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Abstract

In this work, we derive sufficient and necessary conditions for the existence of a weak
and mild solution of an abstract stochastic Cauchy problem driven by an arbitrary
cylindrical Lévy process. Our approach requires to establish a stochastic Fubini result
for stochastic integrals with respect to cylindrical Lévy processes. This approach
enables us to conclude that the solution process has almost surely scalarly square
integrable paths. Further properties of the solution such as the Markov property and
stochastic continuity are derived.
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1 Introduction

Cylindrical Lévy processes naturally extend the class of cylindrical Brownian motions,
which have been the standard model for random perturbations of partial differential
equations for the last 50 years. The general concept of cylindrical Lévy processes in
Banach spaces has been recently introduced by Applebaum and Riedle in [3]. However, so
far only specific examples of cylindrical Lévy processes have been applied for modelling
the driving noise of stochastic partial differential equations.

In this work we consider a linear evolution equation driven by an additive noise, or
equivalently a stochastic Cauchy problem, of the form:

dY (t) = AY (t) dt+B dL(t) for all t ∈ [0, T ]. (1.1)

Here, L is a cylindrical Lévy process on a separable Hilbert space U , the coefficient
A is the generator of a strongly continuous semigroup on a separable Hilbert space V
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and B is a linear, bounded operator from U to V . In this general setting, we present a
complete theory for the existence of a mild and weak solution of (1.1) and derive some
fundamental properties of the solution and its trajectories.

Only for specific examples of cylindrical Lévy processes L and sometimes under
further restrictive assumptions on the generator A, the stochastic Cauchy problem (1.1)
has been considered in most of the literature. There, typically one of the following
two approaches are exploited: either the considered cylindrical Lévy process L is of
such a form that the question of existence of a weak solution reduces to the study of a
sequence of infinitely many one-dimensional processes or the underlying Hilbert space
V is embedded in a larger space. The first approach is applied for example in the works
Brzeźniak et al. [5], Liu and Zhai [16], and Priola and Zabczyk [21]. In these publications,
the considered examples of a cylindrical Lévy process L only act along the eigenbasis
of the generator A in an independent way. The second approach is utilised for example
in the works [6] by Brzeźniak and van Neerven for cylindrical Brownian motion, [7]
by Brzeźniak and Zabczyk for a cylindrical Lévy process modelled as a subordinated
cylindrical Brownian motion or [20] by Peszat and Zabczyk for a general case. Although
this approach is elegant and natural, one typically obtains conditions for the existence of
a weak solution in terms of the larger space which per se is not related to the equation
under consideration.

The stochastic Cauchy problem (1.1) exhibits a new phenomena which has not been
observed in the Gaussian setting, i.e. when L is a cylindrical Brownian motion: the
solution may exist as a stochastic process in the underlying Hilbert space V , but its
trajectories are highly irregular; see for example Brzeźniak et al. [5], Brzeźniak and
Zabczyk [7] and Peszat and Zabczyk [19]. In fact, the only positive results on some
analytical regularity of the paths can be found in Liu and Zhai [17] and Peszat and
Zabczyk [20]. However, these results are very restrictive and do not cover most of the
considered examples of cylindrical Lévy processes.

For establishing the existence of a weak solution, the general noise considered
in our work prevents us from following standard arguments as exploited for genuine
Lévy processes, attaining values in V . In this case, one can either utilise the Lévy-Itô
decomposition together with a stochastic Fubini theorem for the martingale part as it is
done by Applebaum in [1] or by Peszat and Zabczyk in [19], or an integration by parts
formula as accomplished by Chojnowska-Michalik in [8]. However, since our noise is
cylindrical it does not enjoy a Lévy-Itô decomposition in the underlying Hilbert space.
Also exploiting an integration by parts formula seems to be excluded as such a formula
would indicate certain regularity of the paths. We circumvent these problems by applying
a stochastic Fubini theorem but without decomposing the integrator of the stochastic
integral.

However, also the stochastic Fubini theorem cannot be derived by standard methods
due to the lack of a Lévy-Itô decomposition of the cylindrical Lévy process in the
underlying Hilbert space. Even more, most of the results require finite moments of the
stochastic integral, which is not guaranteed in our general framework; see Applebaum
[1], Da Prato and Zabczyk [9] and Filipović et al. [12]. In our work, we succeed
in establishing a stochastic Fubini result by using the observation that the iterated
integrals can be considered as the inner product in a space of integrable functions. This
observation and its elegant utilisation originates from the work van Neerven and Veraar
[26]. Similar as in this work [26], however without having the theory of γ-radonifying
operators at hand, we derive by tightness arguments, that the parameterised stochastic
integral with respect to a cylindrical Lévy process defines a random variable in a space
of integrable functions, which enables us to consider the iterated integrals as an inner
product.
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Surprisingly, our stochastic Fubini result and its application to the representation
of the weak solution of (1.1) immediately yields that the trajectories of the solution are
scalarly square integrable. As far as we know, this is the first positive result on an
analytical path property of the solution of the stochastic Cauchy problem independent of
the driving cylindrical Lévy process. Furthermore, having established the representation
of the solution for (1.1) by a stochastic integral, which itself is based on the rich theory
of cylindrical measures and cylindrical random variables, enables us to study further
properties of the solution and its trajectories. More specifically, we show without any
assumptions on the cylindrical Lévy process that the solution process is a Markov process
and continuous in probability. For specific examples of cylindrical Lévy processes, these
properties were established in [7] and [21]. However, there the arguments are strongly
restricted to the specific examples under consideration. We are also able to provide a
condition in our general framework which implies the non-existence of a modification
of the solution with scalarly càdlàg trajectories, a phenomenon which has often been
observed in several publications above cited. In fact, our condition covers all the
examples in the literature, where this phenomenon has been observed, and it does not
only strengthen the result in a few cases but also allows a geometric interpretation.

Our article begins with Section 2 where we fix most of our notations and introduce
cylindrical Lévy processes and the stochastic integrals. In Section 3 we present and
establish the stochastic Fubini theorem for stochastic integrals with respect to cylindrical
Lévy processes and deterministic integrands. In the following Section 4 we apply the
stochastic Fubini theorem to derive the existence of the weak solution of the stochastic
Cauchy problem (1.1). In the final Section 5 we present some fundamental properties of
the solution.

2 Preliminaries

Let U and V be separable Hilbert spaces with norms ‖ · ‖ and orthonormal bases
(ek)k∈N and (hk)k∈N, respectively. We identify the dual of a Hilbert space with itself. The
Borel σ-algebra of U is denoted by B(U). The space of Radon probability measures on
B(U) is denoted byM(U) and is equipped with the Prokhorov metric. The space of all
linear, bounded operators from U to V is denoted by L(U, V ), equipped with the operator
norm ‖ · ‖op; its subset of Hilbert-Schmidt operators is denoted by L2(U, V ), equipped
with the norm ‖ · ‖HS. It follows from the standard characterisation of compact sets in
Hilbert spaces, that a set K ⊆ L2(U, V ) is compact if and only if it is closed, bounded
and satisfies

lim
N→∞

sup
ϕ∈K

∞∑
k=N+1

(
‖ϕek‖2 + ‖ϕ∗hk‖2

)
= 0. (2.1)

The space of continuous functions from [0, T ] to U is denoted by C([0, T ];U) and it is
equipped with the supremum norm ‖ · ‖∞. The space of all equivalence classes of
measurable functions f : Ω→ U on a probability space (Ω,F , P ) is denoted by L0

P (Ω;U),
and it is equipped with the topology of convergence in probability. The space LpP (Ω;U)

for p ∈ [1,∞) contains all equivalence classes of measurable functions f : Ω→ U which
are p-th integrable, and it is equipped with the usual norm.

For a subset Γ of U , sets of the form

C(u1, ..., un;B) := {u ∈ U : (〈u, u1〉, ..., 〈u, un〉) ∈ B},

for u1, ..., un ∈ Γ and B ∈ B(Rn) are called cylindrical sets with respect to Γ; the set
of all these cylindrical sets is denoted by Z(U,Γ) and it is a σ-algebra if Γ is finite and
otherwise an algebra. A function µ : Z(U,U)→ [0,∞] is called a cylindrical measure, if
for each finite subset Γ ⊆ U the restriction of µ on the σ-algebra Z(U,Γ) is a measure. A
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cylindrical measure is called finite if µ(U) <∞ and a cylindrical probability measure if
µ(U) = 1. A cylindrical random variable Z in U is a linear and continuous map

Z : U → L0
P (Ω;R).

Each cylindrical random variable Z defines a cylindrical probability measure λ by

λ : Z(U,U)→ [0, 1], λ(C) = P
(
(Zu1, . . . , Zun) ∈ B

)
,

for cylindrical sets C = C(u1, ..., un;B). The cylindrical probability measure λ is called
the cylindrical distribution of Z. The characteristic function of a cylindrical random
variable Z is defined by

ϕZ : U → C, ϕZ(u) = E[exp(iZu)],

and it uniquely determines the cylindrical distribution of Z.
A family (L(t) : t > 0) of cylindrical random variables is called a cylindrical process.

It is called a cylindrical Lévy process if for all u1, ..., un ∈ U and n ∈ N, the stochastic pro-
cess ((L(t)u1, ..., L(t)un) : t > 0) is a Lévy process in Rn. This concept is introduced in [3]
and it naturally extends the notion of a cylindrical Brownian motion. The characteristic
function of L(t) for all t > 0 is given by

ϕL(t) : U → C, ϕL(t)(u) = exp
(
tΨ(u)

)
,

where Ψ: U → C is called the symbol of L, and is of the form

Ψ(u) = ia(u)− 1

2
〈Qu, u〉+

∫
U

(
ei〈u,h〉 − 1− i〈u, h〉1BR(〈u, h〉)

)
µ(dh),

where a : U → R is a continuous mapping with a(0) = 0, Q : U → U is a positive,
symmetric operator and µ is a cylindrical measure on Z(U,U) satisfying∫

U

(
〈u, h〉2 ∧ 1

)
µ(dh) <∞ for all u ∈ U.

We call (a,Q, µ) the (cylindrical) characteristics of L; see [23].
A function g : [0, T ] → U is called regulated if g has only discontinuities of the first

kind. The space of all regulated functions is denoted by R([0, T ];U) and it is a Banach
space when equipped with the supremum norm; see [4, Ch. II.1.3] for this and other
properties we will use. A function f : [0, T ]→ L(U, V ) is called weakly in R([0, T ];U) or
weakly regulated if f∗(·)v is in R([0, T ];U) for each v ∈ V . Without further assumptions,

one can define the integral
∫ T
0
1A(t)f∗(t)v dL(t) for all v ∈ V and A ∈ B([0, T ]) for a

weakly regulated function f : [0, T ] → L(U, V ). In this way, one obtains a cylindrical
random variable by the prescription

ZA : V → L0
P (Ω;R), ZAv =

∫ T

0

1A(t)f∗(t)v dL(t).

A much stronger property of f is the following definition of stochastically integrability:
a function f : [0, T ] → L(U, V ) is called stochastically integrable with respect to L if f
is weakly in R([0, T ];U) and if for each A ∈ B([0, T ]) there exists a V -valued random
variable IA such that

〈IA, v〉 = ZAv for all v ∈ V.
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The stochastic integral IA is also denoted by
∫
A
f(s) dL(s) := IA. From the very definition

it follows that 〈∫
A

f(s) dL(s), v

〉
=

∫
A

f∗(s)v dL(s) for all v ∈ V. (2.2)

Necessary and sufficient conditions for the stochastic integrability of a function are
derived in the work [24, Thm. 5.10]. In particular, for Hilbert spaces U and V it states
that a function f : [0, T ] → L(U, V ), which is weakly in R([0, T ];U), is stochastically
integrable with respect to a cylindrical Lévy process with characteristics (a,Q, µ) if and
only if the following is satisfied:

(1) for every sequence (vn)n∈N ⊆ V converging weakly to 0 and A ∈ B([0, T ]) we have

lim
n→∞

∫
A

a(f∗(s)vn) ds = 0. (2.3)

(2)
∫ T

0

tr
[
f(t)Qf∗(t)

]
dt <∞; (2.4)

(3) lim sup
m→∞

sup
n>m

∫ T

0

∫
U

(
n∑

k=m

〈f(t)u, hk〉2 ∧ 1

)
µ(du) dt = 0. (2.5)

3 Stochastic Fubini theorem

In this section, we prove a stochastic version of Fubini’s theorem, which will play
an essential role later. As the cylindrical Lévy process L does not enjoy a Lévy-Itô
decomposition in U we cannot exploit standard arguments. We will always denote by
(a,Q, µ) the characteristics of L. Let (S,S, η) be a finite measure space and L2

η(S;U) the
Bochner space.

Theorem 3.1. Let g : S × [0, T ]→ U be a function satisfying the following assumptions:

(a) g is S ⊗B([0, T ]) measurable;

(b) the map t 7→ g(s, t) is regulated for η-almost all s ∈ S;

(c) the map t 7→ g(·, t) belongs to R([0, T ];L2
η(S;U)).

Then, P -almost surely, we have∫
S

∫ T

0

g(s, t) dL(t) η(ds) =

∫ T

0

∫
S

g(s, t) η(ds) dL(t),

and all integrals are well defined; in particular, we have

(1) the map t 7→
∫
S
g(s, t) η(ds) is in R([0, T ];U);

(2) the process
( ∫ T

0
g(s, t) dL(t) : s ∈ S

)
defines a random variable in L2

η(S;R).

We divide the proof of the theorem into several lemmas. The theory of integration
developed in [24] applies to deterministic integrands Φ: [0, T ] → L(U, V ) which are
weakly regulated. In this case, the function Φ is integrable if and only if it satisfies the
Conditions (2.3), (2.4) and (2.5). The following lemma shows that if Φ is Hilbert-Schmidt
valued these conditions are already satisfied, i.e. Φ is stochastically integrable. This is in
line with the general integration theory for random integrands developed in [14], where
the random integrands are assumed to have cáglád trajectories.
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Lemma 3.2. Every regulated function Φ: [0, T ]→ L2(U, V ) is stochastically integrable
with respect to L.

Proof. From the inequality ‖Φ∗(t)v‖ 6 ‖Φ(t)‖HS‖v‖ for all v ∈ V and a Cauchy argument,
it follows that the operator Φ is weakly in R([0, T ];U). We prove the stochastic integra-
bility of Φ by verifying Conditions (2.3), (2.4) and (2.5). To verify (2.3), let vn → 0 weakly
in V . As the operator Φ∗(t) is compact for each t ∈ [0, T ], it follows Φ∗(t)vn → 0 in the
norm topology of U . Since a is continuous and maps bounded sets to bounded sets by
Lemma 3.2 in [24], Lebesgue’s theorem on dominated convergence implies∫

A

a(Φ∗(t)vn) dt→ 0 as n→∞ for each A ∈ B([0, T ]).

Since the mapping t 7→ Φ(t) is regulated and thus bounded, we obtain∫ T

0

tr
[
Φ(t)QΦ∗(t)

]
dt =

∫ T

0

∥∥∥Φ(t)Q
1
2

∥∥∥2
HS

dt <∞,

which shows Condition (2.4). To prove Condition (2.5), note that the monotone conver-
gence theorem guarantees

sup
n>m

∫ T

0

∫
U

(
n∑

k=m

〈Φ(t)u, hk〉2 ∧ 1

)
µ(du) dt =

∫ T

0

fm(t) dt, (3.1)

where for each m ∈ N and t ∈ [0, T ] we define

fm(t) := sup
n>m

∫
U

(
n∑

k=m

〈Φ(t)u, hk〉2 ∧ 1

)
µ(du).

Let λ denote the cylindrical distribution of L(1). As Φ(t) is Hilbert-Schmidt for each fixed
t ∈ [0, T ], the image measure λ ◦ Φ−1(t) is a genuine infinitely divisible measure with
classical Lévy measure µ◦Φ−1(t). Consequently, we can apply the monotone convergence
theorem and Lebesgue’s theorem on dominated convergence to obtain for each t ∈ [0, T ]

that

fm(t) = sup
n>m

∫
V

(
n∑

k=m

〈v, hk〉2 ∧ 1

)
(µ ◦ Φ−1(t))(dv)

=

∫
V

( ∞∑
k=m

〈v, hk〉2 ∧ 1

)
(µ ◦ Φ−1(t))(dv)→ 0 as m→∞. (3.2)

Since the set K := {Φ(t) : t ∈ [0, T ]} is a compact subset of L2(U, V ) by Problem 1 in [10,
Ch. VII.6], Proposition 5.3 in [14] implies that the set {λ ◦ ϕ−1 : ϕ ∈ K} is relatively
compact in the space of probability measures on B(V ). Since λ◦ϕ−1 is infinitely divisible
with Lévy measure µ ◦ ϕ−1, Theorem VI.5.3 in [18] implies

sup
ϕ∈K

∫
‖v‖61

‖v‖2(µ ◦ ϕ−1)(dv) <∞ and sup
ϕ∈K

(µ ◦ ϕ−1)({v : ‖v‖ > 1}) <∞.

Consequently, we obtain

sup
m∈N

sup
t∈[0,T ]

fm(t) 6 sup
ϕ∈K

∫
‖v‖61

‖v‖2(µ ◦ ϕ−1)(dv) + sup
ϕ∈K

∫
‖v‖>1

(µ ◦ ϕ−1)(dv) <∞. (3.3)

The limit (3.2) and the inequality (3.3) enable us to apply Lebesgue’s theorem in (3.1),
which proves Condition (2.5).
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For some u ∈ U and v ∈ V , we define the operator u ⊗ v : U → V by (u ⊗ v)(w) :=

〈u,w〉v.

Lemma 3.3. If Φ: [0, T ]→ L2(U, V ) is a regulated function, then
m∑
j=1

ej⊗Φ(·)ej converges

to Φ in R
(
[0, T ],L2(U, V )

)
as m→∞.

Proof. By Problem 1 in [10, Ch. VII.6], the set K := {Φ(t) : t ∈ [0, T ]} is compact in
L2(U, V ). By applying (2.1) we conclude

sup
t∈[0,T ]

∥∥∥∥∥∥Φ(t)−
m∑
j=1

ej ⊗ Φ(t)ej

∥∥∥∥∥∥
2

HS

= sup
t∈[0,T ]

∞∑
i=1

∥∥∥∥∥∥Φ(t)ei −
m∑
j=1

〈ej , ei〉Φ(t)ej

∥∥∥∥∥∥
2

= sup
t∈[0,T ]

∞∑
i=m+1

‖Φ(t)ei‖2

6 sup
ϕ∈K

∞∑
i=m+1

‖ϕei‖2 → 0 as m→∞,

which completes the proof.

Lemma 3.4. For each regulated function Φ: [0, T ]→ L2(U, V ) there exists a sequence
of partitions {(tnk )Nnk=0 : n ∈ N} of [0, T ] with max06k6Nn−1 |tnk+1 − tnk | → 0 as n→∞ such
that the functions

Φm,n(t) :=



m∑
j=1

ej ⊗ Φ
(
tnk+t

n
k+1

2

)
ej , if t ∈ (tnk , t

n
k+1), k = 0, . . . , Nn − 1,

m∑
j=1

ej ⊗ Φ(tnk )ej , if t = tnk , k = 0, . . . , Nn,

satisfy
lim

m,n→∞
sup
t∈[0,T ]

‖Φm,n(t)− Φ(t)‖HS = 0, (3.4)

and

lim
m,n→∞

∫ T

0

Φm,n(t) dL(t) =

∫ T

0

Φ(t) dL(t) in probability. (3.5)

Proof. Using [10, 7.6.1], we can construct a sequence {(tnk )Nnk=0 : n ∈ N} of partitions of
[0, T ] such that max

06k6Nn−1
|tnk+1 − tnk | → 0 and that the functions

Φn(t) :=

{
Φ
(
tnk+t

n
k+1

2

)
, if t ∈ (tnk , t

n
k+1), k = 0, . . . , Nn − 1,

Φ(tnk ), if t = tnk , k = 0, . . . , Nn,

satisfy supt∈[0,T ] ‖Φ(t)− Φn(t)‖HS → 0 as n→∞. Let ε > 0 be given. Then there exists
some N ∈ N such that for all n > N , we have

sup
t∈[0,T ]

‖Φ(t)− Φn(t)‖HS 6
ε

2
. (3.6)

By Lemma 3.3, there exists M > 0, such that for all m >M , we have

sup
t∈[0,T ]

∥∥∥∥∥∥Φ(t)−
m∑
j=1

ej ⊗ Φ(t)ej

∥∥∥∥∥∥
HS

6
ε

2
. (3.7)
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Using (3.6) and (3.7) we have for all n > N and m >M ,

sup
t∈[0,T ]

‖Φ(t)− Φm,n(t)‖HS

6 sup
t∈[0,T ]

‖Φ(t)− Φn(t)‖HS + sup
t∈[0,T ]

‖Φn(t)− Φm,n(t)‖HS

= sup
t∈[0,T ]

‖Φ(t)− Φn(t)‖HS + sup
t∈[0,T ]

Nn∑
k=0

1{tnk}(t)

∥∥∥∥∥∥Φ(tnk )−
m∑
j=1

ej ⊗ Φ(tnk )ej

∥∥∥∥∥∥
HS

+

Nn−1∑
k=0

1(tnk ,tnk+1)
(t)

∥∥∥∥∥∥Φ
(
tnk+t

n
k+1

2

)
−

m∑
j=1

ej ⊗ Φ
(
tnk+t

n
k+1

2

)
ej

∥∥∥∥∥∥
HS


6
ε

2
+
ε

2
= ε,

which proves (3.4). Let Pm,n denote the distribution of
∫ T
0

Φm,n(t) dL(t). For establishing
(3.5), it is sufficient by [13, Lemma 2.4] to show:

(i)
〈∫ T

0
Φm,n(t) dL(t)−

∫ T
0

Φ(t) dL(t), v
〉
→ 0 in probability for all v ∈ V ;

(ii) {Pm,n : m,n ∈ N} is relatively compact inM(V ).

As Φ∗m,n(·)v converges uniformly to Φ∗(·)v for each v ∈ V due to (3.4), Lemma 5.2 in [24]
implies〈∫ T

0

Φm,n(t) dL(t)−
∫ T

0

Φ(t) dL(t), v

〉
=

∫ T

0

(
Φ∗m,n(t)− Φ∗(t)

)
v dL(t)→ 0

in probability which establishes (i). To prove (ii), we define the set

K1 :=


m∑
j=1

ej ⊗ ϕej : m ∈ N ∪ {∞}, ϕ ∈ K

 ,

where K := {Φ(t) : t ∈ [0, T ]}. Since K is a compact subset of L2(U, V ), it follows that
K1 is closed and bounded. By applying (2.1) we obtain

lim
N→∞

sup
ψ∈K1

∞∑
k=N+1

(
‖ψek‖2 + ‖ψ∗hk‖2

)

= lim
N→∞

sup
ϕ∈K

sup
m∈N∪{∞}

∞∑
k=N+1


∥∥∥∥∥∥
m∑
j=1

〈ej , ek〉ϕej

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
m∑
j=1

〈ϕej , hk〉ej

∥∥∥∥∥∥
2


6 lim
N→∞

sup
ϕ∈K

∞∑
k=N+1

(
‖ϕek‖2 + ‖ϕ∗hk‖2

)
= 0,

which shows that K1 is a compact subset of L2(U, V ). Proposition 5.3 in [14] guarantees
that the set {λ ◦ψ−1 : ψ ∈ K1}, is relatively compact in the space of probability measures
on B(V ), where λ is the cylindrical distribution of L(1). Since

Pm,n = (λ ◦ (ψnm,1)−1)∗(t
n
1−t

n
0 ) ∗ · · · ∗ (λ ◦ (ψnm,Nn−1)−1)∗(t

n
Nn
−tnNn−1),

where ψnm,k :=
∑m
j=1 ej ⊗ Φ

(
tnk+t

n
k+1

2

)
ej and ψnm,k is in the compact set K1 for each

k ∈ {0, . . . , Nn}, Lemma 5.4 in [14] implies (ii).
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The stochastic Cauchy problem driven by a cylindrical Lévy process

Lemma 3.5. The map J : R
(
[0, T ];L2

η(S;U)
)
→ R

(
[0, T ];L2(U,L2

η(S;R))
)

with J(f)(t)u =

〈u, f(t)(·)〉 is a well defined isometric isomorphism.

Proof. For each t ∈ [0, T ] and f ∈ R
(
[0, T ];L2

η(S;U)
)
, the map J(f)(t) defines a linear

and continuous operator from U to L2
η(S;R) and satisfies

‖J(f)(t)‖2HS =

∞∑
j=1

∫
S

〈ej , f(t)(s)〉2 η(ds) = ‖f(t)‖2L2
η(S;U). (3.8)

As t 7→ f(t) is regulated, the isometry (3.8) shows by a Cauchy argument that t 7→ J(f)(t)

is regulated. Consequently, J is a well defined linear isometry and it is left to show that
J is surjective.

For this purpose, let Φ be in R
(
[0, T ];L2(U,L2

η(S;R))
)
. We define

f : [0, T ]→ L2
η(S;U), f(t)(·) :=

∞∑
j=1

(Φ(t)ej) (·)ej ,

where the series converges in L2
η(S;U). Since we have that ‖f(t)‖L2

η(S;U) =

‖Φ(t)‖L2(U,L2
η(S;R)), the function t 7→ f(t) is regulated and satisfies

(J(f)(t))(u) =

∞∑
j=1

Φ(t)ej(·)〈u, ej〉 =

∞∑
j=1

Φ(t)
(
〈u, ej〉ej

)
(·) = Φ(t) (u) (·),

which completes the proof.

Lemma 3.6. Let g : S× [0, T ]→ U be a function such that the map t→ g(s, t) is regulated
for η-almost all s ∈ S, and {(tnk )Nnk=0 : n ∈ N} be a sequence of partitions of [0, T ] with
max06k6Nn−1 |tnk+1 − tnk | → 0. Then the functions gm,n : S × [0, T ]→ U defined by

gm,n(s, t) :=



m∑
j=1

〈
ej , g

(
s,
tnk+t

n
k+1

2

)〉
ej if t ∈ (tnk , t

n
k+1), k = 0, . . . , Nn − 1,

m∑
j=1

〈ej , g(s, tnk )〉ej , if t = tnk , k = 0, . . . , Nn,

satisfy for η-almost all s ∈ S that

‖gm,n(s, t)− g(s, t)‖ → 0 for Lebesgue-almost all t ∈ [0, T ].

Proof. For each n ∈ N, define gn : S × [0, T ]→ U by

gn(s, t) :=

Nn−1∑
k=0

1(tnk ,tnk+1)
(t)g

(
s,
tnk+t

n
k+1

2

)
+

Nn−1∑
k=0

1{tnk}(t)g(s, tnk ).

Let s ∈ S be such that g(s, ·) is regulated. Then the set As ⊆ [0, T ] of discontinuities of
g(s, ·) has Lebesgue measure 0 and for each t ∈ Acs it follows that

lim
n→∞

‖gn(s, t)− g(s, t)‖ = 0. (3.9)

The set {g(s, t) : t ∈ [0, T ]} is compact in U by Problem 1 in [10, VII.6]. The compactness
criterion in Hilbert spaces implies

sup
t∈[0,T ]

∥∥∥∥∥∥
m∑
j=1

〈g(s, t), ej〉ej − g(s, t)

∥∥∥∥∥∥
2

= sup
t∈[0,T ]

∞∑
j=m+1

〈g(s, t), ej〉2 → 0 as m→∞. (3.10)
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The stochastic Cauchy problem driven by a cylindrical Lévy process

By using (3.9) and (3.10) we obtain for each t ∈ Acs that

‖gm,n(s, t)− g(s, t)‖
6 ‖gm,n(s, t)− gn(s, t)‖+ ‖gn(s, t)− g(s, t)‖

=

Nn−1∑
k=0

1(tnk ,tnk+1)
(t)

∥∥∥∥∥∥
m∑
j=1

〈
g
(
s,
tnk+t

n
k+1

2

)
, ej

〉
ej − g

(
s,
tnk+t

n
k+1

2

)∥∥∥∥∥∥
+

Nn∑
k=0

1{tnk}(t)

∥∥∥∥∥∥
m∑
j=1

〈g(s, tnk ), ej〉ej − g(s, tnk )

∥∥∥∥∥∥+ ‖gn(s, t)− g(s, t)‖

6 sup
r∈[0,T ]

∥∥∥∥∥∥
m∑
j=1

〈g(s, r), ej〉ej − g(s, r)

∥∥∥∥∥∥+ ‖gn(s, t)− g(s, t)‖

→ 0 as m,n→∞,

which completes the proof.

In the following we extend our definition of the space L0
P (Ω;U) to a finite measure

space (A,A, σ) and a complete metric space (E, d). In this case, L0
σ(A;E) denotes the

space of the equivalence classes of all separably-valued, measurable functions from A to
E. As before, the space is an F -space equipped with the metric

ρ(f, g) :=

∫
A

(
d(f(x), g(x)) ∧ 1

)
σ(dx). (3.11)

Instead of separably-valued, one can equivalently require strong measurability of the
functions.

Lemma 3.7. Let (A1,A1, σ1) and (A2,A2, σ2) be two finite measure spaces and V be a
separable Hilbert space. Then

L0
σ1

(
A1;L0

σ2
(A2;V )

) ∼= L0
σ1⊗σ2

(
A1 ×A2;V

)
.

In particular, the isomorphism is given such that for each A1-measurable function
F : A1 → L0

σ2
(A2;V ), there corresponds an A1⊗A2-measurable function f : A1×A2 → V

such that for σ1-almost all x ∈ A1, we have F (x) = f(x, ·) in L0
σ2

(A2;V ), and conversely.

Proof. The lemma can be proved similarly as Lemma III.11.16 in [11] by replacing
Lp-norms for p > 1 by the corresponding metrics as defined in (3.11).

Proof of Theorem 3.1. Lemma 3.5 guarantees that the mapping

Φ: [0, T ]→ L2(U,L2
η(S;R)), Φ(t)u := 〈u, g(·, t)〉,

is well defined and regulated. Let Φm,n denote the functions defined in Lemma 3.4
for V = L2

η(S;R). Lemma 3.4 together with Lemma 3.7 imply, upon passing to a
subsequence, that for (η ⊗ P )-almost all (s, ω) ∈ S × Ω we have((∫ T

0

Φ(t) dL(t)

)
(ω)

)
(s) = lim

m,n→∞

((∫ T

0

Φm,n(t) dL(t)

)
(ω)

)
(s). (3.12)
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The stochastic Cauchy problem driven by a cylindrical Lévy process

For each h ∈ L2
η(S;R), we obtain by (2.2) that〈∫ T

0

Φm,n(t) dL(t), h

〉
L2
η(S;R)

=

∫ T

0

Φ∗m,n(t)hdL(t)

=

Nn−1∑
k=0

(
L(tnk+1)− L(tnk )

) m∑
j=1

〈
ej ,Φ

∗
(
tnk+t

n
k+1

2

)
h
〉
ej


=

Nn−1∑
k=0

m∑
j=1

〈
Φ
(
tnk+t

n
k+1

2

)
ej , h

〉
L2
η(S;R)

(
L(tnk+1)− L(tnk )

)
(ej)

=

〈
Nn−1∑
k=0

m∑
j=1

Φ
(
tnk+t

n
k+1

2

)
ej
(
L(tnk+1)− L(tnk )

)
(ej), h

〉
L2
η(S;R)

.

Therefore, for η-almost all s ∈ S, we have(∫ T

0

Φm,n(t) dL(t)

)
(s)

=

Nn−1∑
k=0

m∑
j=1

Φ
(
tnk+t

n
k+1

2

)
ej
(
L(tnk+1)− L(tnk )

)
(ej)

 (s)

=

Nn−1∑
k=0

m∑
j=1

(
Φ
(
tnk+t

n
k+1

2

)
ej

)
(s)
(
L(tnk+1)− L(tnk )

)
(ej)

=

Nn−1∑
k=0

(
L(tnk+1)− L(tnk )

) m∑
j=1

(
Φ
(
tnk+t

n
k+1

2

)
ej

)
(s)ej


=

∫ T

0

gm,n(s, t) dL(t), (3.13)

where gm,n denotes the functions defined in Lemma 3.6. By Lemma 5.4 in [24], we have
for each α ∈ R that

E

[
exp

(
iα

∫ T

0

(
gm,n(s, t)− g(s, t)

)
dL(t)

)]

= exp

(∫ T

0

Ψ
(
α (gm,n(s, t)− g(s, t))

)
dt

)
, (3.14)

where Ψ denotes the Lévy symbol of L. Note that

sup
t∈[0,T ]

‖gm,n(s, t)− g(s, t)‖2 6 4 sup
t∈[0,T ]

‖g(s, t)‖2 <∞.

Since Ψ is continuous and maps bounded sets to bounded sets according to Lemma 3.2
in [24], it follows by Lebesgue’s theorem on dominated convergence and Lemma 3.6 that

lim
m,n→∞

∫ T

0

Ψ (α(gm,n(s, t)− g(s, t))) dt = 0.
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The stochastic Cauchy problem driven by a cylindrical Lévy process

Consequently, we deduce from (3.14) that for η-almost all s ∈ S,

lim
m,n→∞

∫ T

0

gm,n(s, t) dL(t) =

∫ T

0

g(s, t) dL(t) in probability. (3.15)

Comparing limits in (3.12) and (3.15) by means of (3.13), we obtain for η-almost all s ∈ S,
that we have for P -almost all ω ∈ Ω:(∫ T

0

g(s, t) dL(t)

)
(ω) =

((∫ T

0

Φ(t) dL(t)

)
(ω)

)
(s). (3.16)

By (3.15) and Lemma 3.7, the left hand side in (3.16) is S ⊗ F measurable, as well as
the right hand side due to (3.12). A further application of Fubini’s theorem implies for
P -almost all ω ∈ Ω that(∫ T

0

g(s, t) dL(t)

)
(ω) =

((∫ T

0

Φ(t) dL(t)

)
(ω)

)
(s) for η-a.a. s ∈ S.

By integrating both sides and denoting by 1 the function in L2
η(S;R) which constantly

equals one, we obtain by (2.2) that∫
S

(∫ T

0

g(s, t) dL(t)

)
(ω) η(ds) =

∫
S

((∫ T

0

Φ(t) dL(t)

)
(ω)

)
(s) η(ds)

=

〈(∫ T

0

Φ(t) dL(t)

)
(ω), 1

〉
L2
η(S;R)

=

(∫ T

0

Φ∗(t)1 dL(t)

)
(ω)

=

(∫ T

0

∫
S

g(s, t)η(ds) dL(t)

)
(ω),

which completes the proof.

4 Cauchy problem

We consider the following stochastic Cauchy problem driven by a cylindrical Lévy
process L in a separable Hilbert space U :

dY (t) = AY (t) dt+B dL(t) for all t ∈ [0, T ],

Y (0) = y0,
(4.1)

where A is a generator of a strongly continuous semigroup (T (t))t>0 on a separable
Hilbert space V , B : U → V is a linear and continuous operator and the initial condition
y0 is in V .

In the case of L being a cylindrical Brownian motion, the concept of weak solution is
defined in [9] and the existence and uniqueness of weak solution is established. Their
definition requires weak solutions to have almost surely Bochner integrable paths. In
case of Banach spaces, a similar definition is used in [25]. However, as it is known that
the solution of (4.1) may exhibit highly irregular paths, the requirement of Bochner
integrable paths is too restrictive in our situation. A weaker condition requires only that
the paths t 7→ 〈Y (t), A∗v〉 are integrable for v ∈ D(A∗); see [6], [19] and [27]. We will
impose a slightly stronger condition but which is still weaker than Bochner integrability
of the paths.
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The stochastic Cauchy problem driven by a cylindrical Lévy process

Definition 4.1. A V-valued stochastic process (Y (t) : t > 0) is called weakly Bochner
regular if t 7→ 〈Y (t), g(t)〉 is integrable on [0, T ] for each g ∈ C([0, T ];V ) and for every
sequence (gn)n∈N ⊆ C([0, T ];V ) with ‖gn‖∞ → 0 as n→∞, we have∫ T

0

〈Y (s), gn(s)〉ds→ 0 in probability as n→∞.

If the stochastic process Y has Bochner integrable paths on [0, T ], then Y is also
weakly Bochner regular as shown by a simple estimate.

Definition 4.2. A V -valued, progressively measurable stochastic process (Y (t) : t ∈
[0, T ]) is called a weak solution of the stochastic Cauchy problem (4.1) if Y is weakly
Bochner regular and satisfies for every v ∈ D(A∗) and t ∈ [0, T ], P -almost surely, that

〈Y (t), v〉 = 〈y0, v〉+

∫ t

0

〈Y (s), A∗v〉ds+ L(t)(B∗v). (4.2)

Theorem 4.3. If the mapping s 7→ T (s)B is stochastically integrable on [0, T ] with
respect to L, then

Y (t) = T (t)y0 +

∫ t

0

T (t− s)B dL(s), t ∈ [0, T ],

is a weak solution of the stochastic Cauchy problem (4.1).

Example 4.4. In this and the next example we set V = U , B = Id and assume that there
exist λk > 0 with λk →∞ as k →∞ such that

T ∗(t)ek = e−λktek for all t ∈ [0, T ], k ∈ N. (4.3)

In the literature, e.g. [5], [16], [17] and [20], often cylindrical Lévy processes of the
following form are considered:

L(t)u :=

∞∑
k=1

〈ek, u〉σk`k(t) for all t ∈ [0, T ], u ∈ U, (4.4)

where (`k)k∈N is a sequence of independent, symmetric, real valued Lévy processes with
characteristics (0, 0, µk) and (σk)k∈N is a real valued sequence such that the series in
(4.4) converges in L0

P (Ω;R). By using (2.5) we obtain that T (·) is stochastically integrable
with respect to L if and only if

∞∑
k=1

∫ T

0

∫
R

(
e−2λks|σkβ|2 ∧ 1

)
µk(dβ) dt <∞; (4.5)

see Corollary 6.3 in [24]. For example, if (`k)k∈N is a family of independent, identically
distributed, standardised, symmetric α-stable processes with α ∈ (0, 2), one easily
computes that T (·) is stochastically integrable w.r.t. L if and only if

∞∑
k=1

|σk|α

λk
<∞. (4.6)

This result on the existence of a weak solution of the stochastic Cauchy problem (4.1)
coincides with the result in [21].

Example 4.5. We assume the same setting as in Example 4.4 but model L as the
canonical α-stable cylindrical Lévy process for α ∈ (0, 2), i.e. the characteristic function
of L(t) is of the form

ϕL(t) : U → C, ϕL(t)(u) = exp (−t‖u‖α) .
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Obviously, each finite dimensional projection
(
(L(t)u1, . . . , L(t)un) : t > 0

)
for u1, . . . , un ∈

U is an α-stable Lévy process in Rn. Using this fact, it is shown in Theorem 4.1 in [22]
that a semigroup (T (t))t>0 satisfying the spectral decomposition (4.3) is stochastically
integrable with respect to L if and only if∫ T

0

‖T (s)‖αHS ds <∞. (4.7)

In the work [7], the authors consider the stochastic Cauchy problem in Banach spaces
driven by a subordinated cylindrical Brownian motion, a slightly more general noise
than the canonical α-stable cylindrical Lévy process. As the approach in [7] relies on
embedding the underlying space U in a larger space, the derived conditions are less
explicit than (4.7) and only sufficient.

Before proving Theorem 4.3 we establish stochastic continuity of the convolution.

Proposition 4.6. If the mapping s 7→ T (s)B is stochastically integrable on [0, T ] with
respect to L, then

YA(t) :=

∫ t

0

T (t− s)B dL(s),

defines a stochastically continuous process (YA(t) : t ∈ [0, T ]) in V .

Proof. Let Pt denote the probability distribution of YA(t). By [13, Lemma 2.4], it is
enough to show that

(i)
(
〈YA(t), v〉 : t ∈ [0, T ]

)
is stochastically continuous for each v ∈ V ;

(ii) {Pt : t ∈ [0, T ]} is relatively compact inM(V ).

Proof of (i): for every t ∈ [0, T ], v ∈ V and ε > 0, we have by (2.2) that

|〈YA(t+ ε), v〉 − 〈YA(t), v〉|

=

∣∣∣∣∫ t+ε

0

B∗T ∗(t+ ε− s)v dL(s)−
∫ t

0

B∗T ∗(t− s)v dL(s)

∣∣∣∣
6

∣∣∣∣∫ t

0

B∗T ∗(t− s)(T ∗(ε)v − v) dL(s)

∣∣∣∣+

∣∣∣∣∫ t+ε

t

B∗T ∗(t+ ε− s)v dL(s)

∣∣∣∣
=: |I1(ε)|+ |I2(ε)| . (4.8)

The random variable I1(ε) has the characteristic function ϕ1,ε : R→ C given by

ϕ1,ε(β) = exp

(∫ t

0

Ψ
(
βB∗T ∗(s)(T ∗(ε)v − v)

)
ds

)
.

By using standard properties of the semigroup we obtain

sup
s∈[0,T ]

‖βB∗T ∗(s)(T ∗(ε)v − v)‖ → 0 as ε→ 0,

which implies ϕ1,ε(β)→ 1 for all β ∈ R due to Lemma 5.1 in [24]. Thus, I1(ε) converges
to 0 in probability as ε → 0. The characteristic function ϕ2,ε : R → C of the random
variable I2(ε) obeys

ϕ2,ε(β) = exp

(∫ ε

0

Ψ(βB∗T ∗(s)v) ds

)
→ 1 as ε→ 0.
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Consequently, we obtain that I2(ε) → 0 in probability. The arguments above show by
(4.8) that 〈YA(t + ε), v〉 → 〈YA(t), v〉 in probability as ε → 0. Analogously, we can show
that 〈YA(t− ε), v〉 → 〈YA(t), v〉 in probability, which yields Property (i).

Proof of (ii): it follows from Lemma 5.4 in [24] that the probability distribution Pt of
YA(t) is an infinitely divisible probability measure inM(V ) with characteristics (ct, St, θt)

given for all v ∈ V by

〈ct, v〉 =

∫ t

0

a(B∗T ∗(s)v) ds+

∫
V

〈h, v〉 (1BV (h)− 1BR(〈h, v〉)) θt(dh),

〈Stv, v〉 =

t∫
0

〈B∗T ∗(s)v,QB∗T ∗(s)v〉ds,

θt = (leb⊗ µ) ◦ χ−1t on Z(V ),

where χt : [0, t]× U → V is defined by χt(s, u) := T (s)Bu.

Let P̃t denote the infinitely divisible probability measure with characteristics (0, St, θt).
Theorem VI.5.1 in [18] guarantees that the set {P̃t : t ∈ [0, T ]} is relatively compact if
and only if the set {θt : t ∈ [0, T ]} restricted to the complement of any neighbourhood of
the origin is relatively compact inM(V ) and the operators Tt : V → V defined by

〈Ttv, v〉 := 〈Stv, v〉+

∫
‖h‖61

〈v, h〉2 θt(dh)

satisfy

sup
t∈[0,T ]

∞∑
k=1

〈Tthk, hk〉 <∞ and lim
N→∞

sup
t∈[0,T ]

∞∑
k=N

〈Tthk, hk〉 = 0. (4.9)

For a set A in the cylindrical algebra Z(V ) we have

θt(A) =

∫ t

0

∫
U

1A(T (s)Bu)µ(du) ds 6
∫ T

0

∫
U

1A(T (s)Bu)µ(du) ds = θT (A).

Since B(V ) is the sigma algebra generated by Z(V ) and Z(V ) is closed under intersec-
tion, we conclude θt 6 θT on B(V ) for all t ∈ [0, T ]. Let θct denote the restriction of θt to
the complement of a neighbourhood V1 of the origin. Since θcT is a Radon measure by [15,
Prop. 1.1.3], there exists for each ε > 0 a compact set K ⊆ V1 such that θcT (Kc) 6 ε. Con-
sequently, we obtain θct (K

c) 6 θcT (Kc) 6 ε for all t ∈ [0, T ], which shows by Prokhorov’s
theorem that {θt : t ∈ [0, T ]} restricted to the complement of any neighbourhood of the
origin is relatively compact inM(V ).

The stochastic integrability of s 7→ T (s)B implies by (2.4) and Lebesgue’s theorem
that

lim
N→∞

sup
t∈[0,T ]

∞∑
k=N

〈Sthk, hk〉ds = lim
N→∞

∫ T

0

∞∑
k=N

〈T (s)BQB∗T ∗(s)hk, hk〉ds

= 0. (4.10)
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The stochastic Cauchy problem driven by a cylindrical Lévy process

Condition (2.5) of stochastic integrability implies

sup
t∈[0,T ]

∞∑
k=N

∫
‖h‖61

〈hk, h〉2θt(dh)

6 sup
t∈[0,T ]

sup
m>N

∫
V

(
m∑
k=N

〈hk, h〉2 ∧ 1

)
θt(dh)

= sup
t∈[0,T ]

sup
m>N

∫ t

0

∫
U

(
m∑
k=N

〈hk, T (s)Bu〉2 ∧ 1

)
µ(du) ds

= sup
m>N

∫ T

0

∫
U

(
m∑
k=N

〈hk, T (s)Bu〉2 ∧ 1

)
µ(du) ds

→ 0 as N →∞. (4.11)

The limits (4.10) and (4.11) show that the second condition in (4.9) is satisfied. As the
first condition in (4.9) follows analogously, we conclude that {P̃t : t ∈ [0, T ]} is relatively
compact.

Let {P̃tn}n∈N be a weakly convergent subsequence. Without any restriction we can
assume that there exists t ∈ [0, T ] such that tn → t. For the characteristic functions ϕPtn
of Ptn we obtain

|ϕPtn (v)− ϕPt(v)|

=

∣∣∣∣exp

(∫ tn

0

Ψ(B∗T ∗(tn − s)v) ds

)
− exp

(∫ t

0

Ψ(B∗T ∗(t− s)v) ds

)∣∣∣∣
=

∣∣∣∣exp

(∫ tn

t

Ψ(B∗T ∗(s)v) ds

)
− 1

∣∣∣∣ ∣∣∣∣exp

(∫ t

0

Ψ(B∗T ∗(s)v) ds

)∣∣∣∣ . (4.12)

Since Ψ maps bounded sets to bounded sets, we obtain for each δ > 0 that

sup
‖v‖<δ

∣∣∣∣∫ tn

t

Ψ(B∗T ∗(s)v) ds

∣∣∣∣→ 0 as n→∞,

which implies by (4.12) that

sup
‖v‖<δ

|ϕPtn (v)− ϕPt(v)| → 0 as n→∞.

As P̃tn = Ptn ∗ δ−ctn , Theorem 2.3.8 in [15] implies that {Ptn} converges weakly, which
completes the proof of Property (ii).

Proof of Theorem 4.3. We can assume y0 = 0 due to linearity. Lemma 6.2 in [24] guaran-
tees that the map r 7→ T (s− r)B is stochastically integrable on [0, s] for each s ∈ (0, T ].
Thus, we can define

Y (s) :=

∫ s

0

T (s− r)B dL(r) for all s ∈ [0, T ].

We first show that Y is weakly Bochner regular. Let g be in C([0, T ];V ) and define

f : [0, T ]× [0, T ]→ U, f(s, r) = 1[0,s](r)B
∗T ∗(s− r)g(s). (4.13)

By using (2.2) we conclude for all s ∈ [0, T ] that

〈Y (s), g(s)〉 =

∫ s

0

B∗T ∗(s− r)g(s) dL(r) =

∫ T

0

f(s, r) dL(r). (4.14)
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The stochastic Cauchy problem driven by a cylindrical Lévy process

For fixed s ∈ [0, T ] the map r 7→ f(s, r) is regulated. Moreover, by defining m :=

sups∈[0,T ] ‖B∗T ∗(s)‖2op, we obtain for ε > 0 and r ∈ [0, T − ε] that

‖f(·, r + ε)− f(·, r)‖2L2([0,T ];U)

=

∫ T

0

‖1[r+ε,T ](s)B
∗T ∗(s− r − ε)g(s)− 1[r,T ](s)B

∗T ∗(s− r)g(s)‖2 ds

=

∫ T

r+ε

‖B∗T ∗(s− r − ε)(Id− T ∗(ε))g(s)‖2 ds

+

∫ r+ε

r

‖B∗T ∗(s− r)g(s)‖2 ds

6 m

∫ T

0

‖(Id− T ∗(ε))g(s)‖2 ds+ εm‖g‖2∞

→ 0 as ε→ 0,

which shows that the mapping r 7→ f(·, r) is right continuous. In a similar way, we
establish that r 7→ f(·, r) is left continuous. Thus, we can apply Theorem 3.1 to conclude
by using (4.14) that the mapping s 7→ 〈Y (s), g(s)〉 is square-integrable on [0, T ].

Let (gn)n∈N be a sequence in C([0, T ];V ) with gn → 0. By Lemma 5.4 in [24] and The-

orem 3.1, the Lévy symbol of the infinitely divisible random variable
∫ T
0
〈Y (s), gn(s)〉ds is

given by

Φn : R→ C, Φn(β) =

∫ T

0

Ψ

(∫ T

r

βB∗T ∗(s− r)gn(s) ds

)
dr,

where Ψ: U → C is the Lévy symbol of L. As Ψ is continuous and maps bounded sets to
bounded sets according to Lemma 3.2 and Lemma 5.1 of [24], a repeated application of
Lebesgue’s theorem implies Φn(β)→ 0 for every β ∈ R, which proves that Y is weakly
Bochner regular.

Taking T = t and g(s) = A∗v for every s ∈ [0, t] in the definition of f in (4.13), we can
apply Theorem 3.1 to obtain for each v ∈ D(A∗) that∫ t

0

〈Y (s), A∗v〉ds =

∫ t

0

(∫ s

0

B∗T ∗(s− r)A∗v dL(r)

)
ds

=

∫ t

0

(∫ t

r

B∗T ∗(s− r)A∗v ds

)
dL(r)

=

∫ t

0

(B∗T ∗(t− r)v −B∗T ∗(0)v) dL(r)

= 〈Y (t), v〉 − L(t)(B∗v),

which shows (4.2). Proposition 4.6 guarantees that the stochastic process
( ∫ t

0
T (t −

r)B dL(r) : t ∈ [0, T ]
)

is stochastically continuous and since it is also adapted, it has a
progressively measurable modification by Proposition 3.6 in [9] which completes the
proof.

To prove uniqueness of the solution we follow the same approach as in [9], for which
we need the following integration by parts formula.

Lemma 4.7. If g : [0, T ] → U is a function of the form g(t) = τ(t)u for u ∈ U and
τ ∈ C1 ([0, T ];R), then∫ T

0

g(s) dL(s) = −
∫ T

0

L(s)(g′(s)) ds+ L(T )(g(T )).
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The stochastic Cauchy problem driven by a cylindrical Lévy process

Proof. For a sequence {(tnk )Nnk=0 : n ∈ N} of partitions of the interval [0, T ] with
max06k6Nn−1 |tnk+1 − tnk | → 0 as n→∞ define the simple functions

gn : [0, T ]→ U, gn(t) :=

Nn−1∑
k=0

g(tnk )1[tnk ,tnk+1)
(t) + 1{T}(t)g(T ).

As gn converges to g uniformly on [0, T ], Lemma 5.1 of [24] implies∫ T

0

gn(s) dL(s)→
∫ T

0

g(s) dL(s) in probability. (4.15)

On the other hand, P -almost surely we obtain∫ T

0

gn(s) dL(s) =

Nn−1∑
k=0

(
L(tnk+1)− L(tnk )

)
(τ(tnk )u)

=

Nn−1∑
k=0

τ(tnk )
(
L(tnk+1)− L(tnk )

)
(u)

= −
Nn−1∑
k=0

(
τ(tnk+1)− τ(tnk )

)
L(tnk+1)(u) + τ(T )L(T )(u). (4.16)

Applying the mean value theorem, we obtain for some ξnk ∈ (tnk , t
n
k+1) that

Nn−1∑
k=0

(
τ(tnk+1)− τ(tnk )

)
L(tnk+1)(u)

=

Nn−1∑
k=0

τ ′(ξnk )(tnk+1 − tnk )L(tnk+1)(u) (4.17)

=

Nn−1∑
k=0

τ ′(ξnk )(tnk+1 − tnk )L(ξnk )(u)−
Nn−1∑
k=0

τ ′(ξnk )(tnk+1 − tnk )
(
L(ξnk )(u)− L(tnk+1)(u)

)
.

As the map s 7→ τ ′(s)L(s)u has only countable number of discontinuities, it is Riemann
integrable and we obtain

lim
n→∞

Nn−1∑
k=0

τ ′(ξnk )(tnk+1 − tnk )L(ξnk )(u) =

∫ T

0

L(s)(uτ ′(s)) ds. (4.18)

To show that the second term in (4.17) approaches 0 we define

Mn
k := sup

s∈[tnk ,t
n
k+1]

L(s)u, mn
k := inf

s∈[tnk ,t
n
k+1]

L(s)u.

Riemann integrability of the map s 7→ L(s)u implies∣∣∣∣∣
Nn−1∑
k=0

τ ′(ξnk )(tnk+1 − tnk )
(
L(ξnk )(u)− L(tnk+1)(u)

)∣∣∣∣∣
6
Nn−1∑
k=0

|τ ′(ξnk )|
∣∣tnk+1 − tnk

∣∣ ∣∣L(ξnk )(u)− L(tnk+1)(u)
∣∣

6 ‖τ ′‖∞
Nn−1∑
k=0

∣∣tnk+1 − tnk
∣∣ |Mn

k −mn
k |

→ 0 as n→∞. (4.19)
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Taking the limit in (4.16) by applying (4.17), (4.18) and (4.19) and comparing it to the
limit in (4.15) completes the proof.

Theorem 4.8. If there exists a weak solution Y of the stochastic Cauchy problem (4.1),
then the mapping s 7→ T (s)B is stochastically integrable on [0, T ] with respect to L and
Y is given by

Y (t) = T (t)y0 +

∫ t

0

T (t− s)B dL(s).

Proof. We can assume that y0 = 0 due to linearity. For every v ∈ D(A∗) and t ∈ [0, T ] we
have P -a.s. that

〈Y (t), v〉 =

∫ t

0

〈Y (s), A∗v〉ds+ L(t)(B∗v). (4.20)

Let f be in C1([0, T ];R) and v in D(A∗). By using (4.20) and applying the integration
by parts formula in Lemma 4.7 to g(·) = f(·)B∗v and the classical integration by parts
formula for Lebesgue integrals we obtain∫ t

0

f ′(s)〈Y (s), v〉ds

=

∫ t

0

f ′(s)

(∫ s

0

〈Y (r), A∗v〉dr
)

ds+

∫ t

0

f ′(s)L(s)(B∗v) ds

= f(t)

∫ t

0

〈Y (s), A∗v〉ds−
∫ t

0

f(s)〈Y (s), A∗v〉ds

+ f(t)L(t)(B∗v)−
∫ t

0

f(s)B∗v dL(s).

Rearranging the terms and using (4.20), we obtain by defining F (·) = f(·)v that

〈Y (t), F (t)〉 =

∫ t

0

〈Y (s), F ′(s) +A∗F (s)〉ds+

∫ t

0

B∗F (s) dL(s). (4.21)

For v ∈ D(A∗2), the function G := T ∗(t− ·)v is in C1([0, t];D(A∗)). Due to Lemma 8.4 in
[25], we can find a sequence Fn ∈ span{f(·)w : f ∈ C1([0, t];R), w ∈ D(A∗)} such that
Fn converges to G in C1([0, t];D(A∗)). Then F ′n + A∗Fn → 0 in C([0, t];V ). The weakly
Bochner regularity implies for a subsequence that∫ t

0

〈Y (s), F ′nk(s) +A∗Fnk(s)〉ds→ 0 P -a.s.

Moreover, since B∗Fn converges to B∗G in C([0, t];U), Lemma 5.2 in [24] implies∫ t

0

B∗Fn(s) dL(s)→
∫ t

0

B∗G(s) dL(s) in probability.

Consequently, (4.21) holds for F replaced by G, which gives

〈Y (t), v〉 =

∫ t

0

B∗T ∗(t− s)v dL(s) for all v ∈ D(A∗2).

Since D(A∗2) is dense in V , for any v ∈ V , we can find a sequence {vn} in D(A∗2) with
vn → v as n→∞. Since B∗T ∗(t− ·)vn converges to B∗T ∗(t− ·)v in C([0, t];U) it follows
from [24, Lemma 5.2] that

lim
n→∞

∫ t

0

B∗T ∗(t− s)vn dL(s) =

∫ t

0

B∗T ∗(t− s)v dL(s) in probability,
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and hence P -a.s.

〈Y (t), v〉 =

∫ t

0

B∗T ∗(t− s)v dL(s) for all v ∈ V.

This establishes the stochastic integrability of s 7→ T (s)B on [0, T ].

5 Properties of the solution

We begin this section with discussing some path properties of the solution. Various
specific examples of the stochastic Cauchy problem (4.1) were observed in the literature
in which the solution Y exists but does not have a modification Ỹ with scalarly càdlàg
paths; see e.g. [5], [16] and [20]. Even the weaker property that the real valued process
(〈Y (t), v〉 : t ∈ [0, T ]) has a modification with càdlàg paths for each v ∈ V can be
verified only in a few specific examples. However, our stochastic Fubini Theorem 3.1
immediately implies that this real valued stochastic process (〈Y (t), v〉 : t ∈ [0, T ]) has
square-integrable trajectories:

Theorem 5.1. If (Y (t) : t ∈ [0, T ]) is the weak solution of the stochastic Cauchy problem
(4.1), then for every v ∈ V , P -a.s.∫ T

0

〈Y (t), v〉2 dt <∞.

Proof. By choosing g(s) = v for all s ∈ [0, T ] in (4.13), the following arguments in the
proof of Theorem 4.3 show that the function

f : [0, T ]× [0, T ]→ U, f(s, r) = 1[0,s](r)B
∗T ∗(s− r)v

satisfies the assumption of Theorem 3.1. Consequently, we conclude that the stochastic
process (〈Y (t), v〉 : t ∈ [0, T ]) defines a random variable in L2([0, T ];R) for each v ∈ V .

Theorem 5.2. The weak solution (Y (t) : t ∈ [0, T ]) of the stochastic Cauchy problem
(4.1) is stochastically continuous.

Proof. Follows immediately from Proposition 4.6.

As mentioned in the introduction, it has been observed for specific examples of
a cylindrical Lévy process, that the solution of (4.1) has highly irregular paths in an
analytical sense. In our general setting, we state a condition in the result below which
implies such highly irregular paths of the solution. This condition does not only allow a
geometric interpretation of this phenomena but is also easy to verify in many examples
including the ones considered in the literature.

Theorem 5.3. Assume that an orthonormal basis (hk)k∈N of V is in the domain of A∗

and let L be a cylindrical Lévy process with cylindrical characteristics (a,Q, µ). If for all
c > 0

lim
n→∞

µ

({
u ∈ U :

n∑
k=1

〈u,B∗hk〉2 > c

})
=∞, (5.1)

then there does not exist any modification Ỹ of the weak solution Y of (4.1) such that
for each v ∈ V the stochastic process (〈Ỹ (t), v〉 : t ∈ [0, T ]) has càdlàg paths.

Remark 5.4. Note, that if µ is a genuine Lévy measure then Condition (5.1) cannot be
satisfied for any constant c > 0. This is due to the fact that in this case, µ is a finite
Radon measure on each complement of the origin; see [15].
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Example 5.5. (continues Example 4.4). Assume that the cylindrical Lévy process L
is given by (4.4) and B = Id in equation (4.1). The independence of the real valued
Lévy processes (`k)k∈N implies that the cylindrical Lévy measure µ has support only in
∪∞k=1span{ek}, and thus Condition (5.1) reduces to

∞∑
k=1

µ
({
u ∈ U : 〈u, hk〉2 > c

})
=∞,

for all c > 0. For this special case, the conclusion of Theorem 5.3 has already been
derived in [20].

For example, if (`k)k∈N is a family of independent, identically distributed symmetric
α-stable Lévy processes, then Condition (5.1) is satisfied for B = Id; see [16].

Example 5.6 (Continues Example 4.5). Let L be the canonical α-stable process, intro-
duced in Example 4.5. By using properties of α-stable distributions in Rn one calculates
for each n ∈ N that

µ

({
u ∈ U :

n∑
k=1

〈u, hk〉2 > c2

})
=

1

cαcα

Γ
(
1
2

)
Γ
(
n+α
2

)
Γ
(
n
2

)
Γ
(
1+α
2

) ,
where Γ denotes the Gamma function and cα is a constant only depending on α. As the
right hand side converges to ∞ as n → ∞, Condition (5.1) is satisfied for B = Id; see
[22, Theorem 5.1].

Proof of Theorem 5.3 (based on ideas from [16]). For each n ∈ N and t ∈ [0, T ] define
Ln(t) :=

(
L(t)B∗h1, . . . , L(t)B∗hn

)
and Yn(t) :=

(
〈Y (t), h1〉, . . . , 〈Y (t), hn〉

)
. It follows

from Definition 4.2 of a weak solution that for every t ∈ [0, T ] we have P -a.s.

Yn(t) = Yn(0) +

∫ t

0

(
〈Y (s), A∗h1〉, . . . , 〈Y (s), A∗hn〉

)
ds+ Ln(t).

Consequently, the n-dimensional processes (Yn(t) : t ∈ [0, T ]) and (Ln(t) : t ∈ [0, T ])

jump at the same time by the same size, which implies

sup
t∈[0,T ]

|∆Ln(t)|2 = sup
t∈[0,T ]

|∆Yn(t)|2 6 4 sup
t∈[0,T ]

|Yn(t)|2 ,

where ∆g(t) := g(t)− g(t−) for càdlàg functions g : [0, T ]→ Rn. It follows that

P

(
sup
t∈[0,T ]

∞∑
k=1

〈Y (t), hk〉2 <∞

)
= lim
c→∞

P

(
sup
n∈N

sup
t∈[0,T ]

n∑
k=1

〈Y (t), hk〉2 6
1

4
c2

)

= lim
c→∞

lim
n→∞

P

(
sup
t∈[0,T ]

n∑
k=1

〈Y (t), hk〉2 6
1

4
c2

)

= lim
c→∞

lim
n→∞

P

(
sup
t∈[0,T ]

|Yn(t)|2 6
1

4
c2

)

6 lim
c→∞

lim
n→∞

P

(
sup
t∈[0,T ]

|∆Ln(t)|2 6 c2

)
= lim
c→∞

lim
n→∞

exp
(
−Tµn

(
{β ∈ Rn : |β| > c}

))
,

where µn denotes the Lévy measure of the Rn-valued Lévy process Ln. Since µn = µ◦π−1n
for πn : U → Rn and πnu = (〈u,B∗h1)〉, . . . , 〈u,B∗hn〉) due to [3, Th. 2.4], we obtain by
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(5.1) that

P

(
sup
t∈[0,T ]

∞∑
k=1

〈Y (t), hk〉2 <∞

)
= 0,

which completes the proof by an application of Theorem 2.3 in [20].

We continue to consider mean square continuity of the solution. For this purpose,
we naturally require that the cylindrical Lévy process has weak second moments, i.e.
E[|L(1)u|2] <∞ for all u ∈ U . In this case, the cylindrical Lévy process with characteris-
tics (a,Q, µ) can be written as

L(t)u = t〈ã, u〉+W (t)u+M(t)u for all t > 0, u ∈ U,

where ã ∈ U , W is a cylindrical Brownian motion with covariance operator Q and M

is a cylindrical Lévy process independent of W and with characteristics (a′, 0, µ). Here
a′ : U → R is defined by a′(u) := −

∫
|β|>1

β (µ ◦ u−1)(dβ) and 〈ã, u〉 = a(u)− a′(u) for all

u ∈ U ; see Corollary 3.12 in [3]. It follows for any function f ∈ R([0, T ];U) that∫ t

0

f(s) dL(s) =

∫ t

0

〈ã, f(s)〉ds+

∫ t

0

f(s) dW (s) +

∫ t

0

f(s) dM(s). (5.2)

Example 5.7. Assume that L has weak second moments. If∫ T

0

‖T (s)B‖2HS ds <∞, (5.3)

then there exists a weak solution (Y (t) : t ∈ [0, T ]) of the Cauchy problem (4.1) and it
satisfies E[‖Y (t)‖2] <∞ for all t ∈ [0, T ].

Proof. For showing the existence of a solution, we have to establish that t 7→ T (t)B is
stochastically integrable. Conditions (2.3) and (2.4) can be verified similarly as in the
proof of Lemma 3.2. Since L has weak second moments, the closed graph theorem
guarantees that L(t) : U → L2

P (Ω;R) is continuous, which implies

C := sup
‖u∗‖61

∫
U

〈u, u∗〉2µ(du) 6 ‖L(1)‖2op <∞.

Consequently, Condition (2.5) is satisfied since∫ T

0

∫
U

(
n∑

k=m

〈u,B∗T ∗(s)hk〉2 ∧ 1

)
µ(du) ds

6
n∑

k=m

∫ T

0

∫
U

〈u,B∗T ∗(s)hk〉2µ(du) ds

=

n∑
k=m

∫ T

0

∫
U

‖B∗T ∗(s)hk‖2
〈
u,

B∗T ∗(s)hk
‖B∗T ∗(s)hk‖

〉2

µ(du) ds

6 sup
‖u∗‖61

∫
U

〈u, u∗〉2 µ(du)

n∑
k=m

∫ T

0

‖B∗T ∗(s)hk‖2 ds

→ 0 as m,n→∞, (5.4)

where we applied (5.3) in the last line. As the Lévy measure θt of the infinitely divisible
random variable Y (t) is given by (leb⊗ µ) ◦ χ−1t on Z(V ) where χt : [0, t]× U → V and
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χt(s, u) = T (s)Bu, we obtain by a similar calculation as in (5.4) that∫
V

‖v‖2 θt(dv) =

∞∑
k=1

∫ t

0

∫
U

〈u,B∗T ∗(s)hk〉2µ(du) ds 6 C

∫ t

0

‖B∗T ∗(s)‖2HS ds <∞.

Consequently, we have E[‖Y (t)‖2] <∞ for all t ∈ [0, T ].

Theorem 5.8. Assume that L has weak second moments. If the weak solution (Y (t) :

t ∈ [0, T ]) of the stochastic Cauchy problem (4.1) has finite second moments, i.e.
E[‖Y (t)‖2] < ∞ for all t ∈ [0, T ], then Y is continuous in mean-square, i.e. Y ∈
C([0, T ];L2

P (Ω;V )).

Proof. Let Φ: [0, T ] → L(U, V ) be a stochastically integrable, regulated function and
Φ(·)ã be Pettis integrable. Then we obtain for each t ∈ [0, T ] and Ψ ∈ L(V, V ) by (5.2)
and using the fact that W and M have mean zero and are independent:

E

[∥∥∥∥∫ t

0

ΨΦ(t− s) dL(s)

∥∥∥∥2
]

=

∞∑
k=1

E

[∣∣∣∣∫ t

0

Φ∗(t− s)Ψ∗hk dL(s)

∣∣∣∣2
]

=

∞∑
k=1

(
E

[∣∣∣∣∫ t

0

〈ã,Φ∗(s)Ψ∗hk〉ds
∣∣∣∣2
]

+

∫ t

0

〈QΦ∗(s)Ψ∗hk,Φ
∗(s)Ψ∗hk〉ds

+

∫ t

0

∫
U

〈u,Φ∗(s)Ψ∗hk〉2 µ(du) ds

)

=

∥∥∥∥∫ t

0

ΨΦ(s)ãds

∥∥∥∥2 +

∫ t

0

∥∥∥ΨΦ(s)Q1/2
∥∥∥2

HS
ds+

∫
V

‖Ψv‖2 ηt(dv), (5.5)

where ηt is the (genuine) Lévy measure of
∫ t
0

Φ(s) dL(s) and is given by ηt = (leb⊗µ)◦ξ−1t
where ξt : [0, t]× U → V is defined by ξt(s, u) = Φ(s)u.

We can assume y0 = 0. Theorem 4.8 implies

Y (t) =

∫ t

0

T (t− s)B dL(s) for all t ∈ [0, T ].

As Y (t) has finite second moments it follows
∫
V
‖v‖2 θt(dv) <∞, where θt is the (genuine)

Lévy measure of Y (t) and is given by θt = (leb ⊗ µ) ◦ χ−1t where χt : [0, t] × U → V is
defined by χt(s, u) = T (s)Bu. For any t ∈ [0, T ] and ε > 0 we obtain

E[‖Y (t+ ε)− Y (t)‖2]

= E

[∥∥∥∥ ∫ t

0

(T (t+ ε− s)B − T (t− s)B) dL(s) +

∫ t+ε

t

T (t+ ε− s)B dL(s)

∥∥∥∥2]
6 2E

[∥∥∥∥∫ t

0

(T (ε)− Id)T (t− s)B dL(s)

∥∥∥∥2
]

+ 2E

[∥∥∥∥∫ t+ε

t

T (t+ ε− s)B dL(s)

∥∥∥∥2
]
. (5.6)

By applying (5.5) we conclude

E

[∥∥∥∥∫ t

0

(T (ε)− Id)T (t− s)B dL(s)

∥∥∥∥2
]

6 t

∫ t

0

‖(T (ε)− Id)T (s)Bã‖2 ds+

∫ t

0

∥∥∥(T (ε)− Id)T (s)BQ1/2
∥∥∥2

HS
ds

+

∫
V

‖(T (ε)− Id)v‖2 θt(dv).
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Applying Lebesgue’s theorem to each of the terms above shows

E

[∥∥∥∥∫ t

0

(T (ε)− Id)T (t− s)B dL(s)

∥∥∥∥2
]
→ 0 as ε→ 0. (5.7)

By a similar computation as in (5.5) we obtain for the second term in (5.6) that

E

[∥∥∥∥∫ t+ε

t

T (t+ ε− s)B dL(s)

∥∥∥∥2
]

=

∥∥∥∥∫ ε

0

T (s)Bãds

∥∥∥∥2 +

∫ ε

0

∥∥∥T (s)BQ1/2
∥∥∥2

HS
ds

+

∞∑
k=1

∫ T

0

1[0,ε](s)
∫
U

〈u,B∗T ∗(s)hk〉2 µ(du) ds. (5.8)

The first two terms in (5.8) converge to 0 as ε→ 0. Since

∞∑
k=1

∫ T

0

1[0,ε](s)
∫
U

〈u,B∗T ∗(s)hk〉2µ(du) ds 6
∫
V

‖v‖2 θT (dv) <∞,

we can apply Lebesgue’s theorem to the third term in (5.8) and obtain

E

[∥∥∥∥∫ t+ε

t

T (t− s)B dL(s)

∥∥∥∥2
]
→ 0 as ε→ 0. (5.9)

Applying (5.7) and (5.9) to (5.6) shows that Y is mean-square continuous from the
right. Analogously, we can prove that Y is mean-square continuous from the left which
completes the proof.

We now prove the flow property and Markov property of the solution of the stochastic
Cauchy problem (4.1). For this purpose we assume that t 7→ T (t)B is stochastically
integrable and define for 0 6 s 6 t 6 T the mapping

Φs,t : V × Ω→ V, Φs,t(v) = T (t− s)v +

∫ t

s

T (t− r)B dL(r).

Theorem 5.9. Let (Y (t) : t ∈ [0, T ]) be the weak solution of (4.1). Then we have:

(a) the family {Φs,t : 0 6 s 6 t 6 T} is a stochastic flow, i.e. Φs,s = Id and

Φs,t ◦ Φr,s = Φr,t for all 0 6 r 6 s 6 t 6 T.

(b) the weak solution (Y (t) : t ∈ [0, T ]) is a Markov process with respect to the filtration
(Ft)t∈[0,T ] defined by Ft := σ({L(s)u : s ∈ [0, t], u ∈ U}).

Proof. (a): we first show that for all 0 6 r 6 s 6 t 6 T we have

T (t− s)
(∫ s

r

T (s− q)B dL(q)

)
=

∫ s

r

T (t− q)B dL(q). (5.10)

For any v ∈ V , we obtain by (2.2)〈
T (t− s)

(∫ s

r

T (s− q)B dL(q)

)
, v

〉
=

〈∫ s

r

T (s− q)B dL(q), T ∗(t− s)v
〉

=

∫ s

r

B∗T ∗(s− q)(T ∗(t− s)v) dL(q)

=

∫ s

r

B∗T ∗(t− q)v dL(q)

=

〈∫ s

r

T (t− q)B dL(q), v

〉
,
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which shows (5.10). This enables us to conclude as in [1, Prop. 2.1] that for each v ∈ V

Φs,t(Φr,s(v)) = Φr,t(v),

which completes the proof of (a).
(b): follows by standard arguments (see e.g. Theorem 6.4.2 in [2]).
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