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Abstract

We consider one-dependent random walks on Zd in random hypergeometric envi-
ronment for d ≥ 3. These are memory-one walks in a large class of environments
parameterized by positive weights on directed edges and on pairs of directed edges
which includes the class of Dirichlet environments as a special case. We show that
the walk is a.s. transient for any choice of the parameters, and moreover that the
return time has some finite positive moment. We then give a characterization for
the existence of an invariant measure for the process from the point of view of the
walker which is absolutely continuous with respect to the initial distribution on the
environment in terms of a function κ of the initial weights. These results generalize
[Sab11] and [Sab13] on random walks in Dirichlet environment. It turns out that κ
coincides with the corresponding parameter in the Dirichlet case, and so in particular
the existence of such invariant measures is independent of the weights on pairs of
directed edges, and determined solely by the weights on directed edges.
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Despite important progress in the ballistic, balanced, or perturbative regimes (see
in particular [SZ99, Szn00, Szn02, SZ06, BZ07, BDR14, RAS09, BZ08, Law82, GZ12,
BD14]), random walks in i.i.d. random environment in dimension d ≥ 2 remain a
very challenging model. The high non-reversibility of this model is at the heart of
the difficulty and several of the basic questions concerning recurrence/transience,
equivalence between directional transience and ballisticity, and diffusive behavior are
still unsolved. The process viewed from the particle, which is a key tool for reversible
models, is still only understood under specific conditions (see [Sab13, RA03, BCR16]).
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Random walks in random hypergeometric environment

The special case of random walks in random Dirichlet environment (RWDE), [ES06],
where the environment is i.i.d. at each site and distributed according to a Dirichlet law,
shows remarkable simplifications, while keeping the main phenomenological behavior
as the general model (see [ST17] for a survey). For this special choice of distribution,
a key property of “statistical invariance by time reversing” makes it possible to prove
transience in dimension d ≥ 3 [Sab11], existence of an invariant measure viewed from
the particle absolutely continuous with respect to the static law, and equivalence between
directional transience and ballisticity in dimension d ≥ 3 [ST11, Sab13, Bou13, ST17].

The aim of this paper is to give a generalization of this model and of these results
to a class of one-dependent random walks in random environment, based on some hy-
pergeometric distributions. The hypergeometric functions defined in (1.2) below are a
natural special functions constructed from the Dirichlet distributions. A generalization
of the statistical time-reversal key property is proved (see Corollary 3.3 below), based on
a duality property of these hypergeometric functions. The latter is a multidimensional
generalization of the fact that 2F1(a, b; c, z) = 2F1(b, a; c, z) where 2F1 is the basic hyper-
geometric series (see e.g. [AKKI11], Section 1.2.1 for the definition and Section 1.3.1
for the integral representation).

This generalization is natural from the following considerations. The statistical time-
reversal property mentioned above makes it possible to write a rather efficient proof
of transience and existence of an absolutely continuous invariant measure viewed from
the particle in dimension d ≥ 3, but it fails to give information on some other natural
questions on random walks in random Dirichlet environment (RWDE), such as large
deviation and Sznitman’s (T ) condition. Nevertheless, in dimension 1 in the Dirichlet
case, the large deviation rate function can be explicitly computed and involves some
hypergeometric functions (see [ST17], section 8). The meaning of this computation
remains still rather mysterious and the model investigated in this paper comes from
an attempt to generalize the computation done in [ST17]. Besides, it is also natural to
ask to what extent the strategy used for Dirichlet environments can be generalized. We
believe that the class of Dirichlet environments is the only class of i.i.d. environments on
which the random walk satisfies the statistical time-reversal property mentioned above.
This paper shows nevertheless that a larger class of environments for one-dependent
random walks share the same basic features as the Dirichlet environments.

1 Statement of the results

1.1 Hypergeometric functions

Denote by ∆(n) :=

{
u ∈ (0, 1]n :

n∑
i=1

ui = 1

}
the open n-simplex. Define a function on

vectors u ∈ ∆(n)

ϕ(α, β;Z;u) =

(
n∏
i=1

uαi−1
i

)
l∏

j=1

(
(Z · u)

−βj
j

)
(1.1)

where as parameters we take vectors α ∈ (R∗+)n and β ∈ (R∗+)l that satisfy
∑
i αi =

∑
j βj

and have strictly positive coordinates, and l × n matrix Z = (Zj,i) with strictly positive
coefficients, where here and after we use the notation R∗+ = {t ∈ R : t > 0}. Call
functions of the following form hypergeometric functions:

Φ(α, β;Z) :=

∫
∆(n)

ϕ(α, β;Z;u)du. (1.2)
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Random walks in random hypergeometric environment

Here the integral is computed according to the Lebesgue measure on the simplex

du = du1 · · · dun−1 so that un = 1−
n−1∑
i=1

ui. When (Zj,i) has strictly positive coefficients,

we have for all (Z · u)j ≥ z, with z = mini,j(Zj,i), so that the integral (1.2) is finite.
These functions are classical generalized hypergeometric functions, see e.g. [AKKI11,
Section 3.7.4.].

1.2 The model on Zd

We denote by (e1, . . . , ed) the canonical base of Rd, and we set ed+i = −ei for i =

1, . . . , d. Consider the lattice Zd endowed with its natural directed graph structure:
GZd = (Zd, EZd), where E = {(x, x + ei), x ∈ Zd, i = 1, . . . , 2d}. The arc graph is the
directed graph HZd = (EZd ,KZd), with K = KZd ⊂ EZd × EZd given by

K =
{(

(x− ei, x), (x, x+ ej)
)
, x ∈ Zd, i, j = 1, . . . , 2d

}
.

Concretely, K is the set of couples of succeeding edges that can be crossed by a random
walker on the graph GZd . The space ΩK ⊂ (0, 1]K of random environments on HZd is the
subspace of transition probabilities of nearest neighbor chains on HZd :

ΩK =
{

(ωe,e′)(e,e′)∈K ∈ (0, 1]K , such that ∀e ∈ E,
∑

e′, (e,e′)∈K

ωe,e′ = 1
}
.

The space ΩK also naturally describes the space of one-dependent Markov chain kernels
on the graph Zd.

Let us now define the random environment. Fix some positive parameters (α1, . . . , α2d)

and a 2d× 2d matrix Z = (Zi,j) with strictly positive coefficients.
The vectors (u(x,x+ei))i=1,...,2d, x ∈ V , are chosen randomly and independently according
to the same distribution on the simplex ∆(2d) with density

1

Φ(α, α;Z)
ϕ(α, α;Z;u)du. (1.3)

This defines a product law on (u(x,x+ei))x∈Zd, i=1,...,2d which is denote by P(α,Z). Denote
by E(α,Z) the corresponding expectation. We now define a random environment on KZd
by first sampling (u(x,x+ei))x∈Zd, i=1,...,2d according to the last product law and the letting

ω(x−ei,x),(x,x+ej) =
Zi,jux,x+ei∑2d
l=1 Zi,lux,x+el

, x ∈ Zd, i, j = 1, ..., 2d. (1.4)

Naturally, ω defines the transition probabilities of a Markov chain on the arc graph HZd ,
i.e. w ∈ ΩK , and the distribution P(α,Z) induces a probability distribution on the set of
environments ΩK .

For an environment ω we denote by Pe,ω the law of the Markov chain (Xn)n∈N on
state space E started at e ∈ E with step distribution ω. Whenever ω is sampled according
to P(α,Z), we say that the last Markov chain is distributed according to the quenched
law. Denote by P(α,Z)

e the marginal of the joint law of the Markov chain started at e and
the environment distributed according to P(α,Z). The latter is also called the averaged
law, or the annealed law, of the walk X, and it is characterized by

P(α,Z)
e (·) =

∫
Pe,ω(·)dP(α,Z)(ω).

Remark that from (1.3), whenever Zi,j = Zi,1 for all i, j = 1, . . . , 2d, then we have
ω(x−ei,x),(x,x+ej) = ux,x+ej . Therefore, it defines a Markov chain on the original graph
GZd , and moreover (ux,x+ei)i=1,...,2d are independent and follow a Dirichlet distribution
with parameters (α1, . . . , α2d) at each site. Hence, it corresponds to RWDE mentioned in
the introduction (for an overview on RWDE see [ST17]).
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Random walks in random hypergeometric environment

1.3 Order of Green function and Transience on Zd, d ≥ 3

Fix parameters (αi)i=1,...,2d and (Zi,j)i,j=1,...,2d as in Section 1.2 and let ω be dis-
tributed according to P(α,Z). Denote by Gω(e0, e0) the Green function at (e0, e0) of the
Markov chain with jump probabilities ω, that is, the Pe0,ω-expected number of returns
to e0.

Theorem 1.1. Let α and Z be as in Section 1.2 and d ≥ 3. Let κ̃ := mini=1,...,2d{αei}. If
s < κ̃, then

E(α,Z)
e0 [Gω(e0, e0)s] <∞.

In particular, ω-P(α,Z) almost surely, (Xn) is transient under the quenched law Pe0,ω.

Remark 1.2. A similar statement was proved in [Sab11, Theorem 1] in the Dirichlet case
for s < κ, where κ = max{2(

∑d
j=1 αej ) − (αei − α−ei) : 1 ≤ i ≤ d} (an interpretation of

the parameter κ is given at the end of Section 1.4). Hence, the last theorem generalizes
this to the hypergeometric environment in the case s < κ̃ < κ. The statement would
certainly be also true in the case κ̃ ≤ s < κ: to prove it in this regime, one would need
to consider a max-flow type problem adapted to the arc graph H, as in Section 7.2. of
[ST17] together with our proof of Theorem 1.4. We don’t include that analysis in the
current paper, but we stress that it could be done using the same techniques.

Remark 1.3. As in the standard Dirichlet case, the case of dimension 2 is still mysterious.
It is expected that the walk is recurrent when the weights are symmetric with respect
to the axis (i.e. null expected drift at first step), hence the the Green function is a.s.
infinite. When the weights are not symmetric, we would expect that there is no long
range trapping effect in d = 2 so that the integrability condition would be the same
as in d ≥ 3. But it is still far from being understood. In dimension d = 1, it would be
possible to adapt the proof of the Diriclet case (see [ST17] page 502) to compute the law
of the probability starting from the edge (0, 1) to never come back to the edge (0, 1). It
would give that the Green function is integrable for s < |α− β| when α (resp. β) are the
weights of the right direction edge (resp. left direction edge). The integrability should
not depend on the Z parameters. When α = β the walk should be recurrent.

1.4 Invariant measure for the walker point of view

Let (τx)x∈Zd be the shift maps on ΩK , where τx(ω(e, e′)) := ω(x + e, x + e′). Here
x+ e := (x+ e, x+ e′) for x ∈ Zd and e = (e, e) ∈ EZd . We also let τe := τe. Following the
strategy of [Koz85] and [KV86], we define the process

ωn := τXn(ω0) on ΩK

from the point of view of the walker with initial state ω0 ∼ P. Under Pe0 , this is a Markov
process on ΩK . Its infinitesimal generator R is given by

R(f)(ω) :=

2d∑
i=1

ω(e0, ei)f(τei(ω)),

defined for measurable bounded functions f on ΩK . Call a (probability) measure Q on
ΩK invariant under R if

∫
RfQ(dω) =

∫
fQ(dω) for all measurable bounded functions f

on ΩK .
The main result of this section is the following generalization of Theorem 1 of [Sab13].

Theorem 1.4. Let κ := max{2(
∑d
j=1 αej ) − (αei − α−ei) : 1 ≤ i ≤ d} > 0 and assume

d ≥ 3. Then:

1. If κ > 1 then there is a unique probability measure Q(α,Z) on ΩK which is invariant
under R and is absolutely continuous with respect to the initial measure P(α,Z).
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Random walks in random hypergeometric environment

Moreover, for every p ∈ [1, κ) the Radon-Nikodym derivative dQ(α,Z)

dP(α,Z) is in Lp(P(α,Z)).
(In particular, trivially, the last assertion holds also for every 0 < p < 1.)

2. If κ ≤ 1 then there is no probability measure satisfying the invariance and absolute
continuity properties of the last case.

The parameter κ was considered first in [Sab11] in the context of Zd, and was
introduced by Tournier [Tou09] for finite graphs. Let us give an interpretation of this
parameter. If S ⊂ V is a nonempty set of vertices, the outer boundary of S is defined by

∂+(S) = {e ∈ E : e ∈ S but e /∈ S}.

Define also α(∂+(S)) =
∑

e∈∂+(S)

αe, the total α-strength of the edges leaving S. Then

κ = max{α(∂+({0, ei})) : i = 1, ..., d} (1.5)

represents the maximal weight of the outer boundary of a single edge. Roughly speaking,
it means that the strongest traps in this model are the traps consisting of a single edge,
and the strength of these traps is the outer weight. This last assertion is justified by the
following lemma.

Lemma 1.5. Let Ti =: inf{n ≥ 0 : Xn /∈ {{0, ei}, {ei, 0}}}, i = 1, ..., 2d, be the exist

times from the set {{0, ei}, {ei, 0}} of directed edges. If κ ≤ 1, E(α,Z)
e0 [Ti] =∞ for some

1 ≤ i ≤ 2d.

Proof. Using (1.4) and the independence of the ue between vertices, and noticing that un-
der Pe0,ω, Ti is a geometric random variable with expectation 1

1−ω({0,ei},{ei,0})ω({ei,0},{0,ei}) ,
the proof is concluded in a similar manner as in [Tou09, Chapter 3.2].

Remark 1.6. We believe that the statement of the last lemma can be strengthened to say
that E(α,Z)

e0 [T si ] =∞ for some 1 ≤ i ≤ 2d if and only if s ≥ κ. Since the proof should be
somewhat involved, and since we shall use only the weak form of the lemma (namely an
implication in the case s = 1), this is not done in the current paper.

2 General graphs

It is necessary for the proof to define our random environments on general graphs.
This is done in Section 2.1 and 2.2 below.

2.1 Directed arc graph

Remember that a directed graph is connected if for any two vertices x and y there is
a directed path connecting x to y, or connecting y to x. Let G = (V,E) be a connected
directed graph with vertices and edges such that the in-degrees and out-degrees are
finite at each vertex. Here and after in-degree (out-degree) of a vertex x ∈ V is the
number of vertices y ∈ V that (y, x) ∈ E (respectively, (x, y) ∈ E). For each edge e we
denote by e and e the tail and head of the edge so that e = (e, e), and we denote by
ě = (e, e) the “reversed edge”. We denote by Ǧ = (V, Ě) the reversed graph with edge
set Ě := {ě, e ∈ E}.

We define the (directed and connected) arc graph H = (E,K) with nodes E and arcs
K by setting K := {k = (e, e′) ∈ E2 : e = e′}. In words, H is the graph so that its nodes
are the edges of G and its arcs are directed pairs of edges of G that share a common
vertex, the head of the first edge and the tail of the second one. Define the reversed
graph Ȟ = (Ě, Ǩ) by the relation (ě′, ě) ∈ Ǩ ↔ (e, e′) ∈ K. Clearly, Ȟ is also the arc
graph of the reversed graph Ǧ.
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Random walks in random hypergeometric environment

Let ΩK ⊂ (0, 1]K be defined by

ΩK =

ω :
∑

e′:(e,e′)∈K

ω(e, e′) = 1, ∀e ∈ E

 ,

seen as a topological (measurable) subspace of (0, 1]K with the standard topology (Borel
σ-algebra). The space ΩK will be the space of environments of Markov chains on the
directed graph H. The space ΩǨ is defined similarly for the reversed graph Ȟ = (Ě, Ǩ).
As in Section 1.2, we note that ΩK also describes the one-dependent Markov chains on
the graph G.

2.2 The model on a general directed arc graph

Let G = (V,E) be a directed connected graph, and let H be the corresponding arc
graph. Fix strictly positive parameters (αe)e∈E and (Ze,e′)(e,e′)∈K . Recall the definition
of ϕ and Φ in Section 1.1. For every x ∈ V , let

ϕx(α;Z;u) = ϕ((αe)e=x, (αe)e=x; (Ze,e′)e=x=e′ ; (ue)e=x) (2.1)

be defined for u in the deg(x)-simplex

∆(x) := {(ue)e=x : ue > 0,
∑
{e:e=x}

ue = 1}.

Here deg(x) is the out-degree of x. Similarly we let, as in (1.2),

Φx(α;Z) :=

∫
∆(x)

ϕx(α;Z;u)dxu = Φ((αe)e=x, (αe)e=x; (Ze,e′)e=x=e′), (2.2)

where dxu =
∏
e=x,e 6=ex due is the measure on ∆(x) defined in Section 1.1, where ex is

an arbitrary choice of edge exiting x (obviously, du does not depend on the choice of
ex). Let U(x), x ∈ V , be random vectors with values in ∆(x), which are independent and
distributed according to the density

1

Φx(α,Z)
ϕx(α;Z;u)dxu.

For every e ∈ E let ue := Ue(e), the e coordinate of the random vector U(e). We denote by
P(α,Z) the distribution on (ue)e∈E defined in this way. Denote by E(α,Z) the corresponding
expectation.

From the random variables ue, e ∈ E, we construct an environment ω ∈ ΩK by

ω(e, e′) :=
Ze,e′ue′∑

e′′:e′′=x Ze,e′′ue′′
, ∀(e, e′) ∈ K. (2.3)

With a slight abuse of notation, we also denote by P(α,Z) the law thus induced on ΩK .
For ω ∈ ΩK we denote by Pe,ω the law of the Markov chain X on E started at e ∈ E
with step distribution ω. Whenever ω is sampled according to P(α,Z), the law of the
last Markov chain is called the quenched law. Denote by P(α,Z)

e the marginal law of the
joint law of the Markov chain started at e and the environment distributed according
to P(α,Z). The latter is also called the averaged law, or annealed law of the walk X, and
is characterized by

P(α,Z)
e (·) =

∫
Pe,ω(·)dP(α,Z)(ω).
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Random walks in random hypergeometric environment

Note that, as in the case of Zd, if (Ze,e′)e=x=e′ , x ∈ V , are matrices with constant rows
(i.e. Ze,e′ = ce for every (e, e′) ∈ K), then U(x) has the Dirichlet((αe)e=x) distribution.
Hence ω is an i.i.d Dirichlet((αe)e=x) environment, and the walk is a standard random
walk in Dirichlet environment.

The model defined in Section 1.2 on Zd obviously corresponds to the case where the
parameters (αe)e∈E and (Ze,e′)(e,e′)∈K are given by

αx,x+ei = αi, ∀x ∈ Zd, i = 1, . . . , 2d, and Z(x−ei),(x+ej) = Zi,j , ∀x ∈ Zd, i, j = 1, . . . , 2d,

with notation as in Section 1.2. We warn the reader about the little confusion of notation
between (αi) and (αe) and (Zi,j) and (Ze,e′)(e,e′)∈K but we think it will be clear enough
from the context. Obviously, the model of Section 1.2 describes all the parameters on
HZd which are invariant by translation, i.e. which satisfy αe = αx+e, for all x ∈ Zd, e ∈ E
and Ze,e′ = Zx+e,x+e′ , for all x ∈ Zd and (e, e′) ∈ K.

2.3 A remark on our motivation

The origin of this work comes from the following fact proved in [ST17, Section 8.3]. In
dimension 1 the rate function of the annealed large deviation principal for the hitting time
of a level k is computed in terms of the hypergeometric function 2F1. The proof is based
on the identification of the law of a the solution of a distributional equation, inspired by
Chamayou and Letac, [CL91]. The symmetry property of 2F1, which is a special case
of the duality property proved in Appendix A, is at the core of the argument. In the
one-dimensional case, this identity generalizes the statistical time-reversal property. An
very interesting problem, which is still open, is to find a multidimensional counterpart
for the rate function formula.

Another motivation is to find other models that share the same type of statistical time-
reversal property with Dirichlet environments. We believe that Dirichlet environments
are the only non-trivial model based on independent transition probabilities at each site
that have this property. The model presented here is a natural extension of the Dirichlet
environment that allows one-dependence of the quenched Markov chain and that shares
similar property.

3 Main tools

3.1 Marginal and multiplicative moments

We assume in this chapter that the graph G is finite. Our first observation regarding
the hypergeometric distribution is the distribution of its marginal. A direct computation
gives that if ω is defined as in (2.3), then we have for e, e′ so that e = x = e′

E(α,Z)[ω(e, e′)s] = Zse,e′
Φx(α+ s(δe + δe′), Z)

Φx(α,Z)
. (3.1)

In particular we see that the above is finite whenever the arguments of Φx is strictly
positive, and in particular as long as s > −min{αe, αe′}. Note that in the Dirichlet
case, e.g. whenever Z ≡ 1, we have that ω(e, e′) = ue′ has the Beta distribution
Beta(αe′ ,

∑
e=x αe − αe′).

Next, we shall expand the definition of the measure P(α,Z) on environments to include
a possibility to increase or decrease the weights α and Z.

Assume here that G is finite. For a function ξ : K → R let

ξe :=
∑
e′=e

ξ(e, e′) and ξ
e′

:=
∑
e=e′

ξ(e, e′)

be the total ‘weight’ leaving e, and entering e′, respectively.
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We now define the measure P(α,ξ,Z) on ΩK by a similar procedure. For every x ∈ V
and u ∈ ∆(x) we let

ϕx(α; ξ;Z;u) = ϕ((αe + ξ
e
)e=x, (αe + ξe)e=x; (Ze,e′)e=x=e′ ; (ue)e=x),

and similarly

Φx(α; ξ;Z) :=

∫
∆(x)

ϕx(α; ξ;Z;u)dxu.

This is well-defined as long as αe + ξe > 0 and αe + ξ
e
> 0 for all e ∈ E. Next, Ux, x ∈ V ,

are taken to be independent with density

1

Φx(α; ξ;Z)
ϕx(α; ξ;Z;u)dxu.

Putting ue := Ue(e), e ∈ E, and constructing ω ∈ ΩK as in (2.3), we denote its quenched

and annealed laws by Pe0,ω and P(α,ξ,Z)
e0 . Note that in the case ξ ≡ 0 we have P(α,0,Z)

e0 =

P
(α,Z)
e0 .

It will be beneficial to define

F (α; ξ;Z) :=
∏
x∈V

Φx(α; ξ;Z), and F (α;Z) := F (α; 0;Z). (3.2)

Also, for functions β, γ : A → R+ so that A is a finite set and β is strictly positive, we
define

βγ :=
∏
x∈A

β(x)γ(x). (3.3)

A direct computation gives that for every ξ,Θ : K → R

E(α,Θ,Z)[ωξ] = ZΘ+ξ · F (α; Θ + ξ;Z)

F (α; Θ;Z)
, (3.4)

as long as the right hand side of the equation is well defined.
If we think of P(α,Z) as the law of (ue)e∈E , i.e. a measure on

∏
x∈V ∆(x), then the

Radon-Nikodym derivative one gets by changing the values of α is explicit. Indeed, for
θ : E → R+ so that αe > θe for all e ∈ E, and for any random variable Y (ω) = (Y ◦ ω)(u)

E(α,Z)[Y ] =
F (α+ θ, Z)

F (α,Z)
E(α+θ,Z)[ũ−θ · Y ], (3.5)

where
ũe :=

ue∑
e′=e Ze,e′ue′

.

3.2 Duality formula

A key feature of the hypergeometric functions defined in (1.2) is the following duality
formula [AKKI11, Page 169], which has consequences regarding time-reversing. This
will be discussed in Chapter 3.3, and a direct proof of Lemma 3.1 will be supplied in
Appendix A. Define

B(α) = B(α1, ..., αn) =

∏n
i=1 Γ(αi)

Γ (
∑n
i=1 αi)

, (3.6)

where Γ is the standard Gamma function, i.e. Γ(t) =
∫∞

0
xt−1e−xdx.

Lemma 3.1 (Duality formula). With the notation from (1.2), the following holds as soon
as
∑n
i=1 αi =

∑l
j=1 βj

B(α)−1Φ(α, β, Z) = B(β)−1Φ(β, α, Zt),

where Zt is the transposed matrix corresponds to Z.
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We remark that in the Dirichlet case (e.g., whenever Z ≡ 1) both Φ(α, β, Z) = B(α)

and Φ(β, α, Zt) = B(β) and so in this case the duality is trivial.

3.3 Time-reversal statistical invariance

In this section we assume that the graph G = (V,E) is finite. For ω ∈ ΩK , let
πω = (πω(e)))e∈E be the invariant probability measure of the Markov chain on E with
transition probabilities ω. (Note that by ellipticity of ω, the finite state Markov chain
is a.s. irreducible and hence πω is a.s. unique.) Define the time reversed environment
ω̌ ∈ ΩǨ by letting

ω̌(ě′, ě) = πω(e)ω(e, e′)πω(e′)−1. (3.7)

Let π̌ω̌ be the invariant probability measure of the Markov chain on Ě with transition
probabilities ω̌. Then, since π̌ω̌ is also the invariant probability measure of the time
reversed chain defined by ω, we have

π̌ω̌(ě) = πω(e) (3.8)

for every e ∈ E. Note that ω̌ is an element of ΩǨ .
Let α̌ě := αe for every e ∈ E. Also, denote Ž the ‘reversed’ matrices corresponds to

Z, that is Žě′,ě = (Zt)e′,e = Ze,e′ . Let C = {e0, e1, ..., en = e0} be a cycle in H, n = n(C)

is its length. (The reader should notice that here C is a cycle of edges, and so viewed
as a sequence of vertices it has the form {e0, e1, e2, ..., en = e0, e0 = e1}, i.e., a cycle
of vertices plus a repetition of the vertex e1.) Define Č := {ěn, ěn−1, ..., ě0 = ěn} to be
the corresponding reversed cycle in Ȟ. For a finite collection C of cycles we denote by
Č := {Č : C ∈ C}. Set ωC :=

∏n−1
k=0 ωek,ek+1

, and ωC :=
∏
C∈C ωC . By (3.7), we have

ωC = ω̌Č ,

for all cycles C. Similarly, we set ZC :=
∏n−1
k=0 Zek,ek+1

and ZC :=
∏
C∈C ZC . We have, by

definition of Ž, that ZC = ŽČ for all cycle C.
We introduce now the divergence operator on the graph G: we define div : RE 7→ RV

by
div(θ)(x) =

∑
e=x

θ(e)−
∑
e=x

θ(e), ∀θ ∈ RE .

Lemma 3.2. Assume div(α) = 0. The following hold for all finite collections of cycles C,

E(α,Z)(ω̌Č) = E(α̌,Ž)(ωČ).

Proof. Denote by Ne = Ne(C) the number of 0 ≤ k ≤ n− 1, so that e = ek, where ek ∈ C,
for some C ∈ C of length n = n(C). We denote similarly Ň = Ň(C) the corresponding
counting function for the collection of reversed cycles. Clearly, Ne = Ňě.

A direct computation gives

E(α,Z)(ωC) = ZC
∏
x∈V

Φx(α+N,Z)

Φx(α,Z)
= ZC

F (α+N,Z)

F (α,Z)
. (3.9)

Indeed, from the definition of the environment ω, see (2.3), we have

ωC = ZC
∏
x∈V

 ∏
e′, e′=x

U
Ne′
e′


 ∏
e, e=x

∑
e′′=x

Ze,e′′Ue′′

−Ne
 ,

the term ZC coming from the term Ze′,e in (2.3), the second term coming from the times
when the cycle enters e′, the last term coming from the times when the cycle leaves e.
Combined, with the definitions (1.1), (2.1), (2.2), (3.2), it gives (3.9).
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Next, since div(α) = 0, the Duality formula Lemma 3.1 says that for all x ∈ V ,

Φx(α,Z) = Φ((αe)e=x, (αe)e=x, Z) =
B((αe)e=x)

B((αe)e=x)
Φ((αe)e=x, (αe)e=x, Z

t) =
B((αe)e=x)

B((αe)e=x)
Φx(α̌, Ž).

It implies that,

F (α,Z) =
G(α)

G(α̌)
F (α̌, Ž).

where,

G(α) :=
∏
x∈V

B((αe)e=x).

Since div(α) = 0, we have for all x ∈ V ,
∑
e=x αe =

∑
e=x αe. Therefore,

G(α) =
∏
x∈V

∏
e=x Γ(αe)

Γ
(∑

e=x αe
) =

∏
e∈E Γ(αe)∏

x∈V Γ
(∑

e=x αe
) =

∏
e∈E Γ(αe)∏

x∈V Γ
(∑

ē=x αe
) =

∏
x∈V

∏
e=x Γ(αe)

Γ
(∑

e=x αe
) = G(α̌),

where in the last equality we used the fact that α̌ě = αe. Hence, F (α,Z) = F (α̌, Ž).
Since C is a collection of cycles, it implies that div(N) = 0, the same applies for α+N

and we get F (α+N,Z) = F (α̌+ Ň , Ž). From (3.9) and since ZC = ŽČ, we deduce

E(α,Z)(ω̌Č) = E(α,Z)(ωC) = ZC
F (α+N,Z)

F (α,Z)
= ŽČ

F (α̌+ Ň , Ž)

F (α̌, Ž)
= E(α̌,Ž)(ωČ).

Corollary 3.3. Let ω ∼ P(α,Z). The time-reversing function ω 7→ ω̌, where ω̌ is defined
as in (3.7), defines a new law P on ΩǨ . Then, if div(α) = 0,

P = P(α̌,Ž)

Proof. Since ω(e, e′) and πω(e) are positive and bounded by 1, and E and K are finite,
the law of P is determined by its moments. That is, it’s enough (and actually equivalent)
to show that for any η : Ǩ → Z+ E

(α,Z)[ω̌η] = E(α̌,Ž)[ωη]. Note that since the graph is
finite and all ω(e, e′) ∈ (0, 1), under the quenched law the Markov chain and its time
reversal are both recurrent. But now notice that the law of the recurrent Markov chain
ω̌ is determined by the law of its cycles. Indeed, for all (e, e′) ∈ K, ω̌(ě′, ě) =

∑
C∈Ce,e′

ω̌Č ,

where Ce,e′ is the family of all cycles C starting at e, going immediately to e′ and returning
to e for the first time. It clearly implies that if η = (ηe,e′)(e,e′)∈Ǩ is a positive vector, then
ω̌η can be written as a sum with positive coefficients of terms of the type ω̌Č, where C
are finite collections of cycles. Using Lemma 3.2, it implies that

E(α,Z) (ω̌η) = E(α̌,Ž) (ωη) .

We finish with an application from the proof of the last corollary. Set He := inf{n ≥
0, Xn = e} and H+

e0 := inf{n > 0, Xn = e0}.
Corollary 3.4. For every (e, e0) ∈ K, for ω ∈ K,

Pe0,ω[XH+
e0
−1 = e] = Pě0,ω̌[X1 = ě].

Proof. As in the last corollary, it follows from the fact that the weights are strictly positive
P(α,Z)-a.s., that the Markov chains on the finite graphs H, Ȟ are recurrent. Hence the
probability Pě0,ω̌[X1 = ě] equals to the sum of the ω̌ weight over of all cycles {ẽ1, ..., ẽn}
with ẽ1 = ẽn = ě0 but ẽi 6= ě0 for 1 < i < n, and ẽ2 = ě. To end one notices that the sum
of ω weight over the reversed cycles gives exactly Pe0,ω[XH+

e0
−1 = e], and by Lemma 3.2

these probabilities are equal.
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3.4 Arc graph identities

We now use the same notation for the divergence operator on G also for the arc graph
H. div : RK → RE is defined by

div(Θ)(e) =
∑

e′:(e,e′)∈K

Θ(e, e′)−
∑

e′:(e′,e)∈K

Θ(e′, e), (3.10)

for Θ : K → R and e ∈ E. We also denote by Θ̌ : Ǩ → R+ the function so that
Θ̌((ě′, ě)) = Θ((e, e′)). With a minor abuse of notation the divergent is analogous defined
as div : RǨ → RĚ . This gives

div(Θ)(e) = −div(Θ̌)(ě) (3.11)

for every Θ : K → R+ and e ∈ E.

Lemma 3.5. The following formula holds for every ω ∈ ΩK and Θ : K → R+:

ω̌Θ̌

ωΘ
= (πω)divΘ.

Proof. Indeed,

ω̌Θ̌

ωΘ
=

∏
(ě′,ě)∈Ǩ

ω̌(ě′, ě)Θ̌(ě′,ě)

∏
(e,e′)∈K

ω(e, e′)Θ(e,e′)

=
∏

(e,e′)∈K

ω̌(ě′, ě)Θ̌(ě′,ě)

ω(e, e′)Θ(e,e′)

=
∏

(e,e′)∈K

(πω(e)ω(e, e′)πω(e′)−1)Θ(e,e′)

ω(e, e′)Θ(e,e′)

=
∏
e∈E

πω(e)(
∑
e′:(e,e′)∈K Θ(e,e′)−

∑
e′:(e′,e)∈K Θ(e′,e))

= (πω)divΘ.

3.5 Flows

Flow identity

For e0, e ∈ E and γ > 0, a flow from e0 to e of strength γ, is a function Θ : K → R+ such
that

div(Θ) = γ(δe0 − δe).

Θ : K → R+ is a total flow from e0 of strength γ if it has the form

div(Θ) = γ
∑
e∈E

(δe0 − δe).

Lemma 3.6. If Θ : K → R+ is a total flow from e0 of strength γ, then

(πω)div(Θ) =
∏
e∈E

(
πω(e0)

πω(e)

)γ
.

Proof. First note that

γ
∑
e′∈E

(δe0 − δe′)(e) = γ

{
(|E| − 1) if e = e0

−1 if e 6= e0.

EJP 25 (2020), paper 33.
Page 11/21

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP429
http://www.imstat.org/ejp/


Random walks in random hypergeometric environment

Hence,

(πω)div(Θ) =
∏
e∈E

πω(e)div(Θ)(e)

=
∏
e∈E

πω(e)γ
∑
e′∈E(δe0−δe′ )(e)

= πω(e0)γ|E|
∏
e∈E

πω(e)−γ

=
∏
e∈E

(
πω(e0)

πω(e)

)γ
.

Construction of good flows

Consider first the lattice GZd = (Zd, EZd) (see Section 1.2). Let (c(e))e∈E be a set of
positive weights on the edges, called capacities. A finite subset S ⊂ E is called a cutset
separating 0 from infinity if any infinite simple directed path starting at 0 crosses at
least one directed edge of S (simple means that the path never visits the same vertex
twice). The mincut of the graph GZd with capacities (c(e)) is the value

m(c) = inf

{∑
e∈S

c(e) : S is a cutset

}
.

Let TN = (VN , EN ) be the N -torus graph in d dimensions, that is the associated
directed graph image of Zd by projection on (Z/NZ)d. We identify the edge set EN
with the edges e of EZd such that e ∈ [−N/2, N/2)d. Let H = HN = (EN ,KN ) be the
corresponding arc graph. The following lemma supplies a total flow on the arc graph
with good properties, and is a consequence of the max-flow min-cut theorem together
with the transience of Zd, d ≥ 3.

Lemma 3.7 (Min-cut total flow on H). Let d ≥ 3. Assume that (c(e))e∈E
Zd

is uniformly
bounded, i.e. there exist some constants 0 < C1 < C2 <∞ such that C1 ≤ c(e) ≤ C2 for
all edge e. Fix e0 to be an edge with e0 = 0. There is a constant c2 so that for every large
enough N there is a non-negative function Θ = ΘN on KN with the following properties:

1. Θe ≤ c(e) +m(c)1e=e0 (almost below the capacity).

2.
∑

(e,e′)∈KN

Θ(e, e′)2 < c2 (bounded L2 norm).

3. div(Θ) = m(c)
dNd

∑
ẽ∈EN

(δe0 − δẽ) (total flow from e0).

where m(c) is the min cut of the network c.

For the proof we shall use the analogous

Lemma 3.8. [Sab13, Lemma 2] Let d ≥ 3. Assume that (c(e))e∈E
Zd

is uniformly bounded,
i.e. there exist some constants 0 < C1 < C2 <∞ such that C1 ≤ c(e) ≤ C2 for all edge e.
There is a constant c1 so that for every large enough N there is a non-negative function
θ = θN on EN with the following properties:

1. θ(e) ≤ c(e) (below the capacity).

2.
∑
e∈EN

θ(e)2 < c1 (bounded L2 norm).

3. div(θ)(y) = θy − θy = m(c)
Nd

∑
x∈VN

(δ0 − δx)(y) (total flow from 0).

where m(c) is the min cut of the network c.

EJP 25 (2020), paper 33.
Page 12/21

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP429
http://www.imstat.org/ejp/


Random walks in random hypergeometric environment

Proof of Lemma 3.7. Fix N ≥ 2 and let θ be according to Lemma 3.8. Write simply
m = m(c). We define Θ = ΘN : Kn → R+ by

Θ(e, e′) =
(θ(e) +m1e=e0)(θ(e′) + m

dNd
)

θe + m
Nd

, (e, e′) ∈ KN . (3.12)

We claim that Θ satisfies the assertions of the lemma. First note that by property 1 of
Lemma 3.8 Θe = θ(e)+m1e=e0 ≤ c(e)+m1e=e0 . Next, by (3.12), Θ(e, e′) ≤ θ(e)+m1e=e0 .
Therefore, by property 2 of Lemma 3.8∑

(e,e′)∈KN

Θ(e, e′)2 ≤
∑
e∈EN

2d(θ(e) +m1e=e0)2 < 2dc1 + (c(e0) +m)2) =: c2.

To end, by property 3) in Lemma 3.8 we have

Θe′ = (θ(e′) +
m

dNd
)
∑
e:e→e′

θ(e) +m1e=e0
θθ′ + m

dNd

= (θ(e′) +
m

dNd
)
θe′ +m1e′=0

θe′ + m
dNd

= θ(e′) +
m

dNd
.

Hence, div(Θ) = m1e=e0 − m
dNd

= m
dNd

∑
ẽ∈EN

(δe0 − δẽ).

4 The Green function has a positive moment

In this section we prove Theorem 1.1. The proof follows closely the ones in [Sab11]
and in [ST17, Section 7.2.]. Fix e0 of the form e0 = (x0, 0). Let N ∈ N and define GN to be
the graph with vertices VN = B(0, N) ∪ {∂}, where ∂ is an additional vertex and B(0, N)

denotes a box in Zd with side length N around the origin, and edges ÊN = EN ∪{(∂, x0)},
i.e. of the following types. The edges set EN is the set of directed edges between
neighboring vertices inside B(0, N) (as in Zd) and between the vertices in the inner
boundary of B(0, N) and ∂. (I.e., we identify all vertices on the boundary of B(0, N)

with the special vertex ∂.) We also add to EN one special edge (∂, x0). Denote by
HN = (ÊN ,KN ) the corresponding arc graph.

The weights α and Z on Zd naturally yield weights on EN . We endow the special edge
(∂, x0) with weight α(∂,x0) = γ, for some γ > 0 that will be defined later on, and set

Ze,e′ = 1 whenever e = ∂. Set also Z((∂,x0),e0) = 1. With this choice we note that on ÊN

div(α) = γ(δ∂ − δ0).

Consider now a unit flow θ : EN → R+ from 0 to ∂ (i.e. div(θ)(e) = δ0 − δ∂) and assume
that 0 ≤ θ ≤ 1. Extend θ by 0 on the special edge (∂, x0). We consider α + γθ. These
weights give a flow with null divergence on ÊN .

Set H(∂,x0) := inf{n ≥ 0, Xn = (∂, x0)} and H+
e0 := inf{n > 0, Xn = e0}. We can now

apply Corollary 3.4 on GN to get that under the law P(α+γθ,Z)

Pe0,ω[H(∂,x0) < H+
e0 ] ≥ Pe0,ω[XH+

e0
−1 = (∂, x0)]

= Pě0,ω̌[X1 = (x0, ∂)].
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Hence, using (3.1), we have for ε > 0

E(α+γθ,Z)[(Pe0,ω[H(∂,x0) < H+
e0 ])−ε] ≤ E(α+γθ,Z)[(ω̌(ě0, (x0, ∂)))−ε]

= E(α̌+γθ̌,Ž)[(ω(ě0, (x0, ∂)))−ε]

= Ž−ε(ě0,(x0,∂))

Φx0(α̌+ γθ̌ − ε(δě0 + δ(x0,∂)), Ž)

Φx0
(α̌, Ž)

=
Φx0

(α̌+ γθ̌ − ε(δě0 + δ(x0,∂)), Ž)

Φx0
(α̌, Ž)

Now, as mentioned below (3.1)

E(α+γθ,Z)[(Pe0,ω[H(∂,x0) < H+
e0 ])−ε] ≤ C <∞ (4.1)

whenever ε < min{αe0 + γθe0 , α(∂,x0) + γθ(∂,x0)}. In particular, the −ε moment is bounded
by C independently of N as long as θe0 ≤ 1 and 0 < ε < γθe0 . Now consider the Green
function GNω (e0, e0) of the quenched Markov chain in environment ω, killed at the exit
time of B(0, N). We have

GNω (e0, e0) ≤ 1/Pe0,ω[H(∂,x0) < H+
e0 ].

Indeed, by the Markov property and irreducibility the right hand side equals the Green
function at (e0, e0) of the walk killed at the hitting time of the edge (∂, x0). But the latter
can be reached only via exiting B(0, N) and so the inequality holds by coupling. Next,
we use the Radon-Nikodym derivative (3.5) and apply Hölder inequality with r, q > 0
such that 1

q + 1
r = 1:

E(α,Z)
[
GNω (0, 0)s

]
≤ E(α,Z)

[
(Pe0,ω [H(∂,x0) < H+

e0
])−s

]
=
F (α+ γθ, Z)

F (α,Z)
E(α+γθ,Z)

[
ũ−γθ

(
Pe0,ω [H(∂,x0) < H+

e0
]
)−s]

≤
F (α+ γθ, Z)

F (α,Z)
E(α+γθ,Z)

[
ũ−γqθ

]1/q
E(α+γθ,Z)

[(
Pe0,ω [H(∂,x0) < H+

e0
]
)−rs]1/r

=
F (α+ γθ, Z)

1− 1
q F (α+ (1 − q)γθ, Z)

1
q

F (α,Z)
E(α+γθ,Z)

[(
Pe0,ω [H(∂,x0) < H+

e0
]
)−rs]1/r

=
F (α+ γθ, Z)

1
r F (α+ 1

1−r γθ, Z)1− 1
r

F (α,Z)
E(α+γθ,Z)

[(
Pe0,ω [H(∂,x0) < H+

e0
]
)−rs]1/r

.

To guarantee the right part of the product is bounded by some C <∞ we need to choose
r and γ so that rs ≤ γθe0 , see (4.1). F (α+ 1

1−rγθ, Z) is finite if and only if

γ
1

r − 1
θ(e) < αe, ∀e ∈ EN . (4.2)

Since θ ≤ 1, we can take γ 1
r−1 < κ̃ which means r > κ̃+ γ

κ̃ . With such a choice of r we
can take

s <
γκ̃

κ̃+ γ
. (4.3)

Next

F (α+ γθ, Z)
1
rF (α+ 1

1−rγθ, Z)1− 1
r

F (α,Z)
= exp

(∑
x∈VN

ν((αx, αx), (γθx, γθ
x), Zx)

)
,
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where

ν((α, β), (s, t), Z) =
1

r
log Φ(α+s, β+t, Z)+(1− 1

r
) log Φ(α+

1

1 − r
s, β+

1

1 − r
t, Z)− log Φ(α, β, Z),

and θx =
∑
e:e=x, θx =

∑
e:e=x, and the corresponding notation for α. (For the dimensions

of the domain of ν the reader would notice that here it is evaluated in ((α, β), (s, t), Z)) =

(αx, αx), (γθx, γθ
x), Zx).) In our case, (αx, αx, Zx) = (α0, α0, Z0) and so that {αe, Ze,e′ :

0 ∈ e, e} ⊂ (a, b) for some 0 < a < b < ∞. Note that ν((α, β), (s, t), Z) is C2 on every
compact subset contained in its domain. Moreover, we have ν(0) and d

dsi
ν = d

dtj
ν = 0

in (s, t) = (0, 0). Therefore, there are ε, Cr > 0, depending only on a, b such that
|ν((α, β), (s, t), Z)| ≤ Crt2 for all −ε < s, t ≤ 2d. We got that

E(α,Z)
[
GNω (0, 0)s

]
≤ C · exp(Cr‖θ‖2).

Take a unit flow θ on EN from 0 to ∂, such that 0 ≤ θ ≤ 1, θe0 > 0, and∑
e∈EN

θ2
e = RN ,

where RN is the electrical resistance between 0 and B(0, N)c for the network Zd with
unit resistance on the bonds (see e.g. [ST17]). In dimension d ≥ 3, we know that
supN RN = R(0,∞) =: C̃ < +∞ where R(0,∞) is the electrical resistance between 0

and∞ for unit resistances on bonds. To sum up, we got

E(α,Z)
[
GNω (0, 0)s

]
≤ C · exp(CrC̃

2),

for every s satisfying (4.3). Taking γ arbitrarily large we can take s up to κ̃, which
completes the proof.

5 Proof of the invariant measure criterion

Proving Theorem 1.4 part 2 is done by following [Sab13][Chapter 5] where in the
Proof of Theorem 1(II) there, for transience one uses our Theorem 1.1, and in the last
paragraph there, instead of the cited Theorem 3 there, one uses our Lemma 1.5.

Part 1 of Theorem 1.4 is more involved. The strategy of the proof is to consider the
Radon-Nikodym derivatives fN of the invariant probability measure for the process from
the point of view of the walker defined on the edges the N -torus. Then, showing that
if p ∈ [1, κ) then the Lp norm of fN with respect to the initial measure on the N -torus
is uniformly bounded. This is the content of Lemma 5.1 below, where its proof is the
main ingredient of the proof. We shall first state the lemma, following the necessary
preparations in Chapters 3.4 and 3.3.

For the N -torus TN in d dimensions with arc graph (EN ,KN ) we denote ΩN := ΩKN
the corresponding space of environments. It is naturally identified with the space of the
N -periodic environments on Zd. We denote by P(α,Z)

N the hypergeometric probability

measure on ΩN defined by (2.3) with parameters α and Z. E
(α,Z)
N is its associated

expectation operator. As before, we need to extend the definition to P(α,Θ,Z)
N and E(α,Θ,Z)

N

whenever Θ : KN → R and the measure is well-defined.
For ω ∈ ΩN we denote by πωN = (πωN (e))e∈EN the invariant probability measure of the

Markov chain on EN with transition probabilities ω (it is unique since the environments
are a.s. elliptic: ω(e, e′) > 0).

Fix an initial edge e0 ∈ Ed so that e0 = 0. For N ≥ 2, define fN : ΩN → R+ by

fN (ω) = 2dNd · πωN (e0) (5.1)

and
Q

(α,Z)
N = fN · P(α,Z)

N . (5.2)
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Lemma 5.1. Let d ≥ 3. Fix p ∈ [1, κ). Then, supN∈N ‖fN‖Lp
(
P

(α,Z)
N

) <∞.

Using the Lemma, the proof is standard (see the paragraph after Lemma 1 in Sabot
[Sab13], including the references therein). For convenience we shall give a sketch here.
Consider Q(α,Z)

N and P(α,Z)
N as measures on N -periodic environments. Then, as a product

measure over vertices (the matrices (ω(e, e′)(e=x=e′), x ∈ V , are i.i.d.) P(α,Z)
N converges

weakly to the probability measure P(α,Z). From the definition of πωN (e0) it holds that

Q
(α,Z)
N is invariant for the process viewed from the walker on Ω. Since Ω is compact,

then so does the space of product probability measures, and there is an increasing
sequence of positive integers and a probability measure so that Q(α,Z)

Nk
→ Q(α,Z). Since

the generator is weakly Feller (i.e. continuous with respect to the weak topology), it
follows that the weak limit probability measure Q(α,Z) is invariant for the process viewed
from the point of view of the walker on Ω. For every continuous bounded function g on Ω,
and every 1 < p < κ we have ∫

gdQ(α,Z) ≤ cp‖g‖Lq(P(α,Z)),

where 1
p + 1

q = 1 (see equation (2.14) in [BS12]). The last inequality shows that

Q(α,Z) is absolutely continuous with respect to P(α,Z), and for f = dQ(α,Z)

dP(α,Z) we have
‖f‖Lp(P(α,Z)) ≤ cp.

Uniformly bounding the Radon-Nikodym derivatives on the torus

In this section we prove Lemma 5.1. Let p ∈ [1, κ). Combining Lemma 3.5 and Lemma
3.6, if ΘN : KN → R+ is satisfying

div(Θ) =
p

dNd

∑
ẽ∈EN

(δe0 − δẽ) (5.3)

then

fpN (ω) ≤ ω̌Θ̌N

ωΘN
. (5.4)

Remember that the root edge e0 was chosen such that e0 = 0. In the sequel we will often
simply write ei for the directed edge (0, ei) (remember that e1, . . . , ed is the base of Rd).

Now, by Hölder inequality, 1 ≤ (2d)κ
2d∑
i=1

ωκi where ωi := ω(e0, ei). Therefore,

E(α,Z)[fpN ] ≤ (2d)κ
2d∑
i=1

E(α,Z)[ωκi f
p
N ].

Hence, from (5.4), Lemma 5.1 follows once we show that for every 1 ≤ i ≤ 2d and N ∈ N
there is ΘN : KN → R+ satisfying (5.3), so that

sup
N∈N

E(α,Z)
[
ω̌Θ̌Nωκi ω

−ΘN
]
<∞. (5.5)

We shall now prove (5.5). Let α(i), 1 ≤ i ≤ 2d, be the weights defined by α(i) := α+κ1e=ei .
I.e. α(i) gives α an extra κ on the specific edge ei but leaves it unchanged on all other
edges. Then,

m(α(i)) ≥ κ (5.6)

where m(c) is the min cut of the network (c(e))e∈E(Zd) on Zd (that is, the minimal c-weight
of a set separating 0 from∞), see equation (3.10) and the paragraph below it in [Sab13]
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for the proof. We shall now show (5.5) for the case i = 1. The other 2d− 1 possibilities
are symmetric. Fix N ≥ 1, and apply Lemma 3.7 with c(e) = α(1)(e) to get Θ̃ = Θ̃N with
bounded L2 norm, almost below the capacity

Θ̃e ≤ α(1)(e) +m(α(1))1e=e0 (5.7)

so that it is a total flow from e0 with strength m(α(1))
dNd

. Set

Θ = ΘN :=
p

m(α(1))
Θ̃. (5.8)

Then Θ is also total flow from e0 with a bounded L2 norm and with strength p
dNd

.
Remember the notation βγ from (3.3). Fix q = q(α, d) > 0 to be chosen later-on. Let

r > 0 be so that 1
r + 1

q = 1. Using Hölder inequality, the Weak Reversibility Corollary 3.3,
we have

E(α,Z)[ω̌Θ̌ωκ1ω
−Θ] ≤ E(α,Z)[ω̌rΘ̌]1/rE(α,Z)[ωqκ1 ω−qΘ]1/q

= E(α̌,Ž)[ωrΘ̌]1/rE(α,Z)[ωqκ1 ω−qΘ]1/q.

Assume for the moment that the functions F and G below are well defined. This will
be justified by a suitable choice of q. Using (3.4) we get:

E(α̌,Ž)[ωrΘ̌]1/rE(α,Z)[ωqκ1 ω−qΘ]1/q = ŽΘ̌ · Z−Θ ×

×
(
F (α̌; rΘ̌; Ž)

F (α̌; Ž)

)1/r

×
(
F (α+ qκδe1 ;−qΘ;Z)

F (α;Z)

)1/q

=

(
F (α̌; rΘ̌; Ž)

F (α̌; Ž)

)1/r

×
(
F (α+ qκδe1 ;−qΘ;Z)

F (α;Z)

)1/q

.

Using the Duality Lemma 3.1 for the term with power 1/r, together with the fact that

α̌ě = αe and Θ̌ě′ = Θe′ , the last product equals(
G(α+ rΘ)

G(α+ rΘ)

)1/r

× F (α; rΘ;Z)1/rF (α+ qκδe1 ;−qΘ;Z)1/q

F (α;Z)
.

Choice of q: The terms in the products above will be well-defined if all the terms
evaluated by F and G are strictly positive. Let us see what should q > 0 satisfy to achieve
that. First note that the terms with power 1/r are strictly positive since so is α, whereas
Θ is non-negative. For the terms with power 1/q to be strictly positive, we need to have

αe − qΘe + qκ1e=e1 > 0 (5.9)

and
αe − qΘe + qκ1e=e1 > 0. (5.10)

Equation (5.8) gives Θe = p
m(α(1))

Θ̃e. From (5.6) p < κ ≤ m(α(1)), and using (5.7), and

the definition of α(1), we get

Θe ≤
p

κ
αe + p1e=e1 or e=e0 ≤ αe + κ and Θx ≤

p

κ
α0 + p1x=0 or x=e1 ≤ α0 + κ.

Let a := min{αei : 1 ≤ i ≤ 2d} > 0, b := max{αei : 1 ≤ i ≤ 2d}, and B := max{b, κ} < ∞.
Then

Θe ≤ 2B and Θx ≤ db+ κ ≤ (d+ 1)B.
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Θ is a total flow from e0 of strength p
dNd

, and therefore

Θe = Θe − p1e=e0 +
p

dNd
1e 6=e0 ≤ 2B +

p

dNd
≤ 3B.

Noting that a ≤ αe < α0, and choosing q = q(α, d) > 0 to satisfy

q <
a

(d+ 1)B
,

then (5.9) and (5.10) follow, and so we have shown well-definability.
Next, since a ≤ αe ≤ b, and log Γ is C1 on R∗ (e.g., since the digamma function is

holomorphic on C\{0,−1,−2, ...}), we have that it is Lipschitz in the domain, i.e. there is
some constant c3 = c3(α, d) so that

Γ(s+ t+ h))

Γ(s+ t)
= elog Γ(s+t+h))−log Γ(s+t) ≤ ec3·|h| (5.11)

for all s ∈ [a, b] and t, t + h ∈ [0, b]. Now, by (5.3) div(Θ) = Θ − Θ is proportional to the
volume of the box, and so by (5.11) we have∏
e∈EN

Γ(αe+rΘe)/Γ(αe+rΘe))≤ exp

(
c2rp(dN

d − 1)

dNd

)
exp

(
c2r

p

dNd

)#{e∈EN ,e6=e0}
≤ e2c3rp.

Similarly, since r
∑
e=x(Θe − Θe) = 2dr ·

∑
e=x div(Θ)(e), by dividing to the to cases

x = (e)0 and x 6= (e)0 and using (5.3), we have that

∏
x∈V

Γ

∑
e=x

(αe + rΘe)

 /Γ

∑
e=x

(αe + rΘe)

 ≤ e4d2c3rp.

To sum up, so far we have
(
G(α+rΘ)

G(α+rΘ)

)1/r

≤ (e4d2c3rp)1/r = e4d2c3p =: ec4 . Therefore

E(α,Z)[ωκ1 ω̌
Θ̌ω−Θ] ≤ exp(c4) exp

(∑
x∈TN

ν(αx, αx,Θx)

)
,

where Θx := Θ(e, e′))e=x=e′ , and

ν(αx, αx,Θx) :=
1

r
log Φ((αe + rΘe)e=x, (αe′ + rΘe′)e′=x, Z)

+
1

q
log Φ((αe − qΘe + qκ1e=e1)e=x, (αe′ − qΘe′ + qκ1e′=e1)e′=x, Z)

− log Φ((αe)e=x, (αe′)e′=x, Z).

Note that ν : [a, b]2d× [a, b]2d× [0, C]2 → R+ is C2 on a compact set. Moreover, it satisfies
ν(αx, αx,Θx) = 0 at Θx = 0 and ∂

∂Θ(e,e′)ν(αx, αx,Θx = 0) = 0 at Θx = 0. By a 2nd order

2d-dimensional Taylor Theorem, there is a constant c5 = c5(α, d) so that we have

ν(αx, αx,Θx) ≤ c5
∑

e=x=e′

Θ(e, e′)2.

But by construction Θ has a bounded L2 norm with some constant c1. Therefore,

E(α,Z)[ωκ1 ω̌
Θ̌ω−Θ] ≤ ec4 exp

c5 ∑
e,e′∈KN

Θ(e, e′)2)

 ≤ exp(c4 + c5c1).

This concludes the proof of the lemma.
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A Duality of hypergeometric functions

In this section we give a direct proof for Lemma 3.1 on the duality relation for
hypergeometric functions. Note that for every t, β > 0

1

Γ(β)

∫ ∞
0

e−tvvβ−1dv = t−β . (A.1)

Recall (1.1) and (1.2). The strategy is to first use (A.1) to construct a variable v that will
take a dual role of u and then to add another variable to “free the variable u from the
simplex”. The next step is to modify u and v to make the integral suitable for duality.
The conclusion is by following the above steps in a reverse order with the new v and u.
Here is the calculation in detail followed by some clarifications.

Φ(α, β, Z) =

∫
∆(n)

ϕ(α, β;Z;u)du

=

∫
∆(n)

(
n∏
i=1

uαi−1
i

)
l∏

j=1

(
(Z · u)

−βj
j

)
du

=

∫
∆(n)

(∏
i

uαi−1
i

)∫
Rl+

(∏
j

v
βj−1

j

Γ(βj)

)
e−<v,Z·u>dvdu

=
1∏

j Γ(βj)

∫
∆(n)

∫
Rl+

(∏
j

v
βj−1

j

)(∏
i

uαi−1
i

)
e−<v,Z·u>dudv

=
1∏

j Γ(βj)

1

Γ
(∑

i αi
) ∫

Rn+

∫
Rl+

e−
∑
i ui

(∏
j

v
βj−1

j

)(∏
i

uαi−1
i

)
e
−< 1∑

i ui
v,Z·u>

dudv

=
1∏

j Γ(βj)

1

Γ
(∑

i αi
) ∫

Rn+

∫
Rl+

e−
∑
j vj

(∏
j

v
βj−1

j

)(∏
i

uαi−1
i

)
e
−< 1∑

j vj
u,Zt·v>

dvdu

=

∏
i Γ(αi)∏
j Γ(βj)

Γ
(∑

j βj
)

Γ
(∑

i αi
) ∫

∆(l)

(∏
j

u
βj−1

j

)∏
i

(Zt · u)
−βj
j du

=

∏
i Γ(αi)∏
j Γ(βj)

Γ
(∑

j βj
)

Γ
(∑

i αi
) Φ(β, α, Zt)

The third equality follows from (A.1). For the fifth equality, note that using the change
of variables λ =

∑
i wi, ui = 1

λwi, we have that

∫
w∈Rn+

∫
v∈Rl+

e−
∑
i wi

∏
j

v
βj−1
j

(∏
i

wαi−1
i

)
e
−< 1∑

i wi
v,Z·w>

dwdv

=

∫
λ∈R+

e−λ · λ(
∑
i αi−1)

∫
u∈∆n

∫
Rl+

e−
∑
i ui

∏
j

v
βj−1
j

(∏
i

uαi−1
i

)
e−<v,Z·u>dλdudv

= Γ

(∑
i

αi

)∫
u∈∆(n)

∫
v∈Rl+

∏
j

v
βj−1
j

(∏
i

uαi−1
i

)
e−<v,Z·u>dudv.

To see the sixth equality, make a change of variables u → ũ =
∑
i vj∑
i ui

u and v → ṽ =∑
i ui∑
j vj

v, and deduce the equality from the fact that
∑
i αi =

∑
j βj . The one before last

equality follows from the previous equalities by interchanging the roles of (α, u, n, Z)

and (β, v, l, Zt). The last equality follows from the definition of Φ. This gives the desired
duality.
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