := max ∆(C ), where the maximum is taken over all connected
components C ⊂ G. We simply write ∆max for ∆max(CMn(d′)). The asymptotics of ∆max

is derived below:

Theorem 2.11 (Maximum diameter). Under Assumption 2.9, as n → ∞, P(∆max >

nδ(log(n))2)→ 0.

Remark 2.12. By taking wi = 1 for all i ∈ [n], implies that Wi = |Ci|, and thus Theo-
rem 2.10 hold also for the usual susceptibility functions defined in terms of the component
sizes (cf. [48]). In the proof of Theorem 2.3, we will require a more general weight
function, where wi is taken to be the number of half-edges deleted from vertex i due to
percolation.

Remark 2.13. Unlike Theorem 2.3, Theorems 2.10 and 2.11 yield statements about
convergence in probability to constants. So, under Assumption 2.9, one can use the fact
from [47] that lim infn→∞P(CMn(d′)is simple) > 0, and thus it immediately follows that
the results in Theorems 2.10 and 2.11 hold for UMn(d′).

2.3 Overview of the proof

We now summarize the key ideas of the proofs at a heuristic level.

Universality theorem

As discussed earlier, we first prove a universality theorem (Theorem 5.4) which roughly
states that if one replaces the vertices in a rank-one inhomogeneous random graph by
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small metric spaces (called blobs), then the limiting metric space structure remains
identical. The characterization of blobs leads to some asymptotic negligibility conditions,
formally stated in Assumption 5.3, which simply says that the diameter of the individual
blobs must be negligible compared to the typical distances in the whole graph. However,
the typical distance can be cumulatively affected by the blobs, hence we get a different
scaling factor for distances in Theorem 5.4 than in Theorem 5.2.

Mesoscopic or Blob-level analysis

Percolation on CMn(d) can be viewed as a dynamic process by associating i.i.d. uniform
[0, 1] weights Ue to each edge e, and keeping e if Ue ≤ p. The parameter p ∈ [0, 1]

can be interpreted as time. Now for pn = pn(λn), for some λn → −∞, CMn(d, pn(λn))

lies in the barely subcritical regime and the estimates for different functionals can be
obtained using Theorem 2.10. We regard the components of CMn(d, pn(λn)) as the blobs.
Under the current scaling, the blobs shrink to zero, and the edges appearing in the
dynamic process between the interval [pn(λn), pn(λ)] connecting the blobs give rise to
the macroscopic structure of the largest components of CMn(d, pn(λ)). However, the
effects of the blobs on the limiting structure are reflected via different functionals, which
is the reason for referring to the properties of the blobs as mesoscopic properties.

Coupling to the multiplicative coalescent

Finally, the goal is to understand the macroscopic structure formed between blobs within
the time interval [pn(λn), pn(λ)]. The merging dynamics of the components between
[pn(λn), pn(λ)] can be heuristically described as follows: Let p0 be a time when an edge
appears. Then the two half-edges corresponding to the new edge are chosen uniformly at
random from the open half-edges (half-edges deleted due to percolation) of CMn(d, p0−).
Therefore, if (Oi(p))i≥1 denotes the vector of open half-edges in distinct components at
time p, then the clusters corresponding to Oi(p) and Oj(p) merge at rate proportional to
Oi(p) ×Oj(p) and creates a new cluster with Oi(p) +Oj(p) − 2 open half-edges. Thus,
the elements of the vector (Oi(p))i≥1, seen as masses, merge approximately as the
multiplicative coalescent (see Definition 3), in the sense that the dynamics experience a
depletion of half-edges in the components. Now, we can run a parallel process where the
paired half-edges are replaced with new dummy open half-edges to the corresponding
vertices [10, 31]. The dynamics in the latter process gives rise to an exact multiplicative
coalescent and due to this fact, the modified graph Ḡn can be shown to be distributed as a
rank-one inhomogeneous random graph with the blobs being the mesoscopic components
at time pn(λn). Now, the graph Ḡn becomes the candidate for applying our universality
theorem (see Theorem 7.15).

Structural comparison

Finally, we perform a structural comparison between CMn(d, pn(λ)) and Ḡn to con-
clude Theorem 2.3. Let us consider the largest component C p

(1) (respectively C̄ p
(1)) of

CMn(d, pn(λ)) (respectively Ḡn). By the above coupling (with dummy half-edges being
added), C p

(1) ⊂ C̄ p
(1) and we know the asymptotic metric structure of C̄ p

(1). Now, the idea
is to show that (a) |C̄ p

(1) \ C p
(1)| = o(|C p

(1)|) with high probability implying that the part of
C̄ p

(1) outside C p
(1) is insignificant, (b) for any pair of vertices u, v ∈ C p

(1), the shortest path
between them in C p

(1) and C̄ p
(1) are identical. These two properties conclude the proof of

Theorem 2.3 under the Gromov-weak topology.
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3 Discussion

Optimality of assumptions and Gromov-weak topology

As mentioned in the introduction, our goal is not only to consider critical percolation,
but to explore the universality class for the scaling limits in [15] in the same spirit as it
was done in [10] for the Erdős-Rényi universality class. Our universality theorem (Theo-
rem 5.4) holds under optimal assumptions, and does not require additional restrictions
such as [10, Assumption 3.3]. However, it is worthwhile noting that the universality
theorem (and consequently Theorem 2.3) holds with respect to the Gromov-weak topol-
ogy instead of the stronger Gromov-Hausdorff-Prokhorov (GHP) topology. This is not a
restriction that we impose, but in fact there is a conceptual barrier. If the convergence
in Theorem 2.3 would hold in the GHP-topology only under Assumption 2.1, then the
limiting metric space would be compact for any θ ∈ `3↓ \ `2↓, but additional restrictions are
needed for the compactness of the limiting metric space and simply assuming θ ∈ `3↓ \ `2↓
does not suffice. See [5, Section 7], for an explicit conjecture about the compactness of
such metric spaces by Aldous, Miermont and Pitman. In a follow-up work [12], we extend
the scaling limit results in the GHP-topology by establishing the so-called global lower
mass bound property [9, Theorem 6.1], which ensures that the components have suffi-
cient mass everywhere and thus forbids the existence of long, thin paths, when the total
mass of the component converges. However, one needs additional technical conditions
in [12] on top of Assumption 2.1 to prove the global lower mass bound property.

Extensions, recent developments and open problems

(i) The universality theorem is applicable to dynamically evolving random networks
with heavy-tailed degrees, which evolve (approximately) as the multiplicative coales-
cent over the critical window, and satisfy some nice properties such as Theorem 2.10
in the barely subcritical regime. For this reason, we believe that the universality
theorem and the methods of this paper are applicable to many known inhomoge-
neous random graph models with suitable kernels [20], as well as Bohman-Frieze
processes which satisfy different initial conditions so that one gets a heavy tailed-
degree distribution at criticality. We leave these as interesting open problems.

(ii) In a recent work, Broutin, Duquesne and Wang [24] obtained structural limit laws
for rank-one inhomogeneous random graphs which evolve as general multiplicative
coalescent processes over the critical window. This framework unifies the scaling
limits for the heavy-tailed and non heavy-tailed cases in terms of a single limit law.
It will be interesting to prove a universality theorem for the limit laws in [24].

(iii) Recently, Conchon-Kerjan and Goldschmidt [29] derived the scaling limit of the max-
imal components at criticality for CMn(d) when the degrees form an i.i.d. sample
from a power-law distribution with τ ∈ (3, 4). The properties of the corresponding
limiting object was investigated in a recent preprint by Goldschmidt, Haas, and
Sénizergues [37]. The scaling limits in the i.i.d. setting has a completely different
description of the limiting object compared to the one in this paper. It will be
interesting to explore the connections between the results in the above paper and
the current work.

(iv) It turns out that the study of the component structures corresponding to critical
percolation plays a crucial role in the study of the metric structure of the minimal
spanning tree (MST) [2]. In fact, a detailed understanding of the metric structures
in the critical window obtained in [1] played a pivotal role in the proofs of [2]. The
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connections to the MST-problem such as those outlined in [2] suggest that the
scaling limit results in this paper will be useful in the study of metric structures for
the MST for graphs with given degrees in the heavy-tailed regime. However, the
MST problem in this regime is an open question.

4 Convergence of metric spaces, discrete structures and limit ob-
jects

The aim of this section is to define the proper notion of convergence relevant to
this paper (Section 4.1), set up discrete structures required in the statement and in the
proof of the universality result in Theorem 5.4 (Sections 4.2, 4.3, 4.4), and describe limit
objects that arise in Theorem 2.3 (Sections 4.5 and 4.6).

4.1 Gromov-weak topology

A complete separable measured metric space (denoted by (X,d, µ)) is a complete,
separable metric space (X,d) with an associated probability measure µ on the Borel
sigma algebra B(X). The Gromov-weak topology is defined on S0, the space of all
complete and separable measured metric spaces (see [38, 39], [15, Section 2.1.2]). The
notion is formulated based on the philosophy of finite-dimensional convergence. Two
measured metric spaces (X1,d1, µ1), (X2,d2, µ2) are considered to be equivalent if there
exists an isometry ψ : support(µ1) 7→ support(µ2) such that µ2 = µ1 ◦ ψ−1. Let S∗ be
the space of all equivalence classes of S0. We (slightly) abuse the notation by not
distinguishing between a metric space and its corresponding equivalence class. Fix
l ≥ 2 and (X,d, µ) ∈ S∗. Given any collection of points x = (x1, . . . , xl) ∈ X l, define
D(x) := (d(xi, xj))i,j∈[l] to be the matrix of pairwise distances of the points in x. A
function Φ : S∗ 7→ R is called a polynomial if there exists a bounded continuous function
φ : Rl

2 7→ R such that

Φ((X,d, µ)) =

∫
φ(D(x))dµ⊗l, (4.1)

where µ⊗l denotes the l-fold product measure. A sequence {(Xn,dn, µn)}n≥1 ⊂ S∗ is
said to converge to (X,d, µ) ∈ S∗ if and only if Φ((Xn,dn, µn)) → Φ((X,d, µ)) for all
polynomials Φ on S∗. By [38, Theorem 1], S∗ is a Polish space under the Gromov-weak
topology.

4.2 Super graphs

Our super graphs consist of three main ingredients: 1) A collection of metric spaces
called blobs; 2) A graphical superstructure determining the connections between the
blobs; 3) Connection points or junction points at each blob. In more detail, super graphs
contain the following structures (see Figure 1):

(a) Blobs: A collection {(Mi,di, µi)}i∈[m] of connected, compact measured metric
spaces.

(b) Superstructure: A (random) graph G with vertex set [m]. The graph has a weight
sequence p = (pi)i∈[m] associated to the vertex set [m]. We regard Mi as the i-th
vertex of G.

(c) Junction points: An independent collection of random points X := (Xi,j : i, j ∈ [m])

such that Xi,j ∼ µi for all i, j. Further, X is independent of G.

Using these three ingredients, define a metric space (M̄, d̄, µ̄) = Γ(G,p,M,X), with
M̄ = ti∈[m]Mi (the disjoint union of the Mi’s) by putting an edge of length one between
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M1

M2 M3

M4

M5 M6

M7

x

y

Junction
points

Figure 1: Construction of supergraphs described Section 4.2. The blue line represents
the shortest path between x and y.

the pair of points {(Xi,j , Xj,i) : (i, j) is an edge of G}. The distance metric d̄ is the natural
metric obtained from the graph distance and the inter-blob distance on a path. More
precisely, for any x, y ∈ M̄ with x ∈Mj1 and y ∈Mj2 ,

d̄(x, y) = inf
{
k + dj1(x,Xj1,i1) +

k−1∑
l=1

dil(Xil,il−1
, Xil,il+1

) + dj2(Xj2,ik−1
, y)
}
, (4.2)

where the infimum is taken over all paths (i1, . . . , ik−1) in G and all k ≥ 1, and i0 = j1
and ik = j2. The measure µ̄ is given by µ̄(A) :=

∑
i∈[m] piµi(A ∩Mi), for any measurable

subset A of M̄ . Note that there is a one-to-one correspondence between the components
of G and Γ(G,p,M,X) as the blobs are connected.

4.3 Space of trees with edge lengths, leaf weights, root-to-leaf measures, and
blobs

In the proof of the main results we need the following spaces built on top of the
space of discrete trees. The first space TIJ was formulated in [6, 7] where it was used to
study trees spanning a finite number of random points sampled from an inhomogeneous
continuum random tree (as described in the next section).

4.3.1 The space TIJ

Fix I ≥ 0 and J ≥ 1. Let TIJ be the space of trees with each element t ∈ TIJ having the
following properties:

(a) There are exactly J leaves labeled 1+, . . . , J+, and the tree is rooted at the labeled
vertex 0+.

(b) There may be extra labeled vertices (called hubs) with labels in {1, . . . , I}. (It is
possible that only some, and not all, labels in {1, . . . , I} are used.)

(c) Every edge e has a strictly positive edge length le.

A tree t ∈ TIJ can be viewed as being composed of two parts: (1) shape(t) describing the
shape of the tree (including the labels of leaves and hubs) but ignoring edge lengths.
The set of all possible shapes T shape

IJ is obviously finite for fixed I, J . (2) The edge lengths
l(t) := (le : e ∈ t). We will consider the product topology on TIJ consisting of the discrete
topology on T shape

IJ and the product topology on RE(t), where E(t) is the number of edges
of t.
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4.3.2 The space T ∗IJ

Along with the three attributes above in TIJ , the trees in T ∗IJ have two additional prop-
erties. Let L(t) := {1+, . . . , J+} denote the collection of leaves in t. Then every leaf
v ∈ L(t) has the following attributes:

(d) Leaf weights: A strictly positive number A(v).

(e) Root-to-leaf measures: A probability measure νt,v on the path [0+, v] connecting
the root and the leaf v.

For each v ∈ L(t), the path [0+, v] can be viewed as a compact measured metric space
with the measure being νt,v. Let X denote the space of compact measured metric spaces
endowed with the Gromov-Hausdorff-Prokhorov topology (see [15, Section 2.1.1]). In
addition to the topology on TIJ , the space T ∗IJ with the additional two attributes inherits
the product topology on RJ due to leaf weights and X J due to the paths [0+, v] endowed
with νt,v for each v ∈ L(t). For consistency, we add a conventional state ∂ to the spaces
TIJ and T ∗IJ . Its use will be made clear in Section 5.

For all instances in this paper, the shape of a tree shape(t) will be viewed as a
subgraph of a graph with m vertices. In that case, the tree will be assumed to inherit
the vertex labels from the original graph. We will often write t ∈ T ∗mIJ to emphasize the
fact that the vertices of t are labeled from a subset of [m].

4.3.3 The space T
∗m
IJ

We enrich the space T ∗mIJ with some additional elements to accommodate the blobs.
Consider t ∈ T ∗mIJ and construct t̄ as follows: Let (Mi,di, µi)i∈[m] be a collection of
blobs and X = (Xij : i, j ∈ [m]) be the collection of junction points as defined in
Section 4.2. Construct the metric space t̄ with elements in M̄(t) = ti∈tMi, by putting an
edge of length one between the pair of vertices {(Xi,j , Xj,i) : (i, j) is an edge of t}. The
distance metric is given by (4.2). The path from the leaf v to the root 0+ now contains
blobs. Replace the root-to-leaf measure by ν̄t,v(A) :=

∑
i∈[0+,v] νt,v(i)µi(Mi ∩ A) for

A ⊂ ti∈[0+,v]Mi, where νt,v is the root-to-leaf measure on [0+, v] for t. Notice that T ∗mIJ
can be viewed as a subset of T

∗m
IJ . In the proof of the universality theorem in Section 5,

the blobs will be a fixed collection and, therefore, any t ∈ T ∗mIJ corresponds to a unique
t̄ ∈ T ∗mIJ .

4.4 p-trees

For fixed m ≥ 1, write Tm and Tord
m for the collection of all rooted trees with vertex

set [m] and rooted ordered trees with vertex set [m] respectively. An ordered rooted tree
is a rooted tree where children of each individual are assigned an order. We define a
random tree model called p-trees [25, 59], and their corresponding limits, the so-called
inhomogeneous continuum random trees, which play a key role in describing the limiting
metric spaces. Fix m ≥ 1, and a probability mass function p = (pi)i∈[m] with pi > 0 for
all i ∈ [m]. A p-tree is a random tree in Tm, with law as follows: For any fixed t ∈ Tm
and v ∈ t, write dv(t) for the number of children of v in the tree t. Then the law of the
p-tree, denoted by Ptree, is defined as

Ptree(t) = Ptree(t; p) =
∏
v∈[m]

pdv(t)
v , t ∈ Tm. (4.3)

Note that a normalizing constant is not required in (4.3) to make it a probability distribu-
tion (see [25, Lemma 1]). Generating a random p-tree T ∼ Ptree and then assigning a
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uniform random order on the children of every vertex v ∈ T gives a random element
with law Pord(·; p) given by

Pord(t) = Pord(t; p) =
∏
v∈[m]

p
dv(t)
v

(dv(t))!
, t ∈ Tord

m . (4.4)

4.4.1 The birthday construction of p-trees

We now describe a construction of p-trees, formulated in [25], that is relevant to this
work. Let Y := (Y0, Y1, . . .) be a sequence of i.i.d. random variables with distribution p.
Let R0 = 0 and for l ≥ 1, let Rl denote the l-th repeat time, i.e., Rl = min

{
k >

Rl−1 : Yk ∈ {Y0, . . . , Yk−1}
}
. Now consider the directed graph formed via the edges

T (Y) := {(Yj−1, Yj) : Yj /∈ {Y0, . . . , Yj−1} , j ≥ 1} . This gives a tree which we view as
rooted at Y0. The following striking result was shown in [25]:

Theorem 4.1 ([25, Lemma 1 and Theorem 2]). The random tree T (Y), viewed as
an element in Tm, is distributed as a p-tree with distribution (4.3) independently of
YR1−1, YR2−1, . . . which are i.i.d. with distribution p.

Remark 4.1. The independence between the sequence YR1−1, YR2−1, . . . and the con-
structed p-tree T (Y) is truly remarkable. In particular, let Tr ⊂ T (Y) denote the subtree
with vertex set {Y0, Y1, . . . , YRr−1}, i.e., the tree constructed in the first Rr steps. Further
take Ỹ = (Ỹ1, . . . , Ỹr) to be an i.i.d. sample from p and then construct the subtree Sr
spanned by Ỹ. Then the above result (formalized as [25, Corollary 3]) implies that

(Ỹ1, Ỹ2, . . . , Ỹr;Sr) d
= (YR1−1, YR2−1, . . . , YRr−1; Tr). (4.5)

We will use this fact in Section 5 to complete the proof of the universality theorem.

4.4.2 Tilted p-trees and connected components of NRn(x, t)

Consider the vertex set [n] and assign weight xi to vertex i. Now, connect each pair of
vertices i, j (i 6= j) independently with probability qij := 1− exp(−txixj). The resulting
random graph, denoted by NRn(x, t), is known as the Norros-Reittu model or the Poisson
graph process [43]. For a connected component C ⊆ NRn(x, t), let mass(C) :=

∑
i∈C xi

and, for any t ≥ 0, let (Ci(t))i≥1 denote the components in decreasing order of their mass
sizes. In this section, we describe results from [14] that give a method of constructing
connected components of NRn(x, t), conditionally on the vertices of the components.
This construction involves tilted versions of p-trees introduced in Section 4.4. Since
these trees are parametrized via a driving probability mass function (pmf) p, it will be
easy to parametrize various random graph constructions in terms of pmfs as opposed to
the vertex weights x. Proposition 4.2 will relate vertex weights to pmfs.

Fix n ≥ 1 and V ⊂ [n], and write Gcon
V for the space of all simple connected graphs

with vertex set V. For fixed a > 0, and probability mass function p = (pv)v∈V , define
probability distributions Pcon(·; p, a,V) on Gcon

V as follows: For i, j ∈ V, denote

qij := 1− exp(−apipj). (4.6)

Then, for G ∈ Gcon
V ,

Pcon(G; p, a,V) :=
1

Z(p, a)

∏
(i,j)∈E(G)

qij
∏

(i,j)/∈E(G)

(1− qij), (4.7)

where Z(p, a) is the normalizing constant. Now let V (i) be the vertex set of Ci(t) for i ≥ 1,
and note that (V (i))i≥1 denotes a random finite partition of the vertex set [n]. The next
proposition yields a construction of the random (connected) graphs (Ci(t))i≥1:
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Proposition 4.2 ([14, Proposition 6.1]). Given the partition (V (i))i≥1, define, for i ≥ 1,

p(i)

n :=

(
xv∑

v∈V(i) xv
: v ∈ V (i)

)
, a(i)

n := t

( ∑
v∈V(i)

xv

)2

. (4.8)

For each fixed i ≥ 1, let Gi ∈ Gcon
V(i) be a connected simple graph with vertex set V (i).

Then

P
(
Ci(t) = Gi, ∀i ≥ 1

∣∣ (V (i))i≥1

)
=
∏
i≥1

Pcon(Gi; p
(i)

n , a
(i)

n ,V (i)). (4.9)

Proposition 4.2 yields the following construction of NRn(x, t):

Algorithm 1. The random graph NRn(x, t) can be generated in two stages:

(S0) Generate the random partition (V (i))i≥1 of the vertices into different components.

(S1) Conditionally on the partition, generate the internal structure of each component
following the law of Pcon(·; p(i), a(i),V (i)), independently across different compo-
nents.

Let us now describe an algorithm to generate such connected components using dis-
tribution (4.7). To ease notation, let V = [m] for some m ≥ 1 and fix a probability
mass function p on [m] and a constant a > 0 and write Pcon(·) := Pcon(·; p, a, [m]) on
Gcon
m := Gcon

[m]. To generate a sample G from Pcon, one needs to first generate a p-tree
(with suitable tilt). The rest of the edges of G are surplus edges, which are generated by
connecting the leaves to one of the vertices in their path to the root. Let us now describe
this process formally. As a matter of convention, we view ordered rooted trees via their
planar embedding using the associated ordering to determine the relative locations of
siblings of an individual. We think of the left most sibling as the "oldest". Further, in a
depth-first exploration, we explore the tree from left to right. Now given a planar rooted
tree t ∈ Tm, let ρ denote the root, and for every vertex v ∈ [m], let [ρ, v] denote the path
connecting ρ to v in the tree. Given this path and a vertex i ∈ [ρ, v], write RC(i, [ρ, v]) for
the set of all children of i that fall to the right of [ρ, v]. Define P(v, t) := ∪i∈[m]RC(i, [ρ, v]).

In the terminology of [1, 15], P(v, t) denotes the set of endpoints of all permitted edges
emanating from v. Define

G(m)(v) :=
∑
i∈[ρ,v]

∑
j∈[m]

pj1 {j ∈ RC(i, [ρ, v])} . (4.10)

Let (v(1), v(2), . . . , v(m)) denote the order of the vertices in the depth-first exploration of
the tree t. Let y∗(0) = 0 and y∗(i) = y∗(i− 1) + pv(i) and define

A(m)(u) = G(m)(v(i)), for u ∈ (y∗(i− 1), y∗(i)], and Ā(m)(·) := aA(m)(·), (4.11)

where a is defined in (4.6). Define the function

Λ(m)(t) := a
∑
v∈[m]

pvG(m)(v). (4.12)

Finally, let E(t) denote the set of edges of t, T p
m the p-tree defined in (4.4), P(t) =

∪v∈[m]P(v, t), and define the function L : Tord
m → R+ by

L(t) = L(m)(t) :=
∏

(k,`)∈E(t)

[
exp(apkp`)− 1

apkp`

]
exp

( ∑
(k,`)∈P(t)

apkp`

)
, (4.13)
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for t ∈ Tord
m . Recall the (ordered) p-tree distribution from (4.4). Let T p

m be a sample
from Pord. Using L(·) to tilt this distribution results in the distribution

P?ord(t) := Pord(t) · L(t)

Eord[L(T p
m )]

, t ∈ Tord
m . (4.14)

In the algorithm below, all the objects depend on the tree t, but we often suppress
this dependence to ease notation.

Algorithm 2. Let G̃m(p, a) denote a random graph sampled from Pcon(·). This algorithm
gives a construction of G̃m(p, a), proved in [15]:

(S1) Tilted p-tree: Generate a tilted ordered p-tree T p,?
m with distribution (4.14).

Now consider the (random) objects P(v,T p,?
m ) for v ∈ [m] and the corresponding

(random) functions G(m)(·) on [m] and A(m)(·) on [0, 1].

(S2) Poisson number of possible surplus edges: Let P denote a rate-one Poisson
process on R2

+ and define

Ā(m) ∩ P :=
{

(s, t) ∈ P : s ∈ [0, 1], t ≤ Ā(m)(s)
}
. (4.15)

Write Ā(m) ∩ P := {(sj , tj) : 1 ≤ j ≤ N?
(m)} where N?

(m) = |Ā(m) ∩ P|. We next use the
set {(sj , tj) : 1 ≤ j ≤ N?

(m)} to generate pairs of points
{

(Lj ,Rj) : 1 ≤ j ≤ N?
(m)

}
in

the tree that will be joined to form the surplus edges.

(S3) First endpoints: Fix j and suppose sj ∈ (y∗(i − 1), y∗(i)] for some i ≥ 1, where
y∗(i) is as given right above (4.11). Then the first endpoint of the surplus edge
corresponding to (sj , tj) is Lj := v(i).

(S4) Second endpoints: Note that in the interval (y∗(i − 1), y∗(i)], the function Ā(m)

is of constant value aG(m)(v(i)). We will view this value or height as being parti-
tioned into sub-intervals of length apu for each u ∈ P(v(i),T p,?

m ), the collection of
endpoints of permitted edges emanating from Lk. (Assume that this partitioning
is done according to some preassigned rule, e.g., using the order of the vertices
in P(v(i),T p,?

m )). Suppose that tj belongs to the interval corresponding to u. Then
the second endpoint is Rj = u. Form an edge between (Lj ,Rj).

(S5) In this construction, it is possible that one creates more than one surplus edge
between two vertices. Remove any multiple surplus edges. This has vanishing
probability in our applications.

Definition 1. Consider the connected random graph G̃m(p, a), given by Algorithm 2,
viewed as a measured metric space via the graph distance and each vertex v is assigned
measure pv.

Lemma 4.2 ([15, Lemma 4.10]). The random graph G̃m(p, a) generated by Algorithm 2
has the same law as Pcon(·). Further, conditionally on T p,?

m , the following hold:

(a) N?
(m) has Poisson distribution with mean Λ(m)(T p,?

m ), where Λ(m) is as in (4.12).

(b) Conditionally on T p,?
m and N?

(m) = k, the first endpoints (Lj)j∈[k] can be generated
in an i.i.d. fashion by sampling from the vertex set [m] with probability distribution
J (m)(v) ∝ pvG(m)(v), v ∈ [m].

(c) Conditionally on T p,?
m , N?

(m) = k and the first endpoints (Lj)j∈[k], generate the
second endpoints in an i.i.d. fashion where conditionally on Lj = v, the probability
distribution of Rj is given by

Q(m)

v (y) :=

{∑
u pu1 {u ∈ RC(y, [ρ, v])} /G(m)(v) if y ∈ [ρ, v],

0 otherwise.
(4.16)
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Create an edge between Lj and Rj for 1 ≤ j ≤ k.

4.5 Inhomogeneous continuum random trees

In a series of papers [5, 6, 7] it was shown that p-trees, under various assumptions,
converge to inhomogeneous continuum random trees (ICRTs) that we now describe.
Recall from [34, 54] that a real tree is a metric space (T , d) that satisfies the following
for every pair a, b ∈ T :

(a) There is a unique isometric map fa,b : [0, d(a, b)] → T such that fa,b(0) = a and
fa,b(d(a, b)) = b.

(b) For any continuous one-to-one map g : [0, 1]→ T with g(0) = a and g(1) = b, we have
g([0, 1]) = fa,b([0, d(a, b)]).

Construction of the ICRT: Given β ∈ `2↓ \ `1↓ with
∑
i β

2
i = 1, we will now define

the inhomogeneous continuum random tree T β. We mainly follow the notation in [7].
Assume that we are working on a probability space (Ω,F ,Pβ) rich enough to support
the following:

(a) For each i ≥ 1, let Pi := (ξi,1, ξi,2, . . .) be rate βi Poisson processes that are inde-
pendent for different i. The first point of each process ξi,1 is special and is called a
joinpoint, while the remaining points ξi,j with j ≥ 2 will be called i-cutpoints [7].

(b) Independently of the above, let U = (U (i)

j )i,j≥1 be a collection of i.i.d uniform (0, 1)

random variables. These are not required to construct the tree but will be used to
define a certain function on the tree.

The random real tree (with marked vertices) T β
(∞) is then constructed as follows:

(i) Arrange the cutpoints {ξi,j : i ≥ 1, j ≥ 2} in increasing order as 0 < η1 < η2 < · · · .
The assumption that

∑
i β

2
i < ∞ implies that this is possible. For every cutpoint

ηk = ξi,j , let η∗k := ξi,1 be the corresponding joinpoint.

(ii) Next, build the tree inductively. Start with the branch [0, η1]. Inductively assuming
that we have completed step k, attach the branch (ηk, ηk+1] to the joinpoint η∗k
corresponding to ηk.

Write T β
0 for the corresponding tree after one has used up all the branches [0, η1],

{(ηk, ηk+1] : k ≥ 1}. Note that for every i ≥ 1, the joinpoint ξi,1 corresponds to a vertex
with infinite degree. Label this vertex i. The ICRT T β

(∞) is the completion of the marked

metric tree T β
0 . As argued in [7, Section 2], this is a real-tree as defined above which can

be viewed as rooted at the vertex corresponding to zero. We call the vertex corresponding
to joinpoint ξi,1 hub i.

The uniform random variables (U (i)

j )i,j≥1 give rise to a natural ordering on T β
(∞) (or

a planar embedding of T β
(∞)) as follows: For i ≥ 1, let (T (i)

j )j≥1 be the collection of
subtrees hanging off the i-th hub. Associate U (i)

j with the subtree T (i)

j , and think of T (i)

j1

appearing "to the right of" T (i)

j2
if U (i)

j1
< U (i)

j2
. This is the natural ordering on T β

(∞) when

it is being viewed as a limit of ordered p-trees. We can think of the pair (T β
(∞),U) as the

ordered ICRT.

4.6 Continuum limits of components

The aim of this section is to give an explicit description of the limiting (random)
metric spaces in Theorem 2.3. We start by constructing a specific metric space using
the tilted version of the ICRT in Section 4.6.1. Then we describe the limits of maximal
components in Section 4.6.3.
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P1

ξ11 ξ12 ξ13 ξ14 ξ15

P2

ξ21 ξ22 ξ23

P3

ξ31

P4

ξ41 ξ42

Figure 2: An illustration of the ICRT construction with four point process {Pi : 1 ≤ i ≤ 4}.
The red points represent the joinpoint of the corresponding point process and the blue
points the corresponding cutpoints. The last line contains the union of the four point
processes. See Figure 3 for the corresponding tree.

0 ξ21 ξ11 ξ22

ξ13

ξ12

ξ31

ξ23

ξ41

ξ42

ξ14 ξ15

Figure 3: The tree constructed via the stick-breaking construction from Figure 2.

4.6.1 Tilted ICRTs and vertex identification

Let (Ω,F ,Pβ) and T β
(∞) be as in Section 4.5. In [7], it was shown that one can asso-

ciate a natural probability measure µ, called the mass measure, to T β
(∞), satisfying

µ(L(T β
(∞))) = 1. Here we recall that L(·) denotes the set of leaves. Before moving

to the desired construction of the random metric space, we will need to define some
more quantities that describe the asymptotic analogues of the quantities appearing in
Algorithm 2. Similarly to (4.10), define G(∞)(y) =

∑
i≥1 βi

(∑
j≥1 U

(i)

j × 1{y ∈ T (i)

j }
)
.

It was shown in [15] that G(∞)(y) is finite for almost every realization of T β
(∞) and for

µ-almost every y ∈ T β
(∞). For y ∈ T β

(∞), let [ρ, y] denote the path from the root ρ to y. For
every y, define a probability measure on [ρ, y] as

Q(∞)

y (v) :=
βiU

(i)

j

G(∞)(y)
, if v is the i-th hub and y ∈ T (i)

j for some j. (4.17)

Thus, this probability measure is concentrated on the hubs on the path from y to the
root. Let γ > 0 be a constant. Informally, the construction goes as follows: We will first
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tilt the distribution of the original ICRT T β
(∞) using the exponential functional

L(∞)(T
β

(∞),U) := exp

(
γ

∫
y∈T β

(∞)

G(∞)(y)µ(dy)

)
(4.18)

to get a tilted tree T β,?
(∞) . We then generate a random but finite number N?

(∞) of pairs of
points {(xk, yk) : 1 ≤ k ≤ N?

(∞)} that will provide the surplus edges. The final metric space
is obtained by creating shortcuts by identifying the points xk and yk. The construction
mimics that of Algorithm 2. Formally the construction proceeds in four steps:

(a) Tilted ICRT: Define P?β on Ω by

dP?β
dPβ

=
exp

(
γ
∫
y∈T β

(∞)

G(∞)(y)µ(dy)
)

E
[

exp
(
γ
∫
x∈T β

(∞)

G(∞)(x)µ(dx)
)] . (4.19)

The expectation in the denominator is with respect to the original measure Pβ . Write

(T β,?
(∞) , µ

?) and U? = (U
(i),?
j )i,j≥1 for the tree and the mass measure on it, and the

associated random variables under this change of measure.

(b) Poisson number of identification points: Conditionally on ((T β,?
(∞) , µ

?),U?), gen-
erate N?

(∞) having a Poisson(Λ?(∞)) distribution, where

Λ?(∞) := γ

∫
y∈T β,?

(∞)

G(∞)(y)µ?(dy) = γ
∑
i≥1

βi

[∑
j≥1

U
(i),?
j µ?(T (i),?

j )

]
. (4.20)

Here, (T (i),?

j )j≥1 denotes the collection of subtrees of hub i in T β,?
(∞) .

(c) First endpoints (of shortcuts): Conditionally on (a) and (b), sample xk from T β,?
(∞)

with density proportional to G(∞)(x)µ?(dx) for 1 ≤ k ≤ N?
(∞).

(d) Second endpoints (of shortcuts) and identification: Having chosen xk, choose
yk from the path [ρ, xk] joining the root ρ and xk according to the probability measure

Q(∞)
xk

as in (4.17) but with U
(i),?
j replacing U (i)

j . (Note that yk is always a hub
on [ρ, xk].) Identify xk and yk, i.e., form the quotient space by introducing the
equivalence relation xk ∼ yk for 1 ≤ k ≤ N?

(∞).

Definition 2. Fix γ ≥ 0 and β ∈ `2↓ \ `1↓ with
∑
i β

2
i = 1. Let G(∞)(β, γ) be the metric

measure space constructed via the four steps above equipped with the measure inherited
from the mass measure on T β,?

(∞) .

4.6.2 Scaling limit for the component sizes and surplus edges

Let us describe the scaling limit results for the component sizes and the surplus edges
(#edges−#vertices+1) for the largest components of CMn(d, pn(λ)) from [31]. Although
we need to define the limiting object only for describing the limiting metric space, the
convergence result will turn out to be crucial in Section 7 in the proof of Theorem 2.3,
and therefore we state it here as well. Consider a decreasing sequence θ ∈ `3↓ \ `2↓.
Denote by Ii(s) := 1 {ζi ≤ s} where ζi ∼ Exp(θi) independently, and Exp(r) denotes the
exponential distribution with rate r. Consider the process

S̄λ∞(t) =

∞∑
i=1

θi (Ii(t)− θit) + λt, (4.21)
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for some λ ∈ R. Define the reflected version of S̄λ∞(t) by refl
(
S̄λ∞(t)

)
= S̄λ∞(t) −

inf0≤u≤t S̄λ∞(u). The processes of the form (4.21) were termed thinned Lévy processes
in [17] since the summands are thinned versions of Poisson processes. Let (Ξi(θ, λ))i≥1,
(ξi(θ, λ))i≥1, respectively, denote the vector of excursions and excursion-lengths of(

refl(S̄λ∞(t))
)
t≥0

, ordered according to the excursion lengths in a decreasing manner.
Using [31, Fact 1], there are no ties among the excursion lengths almost surely. Denote
the vector (ξi(θ, λ))i≥1 by ξ(θ, λ). The fact that ξ(θ, λ) is always well defined follows from
[4, Lemma 1]. Also, define the counting process of marks N to be a Poisson process that
has intensity refl

(
S̄λ∞(t)

)
at time t conditional on (refl

(
S̄λ∞(u)

)
)u≤t. We use the notation

Ni(θ, λ) to denote the number of marks within Ξi(θ, λ).
For a connected graphG, let SP(G) = #edges−#vertices+1 denote its surplus edges.

In the context of this paper, we simply write ξi, ξ and Ni respectively for ξi(θ/(µν), λ/µ),
ξ(θ/(µν), λ/µ) and Ni(θ/(µν), λ/µ).

Proposition 4.3 ([31, Theorem 4]). Under Assumption 2.1, as n→∞,(
n−ρ|C p

(i)(λ)|,SP(C p
(i)(λ))

)
i≥1

d−→
(1

ν
ξi,Ni

)
i≥1

, (4.22)

with respect to the topology on the product space `2↓ ×NN.

The limiting object in [31, Theorem 4] is stated in a slightly different form compared
to the right hand side of (4.22). However, the limiting objects are identical in distribution
with suitable rescaling of time and space, and by observing that rExp(r)

d
= Exp(1), where

Exp(r) denotes an exponential random variable with rate r (see Appendix A). In fact, the
arguments in Appendix A establish the following lemma which will be used extensively
in Section 7:

Lemma 4.3. For η1, η2 > 0, θ ∈ `3↓ \ `2↓ and λ ∈ R, ξ(η1θ, η2λ)
d
= 1

η1
ξ
(
θ, η2

η2
1
λ
)
.

4.6.3 Limiting component structures

We are now all set to describe the metric space Mi appearing in Theorem 2.3. Recall
the graph G∞(β, γ) from Definition 2. Using the notation of Section 4.6.2, write ξ∗i for
ξi((µ(ν − 1))−1θ, (µ(ν − 1)2)−1ν2λ) and Ξ∗i for the excursion corresponding to ξ∗i . Note
that ξ∗i has the same distribution as (ν − 1)ξi/ν, where ξi is as in Proposition 4.3. Then
the limiting space Mi is distributed as

Mi
d
=

ν

ν − 1

ξ∗i(∑
v∈Ξ∗i

θ2
v

)1/2G∞(θ(i), γ(i)), (4.23)

where θ(i) =
( θj∑

v∈Ξ∗
i
θ2
v

: j ∈ Ξ∗i
)

and γ(i) =
ξ∗i

µ(ν−1)

(∑
v∈Ξ∗i

θ2
v

)1/2
.

5 Universality theorem

In this section, we develop universality principles that enable us to derive the scaling
limits of the components for graphs that can be compared with the critical rank-one
inhomogeneous random graph in a suitable sense. For the scaling limits in the basin of
attraction of the Erdős-Rényi random graphs, such a universality theorem was proved in
[10, Theorem 6.4], which was applied to deduce the scaling limits of the components for
general inhomogeneous random graphs with a finite number of types and the configura-
tion model with an exponential moment condition on the degrees. Here we focus on the
universality class of the scaling limits in the heavy-tailed case. We first state the relevant
result from [15] that was used in the context of rank-one inhomogeneous random graphs
and then state our main result below. The convergence of metric spaces is with respect
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to the Gromov-weak topology, unless stated otherwise. Recall the measured metric
spaces G̃m(p, a) and G∞(β, γ) defined in Definitions 1 and 2.

Assumption 5.1. (i) Let σ(p) :=
(∑

i p
2
i

)1/2
. As m→∞, σ(p)→ 0, and pi/σ(p)→ βi

for each fixed i ≥ 1, where β = (βi)i≥1 ∈ `2↓ \ `1↓,
∑
i β

2
i = 1.

(ii) Recall a from (4.6). There exists a constant γ > 0 such that aσ(p)→ γ.

Theorem 5.2 ([15, Theorem 4.5]). Under Assumption 5.1, σ(p)G̃m(p, a)
d−→ G(∞)(β, γ), as

m→∞.

For each m ≥ 1, fix a collection of blobs Mm := {(Mi,di, µi) : i ∈ [m]}. Recall the
definition of super graphs from Section 4.2 and denote

G̃bl

m(p, a) = Γ(G̃m(p, a),p,Mm,X), (5.1)

where X = (Xij)i,j∈[m], Xij ∼ µi independently for each i. Moreover, X is independent

of the graph G̃m(p, a). Let ui := E[di(Xi, X
′
i)] where Xi, X

′
i ∼ µi independently and

Bm :=
∑
i∈[m] piui. Let ∆i := diam(Mi) and ∆max := maxi∈[m] ∆i.

Assumption 5.3 (Maximum inter-blob-distance). limm→∞
σ(p)∆max

Bm+1 = 0.

Theorem 5.4 (Universality theorem). Under Assumptions 5.1 and 5.3, as m→∞,

σ(p)

Bm + 1
G̃bl

m(p, a)
d−→ G(∞)(β, γ). (5.2)

Remark 5.5. Assumption 5.3 only assumes that the diameter of the blobs are negligible
compared to the graph distances in G̃bl

m(p, a). This, in a way, is a necessary condition to
ensure that the inherent structure of the blobs does not affect the limit. Theorem 5.4
shows that only Assumption 5.3 is also sufficient and additional assumptions as in [10,
Assumption 3.3] are not required to prove universality in the Gromov-weak topology.

The rest of this section is devoted to the proof of Theorem 5.4.

5.1 Completing the proof of the universality theorem in Theorem 5.4

To simplify notation, we write G̃m, G̃bl
m, respectively, instead of G̃m(p, a) and G̃bl

m(p, a).

Lemma 5.6 ([15, Lemma 4.11]). Recall the definition of N?
(m) from Algorithm 2. The

sequence of random variables (N?
(m))m≥1 is tight.

Recall the definition of Gromov-weak topology from Section 4.1. Fix some l ≥ 1

and take any bounded continuous function φ : Rl2 7→ R. We simply write Φ(X) for
Φ((X,d, µ)).

Key step 1 Let us write the scaled metric spaces as G̃s
m = σ(p)G̃m and G̃bl,s

m = σ(p)
Bm+1 G̃bl

m.
Using Theorem 5.2 it is enough to show that

lim
m→∞

∣∣E[Φ(G̃bl,s

m

)]
− E

[
Φ(G̃s

m)
]∣∣ = 0. (5.3)

The above step, together with Theorem 5.2, completes the proof of Theorem 5.4.

Key step 2 For any K ≥ 1, the difference
∣∣E[Φ(G̃s

m)
]
−∑K

k=0E
[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣ is

at most ‖φ‖∞P
(
N?

(m) ≥ K + 1
)
, and the same inequality also holds for G̃bl,s

m . Thus, using
Lemma 5.6, the proof of (5.3) reduces to showing that, for each fixed k ≥ 1,

lim
m→∞

∣∣∣E[Φ(G̃bl,s

m

)
1{N?

(m) = k}
]
− E

[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣∣ = 0. (5.4)
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Main aim of this section. Below, we define a function gkφ(·) on the space T
∗
IJ which

captures the behavior of pairwise distances after creating k surplus edges. Under
Assumption 5.3, we show that the introduction of blobs changes the distances within the
tilted p-trees and the gkφ values negligibly. This completes the proof of (5.4).

For any fixed k ≥ 0, consider t ∈ T ∗I,(k+l) with root 0+, leaves i = (1+, . . . , (k + l)+)

and root-to-leaf measures νt,i on the path [0+, i+] for all 1 ≤ i ≤ k+ l. We create a graph
G(t) by sampling, for each 1 ≤ i ≤ k, points is on [0+, i+] according νt,i and connecting
i+ with is. Let dG(t) denote the distance on G(t) given by the sum of edge lengths in the
shortest path. Then, the function gkφ : T ∗I,(k+l) 7→ R is defined as

gkφ(t) = E
[
φ
(
dG(t)(i+, j+) : k + 1 ≤ i, j ≤ k + l

)]
1 {t 6= ∂} , (5.5a)

where ∂ is a forbidden state defined as follows: Given any t ∈ T ∗IJ , and a set of vertices
v = (v1, . . . , vr), we denote by t(v), the subtree of t spanned by v, i.e., t(v) is the
subtree of t containing all vertices in v with minimal number of edges. We declare
t(v) = ∂ if [ρ, vi] ⊂ [ρ, vj ] for some i 6= j, where ρ is the root of t. Thus, if t(v) 6= ∂,
the tree t(v) necessarily has r leaves. Notice that the expectation in (5.5a) is over the
choices of is-values only. In our context, t is always considered as a subgraph of the
graph on the vertex set [m] and thus we assume that t has inherited the labels from the
corresponding graph. Thus t ∈ T ∗mI,(k+l). There is a natural way to extend gkφ(·) to T

∗m
I,(k+l)

as follows: Consider t̄ ∈ T ∗mI,(k+l) and the corresponding t ∈ T ∗mI,(k+l) (see Section 4.3.3).
Let 0+, i, (νt,i)i∈[k+l] and (is)i∈[k+l] be as defined above. Let Ḡ(t̄) denote the metric
space obtained by introducing an edge of length one between Xi+is and Xisi+, where
Xij has distribution µi for all j ≥ 1, independently of each other and other shortcuts.
For k + 1 ≤ i ≤ k + l, Xi ∈Mxi have distribution µxi independently for all i ≥ 1. Let d̄Ḡ(t̄)

denote the distance on Ḡ(̄t). Then, let

gkφ(t̄) = E
[
φ
(
d̄Ḡ(t̄)(Xi, Xj) : k + 1 ≤ i, j ≤ k + l

)]
1 {t 6= ∂} , (5.5b)

where the expectation is taken over the collection of random variables Xi+is and Xisi+.
At this moment, we urge the reader to recall the construction in Algorithm 2, Lemma 4.2
and all the associated notations. Now, conditionally on T p,?

m , we can construct the tree
T p,?
m (Ṽk,k+l

m ), where

(a) Ṽk,k+l
m = (Ṽ1, . . . , Ṽk, Vk+1, . . . , Vk+l) is an independent collection of vertices from the

vertex set of T p,?
m ;

(b) Ṽi is distributed as J (m)(·), for 1 ≤ i ≤ k and Vi is distributed as p, for k+1 ≤ i ≤ k+l.

Note that, by [15, (4.25)], limm→∞P(T p,?
m (Ṽk,k+l

m ) = ∂) = 0. Whenever T p,?
m (Ṽk,k+l

m ) 6=
∂, T p,?

m (Ṽk,k+l
m ) can be considered as an element of T ∗mI,k+l using the leaf-weights

(G(m)(Ṽi))
k
i=1, (G(m)(Vi))

k+l
i=k+1 and root-to-leaf measures given by (Qm

Ṽi
(·))ki=1, (QmVi(·))

k+l
i=k+1.

Let T̄ p,?
m (Ṽk,k+l

m ) denote the element corresponding to T p,?
m (Ṽk,k+l

m ) with blobs. Thus,
T̄ p,?
m (Ṽk,k+l

m ) is viewed as an element of T
∗m
I,(k+l). Let Vm = (V1, . . . , Vk+l) be an i.i.d. col-

lection of random variables with distribution p. Let Ep,? denote the expectation condi-
tionally on T p,?

m and N?
(m). The proof of (5.4) now reduces to∣∣∣E[Φ(G̃bl,s

m

)
1{N?

(m) = k}
]
− E

[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣∣
=

∣∣∣∣E[Ep,?

[
gkφ

( σ(p)

Bm + 1
T̄ p,?
m (Ṽk,k+l

m )
)]

1
{
N?

(m) = k
} ]

− E
[
Ep,?

[
gkφ
(
σ(p)T p,?

m (Ṽk,k+l
m )

)]
1
{
N?

(m) = k
} ]∣∣∣∣+ o(1).

(5.6)
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Notice that the tilting does not affect the blobs themselves but only the superstructure.
Recall also the definition of the tilting function L(·) from (4.13). Using the fact that
J (m)(v) ∝ pvG(m)(v),

Ep,?

[
gkφ
(
σ(p)T p,?

m (Ṽk,k+l
m )

)]
=
Ep,?

[∏k
i=1 G(m)(Vi)g

k
φ

(
σ(p)T p,?

m (Vm)
)](

Ep,?[G(m)(V1)]
)k . (5.7)

and an identical expression holds by replacing σ(p)T p,?
m by σ(p)

Bm+1 T̄ p
m . Denote the expec-

tation conditionally on T p
m and N(m) by Ep and simply write T̄ p,s

m , T p,s
m for σ(p)

Bm+1 T̄ p
m (Vm),

σ(p)T p
m (Vm) respectively. Now, (5.6) simplifies to∣∣∣E[Φ(G̃bl,s

m

)
1{N?

(m) = k}
]
− E

[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣∣
≤ 1

E [L(T p
m )]

∣∣∣∣E[Ep

[∏k
i=1 G(m)(Vi)g

k
φ

(
T̄ p,s
m

)](
Ep[G(m)(V1)]

)k L(T p
m )1 {N(m) = k}

]

− E
[
Ep

[∏k
i=1 G(m)(Vi)g

k
φ

(
T p,s
m

)](
Ep[G(m)(V1)]

)k L(T p
m )1 {N(m) = k}

]∣∣∣∣.
(5.8)

Proposition 5.7. As m→∞,
∣∣gkφ(T̄ p,s

m

)
− gkφ

(
T p,s
m

)∣∣ P−→ 0.

We first show that it is enough to prove Proposition 5.7 to complete the proof of (5.8),
but before that we first need to state some results. The proofs of Facts 5.9 and 5.10 below
are elementary and we omit the proof here. The proof of Proposition 5.7 is deferred to
Section 5.2.

Lemma 5.8 ([15, Proposition 4.8, Theorem 4.15]). (L(T p
m ))m≥1 is uniformly integrable.

Also, for each k ≥ 0, the quantity(
Ep

[
G(m)(V1)

σ(p)

]
, Ep

[( k∏
i=1

G(m)(Vi)

σ(p)

)
gkφ
(
T p,s
m

)])
(5.9)

converges in distribution to some random variable.

Fact 5.9. Consider three sequences of random variables (Xm)m≥1, (Ym)m≥1 and (Y ′m)m≥1

such that (i) (Xm)m≥1 is uniformly integrable, (ii) (Ym)m≥1 and (Y ′m)m≥1 are almost surely

bounded and (iii) Ym − Y ′m
P−→ 0. Then, as m→∞, E [|XmYm −XmY

′
m|]→ 0.

Fact 5.10. Suppose that (Xm)m≥1 is a sequence of random variables such that for every
m ≥ 1, there exists a further sequence (Xm,r)r≥1 satisfying (i) for each fixed r ≥ 1,

Xm,r
P−→ 0 as m→∞, and (ii) limr→∞ lim supm→∞P(|Xm −Xm,r| > ε) = 0 for any ε > 0.

Then Xm
P−→ 0 as m→∞.

Proof of (5.8) from Proposition 5.7. We apply Fact 5.9 with Xm = L(T p
m )1 {N(m) = k},

which is uniformly integrable by Lemma 5.8. Thus it is enough to show that∣∣∣∣Ep

[∏k
i=1 G(m)(Vi)g

k
φ

(
T̄ p,s
m

)](
Ep[G(m)(V1)]

)k −
Ep

[∏k
i=1 G(m)(Vi)g

k
φ

(
T p,s
m

)](
Ep[G(m)(V1)]

)k ∣∣∣∣ P−→ 0. (5.10)

Applying Lemma 5.8 again, the above reduces to showing

Ep

[( k∏
i=1

G(m)(Vi)

σ(p)

)(
gkφ
(
T̄ p,s
m

)
− gkφ

(
T p,s
m

))] P−→ 0. (5.11)

We now apply Fact 5.10. Let Ym denote the term inside the expectation in (5.11).
Further, sample the set of leaves Vm independently r times on the same tree T p

m and
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let Y im denote the observed value of Ym in the i-th sample. Now, let Xm = Ep[Ym]

and Xm,r = r−1
∑r
i=1 Y

i
m. First, to verify condition (ii), note that Ep(Xm,r) = Xm and

therefore Chebyshev’s inequality yields

P (|Xm −Xm,r| > ε) ≤ E[X2
m]

ε2r
≤ 4‖φ‖2∞

ε2r

E
[
G(m)(V1)2k

]
σ(p)2k

. (5.12)

By (4.11), ‖G(m)‖∞ ≤ ‖A(m)‖∞, and thus an application of [15, Lemma 4.9, (4.12)] yields
that for any x ≥ e and m ≥ 1,

P(‖G(m)‖∞ ≥ xσ(p)) ≤ e−Cx log(log x), (5.13)

where C > 0 is a constant. Combining (5.12) and (5.13), the condition (ii) is verified.
Next, condition (i) in Fact 5.10 is satisfied by Proposition 5.7 and (5.13). An application
of Fact 5.10 concludes the proof of (5.11), and hence the proof of (5.8) follows.

5.2 Comparing distances with and without blobs: Proof of Proposition 5.7

In this section, we will use the notion of Gromov-Hausdorff-Prokhorov topology on
the collection of measured metric spaces (X,d, µ), where (X,d) is a compact metric
space and µ is a probability measure on corresponding Borel sigma algebra. Without
re-defining all the required notions, we refer the reader to [15, Section 2.1.1]. Let dGHP

denote the distances in this topology. We further recall the notation dis for distortion
and D(µ;µ1, µ2) for discrepancy of measures as defined in [15, Section 2.1.1]. Denote
the root of T p

m (Vm) by 0+ and the jth leaf by j+. Let Mm
j :=

(
[0+, j+],d, νj

)
be the

(random) measured metric space, where νj is any probability measure on the Borel
sigma-algebra of {[0+, j+],d}. In particular, we can take νj ’s to be the corresponding
root-to-leaf measures. Let M̄m

j := {M̄j , d̄, ν̄j} be the measured metric space with M̄j :=

ti∈[0+,j+]Mi and the induced root-to-leaf measure ν̄j(A) =
∑
i∈[0+,j+] νj({i})µi(A ∩Mi).

For convenience, we have suppressed the dependence on T p
m (Vm) in the notation. Note

that Mm
j is coupled to M̄m

j in the obvious way that the superstructure of M̄m
j is given

by Mm
j . We need the following lemma to prove Proposition 5.7:

Lemma 5.11. For j ≥ 1, as m→∞, dGHP

(
σ(p)Mm

j ,
σ(p)
Bm+1M̄m

j

) P−→ 0.

Proof. We prove this for j = 1 only. The proof for j ≥ 2 is identical. For x ∈ M̄1, we
denote its corresponding vertex label by i(x), i.e., i(x) = k if and only if x ∈Mk. Consider
the correspondence Cm and the measure m on the product space [0+, 1+]× M̄1 defined
as

Cm := {(i, x) : i ∈ [0+, 1+], x ∈Mi}, m({i} ×A) = ν1({i})µi(A ∩Mi). (5.14)

Note that the discrepancy of m satisfies D(m; ν1, ν̄1) = 0, since the marginals are exactly
equal to ν1 and ν̄1. Further, m(Ccm) = 0. Therefore, Lemma 5.11 follows if we can prove
that

dis(Cm) := sup
x,y∈M̄1

{
σ(p)d(i(x), i(y))− σ(p)

Bm + 1
d̄(x, y)

}
P−→ 0. (5.15)

To simplify the expression for dis(Cm), suppose that i(x) is an ancestor of i(y) on the
path from 0+ to 1+. Then,

d(i(x), i(y)) = d(0+, i(y))− d(0+, i(x)),

d̄(x0, y)− d̄(x0, x) ≤ d̄(x, y) ≤ d̄(x0, y)− d̄(x0, x) + 2∆max,
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for any x0 ∈M0+. This implies that

sup
x,y∈M̄1

{
σ(p)d(i(x), i(y))− σ(p)

Bm + 1
d̄(x, y)

}
≤ 2 sup

y∈M̄1

{
σ(p)d(0+, i(y))− σ(p)

Bm + 1
d̄(x0, y)

}
+

2σ(p)∆max

Bm + 1
.

(5.16)

Further, replacing y by any other point y′ in the right hand side in (5.16) incurs an error
of at most σ(p)∆max/(Bm + 1). Now, write the path [0+, 1+] as 0+ = i0 → i1 → · · · →
iR∗−2 → iR∗−1 = 1 + . Then

dis(Cm) ≤ 2 sup
k≤R∗−1

∣∣∣σ(p)d(i0, ik)− σ(p)

Bm + 1
d̄(Xi0,i1

, Xik,ik+1
)
∣∣∣+

6σ(p)∆max

Bm + 1
, (5.17)

where (Xi,j)i,j∈[m] are the junction-points. Using Assumption 5.3 and (5.17), it is now
enough to show that for any ε > 0,

lim
m→∞

P

(
sup

k≤R∗−1

∣∣∣σ(p)d(i0, ik)− σ(p)

Bm + 1
d̄(Xi0,i1

, Xik,ik+1
)
∣∣∣ > ε

)
= 0. (5.18)

Denote the term inside sup above by Qk. Then,

Qk :=

[
σ(p)d(i0, ik)− σ(p)

Bm + 1
d̄
(
Xi0,i1

, Xik,ik+1

)]
=

[
σ(p)k − σ(p)

Bm + 1

(
k +

k∑
j=1

dij
(
Xij ,ij−1

, Xij ,ij+1

))]

=
σ(p)

Bm + 1

[ k∑
j=1

(
Bm − dij

(
Xij ,ij−1

, Xij ,ij+1

))]
.

(5.19)

Recall the construction of the path [0+, 1+] via the birthday problem from Section 4.4.1.
Take J := (Ji)i≥1 such that Ji are an i.i.d. sample from p. Further let ξ := (ξi)i∈[m] be an
independent sequence such that ξi is the distance between two points, chosen randomly
from Mi according to µi. Further, let J and ξ be independent. Then R∗ can be thought
of as the first repeat time of the sequence J. Thus, (Qk)R

∗−1
k=1 in (5.19) has the same

distribution as (Q̂k)R
∗−1

k=1 , where

Q̂k :=
σ(p)

Bm + 1

k∑
i=1

(
Bm − ξJi

)
. (5.20)

From the birthday construction E [ξJ1
] =

∑
i∈[m] piui = Bm and (ξJi)i≥1 is an independent

sequence. Therefore, (Q̂k)k≥0 is a martingale. Further,

Var(Q̂k) ≤
(

σ(p)

Bm + 1

)2

k∆max

∑
i∈[m]

piui =
σ(p)2k∆maxBm

(Bm + 1)2
. (5.21)

Thus, by Doob’s inequality (for example applying [61, Chapter II, Lemma 54.5] to Q̂2
k), it

follows that, for any ε > 0 and T > 0,

P

(
sup
k≤T
|Q̂k| > ε

)
≤ Tσ(p)2∆maxBm

(Bm + 1)2ε2
. (5.22)

Recall from [25, Theorem 4] that (σ(p)R∗)m≥1 is a tight sequence of random variables.
The proof now follows using Assumption 5.3.
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Proof of Proposition 5.7 using Lemma 5.11. We use the objects defined in (5.14), (5.15)
in the proof of Lemma 5.11 for all the path metric spaces with j ≤ k. We assume
that we are working on a probability space such that the convergence (5.15) holds
almost surely for all j ≤ k. To summarize, for fixed ε > 0 and for each j ≤ k, we can
choose a correspondence Cjm and a measure mj of [0+, j+]× M̄j satisfying (i) (i,Xik) ∈
Cjm, for all i, k ∈ [0+, j+], (ii) dis(Cjm) < ε/2k almost surely, and (iii) D(mj ; νj , ν̄j) = 0

and mj((C
j
m)c) = 0. Recall the definitions of the function gkφ from (5.5a), (5.5b) and

the associated graphs G(·), Ḡ(·). We simply write G and Ḡ for G(σ(p)T p
m (Vm)) and

Ḡ( σ(p)
Bm+1 T̄ p

m (Vm)), respectively. Let m⊗k denote the k-fold product measure of mj for
j ≤ k. We denote the graph distance on a graph H by dH . Note that∣∣∣gkφ(σ(p)T p

m (Vm)
)
− gkφ

( σ(p)

Bm + 1
T̄ p
m (Vm)

)∣∣∣
≤ E

[∣∣φ((dG(i+, j+))k+l
i,j=k+1

)
− φ

(
(dḠ(Xi, Xj))

k+l
i,j=k+1

)∣∣], (5.23)

where Xi ∼ µi independently for i ∈ [m], and the above expectation is with respect to
the measure m⊗k. Recall the notation while defining gkφ(·) in (5.5a), (5.5b). Notice that
for any point k ∈ [0+, i+] and xk ∈Mk and xis ∈Mis ,

|dt(k, is)− dt̄(xk, xis)| ≤
ε

2k
. (5.24)

Now, for any path i+ to j+ in G, we can essentially take the same path from Xi to Xj

in Ḡ and take the corresponding inter-blob paths on the way. The distance traversed
in Ḡ in this way gives an upper bound on dḠ(Xi, Xj). Notice that, by (5.24), taking a
shortcut contributes at most ε/2k to the difference of the distance traveled in G and Ḡ.
Also, traversing a shortcut edge contributes σ(p)Bm/(Bm + 1) and there are at most k
shortcuts on the path. Furthermore, it may be required to reach the relevant junction
points from Xi and Xj and that contributes at most 2σ(p)∆max/(Bm + 1). Thus, for
k + 1 ≤ i, j ≤ k + l, and sufficiently large m,

dḠ(Xi, Xj) ≤ dG(i+, j+) +
ε

2
+
kσ(p)Bm
Bm + 1

+
2σ(p)∆max

Bm + 1
≤ dG(i+, j+) + ε. (5.25)

By symmetry we can conclude the lower bound also, and the continuity of φ(·) (see [15,
Theorem 4.18]) along with (5.23) completes the proof of Proposition 5.7.

6 Mesoscopic properties: Proofs of Theorems 2.10 and 2.11

At this moment, we urge the reader to recall the definitions from (2.9), (2.10), (2.11),
and (2.12). The configuration model graphs considered in this section will be assumed
to have degree sequence d′ and the vertices have an associated weight sequence w such
that Assumption 2.9 is satisfied. We use the notation C,C ′ to denote generic positive
constants, whose values can be different in different lines. The rest of the section is
organized as follows. In Section 6.1, we start by proving the required bound on the
diameter in Theorem 2.11. In order to deal with the different terms in Theorem 2.10, we
first obtain some moment estimates in Section 6.2, and these estimates are then used to
prove asymptotics of s?2 in Section 6.3. The individual component weights are estimated
in Section 6.4. In Section 6.5, we prove asymptotics of s?3, and finally the mesoscopic
typical distance is computed in Section 6.6.

6.1 Maximum diameter: Proof of Theorem 2.11

Let `′n =
∑
i∈[n] d

′
i. We will use path-counting estimates for the configuration model

from [48, Lemma 5.1]. Let Pl denote the number of paths of length l in CMn(d′). Then
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[48, Lemma 5.1] shows that for any l ≥ 1

E[Pl] ≤ `′n(ν′n)l−1. (6.1)

If the maximum diameter is at least nδ(log n)2, then there exists a path of length
nδ(log n)2, and therefore

P(∆max > nδ(log n)2) ≤
∑

l≥nδ(logn)2

E [Pl] ≤
`′n(ν′n)n

δ(log(n))2

1− ν′n
≤ Cn1+δe−C

′(logn)2

, (6.2)

where the second step follows using (6.1). Thus the proof of Theorem 2.11 follows.

6.2 Moment bounds for total weights

Consider the size-biased distribution on the vertex set [n] with sizes (wi)i∈[n]. Let
Vn and V ∗n , respectively, denote a vertex chosen uniformly at random and according
to the size-biased distribution with respect to the sizes (wi)i∈[n], independently of the
underlying graph CMn(d′). Let D′n, Wn (respectively D∗n, W ∗n) denote the degree and
weight of Vn (respectively V ∗n ). For a vertex v ∈ [n], let W (v) :=

∑
k∈C ′(v) wk, where C ′(v)

denotes the component of CMn(d′) containing v. The reader should note the difference
in notation that terms such as Wi, C ′i with i in the subscript refer to the quantities defined
in (2.10).

In this section, we prove the following moment bounds for W (V ∗n ), which will help us
compute the expectation and variance of s?2:

Lemma 6.1. Under Assumption 2.9, the following holds:

(i) E [W (V ∗n )] =
E[D∗n]E[D′nWn]
E[D′n](1−ν′n) (1 + o(1)),

(ii) E
[(

W (V ∗n )
)2] ≤ E[D∗n](E[D′nWn])2σ3(n)

(E[D′n])2(1−ν′n)3 (1 + o(1)), where σ3(n) = 1
`′n

∑
k∈[n] d

′
k(d′k −

1)(d′k − 2),

(iii) E
[(

W (V ∗n )
)3]

= o(n1+2δ).

Proof of Lemma 6.1 (i). We use path-counting techniques for configuration models from
[48, Lemma 5.1]. Let Il(v, k) denote the collection of x = (xi)0≤i≤l such that x0 = v,
xl = k and xi’s are distinct. Then, an identical argument to the proof of [48, Lemma 5.1]
shows that, for any l ≥ 1, the expected number of paths of length exactly l starting from
vertex v and ending at k is given by

∑
x∈Il(v,k)

d′x0
d′xl
∏l−1
i=1 d

′
xi(d

′
xi − 1)

(`′n − 1) · · · (`′n − 2l + 1)
≤ d′v`

′
n

`′n − 2l + 3
ν′l−1
n =

(
1 +O

( l
n

))
d′vν
′l−1
n , (6.3)

where the last step holds for l = o(n). Let Al(v, k) denote the event that there exists a
path of length l from v to k and let A′l(v, k) denote the event that there exist two different
paths from v to k, one of length l and another one of length at most l − 1. Notice that

E [W (V ∗n )|V ∗n = v] = E

[ ∑
k∈[n]

wk1 {v ; k}
]
≤ wv +

∑
l≥1

∑
k∈[n]

wkP (Al(v, k)) , (6.4a)

E [W (V ∗n )|V ∗n = v] ≥
∑
l≥1

∑
k∈[n]

wkP (Al(v, k))−
∑
l≥1

∑
k∈[n]

wkP (A′l(v, k)) . (6.4b)
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Now, using (6.3) and Assumption 2.9, (6.4a) yields

E [W (V ∗n )|V ∗n = v]

≤ wv +

nδ(logn)2∑
l=1

∑
k∈[n]

wk
∑

x∈Il(v,k)

d′x0
d′xk

∏l−1
i=1 d

′
xi(d

′
xi − 1)

(`′n − 1) · · · (`′n − 2l + 1)
+ C`wnn

1+δe−C
′(logn)2

≤ wv + (1 + o(1))
d′vE [D′nWn]

E [D′n]

∞∑
l=1

ν′l−1
n + o(1),

(6.5)

where in the second step we have used (6.2) and (6.3), and in the last step, we have used
the facts that `′n = nE[D′n] and

∑
k∈[n] d

′
kwk = nE[D′nWn]. Thus,

E [W (V ∗n )] ≤ E [D∗n]E [D′nWn]

E [D′n] (1− ν′n)
(1 + o(1)), (6.6)

where the multiplicative (1 + o(1)) term in the final expression comes observing that
(1− ν′n)−1 = Θ(nδ), and limn→∞E[W ∗n ] <∞. For the computation of the lower bound in
(6.4b), we note that

P(Al(v, k)) ≥ P(∃ a unique path of length l from v to k)

=
∑

x∈Il(v,k)

P(x is the unique path between v and k)

≥
∑

x∈Il(v,k)

P(x is a path from v and k)

−
∑

x∈Il(v,k)

P(∃y ∈ Il(v, k) \ {x} : x,y both create paths from v and k),

(6.7)

where the final step follows from using the inclusion-exclusion principle. Also, the first
term inside the sum in (6.3) is the probability that x = (x0, . . . , xl) creates a path for
some x. Thus,

P(Al(v, k)) ≥
∑

x∈Il(v,k)

d′x0
d′xk

∏l−1
i=1 d

′
xi(d

′
xi − 1)

(`′n − 1) · · · (`′n − 2l + 1)

−
∑

x∈Il(v,k)

P(∃y ∈ Il(v, k) \ {x} : x,y both create paths from v and k).

(6.8)

If we have two distinct paths, one being x, and another of length at most l (say y),
then there must be two distinct vertices a, b in x such that the path between a, b on
x is disjoint from that of y. Depending on the choices of a, b, one of the structures in
Figure 4 occurs. Let r be the length of the path between a, b that is disjoint of x. Denote
by A′l(v, k,x, i) the event that the structure of type i (i=I, II, III, IV) in Figure 4 appears,
where x ∈ Il(v, k). Using an argument identical to (6.5), and applying Assumption 2.9, it
follows that

nδ(logn)2∑
l=1

∑
k∈[n]

wk
∑

x∈Il(v,k)

(l − 1)(l − 2)P (A′l(v, k,x, I))

≤ Cd′vE [D′nWn]
∑
l≥1

∑
r≥1

σ3(n)2

`′n
(l − 1)(l − 2)ν′l+r−4

n

≤ C d
′
vn

6α−3

1− ν′n
∑
l≥3

(l − 1)(l − 2)ν′l−3
n ≤ C d′vn

6α−3

(1− ν′n)4
= o(d′vn

δ),

(6.9a)
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V ∗
n

k

Type I

V ∗
n

k

Type II

V ∗
n

k

Type III

V ∗
n

k

Type IV

Figure 4: Possible structures for two distinct paths from V ∗n to k.

where the (l − 1)(l − 2) factor is due to the possible choices of a, b, σ3(n)2 is due to the
two branch points for which three half-edges needs to be paired, and in the last step we
have used the fact 6α − 3 + 3δ < 6α − 3 + 3η = 0 since δ < η. Similarly, with b = k, we
get the Type-II structures in Figure 4, and thus

nδ(logn)2∑
l=1

∑
k∈[n]

wk
∑

x∈Il(v,k)

(l − 1)P (A′l(v, k,x, II))

≤ Cd′vσ3(n)

(
1

`′2n

∑
k∈[n]

wkd
′
k(d′k − 1)

)∑
l≥1

∑
r≥1

(l − 1)(ν′n)l+r−3

≤ C d′vn
6α−3

(1− ν′n)3
= o(d′vn

δ),

(6.9b)

Again,

nδ(logn)2∑
l=1

∑
k∈[n]

wk
∑

x∈Il(v,k)

(l − 1)P (A′l(v, k,x, III))

≤ Cd′v(d′v − 1)σ3(n)

(
1

`′2n

∑
k∈[n]

wkd
′
k

)∑
l≥1

∑
r≥1

(l − 1)(ν′n)l+r−3

≤ C d′2v n
6α−3

n3α−1(1− ν′n)3
= o(d′2v n

δ+1−3α),

(6.9c)

and

nδ(logn)2∑
l=1

∑
k∈[n]

wk
∑

x∈Il(v,k)

P (A′l(v, k,x, IV))

≤ Cd′v(d′v − 1)

(
1

`′2n

∑
k∈[n]

wkd
′
k(d′k − 1)

)∑
l≥1

∑
r≥1

(ν′n)l+r−2

≤ C d′2v n
6α−3

n3α−1(1− ν′n)2
= o(d′2v n

δ+1−3α).

(6.9d)

Taking expectations with respect to V ∗n , all the terms in (6.9a), (6.9b), (6.9c) and (6.9d)
are o(nδ), where we use that E[(D∗n)2] = O(n3α−1). Note that the estimates in (6.9a),
(6.9b), (6.9c) and (6.9d) can be used to upper bound P(A′l(v, k)) in (6.4b) as well. To
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compute the leading contribution to (6.4b), using (6.2) and (6.8), we lower bound

d′v

nδ(logn)2∑
l=1

∑
k∈[n]

wk
∑

x∈Il(v,k)

1

`′l−1
n

l−1∏
i=1

d′xi(d
′
xi − 1)d′k + o(1)

≥ d′vE [D′nWn]

E [D′n]

nδ(logn)2∑
l=1

(
ν′l−1
n − d′1n

δ(log n)2

`′l−1
n

( ∑
i∈[n]

d′i(d
′
i − 1)

)l−2)
+ o(1)

=
d′vE [D′nWn] (1− (ν′n)n

δ(logn)2

)

E [D′n] (1− ν′n)
(1 + o(1)) =

d′vE [D′nWn]

E [D′n] (1− ν′n)
(1 + o(1)),

(6.10)

where we have used the fact that d′1l ≤ d′1nδ(log n)2 and inclusion-exclusion to obtain the

third step, and (2.9), d′1n
η/`′n = c1/µd(1 + o(1)) and the fact (ν′n)n

δ(logn)2 ≤ e−C(logn)2

=

o(1) in the last step. Thus, it follows that

E [W (V ∗n )] ≥ E [D∗n]E [D′nWn]

E [D′n] (1− ν′n)
(1 + o(1)), (6.11)

and the proof of Lemma 6.1 (i) is now complete using (6.6).

Remark 6.2. It may be worthwhile to point out that the upper bound (6.6) holds for any
configuration model satisfying ν′n < 1− n−ε0 for some ε0 > 0 and

∑
i∈[n] w

2
i = O(n). The

rest of Assumption 2.9 is not required in the proof of this upper bound.

Proof of Lemma 6.1 (ii). Note that(
W (V ∗n )

)r
=

∑
k1,...,kr∈[n]

wk1
· · ·wkr1 {V ∗n ; k1, . . . , V

∗
n ; kr} = Dn(V ∗n , r) + En(V ∗n , r),

(6.12)

where

Dn(V ∗n , r) :=
∑

k1,...,kr∈[n]
V ∗n ,k1,...,kr distinct

wk1
· · ·wkr1 {V ∗n ; k1, . . . , V

∗
n ; kr} .

(6.13)

Let us formulate a general upper bound on E[Dn(V ∗n , r)] using similar computations as in
(6.6). Note that if V ∗n ; ki for all i ∈ [r], then we must have a tree T with V ∗n as root and
(ki)i∈[r] as leaves. Let us “collapse” all the degree-two vertices in T except V ∗n . More
precisely, we sequentially take a degree-two vertex (except V ∗n ), delete it, and create an
edge between its neighbors. Denote the obtained tree by T ′ = (V(T ′),E(T ′)). Thus, T ′

can be thought of as a rooted tree with V ∗n being its root, and (ki)i∈[r] being its leaves.
Also, T ′ does not have any degree two vertices except possibly V ∗n . Further, note that
r + 1 ≤ |V(T ′)| ≤ 2r, and thus r ≤ |E(T ′)| ≤ 2r − 1. Let mi(T

′) denote the number of
degree-i vertices in T ′ and let d0(T ′) be the degree of V ∗n in T ′.

Let le be the number of edges that are collapsed to create e ∈ E(T ′). In that case,
exactly le − 1 degree-two vertices get collapsed in T ′. Using (6.2), we can restrict
ourselves to the case le ≤ nδ(log n)2, and the error due to such a restriction is given
by (`wn )rn1+δe−C

′(logn)2

. For each T ′ described above, i half-edges of V ∗n = v are being

paired, for which there are
∏d0(T ′)
i=1 (d′v − i+ 1) possible ways. Moreover, the number of

choices of the r distinct leaves (ki)i∈[r] gives rise to the factor
(∑

k∈[n] d
′
kwk

)r
in the path

counting. Define

Qn(T ′) :=
∏
j≥3

(σj(n))mj(T
′)−1{j=d0(T ′)}, Rn(T ′) :=

∑
(l1,...,l|E(T ′)|):

1≤le≤nδ(logn)2

(ν′n)
∑|E(T ′)|
e=1 (le−1).

(6.14)
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V ∗
n

k1 k2

Type I

V ∗
n

k1 k2

Type II

Figure 5: Possible paths when V ∗n ; k1, and V ∗n ; k2.

Note that Qn(T ′) gives the contribution due to the pairing of the half-edges of the vertices
in V(T ′)\{V ∗n , k1, . . . , kr}, and Rn(T ′) is the total contribution due to degree-two vertices
of possible trees T that could give rise to T ′ after collapsing. Thus,

E
[
Dn(V ∗n , r)|V ∗n = v

]
≤ (1 + o(1))

∑
T ′

d0(T ′)∏
i=1

(d′v − i+ 1)

×
(

1

`′n

∑
k∈[n]

d′kwk

)r
Qn(T ′)Rn(T ′) + C(`wn )rn1+δe−C

′(logn)2

,

(6.15)

for constants C,C ′ > 0.
Let us now apply (6.12) and (6.15) for the special case r = 2. Figure 5 describes the

possible structures T ′. Application of (6.15) yields

E
[
Dn(V ∗n , 2)

]
≤
E [D∗n] (

∑
k∈[n] d

′
kwk)2σ3(n)

`′2n (1− ν′n)3
+
E [D∗n(D∗n − 1)] (

∑
k∈[n] d

′
kwk)2

`′2n (1− ν′n)2
. (6.16)

The two terms are O(n3α+3δ−1) and O(n3α+2δ−1) respectively. Also,

E
[
En(V ∗n , 2)

]
≤ E

[
(W ∗n)2

]
+ 2E[W ∗nW (V ∗n )] + E

[ ∑
k∈[n]

w2
k1 {V ∗n ; k}

]
, (6.17)

where the first term is due to V ∗n = k1 = k2, the second term is due to V ∗n = k1 but
V ∗n 6= k2 or V ∗n = k2 but V ∗n 6= k1, while the third term due to k1 = k2 but V ∗n 6= k1. The
three terms are respectively O(n3α−1), O(n3α+δ−1) and O(n3α+δ−1), where we have used
(6.5) to compute the second term, and an analogous computation as in (6.5) to compute
the final term (replacing wk by w2

k in (6.5)). This proves our required upper bound that

E
[(

W (V ∗n )
)2] ≤ (1 + o(1))

E [D∗n] (E [D′nWn])2σ3(n)

(E [D′n])2(1− ν′n)3
. (6.18)

Proof of Lemma 6.1 (iii). We again use (6.12) and (6.15). For the third moment, the
leading contributions to E[Dn(V ∗n , 3)] arise from one of the structures given in Figure 6.
We will use the fact that E[(D∗n)r−1], σr(n) = O(nrα−1) for r ≥ 3. The contributions on
E[Dn(V ∗n , 3)] due to the first type of tree in Figure 6 are upper bounded by

Cσ3(n)2

(1− ν′n)5
= O(n6α−2+5δ) = O(n1+2δ+(6α−3+3δ)) = o(n1+2δ), (6.19)

where in the last step we have used the fact that 6α−3+δ < 6α−3+1−2α = 2(2α−1) < 0.
The contributions due to the other three types of trees are respectively upper bounded
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V ∗
n

k1 k2 k3

Figure 6: Possible paths when V ∗n ; k1, V ∗n ; k2, and V ∗n ; k3.

by

CE[(D∗n)3]

(1− ν′n)3
= O(n4α−1+3δ),

Cσ4(n)

(1− ν′n)4
= O(n4α−1+4δ),

CE[(D∗n)2]σ3(n)

(1− ν′n)4
= O(n6α−2+4δ),

all of which are o(n1+2δ). Also,

E[En(V ∗n , 3)] ≤ E[(W ∗n)3]

+ E

[ ∑
k∈[n]

w3
k1 {V ∗n ; k}

]
+ 3E

[
W ∗n

∑
k∈[n]

w2
k1 {V ∗n ; k}

]
+ 3E

[
(W ∗n)2W (V ∗n )

]
+ 3E[W ∗n(W (V ∗n ))2] + 3E

[ ∑
k1,k2∈[n]

w2
k1
wk2

1 {V ∗n ; k1, V
∗
n ; k2}

]
,

(6.20)

where the first term is due to |{V ∗n , k1, k2, k3}| = 1, the three cases in the second line are
due to |{V ∗n , k1, k2, k3}| = 2 and the final two cases are due to |{V ∗n , k1, k2, k3}| = 3. Using
the fact that maxi∈[n] wi = O(nα), we can use the estimates in (6.16) and (6.17) to show
that the first term is O(n4α−1), the next three terms are O(n4α+δ−1), and the last two
terms are O(n4α+3δ−1). All these contributions are o(n1+2δ) and hence we conclude that
E[(W (V ∗n ))3] = o(n1+2δ).

6.3 Analysis of the susceptibility function s?2

Asymptotics of s?2. The asymptotics of s?2 is a consequence of the Chebyshev inequality.
Denote `wn =

∑
i∈[n] wi. First, if Ed′ denotes the conditional expectation given CMn(d′),

then for any r ≥ 1,

Ed′
[(

W (V ∗n )
)r−1]

=
∑
i≥1

∑
k∈C ′i

wk
`wn

(∑
l∈C ′i

wl

)r−1

=
1

`wn

∑
i≥1

(Wi)
r. (6.21)

Therefore, using Lemma 6.1 and (2.9), it follows from Assumption 2.9 that

n−δE [s?2] =
`wn
n
n−δE [W (V ∗n )]→

µ2
d,w

µdλ0
, (6.22)

where we have used the fact that E [D∗n]→ µd,w/µw. It remains to compute the variance.
Let U∗n denote another vertex chosen in a size-biased way with the sizes being (wi)i∈[n],
independently of the graph CMn(d′) and V ∗n . Then (6.21) yields

E
[
(s?2)2

]
=

1

n2
E

[ ∑
i,j≥1

W 2
i W 2

j

]
=

1

n2
E

[∑
i≥1

W 4
i

]
+

1

n2
E

[∑
i6=j

W 2
i W 2

j

]

=
`wn
n

1

n
E
[(

W (V ∗n )
)3]

+

(
`wn
n

)2

E [W (U∗n)W (V ∗n )1 {U∗n /∈ C ′(V ∗n )}] ,
(6.23)
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where the equality of the second term in the third equality follows using similar argu-
ments as in (6.21). Denote the last two terms of (6.23) by (I) and (II) respectively. To
estimate (II), observe that, conditionally on the graph C ′(V ∗n ), the graph obtained by
removing C ′(V ∗n ) from CMn(d′) is again a configuration model with the induced degree
sequence d̃ and number of vertices ñ. Let ν̃n denote the corresponding criticality param-
eter. In the proof of Lemma 6.1 (i), we observed that the upper bound holds whenever
ν̃n < 1− n−ε with ε ∈ (0, 1) (see Remark 6.2). To this end, let us show that there exists
ε0 ∈ (0, 1) and c1 > 0 such that for all sufficiently large n,

P
(
ν̃n < 1− n−ε0 | C ′(V ∗n )

)
= 1, with probability at least 1− e−n

c1
. (6.24)

Denote `′n =
∑
i∈[n] d

′
i. To see (6.24), first notice that

ν̃n − 1 = ν′n − 1−
∑
j∈C ′(V ∗n ) d

′
j(d
′
j − 2)∑

j∈[n] d
′
j

+ (ν̃n − 1)

∑
j∈C ′(V ∗n ) d

′
j

`′n
. (6.25)

Moreover, for any connected graph G,
∑
i∈G d

′
i(d
′
i − 2) ≥ −2 (this can be proved by

induction) so that

(ν̃n − 1)

(
1−

∑
j∈C ′(V ∗n )

d′j
`′n

)
≤ ν′n − 1 +

2

`′n
. (6.26)

Next we use the following:

Fact 6.3. There exists c0, c1 > 0 (sufficiently small), and n0 ≥ 1 such that for all n ≥ n0,
P(
∑
j∈C ′(V ∗n ) d

′
j ≥ nα+δ+c0) ≤ e−n

c1 .

The proof of Fact 6.3 follows using the exploration process in Section 6.4, and
martingale concentration inequalities such as [36] (see Appendix C for a detailed proof).
The proof of (6.24) now follows using `′n = Θ(n), (2.9), and Fact 6.3.

As mentioned in Remark 6.2, now we can apply the upper bound from (6.5). Therefore,

E
[
W (U∗n)1 {U∗n /∈ C ′(V ∗n )}

∣∣C ′(V ∗n )
]

=

∑
i/∈C ′(V ∗n ) wi

`wn
E
[
W (U∗n)

∣∣C ′(V ∗n ), U∗n /∈ C ′(V ∗n )
]

≤
∑
i∈[n] w

2
i

`wn
+

∑
i/∈C ′(V ∗n ) wi

`wn
×

(∑
i/∈C ′(V ∗n ) d

′
iwi
)2∑

i/∈C ′(V ∗n ) d
′
i∑

i/∈C ′(V ∗n ) wi
∑
i/∈C ′(V ∗n ) d

′
i(−

∑
i/∈C ′(V ∗n ) d

′
i(d
′
i − 2))

≤
(∑

i∈[n] d
′
iwi
)2

`wn `
′
n(1− ν′n + oP(1))

+O(1) = E [W (V ∗n )]
(
1 + oP(1)

)
,

(6.27)

where the penultimate step again follows from (6.26). Thus,

E [W (U∗n)W (V ∗n )1 {U∗n /∈ C ′(V ∗n )}] ≤
(
E [W (V ∗n )]

)2(
1 + o(1)

)
. (6.28)

Now, (6.23), (6.28) together with Lemma 6.1 implies that Var (s?2) = o(n2δ). We can use
the Chebyshev inequality and (6.22) to conclude that n−δs?2

P−→ µ2
d,w/(µdλ0).

Remark 6.4. The method used to obtain the asymptotics of s?2 can also be followed
verbatim to obtain the asymptotics of s?pr. Indeed, notice that

E
[
s?pr
]

=
1

n
E

[∑
i≥1

Wi|C ′i |
]

= E [W (Vn)] . (6.29)

A similar identity for the second moment of s?pr also holds.
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6.4 Barely subcritical masses

We now prove the asymptotics of Wj in Theorem 2.10. The idea is to obtain the
asymptotics for W (j) for each fixed j, and then show that Wj = W (j) with high probability.
Consider the breadth-first exploration of the graph starting from vertex j as follows:

Algorithm 3. The algorithm carries along three disjoint sets of half-edges: active,
neutral, dead.

(S0) At stage i = 0, the half-edges incident to j are active and all the other half-edges
are neutral. Order the initially active half-edges arbitrarily.

(S1) At each stage, take the smallest half-edge e and pair it with another half-edge f ,
chosen uniformly at random from the set of half-edges that are either active or
neutral. If f is neutral, then the vertex v to which f is incident, is not discovered
yet. Declare the half-edges incident to v to be active and larger than all other
active vertices (choose any order between the half-edges incident to v). Declare
e, f to be dead.

(S2) Repeat from (S1) until the set of active half-edges is empty.

Define the process Sjn by Sjn(l) = Sjn(l − 1) + d′(l)Jl − 2, and Sjn(0) = d′j , where Jl is the
indicator that a new vertex is discovered at time l and d′(l) is the degree of the discovered
vertex, if any. Thus, when the exploration starts from vertex j, then Sjn tracks the number
of active half-edges. Let L := inf{l ≥ 1 : Sjn(l) = 0}. By convention, we assume that
Sjn(l) = 0 for l > L. Let Vl denote the vertex set discovered up to time l excluding j and
Ini (l) := 1 {i ∈ Vl}. Define Inj (l) ≡ 0. Also, let Fl denote the sigma-field containing all
the information upto time l in Algorithm 3. Note that

Sjn(l) = d′j +
∑
i∈[n]

d′iIni (l)− 2l = d′j +
∑
i∈[n]

d′i

(
Ini (l)− d′i

`′n
l

)
+ (ν′n − 1) l. (6.30)

Consider the re-scaled process S̄jn defined as S̄jn(t) = n−αSjn(
⌊
tnα+δ

⌋
). Then, using

Assumption 2.9,

S̄jn(t) = cj + n−α
∑
i∈[n]

d′i

(
Ini (tnα+δ)− d′i

`′n
tnα+δ

)
− λ0t+ o(1). (6.31)

The following three lemmas determine the asymptotics of Wi and s?3:

Lemma 6.5. Let Lj be the function with Lj(t) = cj − λ0t for t ∈ [0, cjλ
−1
0 ] and Lj(t) = 0

for t > cjλ
−1
0 . Then, under Assumption 2.9, as n→∞,

sup
t≤cjλ−1

0

∣∣S̄jn(t)− Lj(t)
∣∣ P−→ 0. (6.32)

Lemma 6.6. For any T > 0, supl≤Tnα+δ

∣∣∣∑i∈[n] wiIni (l)−
∑
i∈[n] d

′
iwi∑

i∈[n] d
′
i
l
∣∣∣ = oP(n

α+δ).

Lemma 6.7. Fix any j ≥ 1. Then with high probability W (j) = Wj .

Asymptotics of Wj . Note that, since the exploration process explores one edge at each
time, Lemma 6.5 implies that (see e.g. [62, Theorem 13.6.4])

1

2nα+δ

∑
k∈C ′(j)

d′k
P−→ cj

λ0
. (6.33)

Moreover, Lemma 6.6 yields that

1

nα+δ
W (j) =

1

nα+δ

∑
k∈C ′(j)

wk =

∑
i∈[n] d

′
iwi

`′nnα+δ

1

2

∑
k∈C ′(j)

d′k + oP(1)
P−→ µd,w

µdλ0
cj . (6.34)

Now the asymptotics of Wj in Theorem 2.10 follows by an application of Lemma 6.7.
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Next we provide a proof for Lemma 6.7. The proofs of Lemmas 6.5 and 6.6 follow
using similar techniques as in [31], and thus are provided in Appendix B.

Proof of Lemma 6.7. Recall the definition of C ′j ,Wj from (2.10). For fixed K ≥ 1, if all the
components (C ′(j))j∈[K] are disjoint, then j = min{k : k ∈ C ′(j)}, i.e., j is the minimum
index among the vertices in C ′(j). In that case, C ′(j) = C ′j and thus W (j) = Wj . Thus, it
is enough to show that, for each fixed i, j ≥ 1,

P(i and j are in same connected component)→ 0. (6.35)

If i, j are in the same connected component, then the S̄jn will have a jump of size
d′i = (1 + o(1))cin

α. By Lemma 6.5, and the fact that Lj is continuous, it follows that
the probability of S̄jn having a jump of size at least εnα tends to zero for any fixed ε > 0.
Thus we conclude (6.35) and the proof follows.

6.5 Analysis of the susceptibility function s?3

The aim of this section is to prove the following proposition which estimates the
contribution on s?3 due to components (C ′i )i>K :

Proposition 6.8. Suppose that Assumption 2.9 holds. For any ε > 0,

lim
K→∞

lim sup
n→∞

P

(∑
i>K

(
Wi

)3
> εn3(α+δ)

)
= 0. (6.36)

Proof. Let GK denote the graph obtained by deleting all the edges incident to the vertices
in [K]. In this proof, a superscript K to any previously defined object will correspond to
the object in GK . Note that GK is again distributed as a configuration model conditioned
on the new degree sequence dK = (dKi )i∈[n]. We also augment a previously defined
notation with K in the superscript to denote the corresponding quantity for GK . Note
that

∑
i∈[n] d

K
i ≥ `′n − 2

∑
i∈[K] d

′
i = `′n(1 + O(nα−1)). Also, dKi = 0 for all i ∈ [K], and

dKi ≤ d′i for all i ∈ [n] \ [K]. Recall the definition of ci’s from Assumption 2.9. First, for
each fixed K ≥ 1,

νKn :=

∑
i∈[n] d

K
i (dKi − 1)∑

i∈[n] d
K
i

≤
∑
i>K d

′
i(d
′
i − 1)

`′n(1 +O(nα−1))

=

∑
i∈[n] d

′
i(d
′
i − 1)

`′n
−
∑
i∈[K] d

′
i(d
′
i − 1)

`′n
+O(nα−1)

= ν′n +O(n2α−1) +O(nα−1) = 1− λ0n
−δ + o(n−δ),

(6.37)

where we have used the fact that δ < η = 1− 2α < 1−α in the last step. We aim to apply
the upper bound (6.18). Since we have only deleted K = O(1) many vertices and Θ(nα)

many half-edges to obtain GK, it follows that (dKi )i∈[n] also satisfies Assumption 2.9. We
can apply the upper bound in (6.18), and thus

1

n
E

[∑
i

(
W K

i

)3]
=
`wn
n
E
[(

W K(V ∗n )
)2] ≤ C∑i>K d

′
i(d
′
i − 1)(d′i − 2)∑

i>K d
′
i(1− ν>Kn )3

≤ Cn3α+3δ−1

(
n−3α

∑
i>K

d′3i

)
,

(6.38)

which tends to zero in the iterated limit limK→∞ lim supn→∞. Therefore, using the
Markov inequality and the fact that c ∈ `3↓ \ `2↓, it follows that, for any ε > 0,

lim
K→∞

lim sup
n→∞

P

(∑
i≥1

(
W K

i

)3
> εn3(α+δ)

)
= 0. (6.39)
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Now, the proof is complete by observing that
∑
i>K W 3

i ≤
∑
i≥1(W K

i )3.

Remark 6.9. Notice that the proof of Proposition 6.8 can be modified to conclude
the similar results for

∑
i>K

(
Wi

)2|C ′i | and
∑
i>K Wi|C ′i |2. Indeed, an analogue of

(6.38) can be computed by observing that E[
∑
i≥1(W K

i )2|C ′Ki |] = nE[W K(Vn)], and
E[
∑
i≥1 W K

i (|C ′Ki |)2] = `wnE[|C ′K(V ∗n )|2].

Finally we prove the asymptotics of s?3 stated in Theorem 2.10:

Asymptotics of s?3. The proof follows by combining the asymptotics of Wj and Proposi-
tion 6.8.

Remark 6.10. The argument for s?3 can be followed verbatim to also conclude that

n−3α−3δ
∞∑
i=1

(
Wi

)2|C ′i | P−→ µ2
d,w

µ2
dλ

3
0

∞∑
i=1

c3i , n−3α−3δ
∞∑
i=1

Wi|C ′i |2
P−→ µd,w

µdλ3
0

∞∑
i=1

c3i . (6.40)

6.6 Mesoscopic typical distances

In this section, we obtain the asymptotics of D?n in Theorem 2.10 using a similar
analysis as in Section 6.3. Again the proof involves the Chebyshev inequality where the
moments are estimated using path counting. We sketch the computation of E[D?n]. Recall
the notations U∗n, V ∗n , Al(v, k) and A′l(v, k) from Section 6.3. Note that

E [D?n] =
1

n
E

[ ∑
i,k∈[n]

wiwkd(i, k)1 {k ∈ C ′(i)}
]

=
`wn
n
E

[ ∑
k∈[n]

wkd(V ∗n , k)1 {k ∈ C ′(V ∗n )}
]

≤ `wn
n

∑
k∈[n]

wk
∑
l≥1

lP (Al(V ∗n , k)) =
`wn
n

∑
l≥1

l
∑
k∈[n]

wkP (Al(V ∗n , k)) ,

and also

E [D?n] ≥ `wn
n

∑
l≥1

l

( ∑
k∈[n]

wk
(
P (Al(V ∗n , k))− P (A′l(V ∗n , k))

))
. (6.41)

Now compare the terms above to (6.4a), (6.4b). The only difference is that there is an
extra multiplicative l here. Thus we can follows identical arguments as in the proof of
(6.5), (6.11), and at the final step, we can use that

∑
l≥1 l(ν

′
n)l−1 = (1− ν′n)−2. Thus,

E [D?n] =
E [Wn]E [D∗n]E [D′nWn]

E [D′n] (1− ν′n)2
(1 + o(1)) =

(E [D′nWn])2

E [D′n] (1− ν′n)2
(1 + o(1)). (6.42)

The variance terms can also be computed similarly. Due to the presence of l2 in the
second moment, we can use

∑
l≥1 l(l − 1)(ν′n)l−2 = (1 − ν′n)3. This gives rise to an

additional fact 1/(1 − ν′n)2 = O(n2δ). Again, the identical arguments as (6.27) can
be applied to show that Var (D?n) = o(n4δ). Thus the proof of the asymptotics of D?n
follows.

7 Metric space limit for critical percolation clusters

The aim of this section is to complete the proof of Theorem 2.3. We start by defining
the multiplicative coalescent process [3, 4] that will play a pivotal role in this section.

Definition 3 (Multiplicative coalescent). Consider a (possibly infinite) collection of parti-
cles and let X(s) = (Xi(s))i≥1 denote the collection of masses of those particles at time s.
Thus the i-th particle has mass Xi(s) at time s. The evolution of the system takes place
according to the following rule at time s: At rate Xi(s)Xj(s), particles i and j merge into
a new particle of mass Xi(s) +Xj(s).
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Before going into the details, let us describe the general idea and the organization
of this section. The proof combines many ingredients and ideas from [10] and [31]. In
Section 7.1 we consider a dynamically growing process of graphs that approximates the
percolation clusters in the critical window. Now, the graphs generated by this dynamic
evolution satisfy the following properties: (i) In the critical window, the components
merge approximately as the multiplicative coalescent where the mass of each component
is approximately proportional to the component size; (ii) The masses of the barely
subcritical clusters satisfy nice properties due to Theorem 2.10. In Section 7.2, we
derive the required properties in the barely subcritical regime for the dynamically
growing graph process using Theorems 2.10 and 2.11. Section 7.3 is devoted to deriving
scaling limits of functionals of Gn(tc(λ)). In Section 7.4, we modify the dynamic process
in such a way that the components merge exactly as multiplicative coalescent. Since
the exact multiplicative coalescent corresponds to the rank-one inhomogeneous random
graphs, thinking of these barely subcritical clusters as blobs, we use the universality
theorem (Theorem 5.4) in Section 7.5 to determine the metric space limits of the largest
components of the modified graph (Theorem 7.15). We finally complete the proof of
Theorem 2.3 in Section 7.6.The proof of Theorem 2.4 is given in Section 7.7.

7.1 The dynamic construction and its properties

Algorithm 4 (The dynamic construction). Let Gn(t) be the graph obtained up to time t
by the following dynamic construction:

(S0) Initially, any vertex i has di incident half-edges and all the half-edges are alive.
During the construction, a half-edge can be in one of the following two sets: alive or
dead. All the half-edges have an independent unit rate exponential clock attached
to them.

(S1) Whenever a clock rings, we take the corresponding half-edge, kill it and pair it with
a half-edge chosen uniformly at random among the alive half-edges. The paired
half-edge is also killed and the exponential clocks associated with killed half-edges
are discarded.

Since a half-edge is paired with another unpaired half-edge, chosen uniformly at
random from the set of all unpaired half-edges, the final graph Gn(∞) is distributed as
CMn(d). Define

tc(λ) =
1

2
log

(
νn

νn − 1

)
+

νn
2(νn − 1)

λ

nη
. (7.1)

We denote the i-th largest component of Gn(t) by C(i)(t). In the subsequent part of this
paper, we will derive the metric space limit of (C(i)(tc(λ)))i≥1. The following lemma
enables us to switch to the conclusions for the largest clusters of CMn(d, pn(λ)):

Lemma 7.1 ([31, Proposition 24]). There exists εn = o(n−η) and a coupling such that,
with high probability,

Gn(tc(λ)− εn) ⊂ CMn(d, pn(λ)) ⊂ Gn(tc(λ) + εn), (7.2)

CMn(d, pn(λ)− εn) ⊂ Gn(tc(λ) ⊂ CMn(d, pn(λ) + εn). (7.3)

Let ωi(t) denote the number of unpaired/open half-edges incident to vertex i at time t
in Algorithm 4. We end this section by understanding the evolution of some functionals of
the degrees and the open half-edges in the graph Gn(t). Let s1(t) denote the total number
of unpaired half-edges at time t. Denote also s2(t) =

∑
i∈[n] ωi(t)

2, sd,ω(t) =
∑
i∈[n] diωi(t).

Further, we write µn = `n/n.

Lemma 7.2. Under Assumption 2.1, the quantities supt≤T | 1ns1(t)−µne−2t|, supt≤T | 1ns2(t)−
µne−4t(νn + e2t)|, supt≤T | 1nsd,ω(t)− µn(1 + νn)e−2t| are all OP(n

−1/2), for any T > 0.
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Proof. The proof uses the differential equation method [63]. Notice that, after each ring
of an exponential clock in Algorithm 4, s1(t) decreases by two. Let Y denote a unit-rate
Poisson process. Using the random time change representation [33],

s1(t) = `n − 2Y

(∫ t

0

s1(u)du

)
= `n +Mn(t)− 2

∫ t

0

s1(u)du, (7.4)

where Mn is a martingale. Now, the quadratic variation of Mn satisfies 〈Mn〉(t) ≤
4t`n = O(n), which implies that supt≤T |Mn(t)| = OP(

√
n). Moreover, notice that the

function f(t) = µne−2t satisfies f(t) = µn − 2
∫ t

0
f(u)du. Therefore,

sup
t≤T

∣∣∣∣ 1ns1(t)− µne−2t

∣∣∣∣ ≤ sup
t≤T

|Mn(t)|
n

+ 2

∫ T

0

sup
t≤u

∣∣∣∣ 1ns1(t)− µne−2t

∣∣∣∣du. (7.5)

Using Grőnwall’s inequality [55, Proposition 1.4, page 204], it follows that

sup
t≤T

∣∣∣∣ 1ns1(t)− µne−2t

∣∣∣∣ ≤ e2T sup
t≤T

|Mn(t)|
n

= OP(n
−1/2), (7.6)

as required. For s2(t), note that if half-edges corresponding to vertices i and j are paired,
s2 changes by −2ωi − 2ωj + 2 and if two half-edges corresponding to i are paired, s2

changes by −4ωi + 4. Thus,∑
i∈[n]

ωi(t)
2 =

∑
i∈[n]

d2
i +M ′n(t) +

∫ t

0

∑
i 6=j

ωi(u)ωj(u)(−2ωi(u)− 2ωj(u) + 2)

s1(u)− 1
du

+

∫ t

0

∑
i∈[n]

ωi(u)(ωi(u)− 1)(−4ωi(u) + 4)

s1(u)− 1
du

= nµn(1 + νn) +M ′n(t) +

∫ t

0

(−4s2(u) + 2s1(u))du+O(1),

(7.7)

where M ′
n is a martingale with quadratic variation given by 〈M ′n〉(t) = O(n). Again, an

estimate equivalent to (7.6) follows using Grőnwall’s inequality. Notice also that when a
clock corresponding to vertex i rings and it is paired to vertex j, then sd,ω decreases by
di + dj . Thus,

sd,ω(t)

=
∑
i∈[n]

d2
i +M ′′n (t)−

∫ t

0

∑
i6=j

ωi(u)ωj(u)(di + dj)

s1(u)− 1
du−

∫ t

0

∑
i∈[n]

ωi(u)(ωi(u)− 1)2di
s1(u)− 1

du

= nµn(1 + νn) +M ′′n (t)− 2

∫ t

0

sd,ω(u)du,

(7.8)

where M ′′
n is a martingale with quadratic variation given by 〈M ′′n 〉(t) ≤ 2t

∑
i∈[n] d

2
i =

O(n). We can now apply Grőnwall’s inequality as before. The proof of Lemma 7.2 is
complete.

7.2 Entrance boundary for open half-edges

Define

tn =
1

2
log

(
νn

νn − 1

)
− νn

2(νn − 1)

1

nδ
, 0 < δ < η. (7.9)

The goal is to show that the open half-edges satisfy the entrance boundary conditions.
Let d(t) = (di(t))i∈[n] denote the degree sequence of Gn(t) constructed by Algorithm 4.
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Recall that Gn(t) is a configuration model conditionally on d(t). Let us first derive the
asymptotics of νn(tn). Recall that ωi(t) denotes the number of open half-edges adjacent
to vertex i in Gn(t). Notice that

νn(tn) =

∑
i∈[n](di − ωi(tn))2

`n − s1(tn)
− 1 =

∑
i∈[n] d

2
i − 2sd,ω(tn) + s2(tn)

`n − s1(tn)
− 1. (7.10)

Using Lemma 7.2 and Assumption 2.1,

1

n
(`n − s1(tn)) = µn(1− e−2tn) + oP(n

−δ) =
µn
νn

(
1− νn

nδ

)
+ oP(n

−δ), (7.11)

1

n

( ∑
i∈[n]

d2
i − 2sd,ω(tn) + s2(tn)

)
=
µn
νn

(
2− 3νn

nδ

)
+ oP(n

−δ). (7.12)

Thus, (7.11) and (7.12) yields that νn(tn) = 1 − νnn
−δ + oP(n

−δ). Further, using the
differential equation method again, the evolution of (ωi(t))t≥0 is given by

ωi(t) = di +Mn(t) +

∫ t

0

[
2ωi(u)(s1(u)− ωi(u))

s1(u)− 1
+

2ωi(u)(ωi(u)− 1)

s1(u)− 1

]
du

= di +Mn(t) + 2

∫ t

0

ωi(u)du,

(7.13)

and Assumption 2.1 yields that, for all T > 0,

sup
t≤T
|n−αωi(t)− θie−2t| P−→ 0. (7.14)

We aim to apply the results for the barely subcritical regime in Theorem 2.10 to the
number of open half-edges ω(tn) = (ωi(tn))i∈[n]. Notice that, by Lemma 7.2, (7.14) and
Assumption 2.1, ω(tn) and d(tn) satisfy Assumption 2.9 with

µω =
µ(ν − 1)

ν
, µd =

µ

ν
, µd,ω =

µ(ν − 1)

ν
, ci =

θi
ν
. (7.15)

Let Ci(t) be defined analogously as (2.10) for the graph Gn(t). Denote fi(t)=
∑
k∈Ci(t)

ωk(t)

and f(t) = (fi(t))i≥1. The following theorem summarizes the entrance boundary condi-
tions for f(t). Let sω2 , sω3 , Dωn respectively denote the quantities s?2, s?3, D?n respectively
with the weights being the number of open half-edges, and the underlying graph being
Gn(tn).

Theorem 7.3. Under Assumption 2.1, as n→∞,

n−δsω2
P−→ µ(ν − 1)2

ν2
, n−δsωpr

P−→ µ(ν − 1)

ν2
, n−(α+δ)fi(tn)

P−→
(
ν − 1

ν2

)
θi (7.16)

n−3α−3δ+1sω3
P−→
(
ν − 1

ν2

)3 ∞∑
i=1

θ3
i , n−2δDωn

P−→ µ(ν − 1)2

ν3
. (7.17)

Remark 7.4. Setting wi = 1 for all i, we get the entrance boundary conditions for the
component sizes also. In this case µd = µd,w = µ/ν. Replacing ω by c in the above
notation to denote the component susceptibilities, it follows that

n−δsc2
P−→ µ

ν2
, n−(α+δ)|Ci(tn)| P−→ θi

ν2
, n−3α−3δ+1sc3

P−→ 1

ν6

∞∑
i=1

θ3
i .
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7.3 Components of the dynamically constructed graph

The idea is to regard (Ci(tn))i≥1, the connected components at time tn, as blobs.
For t ≥ tn, the graph Gn(t) should be viewed as a super-graph with the superstructure
being determined by the edges appearing after time tn. Thus, the components of Gn(t)

can be regarded as a union of the blobs. For a component C , we use the notation
B(C ) to denote the collection of indices corresponding to the blobs within C given by
{b : Cb(tn) ⊂ C ,Cb(tn) 6= ∅}. Denote

Fi(t) =
∑

b∈B(C(i)(t))

fb(tn).

Let us denote the ordered components and the F -values of Gn(tc(λ)) simply by (C(i)(λ))i≥1

and (Fi(λ))i≥1 respectively. The goal in this section is to obtain the scaling of these
component functionals, and also understand structural properties related to the surplus
edges. Recall that SP(C ) denotes the number of surplus edges in the component C ,
i.e. SP(C ) = #edges in C − |C |+ 1. The following result gives the scaling limits of the
rescaled component sizes and surplus edges of Gn(tc(λ)):

Proposition 7.5. Let (C(i)(λ))i≥1 denote the ordered vector of components sizes of the

graph Gn(tc(λ)). Then,
(
n−ρ|C(i)(λ)|,SP(C(i)(λ))

)
i≥1

d−→ ( 1
ν ξi,Ni)i≥1 as n → ∞, with re-

spect to the topology on `2↓×NN, where the limiting objects are defined in Proposition 4.3.

The proof is a direct consequence of Lemma 7.1 and Proposition 4.3. See for example
[31, Proposition 25]. The components consist of surplus edges within the blobs and the
surplus edges in the superstructure. Next, let SP′(C(i)(λ)) denote the number of surplus
edges in the superstructure of C(i)(λ). Thus SP′(C(i)(λ)) denotes the macroscopic surplus
edges which are not inside some blob. The next result proves that all the surplus edges
in the critical components are macroscopic. Further, it relates the component sizes and
the F -values of Gn(tc(λ)):

Proposition 7.6. Assume that η/2 < δ < η. Then, for each 1 ≤ i ≤ K, the following
hold:

(a) With high probability, SP′(C(i)(λ)) = SP(C(i)(λ)). Consequently, there are no surplus
edges within blobs in C(i)(λ) with high probability;

(b) Fi(λ)/|C(i)(λ)| P−→ ν − 1. Consequently,
(
n−ρFi(λ)

)
i≥1

d−→ ν−1
ν ξ with respect to the

product topology.

Since SP′(C(i)(λ)) ≤ SP(C(i)(λ)) almost surely, for Part (a) it suffices to show that

SP′(C(i)(λ)) and SP(C(i)(λ)) have the same distributional limit. (7.18)

Let G′n denote the graph obtained from Gn(tc(λ)) by shrinking each blob to a single node.
Then, SP′(·) can be viewed as the surplus edges in the components of G′n. The graph
G′n can also be viewed to be constructed dynamically as in Algorithm 4 with the degree
sequence being (fi(tn))i≥1. In the following, we investigate the relations between Gn(tn)

and G′n. Lemma 7.2 implies that the number of unpaired half-edges in Gn(tn) that are
paired in Gn(tc(λ)) is given by

s1(tn)− s1(tc(λ)) = nµn(n−δ + λn−η) + oP(n
1−γ), for some η < γ. (7.19)

Note that the we have used δ > η/2 in (7.19).

Algorithm 5. Define πn = νn
νn−1 (n−δ + λn−η) and associate fi(tn) half-edges to the

vertex i of G′n. Construct the graph G′n(πn) as follows:
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(S1) Retain each half-edge independently with probability πn.

(S2) Create a uniform perfect matching between the retained half-edges and obtain
G′n(πn) by creating edges corresponding to any two pair of matched half-edges.

In (S1), if the total number of retained half-edges is odd, then add an extra half-edge
to vertex 1. However, this possible addition of 1 extra half-edge will be ignored since
it does not make any difference in the asymptotic computations. Notice that ai, the
number of half-edges attached to i that are retained by Algorithm 5 (S1), is distributed
as Bin(fi(tn), πn), independently for each i. Thus the number of half-edges in the graph
G′n(πn) is distributed as a Bin(s1(tn), πn) random variable. We claim that there exists
εn = o(n−η) and a coupling such that, with high probability

G′n(πn − εn) ⊂ G′n ⊂ G′n(πn + εn). (7.20)

The proof follows using an identical argument as [31, Proposition 24] using the es-
timate (7.19) and standard concentration inequalities for binomial random variables.
We skip the proof here. We now continue to analyze G′n(πn), keeping in mind that the
relation (7.20) allows us make conclusions for G′n. To analyze the component sizes and
the surplus edges of the components of G′(πn) we first need some regularity conditions
on a, the degree sequence of G′n(πn), as summarized in the following lemma:

Lemma 7.7. For any 0 < δ < η, as n → ∞, n−αai
P−→ θi

ν , ai∑
i ai

nρ−δ
P−→ θi

µν , νn(a) =∑
i ai(ai−1)∑

i ai
= 1 + λn−η+δ + oP(n

−η+δ), and for any ε > 0,

lim
K→∞

lim sup
n→∞

P

(∑
i>K

a3
i > εn3α

)
= 0. (7.21)

Proof. Using Theorem 7.3 and the fact that ai ∼ Bin(fi(tn), πn), one gets n−αai =

(1 + oP(1)) θiν . Moreover,
∑
i ai ∼ Bin(

∑
i fi(tn), πn) and

∑
i ai = (1 + oP(1))πn

∑
i fi(tn)

yield the required asymptotics for ai/
∑
i ai. Next note that if X ∼ Bin(r, π), then

Var(X(X − 1)) = 2r(r − 1)π2(1− π)(1 + (2r − 3)π). Thus,

Var

(∑
i

ai(ai − 1)
∣∣∣(fi(tn))i≥1

)
=
∑
i

Var
(
ai(ai − 1)

∣∣(fi(tn))i≥1

)
= OP

(
π2
n

∑
i

f2
i (tn) + π3

n

∑
i

f3
i (tn)

)
= OP(n

1−δ + n3α) = OP(n
3α).

(7.22)

Therefore, for any ε > 0,

P

(∣∣∣∑
i

ai(ai − 1)− π2
n

∑
i

fi(tn)(fi(tn)− 1)
∣∣∣ > εn1−δ

∣∣∣(fi(tn))i≥1

)
= OP(n

3α−2+2δ),

(7.23)

which is oP(1) since δ < η and 3α− 2 + 2η = 3α− 2 + 2− 4α < 0. We conclude that∑
i

ai(ai − 1) = (1 + oP(1))π2
n

∑
i

fi(tn)(fi(tn)− 1), (7.24)

and the required asymptotics for νn(a) follows. To see (7.21), note that E
[∑

i>K ai(ai −
1)(ai − 2)|(fi(tn))i≥1

]
= π3

n

∑
i>K fi(tn)3, and the proof follows again by using the condi-

tion on sω3 in Theorem 7.3.
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Consider the exploration of the graph G′n(πn) via Algorithm 3, but now the first vertex is
chosen proportional to its degree. Define the exploration process by Sn similarly as the
process Sjn(l) in Section 6.4. Call a vertex discovered if it is either active or killed. Let
Vl denote the set of vertices discovered up to time l and Ini (l) := 1 {i ∈ Vl}. Note that

Sn(l) =
∑
i

aiIni (l)− 2l =
∑
i

ai

(
Ini (l)− ai

`an
l

)
+ (νn(a)− 1) l, (7.25)

where `an =
∑
i ai. Consider the re-scaled version S̄n defined as S̄n(t) = n−αSn(btnρ−δc).

Define the limiting process

S(t) =

∞∑
i=1

θi
ν

(
1 {Exp(θi/(µν)) ≤ t} − θi

µν
t

)
+ λt. (7.26)

Proposition 7.8. As n→∞, S̄n
d−→ S with respect to the Skorohod J1 topology.

The proof of Proposition 7.8 can be carried out using similar ideas as [31, Theorem
8]. A sketch of the proof is given in Appendix D. The excursion lengths of the exploration
process give the number of edges in the explored components. Now, at each step l, the
probability of discovering a surplus edge, conditioned on the past, is approximately the
proportion of half-edges that are active. Note that the number of active half-edges is the
reflected version of Sn given by refl(Sn(t)) = Sn(t)− infu≤t Sn(u). Thus, conditional on
(Sn(l))l≤tnρ−δ , the rate at which a surplus edge appears at time tnρ−δ is approximately

nρ−δ refl(Sn(tnρ−δ))∑
i ai

= 1
µ refl

(
S̄n(t)

)
(1 + oP(1)). Therefore, Proposition 7.8 implies that for

each K ≥ 1, there exists components C1, . . . , CK ⊂ G′n(πn) such that(
n−ρ+δ|Ci|,SP(Ci)

)
i∈[K]

d−→
(
ξi,Ni

)
i∈[K]

, (7.27)

where ξi and Ni are defined in Proposition 4.3. We refer to [31, Section 5.4] for more
details regarding the proof of (7.27). Here we have also used the fact that the ordered
excursion lengths of the process (S(t))t≥0, defined in (7.26), are identically distributed
as the ordered excursion lengths of (S(t)/µ)t≥0. We can now combine (7.20) and (7.27)
to obtain the asymptotics for the number of blobs in the largest connected components
and SP′(·). Denote B(C ) = |B(C )| for a component C ⊂ Gn(tc(λ)).

Lemma 7.9. For K ≥ 1, there exist components C 1, . . . ,CK ⊂ Gn(tc(λ)) such that the

following convergence holds: (n−ρ+δB(C i),SP′(C i))i∈[K]
d−→ (ξi,Ni)i∈[K].

Lemma 7.10. For any K ≥ 1, C i = C(i)(λ), ∀i ∈ [K] with high probability.

Proof. Notice that,
∑
j≤i |C j | ≤ ∑j≤i |C(j)(λ)| for all i ∈ [K], almost surely. Thus, it is

enough to prove that |C i| and |C(i)(λ)| involve the same re-scaling factor and have the
same scaling limit. We again make use of the inclusions in graphs in (7.20). Algorithm 3
explores the components of G′n(πn) in a size-biased manner with the sizes being (ai)i≥1.
An application of Lemma 7.14 with yi = Ci(tn) yields that, for any t > 0, uniformly for
l ≤ tnρ−δ, ∑

i

|Ci(tn)|Ini (l) =
∑
i

|Ci(tn)| ai∑
i ai

l + oP(n
ρ). (7.28)

Since ai ∼ Bin(fi(tn), πn), we can apply concentration inequalities like [51, Corollary
2.27] and use the asymptotics from Theorem 7.3 to conclude that

n−δ
∑
i ai|Ci(tn)|∑

i ai
=

µ(ν−1)
ν2

µ(ν−1)
ν

(1 + oP(1)) =
1

ν
(1 + oP(1)). (7.29)
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Thus, (7.28) and (7.29), together with (7.20), imply that ν|C i|
nδB(C i)

P−→ 1, and it follows from

Lemma 7.9 and Lemma 4.3 that (n−ρ|C i|)i∈[K]
d−→ ( 1

ν ξi)i∈[K].

Proof of Proposition 7.6. We are now finally in the position to prove Proposition 7.6.
Using Lemmas 7.9, 7.10, and Proposition 7.5 together with (7.20), we directly conclude
Part (a) from (7.18). For Part (b), we can follow the same arguments as (7.28) to conclude
that, uniformly for l ≤ tnρ−δ,∑

i

fi(tn)Ini (l) =
∑
i

fi(tn)
ai∑
i ai

l + oP(n
ρ), (7.30)

where n−δ
∑
i aifi(tn)∑

i ai
= ν−1

ν (1 + oP(1)). Now, (7.28) and (7.30) together with (7.20) prove
Part (b).

7.4 Coupling with the multiplicative coalescent

Recall the definitions of tc(λ) and tn from (7.1) and (7.9). Now, let us investigate
the dynamics of f(t) starting from time tn. Notice that, in the time interval [tn, tc(λ)],
components with masses fi(t) and fj(t) merge at rate

fi(t)
fj(t)

s1(t)− 1
+ fj(t)

fi(t)

s1(t)− 1
=

2fi(t)fj(t)

s1(t)− 1
≈ 2νfi(t)fj(t)

µ(ν − 1)n
, (7.31)

and create a component with fi(t) + fj(t)− 2 open half-edges. Thus f(t) does not exactly
evolve as a multiplicative coalescent, but it is close. We define an exact multiplicative
coalescent that approximates the above process:

Algorithm 6 (Modified process). Conditionally on Gn(tn), associate a rate 2/(s1(tn)− 1)

Poisson process P(e, f) to each pair of unpaired-half-edges (e, f). An edge (e, f) is
created between the vertices incident to e and f at the instance when P(e, f) rings.
However, the half-edges are not discarded after the pairing. At time t > tn, the obtained
modified graph Ḡn(t) consists of the edges of Gn(tn), and the edges created by this
algorithm between times tn and t.

Proposition 7.11. There exists a coupling such that Gn(t) ⊂ Ḡn(t) for all t > tn with
probability one.

Proof. Recall the construction of Gn(t) from Algorithm 4. We modify (S1) as follows:
whenever two half-edges are paired, we do not kill the corresponding half-edges and
do not discard the associated exponential clocks. Instead we reset the corresponding
exponential clocks. The graphs generated by this modification of Algorithm 4 have the
same distribution as Ḡn(t), conditionally on Gn(tn). Moreover, the above also gives a
natural coupling such that Gn(t) ⊂ Ḡn(t), by viewing the event times of Algorithm 4 as a
thinning of the event times of the modified process.

Henceforth, we will always assume that we are working on a probability space
such that Proposition 7.11 holds. Recall that the connected components at time tn,
(Ci(tn))i≥1, are regarded as blobs, and we can also view Ḡn(t) as a super-graph with the
superstructure being determined by the edges appearing after time tn in Algorithm 6.
Let us denote the ordered connected components of Ḡn(t) by (C̄(i)(t))i≥1. Define

F̄i(t) =
∑

b∈B(C̄(i)(t))

fb(tn),

where B(C ) := {b : Cb(tn) ⊂ C ,Cb(tn) 6= ∅}. The F̄ -value is regarded as the mass
of component C̄(i)(t) at time t. Note that for the modified process in Algorithm 6,
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conditionally on Gn(tn), at time t ∈ [tn, tc(λ)], C̄(i)(t) and C̄(j)(t) merge at exact rate
2F̄i(t)F̄j(t)/(s1(tn)− 1) and the new component has mass F̄i(t) + F̄j(t). Thus, the vector
of masses (F̄i(t))i≥1 merge as an exact multiplicative coalescent.

7.5 Properties of the modified process

Notice that, conditionally on Gn(tn), blobs bi and bj are connected in Ḡn(tc(λ)) with
probability

pij = 1− exp
(
− fbi(tn)fbj (tn)

[ 1

n1+δ

ν2

µ(ν − 1)2
+

1

n1+η

ν2

µ(ν − 1)2
λ
]
(1 + oP(1))

)
, (7.32)

where the oP(·) term appearing above is uniform in i, j. Thus, using Theorem 7.3, (7.32)
is of the form 1− e−qxixj(1+oP(1)) with

xni = n−ρfbi(tn), q =
1

σ2(xn)
+

ν2

µ(ν − 1)2
λ, (7.33)

where σr(xn) =
∑
i≥1(xni )r. By Theorem 2.10, the sequence xn satisfies the entrance

boundary conditions of [4], i.e.,

σ3(xn)

(σ2(xn))3

P−→ 1

µ3(ν − 1)3

∞∑
i=1

θ3
i ,

xni
σ2(xn)

P−→ 1

µ(ν − 1)
θi, σ2(xn)

P−→ 0. (7.34)

To simplify the notation, we write F̄i(λ) for F̄i(tc(λ)) and C̄(i)(λ) for C̄(i)(tc(λ)). The
following result is a consequence of [4, Proposition 7], [15, Lemma 5.3], and Lemma 4.3:

Proposition 7.12. As n → ∞,
(
n−ρF̄i(λ)

)
i≥1

d−→ ν−1
ν ξ with respect to the `2↓ topology,

where ξ is defined in Proposition 4.3.

We next relate (F̄i(λ))i≥1 to (C̄(i)(λ))i≥1, for each fixed i.

Proposition 7.13. As n → ∞, F̄i(λ) = (ν − 1)|C̄(i)(λ)| + oP(n
ρ). Consequently,(

n−ρ|C̄(i)(λ)|
)
i≥1

d−→ 1
ν ξ with respect to the product topology.

We will need the following lemma, the proof of which is same as [14, Lemma 8.2]:

Lemma 7.14 ([14, Lemma 8.2]). Consider two ordered weight sequences x = (xi)i∈[m]

and y = (yi)i∈[m]. Consider the size-biased reordering (v(1), v(2), . . . ) of [m] with respect
to the weights x and let V (i) := {v(1), . . . , v(i)}. Denote mrs =

∑
i x

r
i y
s
i , define Mn =

m11/m10 and assume that Mn > 0 for each n. Suppose that the following conditions hold:

lm21

m10m11
→ 0,

m12m10

lm2
11

→ 0,
lm20

m2
10

→ 0, as n→∞. (7.35)

Then, as n→∞, supk≤l
∣∣ 1
lMn

∑
i yi1 {i ∈ V (k)} − k

l

∣∣ P−→ 0.

Proof of Proposition 7.13. We only prove the asymptotic relation of F̄1(λ) and |C(1)(λ)|.
Consider the breadth-first exploration of the supestructure of graph Ḡn(tc(λ)) (which
is also a rank-one inhomogeneous random graph) using the Aldous-Limic construction
from [4, Section 2.3]. Notice that the vertices are explored in a size-biased manner with
the sizes being x = (xi)i≥1, where xi = xni = n−ρfbi(tn) are as defined in (7.33). Let v(i)

be the i-th vertex explored. Further, let C̄ st
(i)(λ) denote the component C̄(i)(λ), where the

blobs have been shrunk to single vertices. Then, from [4], one has the following:

(i) there exists random variables mL,mR such that C̄ st
(i)(λ) is explored between mL + 1

and mR;

(ii)
∑
i≤mR xv(i) is tight;
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(iii)
∑mR
i=mL+1 xv(i)

d−→ γ, where γ is some non-degenerate, positive random variable.

Let yi = n−ρ|Cbi(tn)|. Using Theorem 7.3, Remark 6.10 and Remark 7.4, it follows that∑
i x

r
i y
s
i = OP(n

3δ−3η); for r + s = 3,
∑
i xi = OP(n

1−ρ), and
∑
i x

r
i y
s
i = OP(n

−2ρ+1+δ); for
r + s = 2. Below, we show that∑mR

i=mL+1 yv(i)∑mR
i=mL+1 xv(i)

×
∑
i x

2
i∑

i xiyi

P−→ 1. (7.36)

The proof of Proposition 7.13 follows from (7.36) by using Theorem 7.3 and observing

that
∑
i x

2
i∑

i xiyi
=

sω2 (tn)
sωpr(tn)

P−→ ν − 1. To prove (7.36), we will now apply Lemma 7.14. Denote

m0 =
∑
i xi/

∑
i x

2
i and consider l = 2Tm0 for some fixed T > 0. Using Theorem 7.3, an

application of Lemma 7.14 yields

sup
k≤2Tm0

∣∣∣∣ k∑
i=1

xv(i) −
k

m0

∣∣∣∣ P−→ 0. (7.37)

Now, for any ε > 0, T > 0 can be chosen large enough such that
∑mR
i=1 xv(i) > T has

probability at most ε and on the event
{

supk≤2Tm0

∣∣∑k
i=1 xv(i)− k

m0

∣∣ ≤ ε}∩{∑mR
i=1 xv(i) ≤

T
}
, one has mL < mR < 2Tm0. Thus, it follows that∣∣∣∣ mR∑

i=mL+1

xv(i) −
mR −mL

m0

∣∣∣∣ P−→ 0. (7.38)

An identical argument as above shows that∣∣∣∣ mR∑
i=mL+1

yv(i) −
mR −mL

m′0

∣∣∣∣ P−→ 0, (7.39)

where m′0 =
∑
i xi/

∑
i xiyi. The proof of (7.36) now follows from (7.38) and (7.39). The

asymptotic distribution for (n−ρ|C̄(i)(λ)|)i≥1 can be obtained using Proposition 7.12.

Recall that ωi(tn) denotes the number of open-half edges attached to vertex i in
the graph Gn(tn). We now equip C̄(i)(λ) with the probability measure µifr given by
µifr(A) =

∑
k∈A ωk(tn)/Fi(λ) for A ⊂ C̄(i)(λ), and denote the corresponding measured

metric space by C̄ fr
(i)(λ).

Theorem 7.15. Under Assumption 2.1, as n→∞,(
n−ηC̄ fr

(i)(λ)
)
i≥1

d−→ (Mi)i≥1, (7.40)

with respect to the S N
∗ topology, where Mi is defined in Section 4.6.3.

Proof. We just consider the metric space limit of C̄ fr
(i)(λ) for each fixed i ≥ 1 and the joint

convergence in (7.40) follows using the joint convergence of different functionals used
throughout the proof. Recall the notation B(C ) := {b : Cb(tn) ⊂ C ,Cb(tn) 6= ∅} for a
component C . Now, C̄ fr

(i)(λ) can be seen as a super-graph as defined in Section 4.2 with

(i) the collection of blobs {Cb(tn) : b ∈ B(C̄(i)(λ))} and within blob measure µb given
by µb(A) =

∑
k∈A ωk(tn)/fb(tn), A ⊂ Cb(tn), b ∈ B(C̄(i)(λ));

(ii) the supersturcture consisting of the edges appearing during [tn, tc(λ)] in Algorithm 6
and weight sequence (fb(tn)/F̄i(λ) : b ∈ B(C̄(i)(λ))).
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Recall xi = xni = n−ρfbi(tn) defined in (7.33). Let d(·, ·) denote the graph distance on
C̄(i)(λ) and define

ui =
∑

v1,v2∈Cbi (tn)

ωv1
ωv2

f2
bi

(tn)
d(v1, v2), B(i)

n =

∑
bj∈B(C̄(i)(λ)) xjuj∑
bj∈B(C̄(i)(λ)) xj

. (7.41)

Here ui gives the average distance within blob Cbi(tn). Using Lemma 7.14, we will show

B(i)

n ×
∑
i x

2
i∑

i x
2
iui

P−→ 1. (7.42)

The argument is same as the proof of (7.36). We only have to ensure that (7.35) holds
with yi = xiui. Thus, we need to show that

nρ−δ
∑
i x

3
iui∑

i xi
∑
i x

2
iui

P−→ 0, and

∑
i x

3
iu

2
i

∑
i xi

nρ−δ
(∑

i x
2
iui
)2 P−→ 0. (7.43)

First, notice that, by Lemma 7.2 and Theorem 7.3,

Mn =

∑
i x

2
iui∑

i xi
= (1 + oP(1))

νn−1+ρ

µ(ν − 1)
n−2ρ

∑
b

f2
b (tn)

∑
v1,v2∈Cb(tn)

ωv1
ωv2

f2
b (tn)

d(v1, j)

=
νn−1+ρ

µ(ν − 1)
n1−2ρDωn = n2δ−ρ ν − 1

ν2
(1 + oP(1)).

(7.44)

Also, recall from Theorem 2.11 that umax = maxb ub = OP(n
δ log(n)). Now,

nρ−δ
∑
i x

3
iui∑

i xi
∑
i x

2
iui
≤ nρ−δumax

∑
i x

3
i∑

i xi
∑
i x

2
iui

= OP

(
nρ−δnδ log2(n)n−3ρn3α+3δ

n1−ρn2δ−ρn1−ρ

)
= OP(n

δ−η log2(n)) = oP(1),∑
i x

3
iu

2
i

∑
i xi

nρ−δ
(∑

i x
2
iui
)2 ≤ xmaxumax

∑
i xi

nρ−δ
∑
i x

2
iui

= OP

(
n−ρnα+δnδ log2(n)

nρ−δn2δ−ρ

)
= OP(n

δ−η log2(n)) = oP(1),

and (7.43) follows, and hence the proof of (7.42) also follows. Recall that the superstruc-
ture of Ḡn(tc(λ)) has the same distribution as a Norros-Reittu random graph NRn(x, q)

with the parameters given by (7.33). Thus, using Proposition 4.2, we now aim to use
Theorem 5.4 on C fr

(i)(λ) with the blobs being (Ci(tn))i≥1, and p(i)
n , a(i)

n given by (4.8).
Define Υ(i)

n =
(
pb/σ(p(i)

n ) : b ∈ B(C̄(i)(λ))
)
. Let N (R+) denote the space of all counting

measures equipped with the vague topology and let S := R3
+×N (R+) denote the product

space. Define

Pn =
(
a(i)

n σ(p(i)

n ),
∑

b∈B(C̄(i)(λ))

xb,
1

σ2
2(xn)

∑
b∈B(C̄(i)(λ))

x2
b ,Υ

(i)

n

)
i≥1

, (7.45)

viewed as an element of SN. Recall the definition of ξ∗i and Ξ∗i from Section 4.6.3. Define

P∞ =

(
ξ∗i

µ(ν − 1)

( ∑
v∈Ξ∗i

θ2
v

)1/2

, ξ∗i ,
1

µ2(ν − 1)2

∑
v∈Ξ∗i

θ2
v,

(
θj∑

v∈Ξ∗i
θ2
v

: j ∈ Ξ∗i

))
i≥1

(7.46)
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The following is a consequence of [15, Proposition 5.1, Lemma 5.4]:

σ(p(i)

n )
P−→ 0, and Pn

d−→P∞ on SN. (7.47)

Without loss of generality, we assume that the convergence in (7.47) holds almost surely.
Now, using (7.42), it follows that

σ(p(i)
n )

1 +B(i)
n

=
σ2(xn)

(∑
v∈Ξ∗i

θ2
v

)1/2
µ(ν − 1)ξ∗i

×
∑
i x

2
i∑

i x
2
iui

(1 + o(1))

=
σ2

2(xn)
(∑

v∈Ξ∗i
θ2
v

)1/2
µ(ν − 1)ξ∗i

∑
i x

2
iui

(1 + o(1)) = n−η
ν − 1

ν

1

ξ∗i

( ∑
v∈Ξ∗i

θ2
v

)1/2

(1 + o(1)),

where the last step follows from Theorem 7.3, (7.44) and (7.47). The proof of Theo-
rem 7.15 is now complete using Theorem 5.4.

In the final part of the proof, we will also need an estimate of the surplus edges in the
components C̄(i)(λ), that can be obtained by following the exact same argument as the
proof outline of Lemma 7.9. Recall that the superstructure on the graph Ḡn(tc(λ)) is a
rank-one inhomogeneous random graph NRn(x, q). The connection probabilities given by

(7.32) can be written as 1− exp(−zi(λ)zj(λ)/
∑
k zk(λ)), where zi(λ) =

fi(tn)
∑
j fj(tn)∑

j f
2
j (tn)

(
1 +

λn−η+δ + oP(n
−η+δ)

)
. Moreover, using Theorem 7.3, it follows that

n−αzi(λ)
P−→ θi

ν
,

zi(λ)∑
j zj(λ)

P−→ θi
µν
, νn(z) =

∑
i z

2
i (λ)∑

i zi(λ)
= 1 + λn−η+δ + oP(n

−η+δ). (7.48)

Now, we may consider the breadth-first exploration of the above graph and define the
exploration process SNR

n (l) =
∑
i zi(λ)Ini (l)− l, as in (7.25). The only thing to note here

is that the component sizes are not necessarily encoded by the excursion lengths above
the past minima of SNR

n . However, if S̃NR
n (l) =

∑
i Ini (l)− l, then it can be shown that (see

[17, Lemma 3.1]) S̃NR
n and SNR

n have the same distributional limit. Thus, a conclusion
identical to Proposition 7.8 follows for Ḡn(tc(λ)). Due to the size-biased exploration of
the components one can also obtain analogues of Lemmas 7.9 and 7.10 for Ḡn(tc(λ)).

Proposition 7.16. For fixed K ≥ 1, (n−ρ+δB(C̄(i)(λ)),SP′(C̄(i)(λ)))i∈[K]
d−→ (ξi,Ni)i∈[K],

as n→∞.

7.6 Comparing modified and the original process: Completing the proof of
Theorem 2.3

In this section, we finally conclude the proof of Theorem 2.3. We start with the
following:

Lemma 7.17. For each fixed i ≥ 1, C(i)(λ) ⊂ C̄(i)(λ) with high probability.

The proof is identical to [31, Lemma 31]. Recall Theorem 7.15 and the terminologies
therein. Let n−ηC fr

(i)(λ) denote the measured metric space with measure µifr and the
distances multiplied by n−η. At this moment, let us bring together the relevant properties
C(i)(λ) and C̄(i)(λ):

(A) By Lemma 7.17, it follows that with high probability C(i)(λ) ⊂ C̄(i)(λ) for any fixed
i ≥ 1.

(B) Part (A) implies F̄i(λ) ≥ Fi(λ) with high probability. The same scaling limits from
Propositions 7.6 (b) and 7.12 implies F̄i(λ)−Fi(λ)

P−→ 0 and consequently µifr(C̄(i)(λ)\
C(i)(λ))

P−→ 0.
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(C) By Propositions 7.6 (a) and 7.16, there are no surplus edges with one endpoint in
C̄(i)(λ) \ C(i)(λ) with high probability. Moreover, with high probability there is no
surplus edge within the blobs by (7.18). This implies that, for any pair of vertices
u, v ∈ C(i)(λ), with high probability, the shortest path between them is exactly the
same in C(i)(λ) and C̄(i)(λ).

Thus, from the definition of Gromov-weak convergence in Section 4.1, an application of
Theorem 7.15 yields that

(
n−ηC fr

(i)

)
i≥1

d−→ (Mi)i≥1, The only thing remaining to show is

that we can replace the measure µifr by µct,i. Now, using Propositions 7.5 and 7.6 (b), it
is enough to show that ∑

b∈B(C(i)(λ))

∣∣fb(tn)− (ν − 1)|Cb(tn)|
∣∣ = oP(n

ρ). (7.49)

Indeed, during the breadth-first exploration of the superstructure of Gn(tc(λ)), the blobs
are explored in a size-biased manner with the sizes being (fi(tn))i≥1. Therefore, one can
again use Lemma 7.14. Recall that, by Lemma 7.10, for any ε > 0, one can choose T > 0

so large that the probability of exploring C(i)(λ) within time Tnρ−δ is at least 1− ε. Thus,
if V b

l denotes the set of blobs explored before time l, then, for any T > 0,∑
b∈V b

Tnρ−δ

∣∣fb(tn)− (ν − 1)|Cb(tn)|
∣∣

= (1 + oP(1))Tnρ−δ
∑
i

fi(tn)∑
i fi(tn)

∣∣fi(tn)− (ν − 1)|Ci(tn)|
∣∣.

Using the Cauchy-Schwarz inequality and Theorem 7.3 it now follows that the above term
is o(nρ). Therefore (7.49) follows. Finally, to conclude the result for percolated graphs,
we use Lemma 7.1. In fact, if C +

(i)(λ) and C−(i)(λ) denote the i-th largest component of
Gn(tc(λ) + εn) and Gn(tc(λ)− εn) respectively, then analogously to Lemma 7.17, we can
conclude that with high probability

C−(i)(λ) ⊆ C p
(i)(λ) ⊆ C +

(i)(λ), (7.50)

for any fixed i ≥ 1. This completes the proof of Theorem 2.3.

Remark 7.18. The fact that the measure can be changed from µifr to µct,i in n−ηC fr
(i)

follows only from (7.49), which again follows from the entrance boundary conditions.
However, the entrance boundary conditions in Theorem 2.10 hold for weight sequences
w = (wi)i∈[n] under rather general assumptions (see Assumption 2.9). Therefore, one
could also replace the measure µct,i by µw,i, where µw,i =

∑
i∈A wi/

∑
k∈C(i)(λ) wi and w

satisfies Assumption 2.9.

7.7 Graphs conditioned on simplicity: Proof of Theorem 2.4

We will use the following joint construction of the CMn(d, pn(λ)) and CMn(d).

Algorithm 7. (S0) Let `pn = 2X, where X ∼ Bin(`n/2, pn(λ)). Pick `pn many half-edges
uniformly at random and color them blue. Color the rest of the half-edges red.

(S1) Pair the blue half-edges using a uniform perfect matching.

(S2) Pair the red half-edges using another independent uniform perfect matching.

If GI is the graph obtained after (SI) with I=1,2, then (G1, G2) is jointly distributed as
(CMn(d, pn(λ)),CMn(d)) [32, Lemmas 8.1, 8.2]. Let dpi be the number of blue half-edges
incident to i and let dp = (dpi )i∈[n]. Then, by construction, G1, conditionally on dp, is
distributed as CMn(dp). To complete the proof of Theorem 2.4, consider the exploration
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algorithm given by Algorithm 3, now on the graph G1, conditionally on the blue half-
edges selected in Algorithm 7 (S0). The starting vertex is chosen in a size biased manner
with sizes proportional to the degrees dp. Let Fl denote the sigma-algebra generated
by the exploration process up to time l. Let Ini (l) denote the indicator that vertex i is
discovered upto time l and note that Algorithm 3 will explore the vertices in a size-biased
manner with sizes being dp. For convenience, we denote X = (C p

(i)(λ))i≤K in this section.
Consider a bounded continuous function f : (S∗)K 7→ R. Recall from [47, Theorem 1.1]
that

lim inf
n→∞

P (G2 is simple) > 0.

Thus, it is enough to show that

E [f(X)1 {G2 is simple}]− E [f(X)]P (G2 is simple)→ 0. (7.51)

Now, for any T > 0, let An,T denote the event that X is explored before time Tnρ by the
exploration algorithm. Using [31, Lemma 13], it follows that

lim
T→∞

lim sup
n→∞

P
(
Acn,T

)
= 0. (7.52)

Let XT denote the random vector consisting of K largest ones among the components
explored before time Tnρ. Thus,

lim
T→∞

lim sup
n→∞

E
[
f(X)1 {G2 is simple} 1[Acn,T ]

]
≤ ‖f‖∞ lim

T→∞
lim sup
n→∞

P
(
Acn,T

)
= 0,

which implies that

lim
T→∞

lim sup
n→∞

∣∣E [f(X)1 {G2 is simple}]− E [f(XT )1 {G2 is simple}]
∣∣ = 0. (7.53)

Further, let Bn,T denote the event that a vertex v is explored before time Tnρ such that
v is involved in a self-loop or a multiple edge in G2. Let vl denote the exploring vertex in
the exploration at time l. Without loss of generality, we assume that during the sequential
pairing of the half-edges in Algorithm 7 (S2), we first pair the red half-edges associated
to (vl)l≤Tbn . Let `′n := `pn−2Tbn−dp1 + 1 and `′′n := (`n− `pn)−∑i∈[n] diIi(Tnρ). Note that,
by Assumption 2.1 (ii),

∑
i∈V di = o(n) whenever |V | = o(n). Also, using concentration

inequalities for the Binomial distribution, `pn = pn(λ)`n(1 + o(1)) almost surely. Thus, we
assume that `′n, `

′′
n ≥ c1`n with probability 1 for some 0 < c1 < 1. Note that, uniformly

over l ≤ Tbn, any blue half-edge of vl creates a self-loop in G1 with probability at most
dpvl/`

′
n, and any red half-edge creates a self-loop with probability at most (dvl − dpvl)/`′′n.

Thus the expected number of self-loops incident to vl is at most E[d2
vl

]/c1`n. Moreover,
the expected number of blue-blue multiple edge attached to vl in G1, is at most

E[dpvl(d
p
vl
− 1)]

∑
i∈[n] di(di − 1)

c1`n(c1`n − 1)
≤ CE[d2

vl
]

`n
, (7.54)

where we have used Assumption 2.1. While counting the multiple edges incident to
vl in G2, we have to take care of (i) the creation of a red edge between two vertices
having a blue edge and (ii) the creation of two red edges between two vertices. Using
identical arguments, the expected number of multiple edges incident to vl in G2 is at
most CE[d2

vl
]/`n. Therefore,

E [#{self-loops or multiple edges discovered while vl is exploring}] ≤ CE[d2
vl

]

`n
. (7.55)
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Thus,

P(Bn,T ) ≤ C

`n
E

[ ∑
i∈[n]

d2
i Ini (Tnρ)

]
=
C

`n

(
E

[ K∑
i=1

d2
i Ini (Tnρ)

]
+ E

[ n∑
i=K+1

d2
i Ini (Tnρ)

])
.

Now, using Assumption 2.1, for every fixed K ≥ 1,

1

`n
E

[ K∑
i=1

d2
i Ini (Tnρ)

]
≤ 1

`n

K∑
i=1

d2
i
P−→ 0. (7.56)

Further, conditionally on Algorithm 7 (S0), the vertices are explored in a size-biased
manner with sizes being (dpi /`

p
n)i∈[n]. Therefore, using that `pn = pn(λ)`n(1 + o(1)),

1

`n
Ep

[ n∑
i=K+1

d2
i Ini (Tnρ)

]
≤ Tnρ

`n

n∑
i=K+1

d2
iE
[dpi
`pn

]
≤ C

(
n−3α

n∑
i=K+1

d3
i

)
. (7.57)

Now, by Assumption 2.1, the final term in (7.57) tends to zero if we first take lim supn→∞
and then take limK→∞. Consequently, for any fixed T > 0,

lim
n→∞

P (Bn,T ) = 0. (7.58)

Let En,T denote the event that no self-loops or multiple edges are attached to the vertices
in G2 that are discovered after time Tnρ. Then (7.53) and (7.58) implies that

lim
n→∞

E [f(X)1 {CMn(d) is simple}] = lim
T→∞

lim
n→∞

E [f(XT )1[En,T ]]

= lim
T→∞

lim
n→∞

E [f(XT )P (En,T |FTnρ)] = lim
T→∞

lim
n→∞

E [f(XT )P (En,T |FTnρ ,Bn,T )] .
(7.59)

Let G∗Tnρ denote the graph obtained from G2 after removing the vertices discovered upto
time Tnρ. Then, conditionally on FTnρ ∩ Bn,T , En,T happens if and only if G∗Tnρ is simple.
Also, G∗Tnρ is distributed as a configuration model conditional on its degree sequence,
and since only o(n) vertices have been removed, the corresponding νn in G∗Tnρ converges
in probability to 1. Thus, [43, Theorem 7.12] implies that

P (G∗Tnρ is simple|Ftnρ)
P−→ e−3/4, (7.60)

and also P (G2 is simple)→ e−3/4, so that

P (G∗Tnρ is simple|Ftnρ)− P (G2 is simple)
P−→ 0. (7.61)

Now, using (7.59), (7.51) follows, and the proof of Theorem 2.4 is complete.
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graph, (2014). arXiv:1411.3417

[11] Shankar Bhamidi, Amarjit Budhiraja, and Xuan Wang, The augmented multiplicative coales-
cent and critical dynamic random graph models, Probab. Theory Relat. Fields 160 (2014),
no. 3, 733–796. DOI:10.1007/s00440-013-0540-x

[12] Shankar Bhamidi, Souvik Dhara, Remco van der Hofstad, and Sanchayan Sen, Global lower
mass-bound for critical configuration models in the heavy-tailed regime, In Preparation.

[13] Shankar Bhamidi and Sanchayan Sen, Geometry of the vacant set left by random walk on
random graphs, Wright’s constants, and critical random graphs with prescribed degrees,
Random Struct. Algor. (2019). DOI:10.1002/rsa.20880

[14] Shankar Bhamidi, Sanchayan Sen, and Xuan Wang, Continuum limit of critical inhomogeneous
random graphs, Probab. Theory Relat. Fields 169 (2017), no. 1, 565–641. MR-3704776

[15] Shankar Bhamidi, Remco van der Hofstad, and Sanchayan Sen, The multiplicative coalescent,
inhomogeneous continuum random trees, and new universality classes for critical random
graphs, Probab. Theory Relat. Fields 170 (2018), no. 1, 387–474. MR-3748328

[16] Shankar Bhamidi, Remco van der Hofstad, and Johan S. H. van Leeuwaarden, Scaling limits
for critical inhomogeneous random graphs with finite third moments, Electron. J. Probab. 15
(2010), no. 6, 1682–1702. MR-2735378

[17] Shankar Bhamidi, Remco van der Hofstad, and Johan S. H. van Leeuwaarden, Novel scaling
limits for critical inhomogeneous random graphs, Ann. Probab. 40 (2012), no. 6, 2299–2361.
MR-3050505

[18] Béla Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs, European J. Combin. 1 (1980), no. 4, 311–316. MR-0595929

[19] Béla Bollobás, Random Graphs, Cambridge University Press, Cambridge, 2001. DOI:
10.1017/CBO9780511814068

[20] Béla Bollobás, Svante Janson, and Oliver Riordan, The phase transition in inhomogeneous
random graphs, Random Struct. Algor. 31 (2007), no. 1, 3–122. MR-2337396

[21] Lidia A Braunstein, Sergey V Buldyrev, Reuven Cohen, Shlomo Havlin, and H Eugene Stanley,
Optimal paths in disordered complex networks, Phys. Rev. Lett. 91 (2003), no. 16, 168701.
DOI: 10.1103/PhysRevLett.91.168701

[22] Lidia A Braunstein, Zhenhua Wu, Yiping Chen, Sergey V Buldyrev, Tomer Kalisky, Sameet
Sreenivasan, Reuven Cohen, Eduardo López, Shlomo Havlin, and H Eugene Stanley, Optimal
path and minimal spanning trees in random weighted networks, Int. J. Bifurc. Chaos 17
(2007), no. 07, 2215–2255. MR-2349740

[23] Tom Britton, Maria Deijfen, and Anders Martin-Löf. Generating simple random graphs with
prescribed degree distribution, J. Stat. Phys. 124 (2006), vol. 6, 1377–1397. MR-2266448

EJP 25 (2020), paper 47.
Page 51/57

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1434128
http://www.ams.org/mathscinet-getitem?mr=1491528
http://www.ams.org/mathscinet-getitem?mr=2063375
http://www.ams.org/mathscinet-getitem?mr=1704343
http://www.ams.org/mathscinet-getitem?mr=1808372
http://www.ams.org/mathscinet-getitem?mr=2073175
http://www.ams.org/mathscinet-getitem?mr=3522292
http://arXiv.org/abs/1411.3417
https://doi.org/10.1007/s00440-013-0540-x
https://doi.org/10.1002/rsa.20880
http://www.ams.org/mathscinet-getitem?mr=3704776
http://www.ams.org/mathscinet-getitem?mr=3748328
http://www.ams.org/mathscinet-getitem?mr=2735378
http://www.ams.org/mathscinet-getitem?mr=3050505
http://www.ams.org/mathscinet-getitem?mr=0595929
https://doi.org/10.1017/CBO9780511814068
http://www.ams.org/mathscinet-getitem?mr=2337396
https://doi.org/10.1103/PhysRevLett.91.168701
http://www.ams.org/mathscinet-getitem?mr=2349740
http://www.ams.org/mathscinet-getitem?mr=2266448
https://doi.org/10.1214/19-EJP408
http://www.imstat.org/ejp/


Universality for critical heavy-tailed networks

[24] Nicolas Broutin, Thomas Duquesne, and Minmin Wang, Limits of multiplicative inhomoge-
neous random graphs and Lévy trees, (2018). arXiv:1804.05871

[25] Michael Camarri and Jim Pitman, Limit distributions and random trees derived from the
birthday problem with unequal probabilities, Electron. J. Probab. 5 (2000), 1–18. MR-1741774

[26] Fan Chung and Linyuan Lu, Connected components in random graphs with given expected
degree sequences, Ann. Comb. 6 (2002), no. 2, 125–145. MR-1955514

[27] Fan Chung and Linyuan Lu. The average distances in random graphs with given expected
degrees, Proc. Natl. Acad. Sci. USA, 99 (2002), no. 25, 15879–82. MR-1944974

[28] Reuven Cohen, Daniel Ben-Avraham, and Shlomo Havlin, Percolation critical exponents in
scale-free networks, Phys. Rev. E 66 (2002), no. 3, 36113. DOI: 10.1103/PhysRevE.66.036113

[29] Guillaume Conchon-Kerjan and Christina Goldschmidt, The stable graph: the metric
space scaling limits of a critical random graph with i.i.d. power-law degrees, (2017).
arXiv:2002.04954

[30] Souvik Dhara, PhD Thesis: Critical Percolation on Random Networks with Prescribed Degrees,
Technische Universiteit Eindhoven, (2018). arXiv:1809.03634

[31] Souvik Dhara, Remco van der Hofstad, Johan S. H. van Leeuwaarden, and Sanchayan Sen,
Heavy-tailed configuration models at criticality, To appear in Ann. Inst. H. Poincaré (B)
Probab. Statist. (2016). arXiv:1612.00650

[32] Souvik Dhara, Remco van der Hofstad, Johan S. H. van Leeuwaarden, and Sanchayan Sen,
Critical window for the configuration model: finite third moment degrees, Electron. J. Probab.
22 (2017), no. 16, 1–33. MR-3622886

[33] Stewart N. Ethier and Thomas G. Kurtz, Markov Processes: Characterization and Conver-
gence, John Wiley & Sons, Inc., New Jersey, 1986.

[34] Steven N Evans, Probability and real trees, École d’Été de Probabilités de Saint-Flour
XXXV-2005 (2006), no. 1920. MR-2351587

[35] Nikolaos Fountoulakis, Percolation on sparse random graphs with given degree sequence,
Internet Math. 4 (2007), no. 1, 329–356. MR-2522948

[36] David A. Freedman, On tail probabilities for martingales. Ann. Probab. 3 (1975) no. 1,
100–118. MR-MR0380971

[37] Christina Goldschmidt, Bénédicte Haas, and Delphin Sénizergues, Stable graphs: distribu-
tions and line-breaking construction, (2018). arXiv:1811.06940

[38] Andreas Greven, Peter Pfaffelhuber, and Anita Winter, Convergence in distribution of random
metric measure spaces (Λ-coalescent measure trees), Probab. Theory Relat. Fields 145
(2009), no. 1, 285–322. MR-2520129

[39] Mikhail Leonidovich Gromov, Metric structures for Riemannian and non-Riemannian spaces,
Translated by Bates, S.M., Birkhäuser Basel, 2007. MR-2307192

[40] Hamed Hatami and Michael Molloy, The scaling window for a random graph with a given
degree sequence, Random Struct. Algor. 41 (2012), no. 1, 99–123. MR-2943428

[41] Shlomo Havlin, Lidia A. Braunstein, Sergey V. Buldyrev, Reuven Cohen, Tomer Kalisky,
Sameet Sreenivasan, and H. Eugene Stanley, Optimal path in random networks with disorder:
A mini review, Physica A: Statistical Mechanics and its Applications 346 (2005), no. 1-2,
82–92. DOI: 10.1016/j.physa.2004.08.053

[42] Remco van der Hofstad, Critical behavior in inhomogeneous random graphs, Random Struct.
Algor. 42 (2013), 480–508. MR-3068034

[43] Remco van der Hofstad, Random Graphs and Complex Networks, vol. I, Cambridge university
press, (2016). MR-3617364

[44] Remco van der Hofstad, Stochastic Processes on Random Graphs, Lecture notes for the 47th
Summer School in Probability Saint-Flour 2017, (2017). In preparation.

[45] Remco van der Hofstad, Svante Janson, and Malwina Luczak, Component structure of
the configuration model: barely supercritical case, Random Struct. Algor. (2016). DOI:
10.1002/rsa.20837

[46] Svante Janson, On percolation in random graphs with given vertex degrees, Electron. J.
Probab. 14 (2009), 87–118. MR-2471661

EJP 25 (2020), paper 47.
Page 52/57

http://www.imstat.org/ejp/

http://arXiv.org/abs/1804.05871
http://www.ams.org/mathscinet-getitem?mr=1741774
http://www.ams.org/mathscinet-getitem?mr=1955514
http://www.ams.org/mathscinet-getitem?mr=1944974
https://doi.org/10.1103/PhysRevE.66.036113
http://arXiv.org/abs/2002.04954
http://arXiv.org/abs/1809.03634
http://arXiv.org/abs/1612.00650
http://www.ams.org/mathscinet-getitem?mr=3622886
http://www.ams.org/mathscinet-getitem?mr=2351587
http://www.ams.org/mathscinet-getitem?mr=2522948
http://www.ams.org/mathscinet-getitem?mr=MR0380971
http://arXiv.org/abs/1811.06940
http://www.ams.org/mathscinet-getitem?mr=2520129
http://www.ams.org/mathscinet-getitem?mr=2307192
http://www.ams.org/mathscinet-getitem?mr=2943428
https://doi.org/10.1016/j.physa.2004.08.053
http://www.ams.org/mathscinet-getitem?mr=3068034
http://www.ams.org/mathscinet-getitem?mr=3617364
https://doi.org/10.1002/rsa.20837
http://www.ams.org/mathscinet-getitem?mr=2471661
https://doi.org/10.1214/19-EJP408
http://www.imstat.org/ejp/


Universality for critical heavy-tailed networks

[47] Svante Janson, The probability that a random multigraph is simple, Comb. Probab. Comp. 18
(2009), no. 1-2, 205–225. MR-2497380

[48] Svante Janson, Susceptibility of random graphs with given vertex degrees, J. Combin. 1
(2010), no. 3-4, 357–387. MR-2799217

[49] Svante Janson, Donald E Knuth, Tomasz Łuczak, and Boris Pittel, The birth of the giant
component, Random Struct. Algor. 4 (1993), no. 3, 233–358. MR-1220220

[50] Svante Janson and Malwina J. Luczak, A new approach to the giant component problem,
Random Struct. Algor. 34 (2009), no. 2, 197–216. MR-2490288

[51] Svante Janson, Tomasz Łuczak, and Andrzej Rucinski, Random Graphs. Wiley, New York,
2000. DOI: 10.1002/9781118032718

[52] Adrien Joseph, The component sizes of a critical random graph with given degree sequence,
Ann. Appl. Probab. 24 (2014), no. 6, 2560–2594. MR-3262511

[53] M. Kang and T. G. Seierstad, The critical phase for random graphs with a given degree
sequence, Comb. Probab. Comp. 17 (2008), no. 01, 67–86. MR-2376424

[54] Jean François Le Gall, Random trees and applications, Probab. Surveys 2 (2005), 245–311.
DOI: 10.1214/154957805100000140

[55] Robert H Martin, Nonlinear operators and differential equations in Banach spaces, Krieger
Publishing Co., Inc., Melbourne, FL, 1986.

[56] Michael Molloy and Bruce Reed, A critical-point for random graphs with a given degree
sequence, Random Struct. Algor. 6 (1995), no. 2-3, 161–179. MR-1370952

[57] Asaf Nachmias and Yuval Peres, Critical percolation on random regular graphs, Random
Struct. Algor. 36 (2010), no. 2, 111–148. MR-2583058

[58] Asaf Nachmias and Yuval Peres, The critical random graph, with martingales, Israel J. Math.
176 (2010), no. 1, 29–41. MR-2653185

[59] Jim Pitman, Random mappings, forests, and subsets associated with Abel-Cayley-Hurwitz
multinomial expansions, Séminaire Lotharingien de Combinatoire 46 (2001), 02. MR-1877634

[60] Oliver Riordan, The phase transition in the configuration model, Comb. Probab. Comp. 21
(2012), 265–299. MR-2900063

[61] L. C. G. Rogers and David Williams, Diffusions, Markov processes, and Martingales, 2nd ed.,
vol. 1, John Wiley & Sons, Ltd., Chichester, (1994). MR-1780932

[62] Ward Whitt, Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and
Their Application to Queues, Springer-Verlag, New York, (2002). DOI: 10.1007/b97479

[63] Nicholas C Wormald, Differential equations for random processes and random graphs, Ann.
Appl. Probab. (1995), 1217–1235. MR-1384372

A Rescaling the excursions: Proof of Proposition 4.3

Note that due to the difference in the choice of pn(λ) in [31, Assumption 2] and this
paper, λ must be replaced by λν. Let E(·) denote the operator that maps a process to
its ordered vector of excursion lengths, and A(·) maps a process to the vector of areas
under those excursions. Let us use Exp(b) as a generic notation to write an exponential
random variable with rate b. Now,

1√
ν
E
(∑
i≥1

θi√
ν

(
1
{

Exp(θi/(µ
√
ν)) ≤ t

}
− (θi/(µ

√
ν))t

)
+ λνt

)
d
=

1

ν
E
(∑
i≥1

θi√
ν

(
1 {Exp(θi/(µν)) ≤ u} − (θi/(µν))u

)
+ λu

√
ν

)
d
=

1

ν
E
(∑
i≥1

θi
µν

(
1 {Exp(θi/(µν)) ≤ u} − (θi/(µν))u

)
+
λ

µ
u

)
,

(A.1)
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where the last step follows by rescaling the space by µ
√
ν and noting that the rescaling

of space does not affect excursion lengths. Again,

A
(∑
i≥1

θi
µ
√
ν

(
1
{

Exp(θi/(µ
√
ν)) ≤ t

}
− (θi/(µ

√
ν))t

)
+
λν

µ
t

)
d
= A

(∑
i≥1

θi
µν

(
1 {Exp(θi/(µν)) ≤ u} − (θi/(µν))t

)
+
λ

µ
u

)
,

(A.2)

which is obtained by rescaling both the space and time by
√
ν. Thus, the proof follows.

B Barely subcritical exploration process: Proofs of Lemmas 6.5
and 6.6

Proof of Lemma 6.3. Recall the representation of S̄jn(t). It is enough to show that

sup
t∈[0,T ]

n−α
∣∣∣∣ ∑
i∈[n]

d′i

(
Ini (tnα+δ)− d′i

`′n
tnα+δ

)∣∣∣∣ = sup
t∈[0,T ]

n−α|Mn(tnα+δ)| P−→ 0. (B.1)

Fix any T > 0 and define `′n(T ) = `′n − 2Tnα+δ − 1, and M ′n(l) =
∑
i∈[n] d

′
i(Ini (l) −

(di/`
′
n(T ))l). Note that

sup
t∈[0,T ]

n−α|Mn(tnα+δ)−M ′n(tnα+δ)| ≤ Tnδ
(2Tnα+δ − 1)

∑
i∈[n] d

′2
i

`′n(T )2
= oP(1), (B.2)

and thus the proof reduces to showing that

sup
t∈[0,T ]

n−α|M ′n(tnα+δ)| P−→ 0. (B.3)

Note that, uniformly over l ≤ Tnα+δ,

P
(
Ini (l + 1) = 1

∣∣Fl

)
≤ d′i
`′n(T )

on the set {Ini (l) = 0}. (B.4)

Therefore,

E
[
M ′n(l + 1)−M ′n(l)

∣∣Fl

]
= E

[ ∑
i∈[n]

n−αd′i

(
Ini (l + 1)− Ini (l)− d′i

`′n(T )

) ∣∣∣Fl

]

=
∑
i∈[n]

n−αd′i

(
E
[
Ini (l + 1)

∣∣Fl

]
1 {Ini (l) = 0} − d′i

`′n(T )

)
≤ 0.

Thus (M ′n(l))Tn
α+δ

l=1 is a super-martingale. Further, uniformly for all l ≤ Tnα+δ,

P (Ini (l) = 0) ≤
(

1− d′i
`′n

)l
. (B.5)

Thus, Assumption 2 gives

n−α
∣∣E[M ′n(l)]

∣∣ ≤ n−α ∑
i∈[n]

d′i

(
1−

(
1− d′i

`′n

)l
− d′i
`′n
l

)
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∑
i∈[n]

d′2i

(
1

`′n(T )
− 1

`′n

)

≤ l2

2`′2n nα
∑
i∈[n]

d′3i + o(1) = o(1),
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where we have used the fact that n−αl
∑
i∈[n] d

′2
i (1/`′n(T ) − 1/`′n) = O(n2ρ+1−α−2) =

O(n(τ−4)/(τ−1)), uniformly for l ≤ Tnα+δ and, in the last step, that fact that δ < η.
Therefore, uniformly over l ≤ Tnα+δ,

lim
n→∞

∣∣E[M ′n(l)]
∣∣ = 0. (B.6)

Now, note that for any (x1, x2, . . . ), 0 ≤ a+ b ≤ xi and a, b > 0 one has
∏R
i=1(1− a/xi)(1−

b/xi) ≥
∏R
i=1(1− (a+ b)/xi). Thus, for all l ≥ 1 and i 6= j,

P
(
Ini (l) = 0, Inj (l) = 0

)
≤ P (Ini (l) = 0)P

(
Inj (l) = 0

)
(B.7)

and therefore Ini (l) and Inj (l) are negatively correlated. Observe also that, uniformly
over l ≤ Tbn,

Var (Ini (l)) ≤ P (Ini (l) = 1) ≤
l∑

l1=1

P (vertex i is first discovered at stage l1) ≤ ld′i
`′n(T )

.

(B.8)
Therefore, using the negative correlation in (B.7), uniformly over l ≤ Tnα+δ,

n−2αVar (M ′n(l)) ≤ l

`′n(T )n2α

∑
i∈[n]

d′3i = o(1). (B.9)

Now we can use the super-martingale inequality [61, Lemma 2.54.5] stating that for any
super-martingale (M(t))t≥0, with M(0) = 0,

εP

(
sup
s≤t
|M(s)| > 3ε

)
≤ 3E [|M(t)|] ≤ 3

(
|E [M(t)] |+

√
Var (M(t))

)
. (B.10)

Thus (B.3) follows using (B.6), (B.9), and (B.10).

Proof of Lemma 6.4. Fix any T > 0 and recall that `n(T ) = `′n − 2Tnα+δ − 1. Denote
W (l) =

∑
i∈[n] wiIni (l). Firstly, observe that

E[W (l + 1)−W (l)|Fl] =
∑
i∈[n]

wiE
[
Ini (l + 1)

∣∣Fl

]
1 {Ini (l) = 0} ≤

∑
i∈[n] d

′
iwi

`′n(T )
,

uniformly over l ≤ Tnα+δ. Therefore, (W̃ (l))Tn
α+δ

l=1 is a super-martingale, where W̃ (l) =

W (l) − (
∑
i∈[n] d

′
iwi/`

′
n)l. Again, the goal is to use (B.10). Using (B.5), we can show

that
∣∣E[W̃ (l)]

∣∣ = o(nα+δ), uniformly over l ≤ Tnα+δ. Also, using (B.7) and (B.8) and

Assumption 2.9, var(W̃ (l)) ≤∑i∈[n] w
2
i var(Ini (l)) = o(n2(α+δ)), uniformly over l ≤ Tnα+δ.

Finally, using (B.10), we conclude the proof.

C Barely subcritical exploration process: Proof of Fact 6.3

Consider exploring CMn(d′) by Algorithm 3 with V ∗n being the starting vertex. Let
us denote the degree of the vertex found at step l by d′(l). If no new vertex is found at
step l, then d′(l) = 0. Also, let Fl denote the sigma-algebra containing all the information
revealed by the exploration process upto time l. Thus,

Sn(0) = d′V ∗n , and Sn(l) = Sn(l − 1) + (d′(l) − 2), (C.1)

and when Sn hits zero, then C ′(V ∗n ) has been explored. Using the Doob-Meyer decompo-
sition, one can write

Sn(l) = Sn(0) +Mn(l) +An(l), (C.2)
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where Mn is a martingale with respect to (Fl)l≥1. The drift An and the quadratic
variation 〈Mn〉 of Mn are given by

An(l) =

l∑
j=1

E
[
d′(j) − 2|Fj−1

]
, 〈Mn〉(l) =

l∑
j=1

Var
(
d′(j)|Fj−1

)
. (C.3)

Let tn = nα+δ+c0 , where we choose c0 > 0 (sufficiently small) such that α+ δ+ c0 < 1− δ.
Such a choice of c0 is always possible since α+ 2δ < α+ 2η = 2− 3α < 1 as 3α > 1. We
will show that, for all sufficiently large n,

An(tn) ≤ −λ0

2
tnn
−δ almost surely, (C.4)

where λ0 is given by (2.9), and for any ε > 0,

P(Mn(tn) > εtnn
−δ) ≤ C ′e−C′′ε2nε0 , (C.5)

where C ′, C ′′ > 0 are constants. Note that Sn(0) = dV ∗n ≤ Cnα = o(tnn
−δ). Thus, if

Mn(tn) ≤ εtnn
−δ and (C.4) holds, then Sn(tn) < 0 and hence C ′(V ∗n ) is explored before

time tn. This in turn implies that
∑
i∈C ′(V ∗n ) d

′
i ≤ 2tn, since one edge is explored per step.

Therefore it is enough to prove (C.4) and (C.5). Let Vj denote the set of vertices explored
up to time j. Recall that, by the definition of ν′n in (2.9), 1

`′n

∑
i∈[n] d

′2
i −2 = λ0n

−δ+o(n−δ).
Then, uniformly over j ≤ tn,

E
[
d′(j) − 2|Fj−1

]
= E

[
d′(j)|Fj−1

]
− 2 ≤

∑
i/∈Vj−1

d′2i
`′n − 2tn + 1

− 2

≤
∑
i∈[n] d

′2
i

`′n − 2tn + 1
− 2 =

`n(2− λ0n
−δ + o(n−δ))

`′n − 2tn + 1
− 2

= −λ0n
−δ +O(tn/n) + o(n−δ) ≤ −λ0

2
n−δ,

(C.6)

for all sufficiently large n, where in the final step we have used the fact that tn = o(n1−δ).
Thus (C.4) follows.

To prove (C.5), we use Freedman’s inequality [36, Proposition 2.1] which says that if
Y (k) =

∑
j≤kXj with E[Xj |Fj−1] = 0 (for some filtration (Fj)j≥1) and P(|Xj | ≤ R, ∀j ≥

1) = 1, then, for any a, b > 0,

P(Y (k) ≥ a, and 〈Y 〉(k) ≤ b) ≤ exp

(
− a2

2(Ra+ b)

)
. (C.7)

Note that, uniformly over j ≤ tn,

Var
(
d′(j)|Fj−1

)
≤ E[d′2(j)|Fj−1] =

∑
j /∈Vj−1

d′3j
`′n − 2tn + 1

≤
∑
j∈[n] d

′3
j

`′n − 2tn + 1
≤ Cn3α−1, (C.8)

so that, almost surely,
〈Mn〉(tn) ≤ Ctnn3α−1. (C.9)

Also, d(j) ≤ Cnα almost surely. Thus, applying (C.7) with a = εtnn
−δ, b = Ctnn

3α−1 and
R = Cnα, and also using (C.9), it follows that

P(Mn(tn) > εtnn
−δ) ≤ exp

(
− C ′ ε2t2nn

−2δ

2(tnn3α−1 + εnαtnn−δ)

)
≤ C ′e−C′′εnε0 , (C.10)

where in the last step we have used the fact that α− δ > α− η = 3α− 1 and tn = nα+δ+ε0 .
Thus the proof of (C.5) follows.
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D Limit of exploration process: Proof sketch for Proposition 7.8

The proof of Proposition 7.8 can be carried out using similar ideas as [31, Theorem 8].
The key idea to prove Proposition 7.8 is that the scaling limit is governed by the vertices
having large degrees only. More precisely, for any ε > 0 and T > 0,

lim
K→∞

lim sup
n→∞

P

(
sup
t≤T

n−α
∣∣∣∣∑
i>K

ai

(
Ini (tnρ−δ)− ai

`an
tnρ−δ

)∣∣∣∣ > ε

)
= 0. (D.1)

This can be proved using martingale estimates, see [31, Section 4]. Thus, if one considers
the truncated sum ∑

i≤K
ai

(
Ini (l)− ai

`an
l

)
+ (νn(a)− 1) l,

with the first K (fixed) terms it is enough to show that the iterated limit of the truncated
process (first taking limn→∞ and then limK→∞) converges to S with respect to the
Skorohod J1 topology. Now, using the fact that ai/

∑
i ai

P−→ θi/(µν), and the fact that the
vertices are explored in a size-biased manner with sizes being (ai)i≥1, it follows that (see
[31, Lemma 9]), for each fixed K ≥ 1,(

Ini (tnρ−δ)
)
i∈[K],t≥0

d−→
(
1 {Exp(θi/(µν)) ≤ t}

)
i∈[K],t≥0

. (D.2)

This concludes the proof of Proposition 7.8.
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