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Abstract

We establish sharp exponential deviation estimates of the information content as well
as a sharp bound on the varentropy for the class of convex measures on Euclidean
spaces. This generalizes a similar development for log-concave measures in the recent
work of Fradelizi, Madiman and Wang (2016). In particular, our results imply that
convex measures in high dimension are concentrated in an annulus between two
convex sets (as in the log-concave case) despite their possibly having much heavier
tails. Various tools and consequences are developed, including a sharp comparison
result for Rényi entropies, inequalities of Kahane-Khinchine type for convex measures
that extend those of Koldobsky, Pajor and Yaskin (2008) for log-concave measures, and
an extension of Berwald’s inequality (1947).
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1 Introduction

Let X be a random vector in Rn. Suppose that the distribution of X has density f
with respect to the Lebesgue measure on Rn. We say that the random variable

h̃(X) = − log f(X) (1.1)

is the information content of X. (Throughout this paper, we denote by log the natural
logarithm). The average value of h̃(X) is known more commonly as the entropy h(X). In
other words, the entropy of X is defined by

h(X) = Eh̃(X) = −
∫
Rn

f(x) log f(x)dx. (1.2)
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Concentration of information content for convex measures

Because of the relevance of the information content in various areas such as infor-
mation theory, probability and statistics, it is intrinsically interesting to understand its
behavior. In particular, it is natural to ask whether the information content concentrates
around the entropy in high dimension. If X is a standard Gaussian random vector in Rn,
its information content is

h̃(X) =
|X|2

2
+
n

2
log(2π),

where | · | is the Euclidean norm. In this case, the concentration property of h̃(X) (or,
equivalently, of |X|2) around its mean is easy to show; the explicit computation was
done, for example, by Cover and Pombra [14], who were motivated by applications in
communication theory. The first significant generalization beyond the Gaussian case was
established by Bobkov and Madiman [3], who showed that h̃(X) possesses a powerful
concentration property if X has a log-concave density. Specifically, they showed that
there is a universal constant c > 1/16 such that for every random vector X drawn from a
log-concave density on Rn,

P
(∣∣h̃(X)− h(X)

∣∣ ≥ nt) ≤ 2 e−ct
√
n. (1.3)

The proof of [3] heavily depends on the localization lemma of Lovász-Simonovits [28]
and reverse Hölder-type inequalities [10]. Fradelizi, Madiman and Wang [20] both
improved this inequality (making it sharp in a certain sense) and significantly simplified
the proof, eliminating the use of the localization lemma and instead only using the
well known Prékopa-Leindler inequality together with a new bootstrapping tool that
they developed to deduce concentration bounds from certain uniform variance bounds.
Various applications have been found in recent years of this “concentration of information”
phenomenon for log-concave measures (see, e.g., [4, 6, 7, 8, 35, 36, 15, 25, 24, 33, 34,
31, 30, 26, 32]).

In this note, we extend the concentration property of the information content from
log-concave measures to the significantly more general class of convex measures, which
can have arbitrarily heavy tails. More precisely, for s ∈ (−1/n, 0], we show that for every
random vector X drawn from a s-concave density on Rn (see Section 3 for definitions),

P
(
h̃(X)− h(X) > nt

)
≤ exp

(
−n(1 + ns)2

15
min{t, (1 + ns)t2}

)
(1.4)

P
(
h̃(X)− h(X) < −nt

)
≤ exp

(
−n(1 + ns)3

2
t2
)
. (1.5)

The limiting case s = 0 recovers and strengthens the deviation estimate (1.3). Somewhat
surprisingly, the functional that concentrates stays the same and the only change is in the
probability bounds–until this work, it was not clear whether one would have to consider
functionals of the density other than the information content in order to get meaningful
concentration. Less surprisingly, the bounds (when appropriately normalized) are no
longer dimension-free as in the case of log-concave measures; this is tied to the folklore
fact that one cannot have dimension-free concentration in the absence of exponential
tails.

Various interesting consequences follow from our sharp exponential deviation esti-
mate of the information content. For example, we have the following sharp comparison
result for Rényi entropies of log-concave densities. Let f be a log-concave density on Rn

and let φ be the one-sided exponential density on Rn, i.e., φ(x) = e−
∑n

i=1 xi1Rn
+

(x). For
0 < p < q ≤ ∞, we have

hp(f)− hq(f) ≤ hp(φ)− hq(φ). (1.6)
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Concentration of information content for convex measures

Here, hp(f) is the Rényi entropy of order p of the density f (see Section 7 for definitions).
This result was obtained in unpublished work of Madiman and Wang [34], but the role
of exponential densities as maximizers is first explicitly stated here. Extensions of this
result to the class of s-concave densities are given in Corollary 7.1. We also obtain the
following extension of the classical theorem of Berwald [2], see also [37], which was
restricted to the range p > 0. This is our Corollary 6.3, which states that for any concave
function f : K → [0,∞) on a convex body K of Rn, the function

p 7→
((

n+ p

n

)
1

|K|

∫
K

f(x)pdx

)1/p

is non-increasing on (−1,∞).
The rest of this note is organized as follows. In Section 2, we will show that expo-

nential deviation of a functional follows from the log-concavity of normalized Laplace
transform of that functional. In particular, we study the log-concavity of normalized
moments of s-concave functions in Section 3, and present a sharp result that unifies
and extends results of [10, 5, 20, 9, 39]. Optimal concentration bounds and a sharp
variance bound of the information content of κ-concave random vectors are established
in Section 4 by combining the results of Sections 2 and 3. These optimal bounds are
put into a more usable form in Section 5, elucidating in particular the dependence of
the bounds on dimension. In Section 6, we examine a related monotonicity property of
normalized moments of s-concave functions, giving in particular an extension of a result
of Koldobsky, Pajor and Yaskin [23]. Finally, various consequences of the main results of
this note are discussed in Section 7.

2 A general principle for exponential deviation

A classical tool for establishing exponential deviation bounds of a random variable is
the Cramér-Chernoff method, which relies on the control of Laplace transform of that
random variable. In this section, we show that this could follow from the log-concavity
of normalized Laplace transform, which is equivalent to establishing uniform variance
bounds for tilted random variables. This was first developed by Fradelizi, Madiman and
Wang [20] and is set in a more general framework here.

Let X be a random vector in Rn. Let ϕ : Rn → R be a real-valued function. The
logarithmic Laplace transform of ϕ(X) is defined as

L(α) = logEeαϕ(X). (2.1)

The following observation is a well known fact about exponential families in statistics.

Lemma 2.1. Suppose that L(α) < ∞ for α ∈ (−a, b), where a, b > 0 are certain real
numbers. Then we have

L′(α) = Eϕ(Xα), L′′(α) = Var(ϕ(Xα)),

where Xα is the tilted random vector with density

Xα ∼
eαϕ(x)f(x)∫

Rn eαϕ(y)f(y)dy
.

In particular, we have L′(0) = Eϕ(X) and L′′(0) = Var(ϕ(X)).

Proof. The assumption L(α) < ∞ for α ∈ (−a, b) guarantees that L(α) is infinitely
differentiable with respect to α ∈ (−a, b) and that we can freely change the order of
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Concentration of information content for convex measures

differentiation and expectation. Then we have

L′(α) =

∫
Rn e

αϕ(x)f(x)ϕ(x)dx∫
Rn eαϕ(x)f(x)dx

= Eϕ(Xα).

Differentiate L′(α) one more time. We have

L′′(α) =

∫
Rn e

αϕ(x)f(x)ϕ2(x)dx∫
Rn eαϕ(x)f(x)dx

−

(∫
Rn e

αϕ(x)f(x)ϕ(x)dx∫
Rn eαϕ(x)f(x)dx

)2

= Var(ϕ(Xα)).

Definition 2.2. A function f : Rn → [0,∞) is called log-concave if we have

f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ

for all x, y ∈ Rn and all λ ∈ [0, 1].

Lemma 2.3. Suppose that L(α) < ∞ for α ∈ (−a, b), where a, b > 0 are certain real
numbers. Let c(α) be a smooth function such that e−c(α)Eeαϕ(X) is log-concave for
α ∈ (−a, b). Then, for α ∈ (−a, b), we have

Eeα(ϕ(X)−Eϕ(X)) ≤ eψ(α),

where ψ(α) = c(α)− c(0)− c′(0)α.

Proof. Since e−c(s)Eesϕ(X) is log-concave, we have L′′(s) ≤ c′′(s). For any 0 < t < α < b,
integrating the previous inequality over (0, t) we have

L′(t)− L′(0) ≤ c′(t)− c′(0).

Integrating both sides of this inequality over (0, α), we have

L(α)− L(0)− L′(0)α ≤ c(α)− c(0)− c′(0)α. (2.2)

Similarly, one can show that the estimate also holds for −a < α < 0. Notice that L(0) = 0

and L′(0) = Eϕ(X). Then the lemma follows from exponentiating both sides of (2.2).

Remark 2.4. From Lemmas 2.1 and 2.3, we can see that the variance bound of ϕ(Xα)

and the normalizing function for the Laplace transform Eeαϕ(X) to be log-concave can
be obtained from each other by differentiating or integrating twice.

Now, we can apply the Cramér-Chernoff argument to establish exponential deviation
inequalities. First, we introduce some notations. Let f : R→ R ∪ {∞} be an extended
real-valued function. The Legendre transform f∗ is defined as

f∗(x) = sup
y∈R

(xy − f(y)), x ∈ R. (2.3)

Define f+(x) = f(x)1(0,∞)(x) and f−(x) = f(x)1(−∞,0)(x), i.e., the restrictions of f on
the positive and negative half axes, respectively.

Corollary 2.5. Under assumptions and notations of Lemma 2.3, for any t > 0, we have

P(ϕ(X)− Eϕ(X) > t) ≤ e−ψ
∗
+(t)

P(ϕ(X)− Eϕ(X) < −t) ≤ e−ψ
∗
−(−t),

where ψ∗+ and ψ∗− are Legendre transforms of ψ+ and ψ−, respectively.
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Proof. For the upper tail, we have for 0 < α < b and t > 0 that

P(ϕ(X)− E(ϕ(X)) > t) = P
(
eα(ϕ(X)−Eϕ(X)) > eαt

)
≤ e−αt · Eeα(ϕ(X)−Eϕ(X))

≤ e−(αt−ψ+(α)).

We use Lemma 2.3 in the second inequality. Then the upper tail estimate follows by
taking the infimum of the right hand side over 0 < α < b. The lower tail estimate follows
from the same argument for −a < α < 0.

3 Log-concavity of moments of s-concave functions

This section is devoted to the log-concavity of (normalized) moments of s-concave
functions. This, in conjunction with the results of the previous section, enables us to
establish optimal concentration bounds of the information content for convex measures
in the following section.

Definition 3.1. For s ∈ R, a function f : Rn → [0,∞) is called s-concave if we have

f((1− λ)x+ λy) ≥ ((1− λ)f(x)s + λf(y)s)
1/s (3.1)

for all x, y ∈ Rn such that f(x)f(y) > 0 and for all λ ∈ [0, 1].

For s ∈ {−∞, 0,∞}, the RHS of (3.1) is defined by taking limits. More precisely, it
is equal to min{f(x), f(y)} for s = −∞, f(x)1−λf(y)λ for s = 0, and max{f(x), f(y)} for
s = ∞. Jensen’s inequality implies that the class of s-concave functions shrinks with
growing s. The case s = 0 corresponds to the class of log-concave functions introduced
in the previous section. For s > 0, the above definition is equivalent to that fs is concave
on its support; while for s < 0, it is equivalent to that fs is convex on its support.

The main result of this section is the following theorem, which unifies and extends
previous results of various people. The case s > 0 was proved by Borell [10]; the case
s = 0 was proved independently by Bolley, Gentil and Guillin [9] and Fradelizi, Madiman
and Wang [20]; it can also be proved by taking a limit of the case s > 0. The case s < 0

was proved by Bobkov and Madiman [5], except that the range was p > (n+ 1)|s|, and
the details of the proof were omitted there because of space considerations. A weaker
log-concavity statement was also obtained by Nguyen [39].

Theorem 3.2. Let s ∈ R. Let f : Rn → [0,∞) be an integrable s-concave function. The
function defined as

Φf (p) = (p+ s) · · · (p+ ns)

∫
Rn

f(x)pdx, p > 0

and Φf (0) = n!snVol({x ∈ Rn : f(x) > 0}) is log-concave for p > max(0,−ns). Moreover,
the statement is sharp in the sense that there exist s-concave functions f such that Φf (p)

is log-affine.

By a standard level set argument, Theorem 3.2 can be reduced to the log-concavity
of moments of s-concave functions on the real line. The corresponding result is provided
in Proposition 3.3 below. Recall that the gamma function Γ(x) is defined as

Γ(x) =

∫ ∞
0

tx−1e−tdt, x > 0

and the beta function B(x, y) is defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y > 0.
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Concentration of information content for convex measures

We define the following quantity

Cs(p) =


B(p, s−1 + 1)−1 for s > 0

Γ(p)−1 for s = 0

B(p,−s−1 − p)−1 for s < 0.

(3.2)

Proposition 3.3. Let s ∈ R. Let ϕ : [0,∞)→ [0,∞) be an integrable s-concave function.
Then the function

Ψs
ϕ(p) = Cs(p)

∫ ∞
0

tp−1ϕ(t)dt, p > 0

and Ψs
ϕ(0) = ϕ(0) is log-concave for p ∈ [0,∞) if s ≥ 0, and for p ∈ [0,−1/s) if s < 0.

The case s > 0 was proved by Borell [10] except that ϕ is assumed to be decreasing;
it was then noticed by some people and available for example in Guédon, Nayar and
Tkocz [21] that the result remains true without the monotonicity hypothesis. The case
s < 0 was proved by Fradelizi, Guédon and Pajor [17], and the case s = 0 follows by
taking a limit.

Proof of Theorem 3.2. As mentioned before, Theorem 3.2 has been proved in the case
s ≥ 0 and the case s < 0 in a smaller range p > (n+ 1)|s|. We present below a complete
proof of the statement in the case s < 0 for p > n|s|.

Log-concavity. By the change of function f → f |s|, it suffices to prove the statement
for s = −1. In other words, for any integrable function f : Rn → [0,∞) such that 1/f is
convex on K, the function

Φf (p) = (p− 1) · · · (p− n)

∫
K

f(x)pdx

is log-concave on (n,∞). Denote g = 1/f , which is convex on K. As done by Bobkov and
Madiman [5], we integrate on level sets and perform a change of variable∫

K

f(x)pdx =

∫
K

g(x)−pdx =

∫ ∞
0

ps−p−1ψ(s)ds =

∫ ∞
0

ptp−1ψ(1/t)dt,

where ψ(s) = Vol({x ∈ K : g(x) ≤ s}). Using the Brunn-Minkowski theorem, we deduce
that ψ is 1/n-concave, which is equivalent to that ψ1/n is concave. The perspective
function of ψ1/n is the bi-variate function tψ1/n(s/t) for s, t > 0. We use the property
that if a function is convex/concave then its perspective function is also convex/concave.
Then it follows that the function ϕ(t) = tnψ(1/t) is 1/n-concave. Thus we get∫

Rn

f(x)pdx = p

∫ ∞
0

tp−n−1ϕ(t)dt.

Since ϕ is 1/n-concave, from Proposition 3.3 we deduce that

p 7→ B(p− n, n+ 1)−1

∫ ∞
0

tp−n−1ϕ(t)dt

is log-concave on (n,∞). Then we can conclude the proof of the log-concavity of Φf (p)

using the identity

B(p− n, n+ 1)−1 =
p(p− 1) · · · (p− n)

n!
.

Sharpness. We construct below s-concave functions f such that Φf (p) is log-affine.
Let U : Rn → [0,∞] be a positively homogeneous convex function of degree one; that is,
U(tx) = tU(x) for all x ∈ Rn and all t > 0. We define

fs,U (x) =

{
(1− sU(x))

1/s
+ for s 6= 0

e−U(x) for s = 0.
(3.3)
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The sharpness of Theorem 3.2 readily follows from the following identity.∫
Rn

fs,U (x)pdx =
CUn!

(p+ s) · · · (p+ ns)
, (3.4)

where CU = Vol({x ∈ Rn : U(x) ≤ 1}). We only show identity (3.4) for s > 0, and the
case s ≤ 0 can be verified in a similar manner. We have∫

Rn

fs,U (x)pdx = p

∫ 1

0

tp−1Vol({x ∈ Rn : (1− sU(x))
1/s
+ > t})dt

= p

∫ 1

0

tp−1Vol

({
x ∈ Rn : U(x) <

1− ts

s

})
dt

= CUp

∫ 1

0

tp−1

(
1− ts

s

)n
dt (3.5)

= CUps
−n−1B

(
p

s
, n+ 1

)
.

In equation (3.5), we use the homogeneity of U and properties of Lebesgue measure.
Then identity (3.4) follows from the fact that

B

(
p

s
, n+ 1

)
=

n!

p/s (p/s+ 1) · · · (p/s+ n)
=

sn+1n!

p(p+ s) · · · (p+ ns)
.

Remark 3.4. We can rewrite Theorem 3.2 in the following equivalent form. Let s ∈ R.
Let f : Rn → [0,∞) be an integrable s-concave function. Then the function

p 7→
∫
Rn f(x)pdx∫

Rn fs,U (x)pdx

is log-concave for p > max(0,−ns). Here, the function fs,U is defined as per (3.3). Note
that any norm provides an example of a positively homogeneous (of degree one) convex
function U : Rn → [0,∞]. Particularly, simple examples would be either the Euclidean
norm U(x) = |x| or the `1-norm U(x) =

∑n
i=1 |xi|. Furthermore, the same result holds if

one replaces fs,U by fs,U1Rn
+

. This form is especially convenient when U is the `1-norm,
so that the function of interest just depends on the sum of coordinates. Specifically, this
choice would yield the extremizers

fs(x) =
1

Z(s)

(
1− s

n∑
i=1

xi

)1/s

+

1Rn
+

(x) (3.6)

for s 6= 0, where Z(s) =
∏n
i=1(1 + is)−1; and f0(x) = e−

∑n
i=1 xi1Rn

+
(x).

4 Optimal concentration bounds for information content

We are now ready to establish sharp exponential deviation estimates of the informa-
tion content for convex measures. The study of convex measures was initiated by Borell
in the seminal papers [11, 12]. Given two subsets A,B ⊆ Rn and 0 < λ < 1, we define
the Minkowski sum

(1− λ)A+ λB = {(1− λ)x+ λy : x ∈ A, y ∈ B}.

Definition 4.1. Let κ ∈ R∪{−∞,∞}. A finite Borel measure µ on Rn is called κ-concave
if we have

µ((1− λ)A+ λB) ≥ ((1− λ)µ(A)κ + λµ(B)κ)1/κ (4.1)

for all Borel sets A,B ⊆ Rn such that µ(A)µ(B) > 0 and for all λ ∈ [0, 1].
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For κ ∈ {−∞, 0,∞}, this definition is interpreted by taking limits. More precisely,
the RHS of (4.1) is equal to min(µ(A), µ(B)) for κ = −∞; µ(A)1−λµ(B)λ for κ = 0, and
max(µ(A), µ(B)) for κ = ∞. Jensen’s inequality implies that the class of κ-concave
measures shrinks with growing κ. For κ = −∞, we obtain the largest class, whose
members are called convex or hyperbolic measures. The case κ = 0 corresponds to the
class of log-concave measures, which includes important measures such as Gaussian
and exponential measures. The measure µ is absolutely continuous with respect to the
Lebesgue measure restricted to an affine subspace H of dimension 0 ≤ d ≤ n such
that κ ≤ 1/d, and its density is s-concave with s = κ

1−dκ (as per Definition 3.1); note
that therefore s > −1/d. In particular, if κ = 1/d then, up to a scaling factor, µ is the
Lebesgue measure supported on a convex set of H.

A random vector X in Rn is called κ-concave if the distribution of X is κ-concave.
Suppose that X is a κ-concave random vector in Rn with density f . (From the previous
paragraph, it is necessary that κ ≤ 1/n). Recall that the information content of X is
defined as h̃(X) = − log f(X). The Laplace transform of h̃(X) is

Ef−α(X) =

∫
Rn

f(x)1−αdx.

The integral is finite as long as α < 1 + min{s, ns}. The following statement readily
follows from Theorem 3.2 with p replaced by 1− α.

Proposition 4.2. Let s ∈ (−1/n,∞]. Let X be a random vector in Rn with density f
being s-concave. Then the function

α 7→
n∏
i=1

(1− α+ is)Ef−α(X) (4.2)

is log-concave for α < 1 + min{0, ns}.
Remark 4.3. In the case s > 0, the statement holds in an interval smaller than the
range where the Laplace transform Ef−α(X) is finite, i.e., α < 1 + s. We suspect that
Proposition 4.2 holds for a larger range α < 1 + min{s, ns}.

Following Lemma 2.3, we set

c(α) = −
n∑
i=1

log(1− α+ is). (4.3)

Corollary 4.4. Under assumptions and notations of Proposition 4.2, we have

Var(h̃(X)) ≤
n∑
i=1

(1 + is)−2. (4.4)

Proof. By Lemma 2.1, we know that Var(h̃(Xα)) = L′′(α), where the tilted random vector
Xα has density proportional to f1−α and L(α) = logEf−α(X) is the logarithmic Laplace
transform. By Proposition 4.2, we know that L′′(α) ≤ c′′(α), where c(α) is defined in
(4.3). Then the variance bound (4.4) follows by differentiating c(α) twice and setting
α = 0.

Remark 4.5. Equality of (4.4) holds for a large class of densities of the form (1 −
sU(x))

1/s
+ , where U is a positively homogeneous convex function of degree 1, i.e., U(tx) =

tU(x) for all x ∈ Rn and all t > 0. In this case, the normalized Laplace transform in (4.2)
is log-affine, i.e., L′′(α) = c′′(α). Hence, we have equality in the above variance bound.
Particularly, this class includes Pareto distributions given by (3.6).
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Remark 4.6. The limiting case s = 0 of Corollary 4.4 recovers the sharp variance
bound Var(h̃(X)) ≤ n for log-concave random vectors in Rn. A bound of this form
Var(h̃(X)) ≤ Cn for an absolute constant C was first obtained by Bobkov and Madiman
[3] as a consequence of their concentration result of h̃(X). Nguyen [38] and Wang
[40] independently determined that the sharp constant C = 1. Other proofs of the
sharp constant were independently given by Bolley, Gentil and Guillin [9] and Fradelizi,
Madiman and Wang [20]. The Fisher information J(X) of a random vector X in Rn with
density f is defined as

J(X) =

∫
Rn

|∇f |2

f
dx.

For isotropic log-concave random vectors X (i.e., EX = 0 and the covariance matrix
Σ = E[(X − EX) ⊗ (X − EX)] is the identity matrix), a well known fact states that
J(X) ≥ n and equality holds when X is a standard Gaussian random vector. This,
together with the sharp variance bound, yields that Var(h̃(X)) ≤ J(X), which was
observed by Nguyen [39]. This relates the varentropy to the Fisher information, and its
form may be compared to the logarithmic Sobolev inequality, which relates the entropy
to the Fisher information.

The following result provides control of the Laplace transform of the information
content. It readily follows from Lemma 2.3 and Proposition 4.2. One can check that
equality holds, in particular, for the Pareto distributions defined in (3.6).

Theorem 4.7. Let s ∈ (−1/n,∞). Let X be a random vector in Rn with density f being
s-concave. For α < 1 + min{0, ns}, we have

Eeα(h̃(X)−h(X)) ≤ eψ(α),

where

ψ(α) = −α
n∑
i=1

(1 + is)−1 −
n∑
i=1

log
1− α+ is

1 + is
. (4.5)

Remark 4.8. Similar to the issue mentioned in Remark 4.3, we can only control the
Laplace transform in an interval smaller than the range where it is finite. We also suspect
that Theorem 4.7 holds for a larger range α < 1 + min{s, ns}.

Then we can apply the Cramér-Chernoff method to establish the following sharp
concentration bounds on the information content for convex measures.

Corollary 4.9. Under assumptions and notations of Theorem 4.7, we have for any t > 0,

P
(
h̃(X)− h(X) > t

)
≤ e−ψ

∗
+(t)

P
(
h̃(X)− h(X) < −t

)
≤ e−ψ

∗
−(−t),

where ψ∗+ and ψ∗− are Legendre transforms of ψ+ and ψ−, respectively.

5 Usable bounds for concentration of information content

Next, we put optimal bounds in the previous section into a more usable form. In the
log-concave case, it is nearly straightforward to write Corollary 4.9 in a more transparent
way since explicit formulas of ψ∗+ and ψ∗− are known (see [20]). In the general s-concave
case, Legendre transforms ψ∗+ and ψ∗− are implicit and it is nontrivial to derive from
Corollary 4.9 explicit bounds on tail probabilities of the information content.
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Concentration of information content for convex measures

Corollary 5.1. Let s ∈ (−1/n, 0]. Let X be a random vector in Rn with density f being
s-concave. For any t > 0, we have

P
(
h̃(X)− h(X) > nt

)
≤ exp

(
−n(1 + ns)2

15
min{t, (1 + ns)t2}

)
(5.1)

P
(
h̃(X)− h(X) < −nt

)
≤ exp

(
−n(1 + ns)3

2
t2
)
. (5.2)

Proof. The tail probability estimates (5.1) and (5.2) follow from lower bounds of Legendre
transforms ψ∗+ and ψ∗−, respectively. We proceed the proof in two cases.

Upper tail. Recall that the function ψ is defined as per (4.5). Given u > 0, as a
function of α ∈ [0, 1 + ns), one can verify that

(αu− ψ(α))′ = u+

n∑
i=1

(1 + is)−1 −
n∑
i=1

(1− α+ is)−1 (5.3)

(αu− ψ(α))′′ = −
n∑
i=1

(1− α+ is)−2 < 0. (5.4)

It is easy to see that (αu − ψ(α))′(0) = u > 0 and limα→1+ns(αu − ψ(α))′ = −∞. This,
together with (5.4), implies that there is an unique α∗ ∈ (0, 1+ns) such that (αu−ψ(α))′ =

0. Moreover, αu−ψ(α) is increasing on [0, α∗] and decreasing on (α∗, 1 + ns). Hence, we
have

ψ∗+(u) = α∗u− ψ(α∗). (5.5)

We give below an estimate of α∗, which will yield a lower bound on ψ∗+(u). One can check
that

(αu− ψ(α))′′′ = −2

n∑
i=1

(1− α+ is)−3 < 0.

Hence, the function (αu− ψ(α))′ is also concave. This concavity implies that

(αu− ψ(α))′(0) + α∗(αu− ψ(α))′′(α∗) < (αu− ψ(α))′(α∗).

Combining this inequality with (5.3) and (5.4), we have

α∗ >
u∑n

i=1(1− α∗ + is)−2
>

u(1− α∗ + ns)∑n
i=1(1− α∗ + is)−1

=
u (1− α∗ + ns)

u+
∑n
i=1(1 + is)−1

. (5.6)

The identity in (5.6) follows from the fact that α∗ is the zero of (αu− ψ(α))′, which was
given in equation (5.3). We make the following change of variable

u = w

n∑
i=1

(1 + is)−1. (5.7)

Then the lower bound (5.6) can be rewritten as

α∗ >
w(1 + ns)

1 + 2w
. (5.8)

Recall that αu − ψ(α) is increasing on [0, α∗]. Then we apply (5.5), (4.5) and (5.8) to
obtain

ψ∗+(u) >
w(1 + w)

1 + 2w

n∑
i=1

1 + ns

1 + is
+

n∑
i=1

log

(
1− w

1 + 2w
· 1 + ns

1 + is

)
.
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Concentration of information content for convex measures

Owing to the inequality log(1− x) ≥ −x− 4x2/5 for 0 ≤ x ≤ 1/2, we have

ψ∗+(u) >
w(1 + w)

1 + 2w

n∑
i=1

1 + ns

1 + is
− w

1 + 2w

n∑
i=1

1 + ns

1 + is
− 4w2

5(1 + 2w)2

n∑
i=1

(
1 + ns

1 + is

)2

>
w2

1 + 2w

n∑
i=1

1 + ns

1 + is
− 4w2

5(1 + 2w)2

n∑
i=1

1 + ns

1 + is
(5.9)

>
w2

5(1 + 2w)

n∑
i=1

1 + ns

1 + is

>
n(1 + ns)

15
min{w,w2}. (5.10)

Since s ∈ (−1/n, 0], we have 1 + ns < 1 + is for 1 ≤ i < n, which yields
(

1+ns
1+is

)2
< 1+ns

1+is .
This was used in inequality (5.9). The last inequality (5.10) follows from 0 < 1 + is < 1

and the simple observation that w2

1+2w > 1
3 min{w,w2}. The latter fact can be verified

by considering two cases 0 < w ≤ 1 and w > 1. By Corollary 4.9, for any u > 0 (or,
equivalently, w > 0),

P
(
h̃(X)− h(X) > u

)
≤ exp

(
−n(1 + ns)

15
min{w,w2}

)
. (5.11)

Identity (5.7), together with 1 + ns < 1 + is for 1 ≤ i < n, implies that u < nw
1+ns . Then,

by (5.11), we have that for any w > 0,

P

(
h̃(X)− h(X) >

nw

1 + ns

)
≤ exp

(
−n(1 + ns)

15
min{w,w2}

)
.

Then the upper tail estimate (5.1) follows from the change of variable t = w
1+ns .

Lower tail. The lower tail estimate (5.2) can be proved in a similar manner. Recall
that the function ψ is defined as per (4.5). As a function of α < 0, it is easy to see from
(5.3) that (−uα− ψ(α))′ < 0 for u ≥

∑n
i=1(1 + is)−1. In this case, we have ψ∗−(−u) =∞.

This, together with Corollary 4.9, yields that h̃(X) − h(X) ≥ −
∑n
i=1(1 + is)−1 with

probability one. Hence, the lower tail estimate (5.2) trivially holds for t > n−1
∑n
i=1(1 +

is)−1. Next, we will assume that 0 < u <
∑n
i=1(1 + is)−1. Similar to the upper tail case,

one can check that there is an unique solution of (−uα− ψ(α))′ = 0, which we denote by
α∗ by adopting the abuse of notation. Moreover, the function −uα− ψ(α) is increasing
on (−∞, α∗) and decreasing on [α∗, 0]. Hence, we have

ψ∗−(−u) = −α∗u− ψ(α∗). (5.12)

Identity (5.4) still holds with u replaced by −u. Hence, (−uα− ψ(α))′ is concave. This
concavity implies that

(−uα− ψ(α))′(α∗)− α∗(−uα− ψ(α))′′(0) < (−uα− ψ(α))′(0).

Combining this with (5.3) and (5.4) with u replaced by −u, we have

α∗ <
−u∑n

i=1(1 + is)−2
<

−u(1 + ns)∑n
i=1(1 + is)−1

= −w(1 + ns). (5.13)

The second inequality uses 1 + ns < 1 + is for 1 ≤ i < n and the last identity follows
from the change of variable (5.7). As mentioned before, −αu − ψ(α) is decreasing on
[α∗, 0]. Plug the upper bound of α∗ given in (5.13) into (5.12) and invoke the assumption
0 < u <

∑n
i=1(1 + is)−1 to obtain

ψ∗−(−u) > −w(1− w)

n∑
i=1

1 + ns

1 + is
+

n∑
i=1

log

(
1 + w · 1 + ns

1 + is

)
. (5.14)
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Owing to the inequality log(1 + x) > x− x2/2 for x ≥ 0, we have

ψ∗−(−u) > −w(1− w)

n∑
i=1

1 + ns

1 + is
+ w

n∑
i=1

1 + ns

1 + is
− w2

2

n∑
i=1

(
1 + ns

1 + is

)2

>
w2

2

n∑
i=1

1 + ns

1 + is
>
n(1 + ns)

2
w2.

Similar to the upper tail case, we applied
(

1+ns
1+is

)2
< 1+ns

1+is in the second inequality and
0 < 1 + is < 1 in the last inequality. By Corollary 4.9, for any u > 0 (or, equivalently, any
w > 0), we have

P
(
h̃(X)− h(X) < −u

)
≤ exp

(
−n(1 + ns)

2
w2

)
. (5.15)

Identity (5.7), together with 1 + ns < 1 + is for 1 ≤ i < n, implies that u < nw
1+ns . This

together with (5.15) implies that for any w > 0,

P

(
h̃(X)− h(X) < − nw

1 + ns

)
≤ exp

(
−n(1 + ns)

2
w2

)
.

Then the lower tail estimate (5.2) readily follows the change of variable t = w
1+ns .

The following result provides bounds of tail probabilities of the information content
for s-concave densities in the range s > 0. This, together with Corollary 5.1, gives
a complete picture of the concentration phenomenon of the information content for
different ranges of convex measures. We only give a proof sketch of the statement, since
the proof is the same as that of Corollary 5.1 with a minor change of notations.

Corollary 5.2. Let s ∈ (0,∞). Let X be a random vector in Rn with density f being
s-concave. For any t > 0, we have

P
(
h̃(X)− h(X) > nt

)
≤ (en)1/s · e−nt (5.16)

P
(
h̃(X)− h(X) < −nt

)
≤ exp

(
−n(1 + s)3

2
t2
)
. (5.17)

Proof. The upper tail estimate (5.16) readily follows from ψ∗+(u) ≥ u−ψ(1) for any u > 0

and the simple observation

ψ(1) =

n∑
i=1

log

(
1 +

1

is

)
−

n∑
i=1

1

1 + is
<

n∑
i=1

log

(
1 +

1

is

)
<

n∑
i=1

1

is
<

1 + log n

s
.

The lower tail estimate (5.17) trivially holds for t > n−1
∑n
i=1(1 + is)−1. This follows from

the fact that h̃(X)− h(X) ≥ −
∑n
i=1(1 + is)−1 still holds with probability one in the case

s > 0. In the complementary case, the argument of Corollary 5.1 yields an unique α∗

such that (5.12) holds. Instead of (5.13), we have the upper bound

α∗ ≤ −w (1 + s) .

Similar to (5.14), we have

ψ∗−(−u) > −w(1− w)

n∑
i=1

1 + s

1 + is
+

n∑
i=1

log

(
1 + w · 1 + s

1 + is

)
.
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Concentration of information content for convex measures

Following the proof of Corollary 5.1, we have

ψ∗−(−u) >
n(1 + s)

2
w2.

Then the lower tail estimate (5.17) follows from Corollary 4.9 and the simple fact that
for s > 0

n∑
i=1

(1 + is)−1 <
n

1 + s
.

Remark 5.3. When 0 < nt <
∑n
i=1(is(1 + is))−1, we can follow the proof of Corollary

5.1 (with a minor change of notations) to obtain

P
(
h̃(X)− h(X) > nt

)
≤ exp

(
−n(1 + s)2

15
min{t, (1 + s)t2}

)
. (5.18)

This upper tail estimate will hold for any t > 0 if Theorem 4.7 holds for α < 1 + s and
s > 0.

6 Monotonicity of moments of s-concave functions

Let s ∈ R. Let ϕ : [0,∞) → [0,∞) be an integrable s-concave function that is right
continuous at 0. The Mellin transformMϕ(p) is defined by

Mϕ(p) =

∫ ∞
0

tp−1ϕ(t)dt. (6.1)

It is not difficult to see thatMϕ(p) is well defined for p > 0 if s ≥ 0, and for 0 < p < −1/s

if s < 0. For s < 0, this follows from the fact that ϕ(t) = O(t1/s) as t → ∞. In fact, the
Mellin transformMϕ(p) is analytic on the half plane {p ∈ C : Re (p) > 0} for s ≥ 0, and
on the strip {p ∈ C : 0 < Re (p) < −1/s} for s < 0.

Then the function Ψs
ϕ(p) introduced in Proposition 3.3 can be rewritten as

Ψs
ϕ(p) = Cs(p)Mϕ(p), p > 0 (6.2)

and Ψs
ϕ(0) = ϕ(0). One can check thatMϕs(p) = Cs(p)

−1, where Cs(p) is defined in (3.2)
and the function ϕs is defined as

ϕs(t) =


(1− t)1/s1[0,1] for s > 0

e−t1R+
for s = 0

(1 + t)1/s1R+ for s < 0.

(6.3)

Hence, for p > 0, we can rewrite Ψs
ϕ(p) as the normalized Mellin transform

Ψs
ϕ(p) =

Mϕ(p)

Mϕs(p)
. (6.4)

The log-concavity of Ψs
ϕ(p) proved in Proposition 3.3 implies that for any r ≥ 0, the

function defined as

p 7→


(

Ψs
ϕ(p+r)

Ψs
ϕ(r)

)1/p

for p 6= 0

exp((ln Ψs
ϕ)′(r)) for p = 0

is non-increasing. Recall that Ψs
ϕ(0) = ϕ(0). Set r = 0. If ϕ(0) > 0, this particularly

implies that the function defined by

Qsϕ(p) =

(
Ψs
ϕ(p)

Ψs
ϕ(0)

)1/p

, p > 0 (6.5)
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and Qsϕ(0) = exp((ln Ψs
ϕ)′(0)) is non-increasing on [0,∞) for s ≥ 0, and on [0,−1/s) for

s < 0.
Suppose that ϕ is not merely continuous but also right differentiable at 0. Similar

to the gamma function, the Mellin transformMϕ(p) can be extended to a meromorphic
function in the domain Ds = {p ∈ C : Re (p) > −1} for s ≥ 0 and Ds = {p ∈ C : −1 <

Re (p) < −1/s} for s < 0 with a simple pole at 0 by the formula

Mϕ(p) =
1

p

∫ ∞
0

tp(−ϕ′(t))dt =

∫ 1

0

tp−1(ϕ(t)− ϕ(0))dt+
ϕ(0)

p
+

∫ ∞
1

tp−1ϕ(t)dt.

Using integration by parts, for Re (p) > 0, we can recover the definition of Mellin
transform in (6.1), while for −1 < Re (p) < 0 we have a simpler form

Mϕ(p) =

∫ ∞
0

tp−1(ϕ(t)− ϕ(0))dt. (6.6)

Particularly, the Mellin transformMϕs
of the function ϕs defined as per (6.3) is mero-

morphic in the domain Ds with one simple pole at 0. Moreover, ϕs doesn’t vanish on Ds

and ϕs(0) = 1. Hence, the function Ψs
ϕ defined as per (6.4) has an analytic extension to

the domain Ds. Correspondingly, we can analytically extend the function Qsϕ(p) defined
as per (6.5) to the domain DRs = {p ∈ R ∩Ds; Ψs

ϕ(p) > 0}.
In the case s = 0, Koldobsky, Pajor and Yaskin [23] showed that Q0

ϕ is non-increasing
on (−1,∞) under the assumption that ϕ is non-increasing. In the following, we extend
this monotonicity property to the whole range of s-concave functions ϕ and we also drop
the monotonicity hypothesis on ϕ.

Theorem 6.1. Let s ∈ R. Let ϕ : [0,∞) → [0,∞) be an integrable s-concave function
such that ϕ(0) > 0 and that ϕ is right differentiable at 0. Set p0 = inf{p > −1 : Ψs

ϕ(p) > 0}.
Then we have

1. p0 ∈ [−1, 0) and if ϕ is non-increasing then p0 = −1.

2. Ψs
ϕ(p) > 0 for every p ∈ (p0, 0], thus Qsϕ(p) is well defined and analytic on (p0,∞)

for s ≥ 0 and on (p0,−1/s) for s < 0.

3. Qsϕ(p) is non-increasing on (p0,∞) for s ≥ 0 and on (p0,−1/s) for s < 0. In particular,
for s < 0, the function

Qsϕ(p) =

(
Cs(p)

∫ ∞
0

tp−1ϕ(t)− ϕ(0)

ϕ(0)
dt

)1/p

is non-increasing on (p0, 0), where the constant Cs(p) is defined in (3.2).

Proof. To see the first statement, we recall that Ψs
ϕ(0) = ϕ(0). This, together with the

assumption that ϕ(0) > 0, readily yields that p0 ∈ [−1, 0). For −1 < p < 0, the Mellin
transformMϕ(p) is defined as per (6.6). If we further assume that ϕ is non-increasing,
then it is easy to see thatMϕ(p) < 0. Particularly, we haveMϕs

(p) < 0 since ϕs defined
in (6.3) is a decreasing function. Hence, we have Ψs

ϕ(p) = Mϕ(p)/Mϕs
(p) > 0 for

−1 < p < 0. This yields that p0 = −1 under the monotonicity assumption on ϕ.
Next, we prove the second statement. By homogeneity, we may assume that ϕ(0) = 1.

Suppose that Ψs
ϕ(q) > 0 for some −1 < q < 0. Then we have Qsϕ(q) = (Ψs

ϕ(q))1/q > 0.
(Here, we use the fact that Ψs

ϕ(0) = ϕ(0) and the assumption that ϕ(0) = 1). We define
ψ(t) = ϕs(t/Q

s
ϕ(q)). One can check thatMψ(p) = (Qsϕ(q))pMϕs(p) for every −1 < p < 0.

In particular, we haveMψ(q) = (Qsϕ(q))qMϕs(q) =Mϕ(q). Since

Mϕ(q)−Mψ(q) =

∫ ∞
0

tq−1(ϕ(t)− ψ(t))dt = 0,
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one can deduce that ϕ− ψ changes sign at least once on (0,∞). Notice that ϕ(0) = ψ(0),
ϕ is s-concave and ψ is s-affine. It follows that ϕ− ψ changes sign at most once. Hence,
ϕ− ψ changes sign exactly at one point t0 > 0 and by concavity one has necessarily that
ϕ− ψ ≥ 0 on (0, t0) and ϕ− ψ ≤ 0 on (t0,∞). We define H(t) =

∫∞
t
uq−1(ϕ(u)− ψ(u))du.

Then we have H ′(t) = −tq−1(ϕ(t) − ψ(t)). Hence, H(t) is non-increasing on [0, t0] and
non-decreasing on [t0,∞). Since H(0) = 0 and H(∞) = 0, it follows that H ≤ 0 on [0,∞).
Using integration by parts, for −1 < q < r < 0, we have

Mϕ(r)−Mψ(r) =

∫ ∞
0

tr−qtq−1(ϕ(t)− ψ(t))dt = (r − q)
∫ ∞

0

tr−q−1H(t)dt ≤ 0.

Therefore, we have

Mϕ(r) ≤Mψ(r) = (Qsϕ(q))rMϕs(r) < 0.

The last inequality follows from the facts that Qsϕ(q) > 0 and thatMϕs
(r) < 0. The latter

fact was mentioned in the proof of the first statement. Then we have

Ψs
ϕ(r) =

Mϕ(r)

Mϕs
(r)
≥ Qsϕ(q)r > 0. (6.7)

Hence, Qsϕ is well defined and analytic on (p0,∞) for s ≥ 0 and on (p0,−1/s) for s < 0.

For the third statement, we have mentioned in the paragraph after (6.4) that the
monotonicity of Qsϕ on (0,∞) for s ≥ 0 and on (0,−1/s) for s < 0 follows from the
log-concavity of Ψs

ϕ(p) that was proved in Proposition 3.3. Hence, it suffices to prove the
monotonicity on (p0, 0). Taking the r-th root of (6.7), for p0 < q < r < 0, we have

Qsϕ(r) = (Ψs
ϕ(r))1/r ≤ Qsϕ(q).

This shows that Qsϕ is non-increasing on (p0, 0).

Using Theorem 6.1, we establish the following theorem, which extends results of
Borell [10] and Fradelizi, Guédon and Pajor [17].

Theorem 6.2. Let s ∈ R and let µ be a s-concave probability measure on Rn. Let
f : Rn → [0,∞) be a concave function on its support. Then the function

p 7→
(
Cs(p)

p

∫
Rn

f(x)pdµ(x)

)1/p

is non-increasing on (−1,∞) if s ≥ 0 and on (−1,−1/s) if s < 0, where the constant Cs(p)
is defined in (3.2).

Proof. For s ≥ 0, the monotonicity on (0,∞) follows from Borell [10]. For s < 0, the
monotonicity on (0,−1/s) is due to Fradelizi, Guédon and Pajor [17]. It suffices to prove
extensions of both cases on (−1, 0). Let −1 < p < 0. Define ϕ(t) = µ({x ∈ Rn : f(x) > t)})
for t ≥ 0. Since f is concave and µ is s-concave, we deduce that ϕ is s-concave.
Integrating on the level sets, we have∫

Rn

f(x)pdµ(x) = −
∫
Rn

∫ ∞
f(x)

ptp−1dtdµ(x) = p

∫ ∞
0

tp−1(ϕ(t)− ϕ(0))dt = pMϕ(p).

The second identity follows from Fubini’s theorem. The last identity follows from the
definition of Mellin transformMϕ(p) defined as per (6.6). Then the desired statement
follows from the third statement of Theorem 6.1 and the fact that ϕ(0) = 1.
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Let µ be the uniform probability measure on a convex body K of Rn. By the Brunn-
Minkowski theorem, it is known that µ is 1/n-concave. Notice that

C1/n(p) = B(p, n+ 1)−1 =
p(p+ 1) · · · (p+ n)

n!
= p

(
n+ p

n

)
.

Thus Theorem 6.2 implies the following extension of the classical theorem of Berwald
[2], see also [37], which was restricted to the range p > 0.

Corollary 6.3. Let K be a convex body of Rn. Let f : K → [0,∞) be a concave function.
Then the function

p 7→
((

n+ p

n

)
1

|K|

∫
K

f(x)pdx

)1/p

is non-increasing on (−1,∞).

As mentioned before, the monotonicity of Qsϕ follows from the log-concavity of Ψs
ϕ.

We conclude this section with the following conjecture.

Conjecture 6.4. Let s ∈ R. Let ϕ : [0,∞)→ [0,∞) be an integrable s-concave function
such that ϕ(0) > 0 and that ϕ is right differentiable at 0. Then the function

Ψs
ϕ(p) = Cs(p)

∫ ∞
0

tp−1(ϕ(t)− ϕ(0))dt

is log-concave on [p0, 0), where p0 = min{p > −1 : Ψs
ϕ(p) > 0}.

Remark 6.5. Using a standard level set argument, if Conjecture 6.4 were true, then it
could be used to show that the log-concavity statement in Theorem 3.2 holds in a larger
range of p > max(−s,−ns). Correspondingly, Proposition 4.2 and Theorem 4.7 will hold
for α < 1 + min{s, ns} and the upper tail estimate (5.18) will hold for any t > 0. We
can prove this extension of Theorem 3.2 when f is defined on R, but do not include the
details in this paper.

7 Consequences

In this section, we develop various consequences of the results obtained. First, we
give a probabilistic interpretation of Theorem 3.2, namely that all Rényi entropies of
a s-concave density are effectively comparable. Recall that, for p ∈ (0, 1) ∪ (1,∞), the
Rényi entropy of order p of a density f is defined as

hp(X) =
1

1− p
log

∫
Rn

f(x)pdx. (7.1)

For p ∈ {0, 1,∞}, it is defined in the natural way by taking limits; that is, h1(f) = h(f)

is the Shannon-Boltzmann entropy; h∞(f) = − log ‖f‖∞, where ‖f‖∞ is the essential
supremum of f ; and h0(f) = log |supp{f}|, where |supp{f}| is the Lebesgue measure of
the support of f . It readily follows from Jensen’s inequality that hp(f) ≥ hq(f) whenever
q > p ≥ 0 for any density f . The notable fact is that for s-concave densities, this inequality
can be reversed up to a precise dimensional constant.

Corollary 7.1. Let s ∈ (−1/n,∞). Let X be a random vector in Rn with density f being
s-concave. For max(0,−ns) ≤ p < q ≤ ∞, we have

hp(f)− hq(f) ≤ hp(fs)− hq(fs),

where the family of extremizers fs are defined in (3.6).
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Proof. From Remark 3.4, we know that if f : Rn → [0,∞) is an integrable s-concave
function, then

p 7→
∫
Rn f(x)pdx∫
Rn fs(x)pdx

is log-concave for p > max{0,−ns}. If f is a s-concave density, then in the language of
Rényi entropies, one deduces that

ξ(p) = (1− p)(hp(f)− hp(fs))

is concave for p > max{0,−ns}. Moreover, given that both f and fs integrate to one, we
should set ξ(1) = 0; with this choice, ξ is concave on its maximal interval of definition. It
is a well known fact (see, e.g., [13, Exercise 3.1]) that a function ξ : (a, b)→ R is concave
if and only if

ξ(p)− ξ(p̃)
p− p̃

is non-increasing in p (for fixed p̃) and non-decreasing in p̃ (for fixed p). Taking p̃ = 1, we
see that

hp(f)− hp(fs) =
ξ(p)

1− p
= −ξ(p)− ξ(1)

p− 1

is non-decreasing in p, i.e., we have that

hp(f)− hp(fs) ≤ hq(f)− hq(fs)

for any max{0,−ns} < p < q <∞. Rearranging gives the desired inequality in this range.
Taking limits extends the range to q =∞ and to p = max{0,−ns}.

Remark 7.2. One can check that for p ∈ (0, 1) ∪ (1,∞),

hp(fs) =
p

1− p

n∑
i=1

log(1 + is)− 1

1− p

n∑
i=1

log(p+ is). (7.2)

We also have the limiting cases

h(fs) =

n∑
i=1

(1 + is)−1 −
n∑
i=1

log(1 + is) (7.3)

h∞(fs) = −
n∑
i=1

log(1 + is). (7.4)

Hence, for a s-concave density f , Corollary 7.1 yields, when p < q, the numerical bound

hp(f)− hq(f) ≤ p− q
(1− p)(1− q)

n∑
i=1

log(1 + is)−
n∑
i=1

log
(p+ is)

1
1−p

(q + is)
1

1−q

(7.5)

with the cases where p or q is 0, 1 or∞ understood by taking limits. Taking p = 1 and
q =∞ in (7.5), we have

h(f)− h∞(f) ≤
n∑
i=1

(1 + is)−1.

Under the additional assumption that−1/(n+1) ≤ s ≤ 0, this last inequality was obtained
earlier in [5].
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Remark 7.3. The log-concave case of Corollary 7.1, advertised in the introduction of
this paper and first obtained in unpublished work of Madiman and Wang [34], states that
if f be a log-concave density on Rn, then

hp(f)− hq(f) ≤ hp(φ)− hq(φ), (7.6)

for 0 < p < q ≤ ∞, where φ is the one-sided exponential density on Rn, i.e., φ(x) =

e−
∑n

i=1 xi1Rn
+

(x).

Second, we present an improvement of [7, Proposition 5.1] (whose analogue for
the special case of log-concave probability measures was first observed by Klartag and
Milman [22] and later refined in [20, Corollary 4.7]).

Corollary 7.4. Let s ∈ (−1/n, 0). Let X be a random vector in Rn with density being
s-concave. For any c0 ∈ (0, 1) such that n log c0 < −

∑n
i=1(1+ is)−1, there exists c1 ∈ (0, 1)

depending only on c0 and s such that

P(f(X) ≥ cn0‖f‖∞) ≥ 1− cn1 .

Proof. Set t = −n log c0 −
∑n
i=1(1 + is)−1. By Remark 7.3, we have

P(f(X) ≤ cn0‖f‖∞) = P(h̃(X) ≥ − log ‖f‖∞ − n log c0) ≤ P(h̃(X)− h(X) ≥ t).

Then, by Corollary 4.9, we have

P(f(X) ≤ cn0‖f‖∞) ≤ e−ψ
∗
+(t). (7.7)

The function ψ is defined as per (4.5). By (5.4), we know that αt− ψ(α) is concave for
α < 1 + ns. Hence, the maximum is achieved at α∗ such that (αt− ψ(α))′ = 0, i.e.,

n∑
i=1

(1− α∗ + is)−1 = −n log c0. (7.8)

Using (4.5), we have

ψ∗+(t) = α∗t− ψ(α∗) = −nα∗ log c0 +

n∑
i=1

log
1− α∗ + is

1 + is
.

Plug this into (7.7) to obtain

P(f(X) ≤ cn0‖f‖∞) ≤ cn1 ,

where

c1 = cα
∗

0

(
n∏
i=1

1 + is

1− α∗ + is

)1/n

.

This is equivalent to the desired statement. To see that c1 < 1, we take the logarithm of
c1,

log c1 = α∗ log c0 +
1

n

n∑
i=1

log
1 + is

1− α∗ + is

= − 1

n

n∑
i=1

α∗

1− α∗ + is
+

1

n

n∑
i=1

log
1 + is

1− α∗ + is
(7.9)

= − 1

n

n∑
i=1

(
α∗

1− α∗ + is
− log

(
1 +

α∗

1− α∗ + is

))
< 0.

We used equation (7.8) in the second identity (7.9). The inequality follows from log(1 +

x) < x for x > 0.
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Remark 7.5. For s > 0, Theorem 4.7 holds for α < 1. In this range, one might not find
the solution α∗ of equation (7.8). The proof of Corollary 7.4 will break down. Assuming
the validity of Conjecture 6.4, Theorem 4.7 will hold in a larger range α < 1 + s. Then
we can find such an α∗. Following the same argument, Corollary 7.4 will also hold for
any s > 0.

Third, we show that the entropy power of a convex measure is linked to the volume
of a typical set or effective support.

Corollary 7.6. Under assumptions and notations of Corollary 7.4, we have

cn0 |K| ≤ eh(f) ≤ (1− cn1 )−1 exp

(
n∑
i=1

(1 + is)−1)

)
|K|,

where the convex set K = {x ∈ Rn : f(x) ≥ cn0‖f‖∞}.

Proof. From the definition of K we can see that

cn0‖f‖∞|K| ≤
∫
K

f(x)dx ≤ 1.

Corollary 7.4 implies that

1− cn1 ≤
∫
K

f(x)dx ≤ ‖f‖∞|K|.

Remark 7.3 implies the entropy power estimate

‖f‖−1
∞ ≤ eh(f) ≤ exp

(
n∑
i=1

(1 + is)−1

)
‖f‖−1

∞ .

Then the desired statement follows by combining the above inequalities.

The entropy power (usually defined as eh(f) raised to the power 2/n) is a notion
with origins in information theory. A class of inequalities for the entropy power of
convolutions, known as entropy power inequalities, play an important role in convex
geometry, information theory, and probability theory, particularly in connection with the
central limit theorem, and may also be seen as probabilistic parallels to Brunn-Minkowski
and related inequalities for set volumes. For more on these connections, the reader may
consult [31, 18, 19, 29]; in particular, the preceding corollary can be used to go back
and forth between volumes and entropies in drawing parallels between geometry and
probability in the context of convex measures.

Fourth, we recover a result of Adamczak et al. [1, Lemma 7.2], which in turn
generalizes a result of Fradelizi [16] relating the maximum value of a log-concave density
to its value at the mean.

Corollary 7.7. Let s ∈ (− 1
n+1 ,∞). Let X be a random vector in Rn with density f being

s-concave. Then we have

‖f‖∞ ≤ Cn,sf(EX),

whenever EX exists, and Cn,s =
(

1 + ns
1+s

)1/s

.

Proof. When s > 0, since fs is concave, we have

fs(EX) ≥ Efs(X) =

∫
Rn

fs+1(x)dx = e−shs+1(f).
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When s < 0, since fs is convex, we have

fs(EX) ≤ Efs(X) = e−shs+1(f).

Raising to the power 1/s yields, in both cases,

f(EX) ≥ e−hs+1(f).

On the other hand, by Corollary 7.1, we have

hs+1(f) ≤ h∞(f) + hs+1(fs)− h∞(fs).

Hence, we have

f(EX) ≥ e−h∞(f)eh∞(fs)−hs+1(fs) = ‖f‖∞eh∞(fs)−hs+1(fs),

which is the desired bound, and hp(fs) are given in (7.2), (7.3) and (7.4).

One can check that Corollary 7.7 is sharp for functions defined in (3.6). Of course, if
s is too negative, it will not have finite mean, but the bound is useful in other cases.
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