
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 25 (2020), no. 8, 1–27.
ISSN: 1083-6489 https://doi.org/10.1214/20-EJP420

Finitary coding for the sub-critical Ising model with
finite expected coding volume

Yinon Spinka*

Abstract

It has been shown by van den Berg and Steif [5] that the sub-critical Ising model on Zd

is a finitary factor of a finite-valued i.i.d. process. We strengthen this by showing that
the factor map can be made to have finite expected coding volume (in fact, stretched-
exponential tails), answering a question of van den Berg and Steif. The result holds at
any temperature above the critical temperature. An analogous result holds for Markov
random fields satisfying a high-noise assumption and for proper colorings with a large
number of colors.

Keywords: Ising model; finitary coding; finite expected coding volume.
AMS MSC 2010: Primary 28D99; 60K35; 82B20, Secondary 82B26; 37A60.
Submitted to EJP on November 6, 2018, final version accepted on January 17, 2020.
Supersedes arXiv:1801.02529.

1 Introduction and main results

Let (S,S) and (T, T ) be two measurable spaces, and let X = (Xv)v∈Zd and Y =

(Yv)v∈Zd be (S,S)-valued and (T, T )-valued stationary random fields (i.e., Zd-processes)

for some d ≥ 1. A coding from Y to X is a measurable function ϕ : TZ
d → SZ

d

, which is
translation-equivariant, i.e., commutes with every translation of Zd, and which satisfies
that ϕ(Y ) and X are identical in distribution. Such a coding is also called a factor map
or homomorphism from Y to X, and when such a coding exists, we say that X is a factor
of Y .

The coding radius of ϕ at a point y ∈ TZd , denoted by R(y), is the minimal integer

r ≥ 0 such that ϕ(y′)0 = ϕ(y)0 for almost all y′ ∈ TZd which coincide with y on the ball
of radius r around the origin in the graph-distance, i.e., y′v = yv for all v ∈ Zd such that
‖v‖1 ≤ r. It may happen that no such r exists, in which case, R(y) =∞. Thus, associated
to a coding is a random variable R = R(Y ) which describes the coding radius. We refer
to Rd as the coding volume. A coding is called finitary if R is almost surely finite. When
there exists a finitary coding from Y to X, we say that X is a finitary factor of Y .

*University of British Columbia, Canada. E-mail: yinon@math.ubc.ca

http://www.imstat.org/ejp/
https://doi.org/10.1214/20-EJP420
http://arXiv.org/abs/1801.02529
mailto:yinon@math.ubc.ca


Finitary coding for the sub-critical Ising model with finite expected coding volume

We say that a non-negative random variable R has exponential tails if P(R ≥ r) ≤
Ce−cr for some C, c > 0 and all r ≥ 0, and that it has stretched-exponential tails if
P(R ≥ r) ≤ Ce−rc holds instead. When there exists a coding from Y to X whose coding
radius has (stretched-)exponential tails, we say that X is a finitary factor of Y with
(stretched-)exponential tails.

In this paper, we shall be concerned with finitary factors of i.i.d. (independent
and identically distributed) processes, distinguishing between the cases when the i.i.d.
process is finite-valued or infinite-valued. We use the abbreviation ffiid to denote a
finitary factor of an i.i.d. process (perhaps infinite-valued), and fv-ffiid to denote a
finitary factor of a finite-valued i.i.d. process.

Our main example is the (ferromagnetic) Ising model in d ≥ 2 dimensions – a classical
discrete spin system in statistical mechanics. A Gibbs measure for the Ising model on Zd

at inverse temperature β > 0 is a probability measure µ on {−1,+1}Zd which satisfies
that, if the random field X = (Xv)v∈Zd has distribution µ, then for any vertex v ∈ Zd,

P
(
Xv = ±1

∣∣ X|Zd\{v}) =
exp

[
± β

∑
u∈N(v)Xu

]
exp

[
β
∑
u∈N(v)Xu

]
+ exp

[
− β

∑
u∈N(v)Xu

] , (1.1)

almost surely, where N(v) denotes the neighborhood of v. We note that although one
usually defines Gibbs measures for the Ising model through their conditional distributions
on any finite set, the above single-site specifications are sufficient as they determine the
conditional finite-dimensional distributions.

It is well known (see, e.g., [8, Theorem 3.1] or [17, pages 189–190 and 204]) that
there exists a critical value βc(d) ∈ (0,∞) such that there is a unique Gibbs measure
for the Ising model on Zd at inverse temperature β < βc(d) and multiple such Gibbs
measures at inverse temperature β > βc(d). Van den Berg and Steif [5] showed that the
unique Gibbs measure in the former case is fv-ffiid. We improve upon this and answer a
question from [5] by showing the following.

Theorem 1.1. Let d ≥ 2 and let µ be the unique Gibbs measure for the Ising model on
Zd at inverse temperature β < βc(d). Then µ is fv-ffiid with stretched-exponential tails.

Remark 1.2. It has been shown in [5] that a phase transition (i.e., existence of multiple
Gibbs measures) presents an obstruction for the existence of a finitary coding from an
i.i.d. process. In particular, at inverse temperature β > βc(d), no translation-invariant
Gibbs measure for the Ising model is ffiid.

Remark 1.3. In the course of proving that µ is fv-ffiid, it is shown in [5] that if one does
not insist on a coding from a finite-valued i.i.d. process, then one may obtain a coding
with exponential tails (so that µ is ffiid with exponential tails); see Section 2 for more
details. Similarly, it also follows that the critical Ising measure (i.e., when β = βc(d)) is
ffiid (this relies on the fact that the phase transition is continuous [25, 3, 2]), though it is
shown in [5] (a result which was obtained jointly with Peres) that the coding volume Rd

cannot have finite expectation.

Remark 1.4. It is still unknown whether the critical Ising measure is fv-ffiid.

Remark 1.5. In dimension d = 1, the Ising model has a unique Gibbs measure µ at any
finite inverse temperature β, and this measure is the distribution of an ergodic stationary
Markov chain. It follows from a result in [12] that µ is fv-ffiid with exponential tails
(in fact, µ is a finitary factor with exponential tails of any i.i.d. process with entropy
strictly larger than that of µ, and it is finitarily isomorphic to any i.i.d. process with equal
entropy [16]).

Remark 1.6. The FK random-cluster model is a dependent percolation model with
infinite-range interactions, which is closely related to the Ising model. For background on

EJP 25 (2020), paper 8.
Page 2/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

this model, see [9]. Using the Edwards–Sokal coupling [23, 7], it is an easy consequence
of Theorem 1.1 that the sub-critical FK-Ising measure (i.e., the random-cluster measure
with parameters q = 2 and any p < pc(q)) is fv-ffiid with stretched-exponential tails.
Indeed, under this coupling, given the Ising configuration, the state of the edges in
the random-cluster configuration are independent. It is shown in [11] that this result
extends to the random-cluster model with any q ≥ 1 and p < pc(q).

Our second result concerns another well-known model of statistical mechanics –
proper colorings. Let q ≥ 3. A proper q-coloring of Zd is a configuration x ∈ {1, . . . , q}Zd

satisfying that xu 6= xv for any adjacent vertices u and v. A Gibbs measure for proper
q-colorings of Zd is a probability measure µ on {1, . . . , q}Zd which is supported on proper
q-colorings and satisfies that, if the random field X = (Xv)v∈Zd has distribution µ, then
for any finite set Λ ⊂ Zd, the conditional distribution of X given its restriction to Λc is
uniform on the set of proper q-colorings which agree with X on Λc. It is well known
(e.g., by Dobrushin uniqueness [22]) that there is a unique Gibbs measure for proper
q-colorings when q > 4d. We show that this measure is fv-ffiid with stretched-exponential
tails when the number of colors is large enough.

Theorem 1.7. Let d ≥ 2 and q ≥ 4d(d+1). Let µ be the unique Gibbs measure for proper
q-colorings of Zd. Then µ is fv-ffiid with stretched-exponential tails.

Remark 1.8. The uniform proper q-coloring model is equivalent to the zero-temperature
anti-ferromagnetic q-state Potts model. It is intuitively clear that increasing the tem-
perature only makes interactions weaker (the high-temperature model even satisfies
high-noise; see below), and indeed, we believe that Theorem 1.7 extends to the anti-
ferromagnetic q-state Potts model at any temperature (and q as in the theorem above),
though we do not pursue this here.

Our third result is not about a particular model, but rather about a class of translation-
invariant high-noise Markov random fields, which we proceed to define. Let S be finite,
let µ be a probability measure on SZ

d

and let X = (Xv)v∈Zd be distributed according to µ.
We say that µ is a Markov random field if its conditional finite-dimensional distributions
depend only on the immediate neighborhood of the finite set being inspected, i.e., if for
any finite V ⊂ Zd and any ξ ∈ SV ,

P
(
X|V = ξ

∣∣ X|Zd\V ) = P
(
X|V = ξ

∣∣ X|∂V ) almost surely,

where ∂V denotes the set of vertices at distance 1 from V . The Ising model and proper
colorings (or rather the Gibbs measures for those models) are two examples of Markov
random fields.

Suppose that µ is a translation-invariant Markov random field and, for s ∈ S, denote

γs := inf
ξ∈SN(0)

P(X|N(0)=ξ)>0

P
(
X0 = s

∣∣ X|N(0) = ξ
)
.

We say that µ satisfies high-noise if

γ :=
∑
s∈S

γs > 1− 1

2d
.

The quantity γ is called the multigamma admissibility. It is essentially the probability
that an update can be made to the spin at the origin without knowing anything about
the values of the spins at its neighbors (see [10] for a more detailed explanation). We
remark that Dobrushin’s uniqueness condition [6] (or, alternatively, the “disagreement
percolation” condition of van den Berg and Maes [4]) implies that if µ satisfies high-noise,
then it is the only random field with the same conditional finite-dimensional distributions
as µ.

EJP 25 (2020), paper 8.
Page 3/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

Theorem 1.9. Let µ be a translation-invariant Markov random field satisfying high-noise.
Then µ is fv-ffiid with stretched-exponential tails.

Theorem 1.9 improves on a result of Häggström and Steif [10] who showed that any
translation-invariant high-noise Markov random field is fv-ffiid. Theorem 1.9 applies to
numerous models of statistical physics, including the Potts model (both ferromagnetic
and anti-ferromagnetic) at high temperature, the hard-core model at low fugacity and
the Widom–Rowlinson model at low fugacity (see [10] for more details on this for the
Potts and Widom–Rowlinson models). On the other hand, Theorem 1.1 does not follow
from Theorem 1.9, as the Ising model does not satisfy high-noise when β is only slightly
smaller than βc(d). Similarly, Theorem 1.7 does not follow from Theorem 1.9 (even for
large values of q), as it is clear that γ = 0 for proper q-colorings, regardless of how large
q is.

The three theorems will be proved using a general result introduced in Section 2
about finitary codings for limiting distributions of probabilistic cellular automata.

Background. We give here only a brief background and refer the reader to [5] for a
more complete description of known results. A fundamental problem in ergodic theory
is to understand which processes are isomorphic to which other processes (meaning
that there is an almost everywhere invertible factor from one to the other). The very
simplest of processes are the i.i.d. processes, and therefore, of particular interest are
those processes which are isomorphic to an i.i.d. process; such processes are termed
Bernoulli. The celebrated isomorphism theorem of Ornstein [19] states that any two
i.i.d. processes of equal entropy are isomorphic (this result was later extended by Keane
and Smorodinsky [15] who showed that any two such finite-valued processes are in fact
finitarily isomorphic). Ornstein [19] further showed that any factor of an i.i.d. process is
Bernoulli. This shed a more probabilistic light on the notion of Bernoullicity.

The notion of a finitary factor of i.i.d. has the advantage that it allows to compute a
symbol in the target process by only revealing (almost surely) finitely many variables
of the i.i.d. process. This gives a more concrete construction of the target process,
which may also be useful for exact simulation algorithms. Besides this appealing feature,
finitary factors of i.i.d. have particular relevance in the context of probabilistic models
such as those considered here. Let us take the Ising model as an example. It has
been shown [20] (see also [1]) that the so-called “plus state” (this is the Gibbs measure
obtained by taking + boundary conditions) is a factor of an i.i.d. process (i.e., is Bernoulli)
for any value of the inverse temperature β. Thus, the phase transition is not reflected in
this notion. However, as shown in [5], it is indeed reflected in the notion of a finitary
factor: the “plus state” is a finitary factor of an i.i.d. process when β < βc(d), but not
when β > βc(d).

In constructing a finitary coding from an i.i.d. process to a given process, it is
desirable for efficiency purposes (e.g., for simulation algorithms) that the i.i.d. process
be “small” and that the coding radius also be typically small. One such qualitative
meaning of this is that the i.i.d. process is finite-valued and that the coding volume has
finite expectation. A more quantitative meaning of this would be to require bounds on
the entropy of the i.i.d. process and on the tail of the coding radius. Our results are
a mixture of the two as they yield a finitary coding from a finite-valued i.i.d. process
with stretched-exponential tails for the coding radius. In particular, our result about the
Ising model (Theorem 1.1) answers a question of van den Berg and Steif [5, Question 2],
who asked whether the sub-critical Ising measure is fv-ffiid with finite expected coding
volume.

Notation. We consider Zd as a graph in which two vertices u and v are adjacent
if |u − v| = 1, where |v| = ‖v‖1 := |v1| + · · · + |vd| denotes the `1-norm. We denote

EJP 25 (2020), paper 8.
Page 4/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

by N(v) := {u ∈ Zd : |u − v| = 1} the neighborhood of v. For a set U ⊂ Zd, we
write dist(v, U) := minu∈U |u − v|. We use 0 to denote the origin (0, . . . , 0) ∈ Zd and
e1 := (1, 0, . . . , 0) ∈ Zd. We use N to denote the non-negative integers.

Organization. In Section 2, we formulate the result about finitary codings for limit-
ing distributions of probabilistic cellular automata (Theorem 2.1) and use it to prove
Theorem 1.1, Theorem 1.7 and Theorem 1.9. In Section 3, we introduce an abstract
tool (Proposition 3.1 and the more general Proposition 3.2) and show how to deduce
Theorem 2.1 from it. In Section 4, we introduce and explain an algorithm, which is then
used in Section 5 to prove Proposition 3.2. We end with open questions in Section 6.

2 Finitary codings for limiting distributions of PCAs

The goal of this section is to define the notion of a probabilistic cellular automaton
(PCA) and other relevant notions, formulate a general result about finitary codings for
limiting distributions of PCAs (Theorem 2.1 below), and then use this theorem to deduce
the results stated in Section 1.

Before doing so, we give an informal description of the relevant ideas and concepts
in the case of the Ising model: Consider the continuous-time Glauber dynamics for the
sub-critical Ising model – each vertex has an exponential clock (with rate 1), and when
its clock rings, it updates its spin value according to the conditional distribution given
by the values of its neighbors as in (1.1). This is an ergodic process, whose unique
stationary measure is µ (of Theorem 1.1), and thus, the distribution at time t converges
to µ as t→∞, regardless of the initial configuration. As we are interested in finding a
coding from a finite-valued process, we instead opt to use a discrete analogue of these
dynamics, given by a PCA: at each discrete time step n, every vertex is independently set
to active or inactive with some fixed probability, and every active vertex which has no
active neighbors then updates its spin value as before. This too is an ergodic process and
the distribution at time n converges to µ as n→∞. Convergence alone is not sufficient
to obtain a coding of µ, as the latter requires an exact sample from µ. To get such a
sample, one can employ the coupling-from-the-past technique of Propp and Wilson [21].
This then yields a finitary coding for µ from an infinite-valued i.i.d. process (showing
that µ is ffiid). Using a result of Martinelli and Olivieri [18] that the convergence of
the above process to stationarity occurs at an exponential rate, one may further show
that this coding has a coding radius with exponential tails (showing that µ is ffiid with
exponential tails). To get from this a (finitary) coding from a finite-valued i.i.d. process,
still requires quite some work. All the above, including this last step, has been carried
out by van den Berg and Steif [5]. Thus, they showed that µ is fv-ffiid. However, they
gave no information on the coding radius beyond its almost sure finiteness. Our main
contribution is to show how one can carry out this last step in a controlled manner which
preserves the good tails of the coding radius (yielding stretched-exponential tails). We
elaborate on this in the next sections.

The above includes general arguments about certain dynamics, along with some
model-specific information. Indeed, van den Berg and Steif separated the two parts of
the argument, and proved the more general result [5, Theorem 3.4] that the limiting dis-
tribution of a monotone, exponentially ergodic PCA is fv-ffiid. In order to accommodate
for the different situations considered in Section 1, which include non-monotone models
(proper colorings and high-noise Markov random fields), we work here in the more gen-
eral setting of exponentially uniformly ergodic PCAs (instead of monotone, exponentially
ergodic PCAs), defined below. The proof of [5, Theorem 3.4] may be extended to this
setting to show that the limiting distribution of an exponentially uniformly ergodic PCA
is fv-ffiid. As mentioned before, the main challenge, and our primary contribution, is to

EJP 25 (2020), paper 8.
Page 5/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

show that this can be done while simultaneously controlling the coding radius.

Theorem 2.1. The limiting distribution of an exponentially uniformly ergodic PCA is
fv-ffiid with stretched-exponential tails.

The results of Section 1 will follow from Theorem 2.1 by showing that the corre-
sponding measures are limiting distributions of exponentially uniformly ergodic PCAs.
Theorem 2.1 will be proved in Section 3. Let us also mention the following result which
will easily follow from our definition of an exponentially uniformly ergodic PCA (unlike
Theorem 2.1 which requires work).

Theorem 2.2. The limiting distribution of an exponentially uniformly ergodic PCA is
ffiid with exponential tails.

We emphasize the differences between the two theorems: the second gives a finitary
coding with exponential tails but does not provide any control on the i.i.d. process, while
the first gives a coding from a finite-valued i.i.d. process but does slightly worse in terms
of the tails of the coding radius.

Let us now proceed to give precise definitions. We begin by defining what a PCA is.
For our purposes, a PCA is a discrete-time evolution on SZ

d

for some non-empty finite set
S, which can be described as follows. Let (Wv,i)v∈Zd,i∈Z be a collection of i.i.d. random

variables taking values in a finite set A. Let F, F ′ ⊂ Zd be finite and let f : SF ×AF ′ → S.
The time evolution started from ξ ∈ SZd is the process (ωv,i)v∈Zd,i≥0 defined by

ωv,0 := ξv, v ∈ Zd,
ωv,i+1 := f

(
(ωv+u,i)u∈F , (Wv+u,i)u∈F ′

)
, v ∈ Zd, i ≥ 0.

(2.1)

We stress that different choices of Wv,i and f could give rise to the same time evolu-
tions (i.e., the same distribution), however, for our purposes, a PCA is the data of the
distribution of the Wv,i, the sets F and F ′ and the function f . In particular, we note
that a PCA comes equipped with a simultaneous coupling of the time evolutions started
from all starting states ξ. We remark that the usual definition of a PCA requires that
F ′ = {0}, in which case, conditioned on {ωv,i}v, the random variables {ωv,i+1}v are
mutually independent. For the above approach to the construction of finitary codings,
we will have F = F ′ = N(0) ∪ {0} (recall that N(0) is the neighborhood of the origin), in
which case, there are local conditional dependencies.

A PCA is said to be ergodic if there exists a probability measure µ on SZ
d

such that,
for any starting state ξ, the distribution of (ωv,i)v∈Zd converges weakly to µ as i→∞. An
ergodic PCA converging to µ can be used to obtain an approximate sample from µ|Λ, the
marginal of µ on a finite subset Λ of Zd, by running the time evolution of the PCA until
some large time t and observing the restricted process (ωv,t)v∈Λ at that time, noting also
that the latter is determined by a finite collection of random variables, namely,

(ωv,t)v∈Λ is determined by ξ and {Wv,t−i}dist(v,Λ)≤∆i,1≤i≤t, where ∆ := max
u∈F∪F ′

‖u‖1.
(2.2)

As is usual in these situations, determining how large t should be in order to obtain a
sample whose distribution is close to the limiting distribution, is not an easy task.

One way around this is to devise a method to exactly sample from the limiting
distribution. Coupling-from-the-past provides such a method, at the cost, however, of
requiring a type of uniform ergodicity. To define this notion, we first extend the definition
given in (2.1) of the time evolution of the PCA to allow starting at any integer time
as follows. The time evolution started from ξ ∈ SZ

d

at time i0 ∈ Z is the process

EJP 25 (2020), paper 8.
Page 6/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

(ωξ,i0v,i )v∈Zd,i≥i0 defined by

ωξ,i0v,i0
:= ξv, v ∈ Zd,

ωξ,i0v,i+1 := f
(
(ωξ,i0v+u,i)u∈F , (Wv+u,i)u∈F ′

)
, v ∈ Zd, i ≥ i0.

(2.3)

We say that an ergodic PCA is uniformly ergodic if

τv := min
{
i ≥ 0 : ωξ,−iv,0 does not depend on the starting state ξ

}
(2.4)

is almost surely finite for all v. We remind the reader that in our definitions, a PCA always
comes equipped with a function f , so that the notion of uniform ergodicity depends on
this f . While this might not be the standard notion of uniform ergodicity, it will be the
relevant one for us. We also remark that for monotone PCAs, ergodicity implies uniform
ergodicity (see [5, Lemma 3.5]). We say that an ergodic PCA is exponentially uniformly
ergodic if τv has exponential tails. For a uniformly ergodic PCA, we define the random
field ω∗ = (ω∗v)v∈Zd by

ω∗v := ωξ,−τvv,0 , v ∈ Zd, (2.5)

noting that this is almost surely well-defined and does not depend on ξ. We point out
that while earlier we needed Wv,i with i ≥ 0, for (2.4) and (2.5) we use Wv,i with i < 0.

The following proposition encompasses the essence of coupling-from-the-past (in its
infinite-volume version). An analogous statement for monotone ergodic PCAs was shown
in [5] and a similar statement for PCAs arising from high-noise Markov random fields
was shown in [10]. The proofs of these statements are easily adapted to the setting
described here, and we include a short proof for completeness.

Proposition 2.3. Suppose µ is the limiting distribution of a uniformly ergodic PCA
having time evolution ω. Then ω∗ has distribution µ.

Proof. Fix a finite Λ ⊂ Zd and denote Ωt := (ωξ,−tv,0 )v∈Λ. Note that, since ωξ,−τvv,0 = ω∗v for

all ξ, it follows from (2.3) that ωξ,−tv,0 = ω∗v for all t ≥ τv. In particular, Ωt = ω∗|Λ for all

t ≥ maxv∈Λ τv. Since (ωξ,−tv,0 )v∈Zd and (ωξ,0v,t )v∈Zd are identical in distribution for any t ≥ 0,
it follows that Ωt converges to µ|Λ in distribution as t→∞. On the other hand, as we
have seen that Ωt eventually equals ω∗|Λ, we conclude that ω∗|Λ has distribution µ|Λ.
Since Λ was arbitrary, the proposition follows.

The proposition implies that the limiting distribution of a uniformly ergodic PCA
is ffiid. Indeed, a moment of thought reveals that (2.3)–(2.5) describe such a finitary
coding from the process ((Wv,i)i<0)v∈Zd . Moreover, if the PCA is exponentially uniformly
ergodic, then the coding radius of this coding has exponential tails, so that the limiting
distribution is in fact ffiid with exponential tails. This establishes Theorem 2.2. The point
is, however, that this coding is not from a finite-valued process. Restricting the i.i.d.
process to be finite-valued, while keeping control of the coding radius, is the missing
step in order to establish Theorem 2.1 and is what most of the remainder of the paper is
devoted to. Before coming back to this in the next section, we explain how to deduce the
results of Section 1 from Theorem 2.1.

We now prove Theorem 1.1, Theorem 1.7 and Theorem 1.9. In light of Theorem 2.1,
this boils down to showing that in each case the corresponding measure is the limiting
distribution of an exponentially uniformly ergodic PCA.

2.1 The Ising model – proof of Theorem 1.1

To deduce from Theorem 2.1 that the sub-critical Ising measure is fv-ffiid with
stretched-exponential tails, we must know that it is the limiting distribution of an expo-
nentially uniformly ergodic PCA. This was shown by van den Berg and Steif (see the proof

EJP 25 (2020), paper 8.
Page 7/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

of Theorem 4.1 in [5]) who relied on a deep result of Martinelli and Olivieri [18] about
the continuous-time Glauber dynamics for the Ising model (see also [5, Proposition 4.2]).

Proposition 2.4 ([5]). Let d ≥ 2 and let µ be the unique Gibbs measure for the Ising
model on Zd at inverse temperature β < βc(d). Then µ is the limiting distribution of an
exponentially uniformly ergodic PCA.

Theorem 1.1 follows immediately from Theorem 2.1 and Proposition 2.4.
Although for our purposes, we only need to know that a PCA as in Proposition 2.4

exists and its details are not important for us, in order to provide the reader with
a full picture for the case of the Ising model, we nevertheless give a complete and
formal description of the PCA used in the proof of Proposition 2.4 (but written in a
slightly different way than in [5]). In fact, we have already given an informal description
of this PCA in the beginning of Section 2. To define it precisely, set S := {−1, 1},
A := {0, 1} × {−2d, . . . , 2d+ 1}, F = F ′ := N(0) ∪ {0} and define f : SF ×AF → S by

f(η, (φ, ψ)) :=

2 · 1{
ψ0≤

∑
u∈N(0) ηu

} − 1 if φ0 = 1 and φv = 0 for all v ∈ N(0)

η0 otherwise.

To complete the description of the PCA, we must also describe the distribution of the
i.i.d. random variables (Wv,i)v∈Zd,i∈Z. We let each Wv,i consist of a pair of independent
random variables, the first of which is a Bernoulli random variable with parameter,
say, 1/2, and the second of which has the distribution of W, where W takes values in
{−2d, . . . , 2d+ 1} and satisfies

P(W ≤ k) = pk :=
eβk

eβk + e−βk
for − 2d ≤ k ≤ 2d.

Observe that such a random variable exists since (pk)−2d≤k≤2d is increasing. Recall-
ing (1.1), one may easily verify that any Gibbs measure for the Ising model on Zd at
inverse temperature β is a stationary measure for this PCA.

We note that this PCA is monotonic in the sense that f(η, (φ, ψ)) ≤ f(η′, (φ, ψ)) for
any (φ, ψ) and (η, η′) such that ηv ≤ η′v for all v ∈ F , and we remark that due to this
monotonicity, Proposition 2.4 is essentially a statement about the probability that the
value of the spin at the origin after time t depends on whether the starting state is the
constant plus or constant minus state – namely, that this probability is exponentially
small in t.

2.2 High-noise Markov random fields – proof of Theorem 1.9

To deduce Theorem 1.9 from Theorem 2.1, we need to know that a translation-
invariant high-noise Markov random field is the limiting distribution of an exponentially
uniformly ergodic PCA. This was shown by Häggström and Steif in [10] (essentially
Proposition 2.1 there).

Proposition 2.5 ([10]). Let µ be a translation-invariant Markov random field satisfying
high-noise. Then µ is the limiting distribution of an exponentially uniformly ergodic PCA.

Given this proposition, Theorem 1.9 is an immediate corollary of Theorem 2.1.

2.3 Proper colorings – proof of Theorem 1.7

Theorem 1.7 will follow from Theorem 2.1 once we establish the following.

Proposition 2.6. Let d ≥ 2 and q ≥ 4d(d + 1). Let µ be the unique Gibbs measure for
proper q-colorings of Zd. Then µ is the limiting distribution of an exponentially uniformly
ergodic PCA.

EJP 25 (2020), paper 8.
Page 8/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

Proof. The proof uses ideas of Huber [13, 14] for exact sampling of proper colorings on
finite graphs and ideas of Häggström and Steif [10] from the proof of Proposition 2.5.
The proof of the latter proposition uses an auxiliary PCA on a larger space (which the
authors there call a super-PCA), which “bounds” the original PCA simultaneously for all
starting states, and thus allows to “detect” when the original PCA has coalesced. Huber
used a similar idea (which he called bounding chains), together with model-specific
arguments, to provide an exact sampling algorithm for proper colorings (and other
models) on a finite graph. Putting these ideas together, we show how this can be done
for proper colorings of Zd.

We first describe the PCA in words: at each time step, every vertex is independently
set to active or inactive with some fixed probability, and every active vertex which has no
active neighbors then updates its color to be uniformly chosen from the set of colors not
appearing at any of its neighbors. More precisely, a uniform permutation of the colors
is chosen, and the first color not appearing at any neighbor is chosen. This PCA may
be realized as follows. Let S := {1, . . . , q} and let Sq be the symmetric group on S. Let
F = F ′ := N(0) ∪ {0}, A := {0, 1} × Sq and define f : SF ×AF → S by

f(η, (φ, ψ)) :=

{
g({ηv}v∈N(0), ψ0) if φ0 = 1 and φv = 0 for all v ∈ N(0)

η0 otherwise,

where g : 2S × Sq → S is defined by

g(D,π) := π(min{i ∈ S : π(i) /∈ D}).

The time evolution ω of this PCA is then given by (2.3), where the i.i.d. random variables
(Wv,i) are chosen to be uniformly distributed over A, so that each Wv,i represents an
unbiased coin toss (the unbiasedness will not be important for us) and an independent
uniformly chosen permutation of the colors. It is straightforward to check that any Gibbs
measure for proper q-colorings is a stationary distribution for this PCA.

To show that this PCA is exponentially uniformly ergodic, we use the method of
bounding chains discussed above. Consider the following PCA (or super-PCA in the
language of [10]) on (2S)Z

d

given by f̂ : (2S)F ×AF → 2S , where

f̂(η̂, (φ, ψ)) :=

{
ĝ(η̂|N(0), ψ0) if φ0 = 1 and φv = 0 for all v ∈ N(0)

η̂0 otherwise,

where ĝ : (2S)N(0) × Sq → S is defined by

ĝ(η̂, π) :=
⋃

η∈SN(0):
ηv∈η̂v ∀v∈N(0)

g({ηv}v∈N(0), π).

The time evolution ω̂ of this PCA is then defined as in (2.3), using the same random
variables (Wv,i) as above, so that the two PCAs are coupled, with the crucial property
that ω̂ bounds ω in the sense that

ωξ,iv,j ∈ ω̂
ξ̂,i
v,j for any ξ ∈ SZ

d

, v ∈ Zd and i ≤ j,

where ξ̂ is the maximal element in (2S)Z
d

defined by ξ̂v := 2S for all v ∈ Zd. In particular,
recalling (2.4), we have

τv ≤ τ̂v = min
{
i ≥ 0 : |ω̂ξ̂,−iv,0 | = 1

}
.

It therefore suffices to show that τ̂v has exponential tails.

EJP 25 (2020), paper 8.
Page 9/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

We begin by observing that, for t ≥ 0,

P(τ̂v > t) ≤ P
(
|ω̂ξ̂,−tv,0 | > 1

)
= P

(
|ω̂ξ̂,0v,t | > 1

)
=: pt,

where pt is of course independent of v. To ease notation, let us denote Yt(v) := ω̂ξ̂,0v,t . Let α
denote the probability that a vertex is updated in any given time step, i.e., α = β(1−β)2d,
where β is the probability that a vertex is activated (for an unbiased coin toss, we have
β = 1/2 and α = 2−2d−1, but this will not be used). Note that |ĝ(η̂, π)| ≤ 2d + 1 for any
η̂ ∈ (2S)N(0) and π ∈ Sq. Hence,

P(|Yt(u)| > 2d+ 1) = (1− α)t for any u ∈ Zd and t ≥ 0, (2.6)

since |Yt(u)| > 2d+ 1 if and only if u has never been updated by time t.
Let us see what happens when the origin is updated. Let D :=

⋃
u∈N(0) Yt(u) be the

set of colors which may appear in some neighbor of 0, and let D′ :=
⋃
u∈N(0),|Yt(u)|=1 Yt(u)

be those colors which are known to appear in some neighbor of 0. Observe that if π ∈ Sq
is such that g(D′, π) /∈ D, then g(D,π) = g(D′, π) and ĝ((Yt)|N(0), π) = {g(D′, π)}. Thus,
given Yt and given that 0 is updated at time t + 1, the probability that |Yt+1(0)| > 1

is at most the probability that the g(D′, π) ∈ D. When π ∈ Sq is chosen uniformly,

g(D′, π) is uniformly distributed in S \ D′, so that the latter probability is |D\D
′|

q−|D′| ≤∑
u∈N(0) |Yt(u)|1{|Yt(u)|>1}

q−2d+1 . This shows that

P(|Yt+1(0)| > 1 | Yt) ≤ (1− α)1{|Yt(0)|>1} + α
∑

u∈N(0)

|Yt(u)|1{|Yt(u)|>1}

q − 2d+ 1
.

Together with (2.6), this yields

pt+1 = E
[
P(|Yt+1(0)| > 1 | Yt)

]
≤ 2d(1− α)t +

(
1− α

(
1− 2d(2d+ 1)

q − 2d+ 1

))
pt.

Thus, pt decays exponentially in t when q ≥ 4d(d+ 1), and Proposition 2.6 follows.

3 A general result and proof of Theorem 2.1

In this section, we introduce a general result which will allow us to deduce Theo-
rem 2.1. This result is an abstract tool and is not, a priori, related to the problems
originally discussed in Section 1.

Let X = (Xv,i)v∈Zd,i≥0 be a process taking values in a finite set S. Let B = (Bn)n≥0

be a strictly increasing sequence of subsets of Zd ×N with B0 := {(0, 0)}, and consider
the associated σ-algebras {Fnv }v∈Zd,n≥0 defined by

Fnv := σ
(
{Xv+u,i}(u,i)∈Bn

)
. (3.1)

An N-valued random field τ = (τv)v∈Zd is said to be a B-stopping-process for X if,
for every v, τv is an almost surely finite stopping time with respect to the filtration
(Fnv )n≥0. When we say that such a stopping-process is stationary, we shall mean that
the same stopping rule is used at every vertex (rather than just meaning that its law is
translation-invariant). Given a B-stopping-process τ , we denote by Xτ the random field

Xτ :=
(
(Xv+u,i)(u,i)∈Bτv

)
v∈Zd .

Note that (Xτ )v takes values in the finite-configuration space
⋃
n≥0 S

Bn . We say that B
is linear if

∆n := max
{

max{|u|, i} : (u, i) ∈ Bn
}
≤ ∆n for some ∆ ≥ 1 and all n ≥ 0. (3.2)

EJP 25 (2020), paper 8.
Page 10/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

Proposition 3.1. Let X = (Xv,i)v∈Zd,i≥0 be a finite-valued i.i.d. process, let B be linear
and let τ be a stationary B-stopping-process for X. Suppose τv has exponential tails and
E|Bτv | < M for some integer M . Then Xτ is a finitary factor of ((Xv,i)0≤i<M )v∈Zd with
stretched-exponential tails.

Before using Proposition 3.1 to prove Theorem 2.1, we briefly explain the proposition
and how it relates to the setting of the theorem. Recall that, given a uniformly ergodic
PCA, (2.3)–(2.5) explicitly express the random field ω∗ as a finitary factor of the i.i.d.
process ((Wv,i)i<0)v∈Zd , defined via certain stopping times. Moreover, it is clear from
this and from (2.2) that the value of the output ω∗u for any given u depends only on
the variables Wv,i within a certain “cone” in space-time emanating from (u, 0) (this is
because as one goes back in time, the spatial dependency grows linearly). The above
setup generalizes this situation to an abstract setting (which has nothing to do with
coupling-from-the-past or PCAs), where the sequence (Bn)n replaces the cones arising
from (2.2), the stopping process replaces the coupling-from-the-past stopping times
given in (2.4), and the variables (Wv,i)v∈Zd,i<0 are now called (Xv,i)v∈Zd,i≥0. With this
interpretation in mind, for any given u, we may think of (Xτ )u as containing all the
variables that are “needed” for the computation of the output at u, and the proposition
states (ignoring the tails of τv and the coding) that if, on average, the number of variables
needed to compute the output at a given vertex is less than M , then one can “emulate”
the process Xτ (consisting of all the needed variables) from a process which has precisely
M variables at each vertex. In other words, if one has an algorithm which can a priori
need access to any number of variables at a given vertex, but typically does not need
many such variables, then by “transporting” variables from one space-time location to
another as needed, it is possible to rewrite the algorithm in such a way that it only has
access to a bounded number of variables at each vertex. We note that we continue to
refer to Zd ×N as space-time, although the interpretation of N as a time dimension is
perhaps less proper.

Proof of Theorem 2.1. Suppose that µ is the limiting distribution of an exponentially
uniformly ergodic PCA with time evolution ω, defined via variables (Wv,i), sets F and F ′,
and function f . By Proposition 2.3, it suffices to show that ω∗, defined by (2.5), is fv-ffiid
with stretched-exponential tails.

Recall the definition of τv from (2.4) and the definition of ∆ from (2.2). By definition
of τv and (2.2) (or rather the analogue of (2.2) for the time evolution started at time
−t and run up to time 0), the value of ω∗v is a deterministic function of the variables
(Wv+u,−i)|u|≤∆i,0≤i≤τv (actually, the variable Wv,0 corresponding to i = 0 is not needed,
but we include it nevertheless). Moreover, this function does not depend on v, in the sense
that, for some deterministic function ψ, we have that ω∗v = ψ((Wv+u,−i)|u|≤∆i,0≤i≤τv ) for
all v.

Towards applying Proposition 3.1, define B = (Bn)n≥0 by Bn := {(u, i) : |u| ≤ ∆i, 0 ≤
i ≤ n} and define the i.i.d. process X = (Xv,i)v∈Zd,i≥0 by Xv,i := Wv,−i. Note that
τ = (τv)v∈Zd is a linear stationary B-stopping-process for X, and that ω∗v = ψ((Xτ )v) so
that ω∗ is a finitary factor of Xτ with coding radius 0. It therefore suffices to show that
Xτ is fv-ffiid with stretched-exponential tails. Indeed, letting M be any integer larger
than E|Bτv |, Proposition 3.1 yields that Xτ is a finitary factor of ((Xv,i)0≤i<M )v∈Zd with
stretched-exponential tails. Since ((Xv,i)0≤i<M )v∈Zd is a finite-valued i.i.d. process, this
yields the required coding for ω∗.

Our method of proof of Proposition 3.1 gives a slightly stronger result. We call σ a
simple stopping-process if it is a B∗-stopping-process, where B∗ is defined by B∗n :=

{0}×{0, 1, . . . , n}. In this case, Xσ can unambiguously be thought of as (Xv,i)v∈Zd,0≤i≤σv .

EJP 25 (2020), paper 8.
Page 11/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

Proposition 3.2. Let X = (Xv,i)v∈Zd,i≥0 be a finite-valued i.i.d. process, let B be linear,
let τ be a stationary B-stopping-process for X and σ a stationary simple stopping-process
for X. Suppose τv has exponential tails and E|Bτv | < Eσv + 1. Then Xτ is a finitary
factor of Xσ with stretched-exponential tails.

Note that, since σ is simple, the condition E|Bτv | < Eσv + 1 may be more naturally
written as E|Bτv | < E|B∗σv |. Proposition 3.1 is the special case of Proposition 3.2 in which
σ is taken to be the deterministic simple stopping-process given by σv = M − 1 for all v.
The rest of the paper is devoted to the proof of Proposition 3.2.

Remark 3.3. One may make slight modifications to the proof of the proposition to
obtain various improvements. For instance, the same conclusion holds under the weaker
assumptions that τv has only stretched-exponential tails and that ∆n grows polynomially
fast in n. In fact, one could even allow somewhat heavier tails and faster growing ∆n

at the expense of obtaining a coding radius with heavier tails. This is true even to the
extent that, with no assumptions on the tails of τv or on the growth of ∆n, the conclusion
still holds albeit with no information on the coding radius. On the other hand, under the
stronger assumption that τ is also a simple stopping-process, the coding radius can be
shown to have exponential tails.

Remark 3.4. Proposition 3.2 holds also for random simple stopping-processes σ (though
we do not allow randomness in the B-stopping-process τ ), provided the randomness is
made independent for each vertex in the following sense: There exists an i.i.d. process
X ′ = (X ′v)v∈Zd , independent of X, such that, for each v, σv is an almost surely finite
stopping time with respect to the filtration (Fnv ∨ σ(X ′v))n≥0, where Fnv ∨ σ(X ′v) is the
smallest σ-algebra containing Fnv and the one generated by X ′v. By working conditionally
on X ′, the proofs go through essentially unchanged.

4 The algorithm

In this section, we provide the algorithm used to construct the finitary coding stated
in Proposition 3.2. We then use it in Section 5 to prove the proposition.

Throughout this section, we work in the setting of Proposition 3.2 so that X =

(Xv,i)v∈Zd,i≥0 is an i.i.d. process taking values in a finite set S, B is linear, τ is a
stationary B-stopping-process for X and σ is a stationary simple stopping-process for X.
In addition, τv has exponential tails and E|Bτv | < Eσv + 1. We may also assume without
loss of generality that σv is bounded.

We construct an algorithm which, given a realization Y of the “source” process Xσ,
deterministicly computes an output Z having the distribution of the “target” process Xτ .
In the special case where σv = M−1 deterministically for all v (as in Proposition 3.1), we
could imagine that there is a single space-time landscape, initially containing variables
in the subset Zd × {0, 1, . . . ,M − 1} of space-time, and that these variables may be
“transported” from their original locations to new locations as needed to construct Z.
However, in general, as σ is a stopping-process, we do not know which subset of space-
time initially contains variables unless we expose some of the variables, but this would
bias them and so we could not easily use them to construct Z. Thus, instead of revealing
the entire random field Y at once, the algorithm slowly reveals more and more of Y
as is needed to generate more and more of Z. As both Y and Z are realizations of
stopping-processes, it is convenient to think that the input to the algorithm is in fact a
realization of X, which the algorithm uses to simultaneously construct both Y and Z in
such a manner that the variables of X used to construct Z are a subset of those used to
construct Y. We may thus imagine that there are in fact three space-time landscapes:
one corresponding to the original process X, one to the source process Y, and one to
the target process Z. When the algorithm wishes to reveal an additional piece of Y, the

EJP 25 (2020), paper 8.
Page 12/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

required variable is easily generated – it is simply read from the same location in the
X process. On the other hand, when an additional piece of Z needs to be generated, it
must be matched to a variable used by Y. Here comes into play the crucial assumption
that E|Bτv | < Eσv + 1, which ensures that Z uses less variables than Y on average. Thus,
from the point of view of Z, as any variable used by Y is “available” to be used by Z,
there are many available variables (much more than needed) for Z, and one needs only
to find a suitable way of “transporting” these from the source to the target.

We call the variables of the source process Y inputs and the variables of the target
process Z outputs. We stress that transporting a variable from (u, i) to (w, j) simply
means that the source location (u, i) and target location (w, j) are matched to one another
so that the input Yu,i and the output Zw,j are identified. Moreover, when we say that an
input is generated, say at location (u, i), we simply mean that the corresponding variable
Xu,i is revealed and identified with Yu,i, and when we say that an output is generated,
say at location (u, i), we mean that a suitable input is transported to (u, i).

The algorithm consists of a “simulator” for each vertex v ∈ Zd, which has an asso-
ciated source location (thought of as a space-time location of Y) and target location
(thought of as a space-time location of Z). At each time step n, the simulators simultane-
ously execute a common procedure (this will guarantee that any output of the algorithm
is translation-equivariant). The goal of the v-simulator is to ensure that its stopping time
τv is reached (with respect to the target process Z) and that all relevant outputs for Zv
(i.e., those corresponding to space-time locations in v +Bτv ) have been generated (that
is, to determine an integer tv ≥ 0 and a configuration ξ ∈ Sv+Btv for which τv(ξ) = tv).
Once this happens, v will be “satisfied”, the final output Zv will be known, and the
v-simulator will remain idle; until then, the v-simulator will be in a constant state of
searching (in that its source location will change at every time step), trying to find an
unused input at the source location which it can transport to the target location. We
note that there is a complex interplay between the different simulators. On the one
hand, they are competing for shared resources, namely, the inputs. On the other hand,
as different sites v may rely on common outputs in order to compute their final output
Zv, the simulators may occasionally “unintentionally help” each other reach their goals
(as long as it helps them too) by generating an output which is also required by another
simulator (though we do not exploit this in the proof). This is in fact the origin of some
complications, which presumably cannot be avoided. Our algorithm is inspired partly by
the algorithms in [5, 12] (see Section 4.4 for a comparison between our algorithm and
the one in [5]).

4.1 Informal description of the algorithm

The goal of the v-simulator is to make sure that the final output Zv becomes known
after some finite number of steps. To do this, the v-simulator proceeds as follows:
Initially, at time step n = 0, it reveals the variable Xv,0, which corresponds to the single
space-time location in v + B0 = {(v, 0)} (see Section 4.3 for a formal definition of sets
of the form v +A). It then consults the stopping rule τv to see whether or not it should
continue. If it has reached the stopping time, i.e., τv = 0, then the final output is known,
namely, Zv is the element in SB0 given by (Zv)(v,0) = Xv,0, so that the simulator is
satisfied and can stop. If it has not reached the stopping time, i.e., τv > 0, its next
goal becomes to generate the outputs in v + (B1 \B0). Let us come back to how this is
done in a moment. Once these have been generated (which may require many steps of
the algorithm), the v-simulator consults the stopping rule τv again, this time to check
whether τv = 1. If indeed τv = 1, then it is satisfied and the final output is known, namely,
Zv is an element in SB1 given by the generated outputs at space-time locations v +B1.
If instead τv > 1, the v-simulator continues in a similar manner, with the general rule

EJP 25 (2020), paper 8.
Page 13/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

being that once the v-simulator learns that τv > k, it continues to generate the outputs
in v + (Bk+1 \Bk), and then to check the stopping rule in order to determine whether
or not it should continue. Eventually the stopping time is reached, the final output is
known and the v-simulator is satisfied.

Let us now explain how the v-simulator generates the outputs in v + (Bk \ Bk−1).
Firstly, it does so one output at a time (in an arbitrary order), and so we merely focus
on how it generates a single output at space-time location (w, j). Of course, one way
to do this is simply to use the original variable residing at that location, namely, Xw,j .
However, since we want to obtain a coding from Xσ, we must be sure to only use inputs
(those variables residing in the scope of the source process), i.e., we cannot use Xw,j

unless σw ≥ j. We also cannot use an input if it has already been used (transported
away) by some other simulator at a previous time. Thus, we may need to search for
an input at a different location (u, i) and transport it from there to (w, j). Roughly
speaking, the simulator moves along the space-time landscape of the source process,
checking to see whether there is an unused input which it can transport to the target
location (w, j). At every time step, it checks a single source location (u, i). If the input at
that location is not available for use, the simulator simply advances its current source
location, and does nothing further in that step of the algorithm. This procedure is
repeated until the simulator eventually finds an unused input that it can transport. At
that time, assuming the required output has not meanwhile been generated by another
simulator, it transports it. Either way, the output at (w, j) is sure to have been generated
by the end of that step.

Of course, as we are trying to construct a coding, the above procedure must be
carried out simultaneously by all the simulators. This leads to some interaction between
the different simulators. Let us now give some more specific details about this and
the above procedure. We first explain how the v-simulator behaves with regards to the
source process in each step:

• If the simulator is satisfied, it does nothing. If it is unsatisfied, it will necessarily
move its source location and it does so as follows. It first tries to move up one step
in the pile of the vertex u it is currently at. If it cannot, i.e., if it is already at the
top of an exhausted pile (in the sense that the stopping time σu has been reached),
then it moves to the bottom of the pile located one step to the right of u (i.e., to
u + e1). Here we informally refer to the inputs at locations (u, i) as the pile at u,
and think of the pile there as initially empty and then growing as inputs there are
generated until it becomes exhausted (i.e., until it reaches its full size given by the
stopping time σu).

• The above choice implies that if the v-simulator is at the top of a pile which has
not yet been exhausted (we shall later call such a pile loaded ), then the input just
above the top of that pile has not yet been used/revealed by any simulator. Thus, it
is an unbiased input (having the same distribution as X0,0) and is available to be
transported. In this situation, regardless of whether or not it is indeed transported,
the source location is moved one step up the pile.

• We initially set the v-simulator’s source location to be (v,−1) so that it is necessarily
at the top of a loaded pile when the algorithm starts.

• Let us point out that when the pile sizes are deterministically fixed (as in the situa-
tion of Proposition 3.1), the evolution of the source location is also deterministic
(up to knowing at what time the simulator becomes satisfied and stops). However,
in general, as σ is a simple stopping-process, the evolution is random: to decide
whether or not a pile is exhausted, we must inspect the variables in the pile.

• We could have chosen different conventions here. Our choice has the advantage
that there cannot be more than one unsatisfied simulator at any location at any

EJP 25 (2020), paper 8.
Page 14/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

given time. This means that we do not need to worry about different simulators
trying to transport the same input.

Next, we explain how the v-simulator behaves with regards to the target process:

• If the simulator is satisfied, it does nothing. If it is unsatisfied, it might move its
target location and it might not. Specifically, it moves precisely when its source
is at the top of a loaded pile. Indeed, when this happens, we are assured that the
required output can be generated. Moreover, when it moves, it moves to the next
element in v +B∞, where the elements of B∞ =

⋃
n≥0Bn are ordered in any way

which respects the inclusions B0 ⊂ B1 ⊂ · · · .
• Note that the times at which the target location changes is completely determined

by the source. In particular, even if the output at the target location has been
previously generated by some other simulator, this does not mean that the v-
simulator will necessarily advance its target location. In other words, the output at
the target location may have already been generated, and it may take the simulator
many more steps until it finds an unused input (i.e., its source is at the top of a
loaded pile), only to realize at that point in time that it does not need it after all (in
which case that input will be wasted – it will not be transported later). This is not
the most efficient choice, but it is the one we make.

• We point out that, unlike for the source, there may be many different simulators
at a given target location at the same time. This situation just means that the
different simulators all wish to generate the same output. Among these simulators,
many may also be at the top of a loaded pile (in the source), which means that they
can transport an input. Thus, we must take care that different simulators do not
generate the same output. We must therefore prioritize the simulators in some
manner. To this end, we simply make the choice that the lexicographical-minimal
simulator (among those at the top of a loaded pile) takes priority, namely, it is the
one to generate the output, while the others do not transport an input (note that
this is again not the most efficient way to do things, since we are throwing away
inputs which could have been used later, but this is not too wasteful and we simply
made a choice which we found convenient).

We emphasize that the algorithm may transport an input away from a certain location
at some point in time, and then transport some other input into that same location at a
later point in time. That is, even if eventually there is an input at location (u, i) (in the
sense that σu ≥ i) and the output at that same location is eventually needed by some
simulator (in the sense that (u, i) ∈ v +Bτv for some v), there is no guarantee that the
variable that will eventually end up to be the output at (u, i) is the one that was originally
the input there. The important property is that any given input can only be transported
away once, and any given output can only be generated (i.e., transported into) once.
This is another reason it is helpful to imagine separate space-time landscapes for the
source and target processes.

We refer the reader to Figure 1 for an illustration of the algorithm.

4.2 Further explanation of the figure

Figure 1 illustrates the first several steps of the algorithm. The figure contains a
detailed caption, and here we provide some additional information.

Let us first address the setting considered in the figure. Of course we consider d = 1

as it would be difficult to provide a useful picture for two of more dimensions. On the
other hand, the specific Bn considered there is not essential, and the reason for that
choice was to allow the simulators to “climb up” in a short number of steps. We note

EJP 25 (2020), paper 8.
Page 15/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

5

0 1

4

6

7

6

? ?

?

X

X

X 8

8

1 5

3 50 1 2 4 6

?X

0 1 2 3 4 5 6 0 1 2 3 4 5 6

7

7 7

0 6 742 3

55

0

1

32

4 6 7 6421

X ? ? ? ? ?

? ? ?

?X

X

X

X

X

X

3

2 1 32

7

50

4

6

7

6

?

??

X

X

X

X

X

2

1

54

3

31step n=4

step n=3

step n=2

step n=1

0 3

54

0

0

2 7

8

?

8

?

8

?

8

?

8

27

88

3 50 1 2 4 6

??

7

? ? ? ? ? ?step n=0
8

? 1 50 6 742 3 8

Figure 1: An illustration of the first five steps of the algorithm. For illustration purposes,
we consider here the case where d = 1 and Bn = {(u, i) : 0 ≤ u ≤ i ≤ n}, ordering the
elements of B∞ as (0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2) and so on. The figure depicts the
processes Y n and Zn and the state of the simulators at the end of step n for n = 0, . . . , 4.
The row just above the horizontal axis corresponds to the portion Z× {0} of space-time.
Left: The source process Y n and the source locations (Unv , I

n
v ) of the simulators. A gray

background at space-time location (u, i) indicates that the input Y nu,i has been generated.
An × indicates an unloaded vertex, while a question mark indicates a loaded vertex.
Right: The target process Zn and the target locations (Wn

v , J
n
v ) of the simulators. A

gray background at space-time location (w, j) indicates that the output Znw,j has been
generated. Simulators: The simulators are depicted in green, yellow or red according
to whether they are satisfied, unsatisfied but at the top of a loaded pile, or otherwise.
A green simulator does not move as it has finished running (case (i) in the algorithm).
A yellow simulator advances its source location by moving up one step in its current
pile, reads the unused input at that new location, transports this input to its current
target location (if needed), and then advances its target location by moving to the “next
place in line” according to the ordering on B∞ (case (iv) in the algorithm). We note that
when two yellow simulators occupy the same target location, only one of them actually
generates the output (i.e., transports an input to that location). A red simulator does not
have access to an unused input, and so it advances its source location by either moving
up the current pile if it is not yet at the top (case (ii) in the algorithm) or otherwise
by moving to the bottom of the next pile (case (iii) in the algorithm), while its target
location remains unchanged. In particular, a red simulator does not advance its target
location even if the corresponding output is (or was previously) generated by a different
simulator. See Section 4.2 for further details about the figure.

EJP 25 (2020), paper 8.
Page 16/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

that this choice for Bn may be regarded as a simplification of what would be used for the
one-dimensional case of Theorem 2.1 (since the Bn are only “one-sided cones”, whereas
the theorem would require symmetric “two-sided cones”).

Let us now consider the evolution of the simulators throughout the steps depicted in
the figure. Initially, the source and target locations of each v-simulator are set to (v,−1)

and (v, 0), respectively. This means that v-simulator is currently trying to generate the
output at location (v, 0) and it is currently looking for an unused input (which it would
like to transport) just above the source location (v,−1), namely, at (v, 0). Indeed, initially
there is always an unused input there (since σv ≥ 0 by assumption). This situation is
depicted at the top of the figure. Thus, at step n = 1 of the algorithm, every v-simulator
moves its source location one step up the pile to (v, 0), (vacuously) transports the input
from (v, 0) to (v, 0), and advances its target location to (v, 1) (note that (0, 1) is the
successor of (0, 0) in the chosen ordering of B∞). At this stage, some simulators have
already become green (satisfied) and thus have τv = 0 – these are simulators 0, 3 and
8. Let us follow what happens next to simulator 1 (which is still unsatisfied): since
the 1-simulator is yellow (it is at the top of a loaded pile), it moves its source location
one step up the pile to (1, 1), (vacuously) transports the input from (1, 1) to (1, 1), and
advances its target location to (2, 1) (because (1, 1) follows (0, 1) in the order on B∞).
Since at the end of step 2, the 1-simulator is red (it is no longer in a loaded pile), in
step 3 it does not change its target location and simply moves its source location to the
bottom of the next pile, which is (2, 0). Since it is still red, in step 4 it again only moves
its source location, this time to (3, 0). We stress that even though, at the end of step 3,
the output at the 1-simulator’s target location (2, 1) has already been generated (it was
transported from location (3, 0) by the 2-simulator in step 3), the 1-simulator still does
not advance its target location; it will only do so once it becomes yellow. Finally, since
the 1-simulator is still red at the end of step 4, in the next step (which is not depicted
in the figure) it will move its source location one step up the pile to (3, 1). At this stage,
we still do not know the eventual value of τ1, we only know that τ1 ≥ 1 (since there
is an output in 1 + B1 which is needed). Similarly, at the end of step 4, we know that
τ0 = τ3 = τ8 = 0, τ2 = τ7 = 1, τ6 ≥ 1, τ4 ≥ 2 and τ5 ≥ 2. In particular, we know the final
output for vertices {0, 2, 3, 7, 8}, but not yet for {1, 4, 5, 6}.

4.3 Formal definition of the algorithm

Before providing the algorithm, we require some preparation.

Let us employ the following useful convention regarding stopping times. Suppose that
π is an almost surely finite stopping time with respect to the filtration (Fn0 )n≥0 defined
in (3.1). We may regard π as a deterministic function from

⋃
n≥0 S

Bn to N ∪ {∗} having

the property that, for any n ≥ 0, ξ ∈ SBn and ξ′ ∈ SBn+1 such that ξ′|Bn = ξ, we have
π(ξ) ∈ {0, . . . , n, ∗}, we have π(ξ′) = π(ξ) when π(ξ) 6= ∗, and we have π(ξ′) ∈ {n+ 1, ∗}
when π(ξ) = ∗. The interpretation here is that a value of ∗ means that the stopping time
has not been reached. Note, in particular, that for m ≥ 0 and η ∈ SBn+m , the expression
π(η) > n depends only on η|Bn (where it is understood that ∗ > n for all integer n). With
this in mind, we note that (with a slight abuse of notation), if A ⊂ Zd ×N contains Bn,
then the expression π(η) ≤ n is well-defined for any η ∈ SA and depends only on η|Bn ,
and thus, the expression b ∈ Bπ(η) is also well-defined for any b ∈ Bn+1 (and depends

only on η|Bn). We further abuse notation by identifying an element η ∈ (S ∪ {∅})Zd with
the element η′ ∈ SA in the obvious way, by taking A := {a ∈ Zd × N : η(a) 6= ∅} and
η′ := η|A.

We order the elements of B∞ :=
⋃
n≥0Bn in such a manner that, for any n, every

element of Bn appears before every element of B∞ \ Bn. This induces a notion of

EJP 25 (2020), paper 8.
Page 17/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

successor for elements in B∞. For A ⊂ Zd ×N, we write v + A for the translated set
{(v + u, i) : (u, i) ∈ A}. Translating the ordering from B∞ to v +B∞, we obtain a notion
of v-successor for elements in v + B∞. More precisely, the v-successor of an element
(v + u, i) ∈ v +B∞ is (v + u′, i′), where (u′, i′) is the successor of (u, i).

At each step n ≥ 0, we define variables:

• (Unv , I
n
v ) ∈ Zd ×N, the source location of the v-simulator.

• (Wn
v , J

n
v ) ∈ Zd ×N, the target location of the v-simulator.

• Tnv ∈ {0, 1}, the indicator of whether the v-simulator transported input (generated
output).

Once the above variables are defined at step n, we further define several objects, all of
which are deterministic functions of the above variables. For some of these definitions
to make sense, it is important to note that the following properties are satisfied at every
step n:

∑
v

n∑
t=1

1T tv=1,(Utv,I
t
v)=(u,i) ≤ 1 for all (u, i) ∈ Zd ×N, (4.1)

∑
v

n∑
t=1

1T tv=1,(W t−1
v ,Jt−1

v )=(w,j) ≤ 1 for all (w, j) ∈ Zd ×N. (4.2)

Equation (4.1) says that each input is transported away at most once by at most one
simulator. Similarly, (4.2) says that every output is generated (transported into) at most
once by at most one simulator. As the target location of the v-simulator will be updated
immediately after the required output is generated, there is a shift in the time index
in (4.2). Thus, Tnv = 1 means that at time step n the v-simulator transported an input
from the source location (Unv , I

n
v ) to the target location (Wn−1

v , Jn−1
v ), thus generating

the output at (Wn−1
v , Jn−1

v ).
Consider the set of source-target locations of simulators at transport times:

Dn :=

{
(v, u, i, w, j) :

v ∈ Zd, T tv = 1, (U tv, I
t
v) = (u, i),

(W t−1
v , J t−1

v ) = (w, j) for some 1 ≤ t ≤ n

}
.

We use Dn and X to construct two (S ∪ {∅})-valued processes Y n = (Y nu,i)u∈Zd,i≥0 and
Zn = (Znw,j)w∈Zd,j≥0, which represent the partial information on Y and Z (the realizations
of Xσ and Xτ ) that has been revealed by time n. The algorithm may use one of two
“update methods”: for (v, u, i, w, j) ∈ Dn, we define

(A) Y nu,i = Znw,j := Xu,i, (B) Y nu,i = Znw,j := Xw,j .

If (u, i) is not in the projection of Dn on the 2nd and 3rd coordinates, then set Y nu,i := ∅,
and similarly, if (w, j) is not in the projection of Dn on the 4th and 5th coordinates, then
set Znw,j := ∅. Note that (4.1) and (4.2) ensure that both update methods are well-defined.
We stress that the two update methods are never used in conjunction with one another –
either update method (A) is used throughout all steps of the algorithm or update method
(B) is.

The Y process is associated with σ, and the Z process with τ . Thus, in update method
(A), σ “sees” the original process X, while τ “sees” a transformed process in which
inputs have been transported between space-time locations; in update method (B),
the situation is reversed – τ sees the origin process and σ sees a transformed process.
Another point of view is that Dn (after forgetting the first coordinate) defines a bipartite
graph between two copies of Zd ×N in which any vertex of one copy is matched to at
most one vertex in the other copy. The two update methods can then be thought of as

EJP 25 (2020), paper 8.
Page 18/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

orienting all edges from the first copy to the second, or vice versa, where the orientation
of an edge determines the direction of flow of information, with the original process X
always associated with the copy from which the edges are oriented outwards (so that
variables are transported along the edges in the direction of orientation). As we are
interested in realizing the τ process via the σ process, the natural choice is to transport
variables from the latter to the former as in update method (A). Nevertheless, it will
turn out to be a helpful idea to consider also the reversed direction of flow. Thus, update
method (A) will yield the required coding, whereas update method (B) will only be used
as a comparison tool in the analysis (namely in the proof of Lemma 5.3). As such, we
mainly have update method (A) in mind in our definitions.

We further define

• Lnu := max{i : (v, u, i, w, j) ∈ Dn for some v, w, j}, the last input revealed at u.

• u is loaded at time n if σu(Y n) > Lnu.

• v is satisfied at time n if (Wn
v , J

n
v ) /∈ v +Bτv(Zn).

Thus, Lnu is the size of the pile at u (in the source process) at time n. A vertex u is loaded
at time n if there are more inputs available at u than have already been used by time n,
i.e., if the pile at u has not been exhausted by time n. A vertex v is satisfied at time n if
the output at the target location of the v-simulator is not needed in order to compute the
final output Zv. In particular, due to way that the target location evolves, this implies
(but is not precisely equivalent to) that the outputs that v needs for its final output have
already been generated by time n (see (4.4) below), so that the final output is known at
this time.

The fact that the notions of loaded and satisfied are well-defined is not obvious from
their definitions. The fact that the notion of loaded is well-defined follows from the
above discussion about stopping times and the following property which will hold at
each step n:

Y nu,i 6= ∅ if and only if i ≤ Lnu, for all (u, i) ∈ Zd ×N. (4.3)

Similarly, the fact that the notion of satisfied is well-defined follows from the following
property, which will hold for all n:

Znw,j 6= ∅
for all (w, j) ∈ Zd ×N that strictly
v-precede (Wn

v , J
n
v ) for some v ∈ Zd. (4.4)

Finally, for (w, j) ∈ Zd ×N, we also define

Qn(w, j) :=

{
v : (Wn

v , J
n
v ) = (w, j),

Unv is loaded at time n, Inv = LnUnv
v is unsatisfied at time n, Znw,j = ∅

}
.

Thus, Qn(w, j) consists of those simulators who both wish to generate the output at (w, j)

and can also do so (they wish to do so as they are unsatisfied, meaning that they need
that output, and as the output has not yet been generated; they can do so as they are
at the top of a loaded pile in the source process). Since only one such simulator can be
allowed to actually generate the output at (w, j), we will let the lexicographical-minimal
one do so.

With these definitions, we can now present the algorithm. We refer the reader to
Section 4.1 for an informal description and to Figure 1 for an illustration.

EJP 25 (2020), paper 8.
Page 19/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

Algorithm Finitary coding from Xσ to Xτ

for v ∈ Zd (simultaneously) do

(U0
v , I

0
v ,W

0
v , J

0
v , T

0
v )← (v,−1, v, 0, 0)

end for
for n = 1, 2, . . . do

for v ∈ Zd (simultaneously) do
if v is satisfied at time n− 1 then

i. (Unv , I
n
v ,W

n
v , J

n
v , T

n
v )← (Un−1

v , In−1
v ,Wn−1

v , Jn−1
v , 0)

else if In−1
v < Ln−1

Un−1
v

then

ii. (Unv , I
n
v ,W

n
v , J

n
v , T

n
v )← (Un−1

v , In−1
v + 1,Wn−1

v , Jn−1
v , 0)

else if Un−1
v is unloaded at time n− 1 then

iii. (Unv , I
n
v ,W

n
v , J

n
v , T

n
v )← (Un−1

v + e1, 0,W
n−1
v , Jn−1

v , 0)

else

iv. (Unv , I
n
v )← (Un−1

v , In−1
v + 1)

(Wn
v , J

n
v )← v-successor of (Wn−1

v , Jn−1
v )

Tnv ← 1(v is the lexicographical-minimal element of Qn−1(Wn−1
v , Jn−1

v ))

end if
end for

end for

4.4 Comparison between our algorithm and that of van den Berg and Steif [5]

The two algorithms are similar in spirit (though they are not set up in the same way)
and we focus here on the moral differences between the two. We have identified two
such differences, the primary one being in how they relate to unneeded variables and,
consequently, in how they transport such variables between space-time locations. Here,
“needed” may refer to either an input or an output, where an input (output) at location
(u, i) is needed by time n if Y nu,i 6= ∅ (Znu,i 6= ∅). Roughly speaking, the algorithm in [5]
declares an input variable unneeded at a certain time once it is guaranteed that the
output variable at the same location will not be needed at any later time (and was also
not needed until that time). Only inputs which are marked as unneeded in this sense are
allowed to be transported. On the other hand, our algorithm never declares an input
variable unneeded. Instead, we only concern ourselves with whether an input was not
needed by a certain time, and any such variable is allowed to be transported at that time.
If at a later time it turns out that the output at the same location was needed after all,
another input variable will be transported to that location. In other words, the algorithm
in [5] transports an input from location (u, i) to another location (w, j) only if the output
at (u, i) is never needed, whereas our algorithm does not have this restriction, and may
transport from (u, i) to (w, j) at some time, and then from (u′, i′) to (u, i) at a later time.
The latter approach is essential in the generality of Proposition 3.1 and Proposition 3.2.
The reason is that, while for some choices of B = (Bn)n, any particular output variable
could only be potentially needed by finitely many vertices (e.g., as for the “cones” used
in the proof of Theorem 2.1, where the output at (w, j) can only be needed by vertices at
distance at most ∆j from w), in general, any vertex might need that variable at some
time (e.g., as for the “cubes” given by Bn = {(u, i) : |u| ≤ ∆n, 0 ≤ i ≤ n}) so that it is not
possible to know (in a finitary manner) whether or not an output variable will be needed
eventually. The second difference between the algorithms is that, unlike the algorithm
in [5], ours is somewhat wasteful (by design; see Section 4.1) in that in certain situations

EJP 25 (2020), paper 8.
Page 20/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

it decides not to use an available input variable (and to simply throw it away). We found
this useful (though it is probably not essential) for keeping track of how far variables are
transported, which was important for understanding the coding radius.

5 Proof of Proposition 3.2

In this section, we use the algorithm described in Section 4 to prove Proposition 3.2.
The following claim establishes some simple properties of the algorithm. Let � denote

the partial order on Zd in which u � u′ if u′ = u+ ke1 for some k ≥ 0. We also denote by
� the partial order on Zd ×Z in which (u, i) � (u′, i′) if u � u′ and (i′ − i)1u=u′ ≥ 0.

Claim 5.1. In either update method, almost surely, for all n ≥ 1, i, j ≥ 0 and u, v, v′, w ∈
Zd,

1. (4.1), (4.2), (4.3) and (4.4) hold.

2. If v ≺ v′ and both are unsatisfied at time n − 1, then (Un−1
v , In−1

v ) ≺ (Unv , I
n
v ) ≺

(Unv′ , I
n
v′).

3. If v � w ≺ Unv , then w is unloaded at time n− 1.

Proof. The claim follows easily by induction on n.

The following lemma states precisely the intuitive fact that transporting inputs from
one space-time location to another does not change the resulting distribution. Denote the
state at time n by Sn := (Un, In,Wn, Jn, Tn, Dn), where Un = (Unv )v∈Zd , I

n = (Inv )v∈Zd

and so forth.

Lemma 5.2. The distribution of (Sn, Y n, Zn)n≥0 does not depend on whether update
method (A) or (B) is used in the algorithm.

Proof. Observe that the algorithm does not explicitly depend on the update method
used, but rather depends on it implicitly through the definitions of Y n and Zn. We prove
by induction that the distribution of Sn := (Sm, Y m, Zm)0≤m≤n does not depend on the
update method. This is immediate for n = 0, since S0 is deterministic. Fix n ≥ 1 and
observe that Sn is measurable with respect to Sn−1. It thus suffices to show that (i) when
using update method (A), conditioned on Sn−1, (Xu,i)(v,u,i,w,j)∈Dn\Dn−1 is a sequence
of independent random variables having the distribution of X0,0, and (ii) when using
update method (B), conditioned on Sn−1, (Xw,j)(v,u,i,w,j)∈Dn\Dn−1 is such a sequence.
Indeed, (i) follows easily from (4.1) and (ii) from (4.2).

Lemma 5.3. Almost surely, every v ∈ Zd is eventually satisfied. Moreover,

P(v is not satisfied at time n) = e−Ω
(
n1/(d+2)

)
as n→∞.

As will be explained in the proof of Proposition 3.2 below, Lemma 5.3 implies that
the algorithm “locally terminates” in finite time in the sense that the final output at any
vertex is determined at some finite step. Nevertheless, this does not yet imply that the
algorithm yields a finitary coding. What is missing is some control on the propagation of
information in each step. This is the content of the following lemma. Let ∆ be as in (3.2).
Denote Dn

v := {(u, i, w, j) : (v, u, i, w, j) ∈ Dn}.
Lemma 5.4. When using update method (A), for any n ≥ 0 and v ∈ Zd, the following
random variables are measurable with respect to (Xu,i)|u−v|≤5∆n2,0≤i≤σu :

1. Snv = (Unv , I
n
v ,W

n
v , J

n
v , T

n
v , D

n
v ),

2. {Znw,j}|w−v|≤∆n,j≥0.

Before proving Lemma 5.3 and Lemma 5.4, we first use them to prove the proposition.

EJP 25 (2020), paper 8.
Page 21/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

5.1 Proof of Proposition 3.2

Consider the algorithm using update method (A). For n ≥ 1, define

Mn
v := min

{
m ≥ 0 : (Wn

v , J
n
v ) ∈ v +Bm

}
.

Note that Mn
v ≥ 1 so that (4.4) implies that Znw,j 6= ∅ for all (w, j) ∈ v +BMn

v −1. Thus,

Znv := (Znv+w,j)(w,j)∈BMnv −1

takes values in
⋃
n≥0 S

Bn . Let Nv denote the time at which v is first satisfied. By
Lemma 5.3, Nv is almost surely finite. Recall our conventions about stopping times
discussed in the beginning of Section 4. By the definition of satisfied, (WNv

v , JNvv ) /∈
v + Bτv(ZNv ), so that τv(ZNv ) < MNv

v . Similarly, since v is not satisfied at time Nv − 1,
it follows that τv(ZNv−1) ≥ MNv−1

v , and hence, also that τv(ZNv ) ≥ MNv−1
v . Since

Mn
v ≤ Mn−1

v + 1, we conclude that τv(ZNv ) = MNv
v − 1. Thus, ZNvv = (ZNvv+w,j)(w,j)∈Bτv ,

where τv := τv(Z
Nv ) = τ0(ZNvv ). Lemma 5.2 now implies that (ZNvv )v∈Zd equals Xτ in

distribution. Since all the operations in the algorithm are translation-equivariant, we
have thus obtained a coding from Xσ to Xτ .

Let us check that this coding is finitary and that its coding radius R has stretched-
exponential tails. Indeed, since Lemma 5.4 implies that {N0 ≤ n} and Zn0 are measurable
with respect to (Xu,i)|u|≤5∆n2,0≤i≤σu , it follows that R ≤ 5∆N2

0 . Lemma 5.3 then yields
that

P
(
R > 5∆n2

)
≤ P

(
N0 > n

)
= P

(
0 is not satisfied at time n

)
= e−Ω

(
n1/(d+2)

)
.

5.2 Proof of Lemma 5.3

For the proof of Lemma 5.3, we require a large-deviation-type result, which we now
describe. Let X = (Xi)i∈Z be a sequence of non-negative random variables. We say that
X is stopping-like if there exists ∆ > 0 such that for any finite I, J ⊂ Z and any non-
negative numbers (ri)i∈I∪J , the two events {Xi > ri for i ∈ I} and {Xj > rj for j ∈ J}
are independent whenever the two sets

⋃
i∈I [i−∆ri, i+ ∆ri] and

⋃
j∈J [j −∆rj , j + ∆rj ]

are disjoint. Observe that, if there exists a sequence (Yi)i∈Z of independent random
variables satisfying that, for any i ∈ Z and any r ≥ 0, the event {Xi > r} is measurable
with respect to {Yj}|i−j|≤∆r, then X is stopping-like. Observe also that, if X is a stopping-
like process, then (Xi1{Xi≤r})i∈Z is a 2∆r-dependent process for any r > 0, where a
process (Yi)i∈Z is said to be k-dependent if (Yi)i∈I and (Yj)j∈J are independent whenever
I, J ⊂ Z satisfy that |i− j| > k for all i ∈ I and j ∈ J .

Lemma 5.5. Let X = (Xi)i∈Z be a non-negative stopping-like stationary sequence and
suppose that X0 has exponential tails. Let f : [0,∞)→ [0,∞) be a measurable function
satisfying that f(t) ≤ Btb for some B, b > 0 and all t ≥ 1. Denote µ := Ef(X0) and
β := 1

1+b . Then, for any a > µ,

P
(
f(X1) + · · ·+ f(Xn) ≥ an

)
= e−Ω(nβ) as n→∞.

Proof. The proof involves a truncation argument. Thus, we first write f(Xi) = Yi + Y ′i ,
where

Yi := f(Xi)1{Xi≤nα} and Y ′i := f(Xi)1{Xi>nα},

and α is any positive number less than 1
2β(1− β). Then, for any ε > 0,

P
(
f(X1) + · · ·+ f(Xn) ≥ (µ+ 2ε)n

)
≤ P

(
Y1 + · · ·+Yn ≥ µn+ εn

)
+P

(
Y ′1 + · · ·+Y ′n ≥ εn

)
.

Thus, it suffices to bound separately the two terms on the right, showing that each is
e−Ω(nβ).

EJP 25 (2020), paper 8.
Page 22/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

For the first term, we prove the stronger bound

P
(
Y1 + · · ·+ Yn ≥ µn+ εn

)
= e−Ω(n1−2α/β). (5.1)

For 0 ≤ i ≤ n, denote

Zi := E[Y1 + · · ·+ Yn | Fi], where Fi := σ
({
Xj1Xj≤nα ,1Xj≤nα

}
1≤j≤i

)
.

Note that (Zi)0≤i≤n is a martingale satisfying Z0 = (EY0)n ≤ µn and Zn = Y1 + · · ·+ Yn.
Hence, by the Azuma–Hoeffding inequality (see, e.g., [24]),

P
(
Y1 + · · ·+ Yn ≥ µn+ t

)
≤ P

(
Zn ≥ Z0 + t

)
≤ exp

(
− t2

2
∑n
i=1 c

2
i

)
, t ≥ 0,

where ci := ‖Zi − Zi−1‖∞ is the essential supremum of the increment Zi − Zi−1. Thus,
(5.1) will follow if we show that ci ≤ Cnα/β. Indeed, since Y is a Bnαb-bounded 2∆nα-
dependent process,

|Zi−Zi−1| =
∣∣∣∣ n∑
j=i

(
E[Yj | Fi]−E[Yj | Fi−1]

)∣∣∣∣ ≤ i+b2∆nαc∑
j=i

∣∣∣E[Yj | Fi]−E[Yj | Fi−1]
∣∣∣ ≤ Cnα/β .

We now turn to the second term. Note that {Y ′1 + · · ·+ Y ′n ≥ εn} ⊂ E ∪ F , where

I :=
{

1 ≤ i ≤ n : Xi > nα
}
, E :=

{
|I| ≥ (εn)β

}
, F :=

{
max

1≤i≤n
Xi ≥ 1

B (εn)β
}
.

For I ⊂ Z, denote d(I) := min{|i− j| : i, j ∈ I, i 6= j}. Since, for any I ⊂ Z and integer
d ≥ 1, there exists a subset I ′ ⊂ I such that |I ′| ≥ |I|/d and d(I ′) ≥ d, we obtain

P(E) ≤ P
(
∃I ⊂ I, |I| =

⌈
(εn)β

2nα+2

⌉
, d(I) ≥ 2nα + 1

)
.

Since the events {Xi > r}i∈I are independent for any finite I ⊂ Z and 0 ≤ r < d(I)/2,
we have

P(E) ≤
(

n⌈
(εn)β

2nα+2

⌉) · P(X0 > nα)

⌈
(εn)β

2nα+2

⌉
≤ e

(εn)β

nα logn−c(εn)β = e−Ω(nβ).

Finally, it is immediate that P(F ) ≤ n · P(X0 ≥ 1
B (εn)β) = e−Ω(nβ).

Remark 5.6. The bound in Lemma 5.5 is tight, as the following simple example shows.
Let (Yi)i∈Z be independent unbiased coin tosses, and let Xi be the length of the streak of
heads containing position i, i.e., Xi := max{k+m : Yj = 1 for i−k ≤ j < i+m, k,m ≥ 0}.
Clearly, X is a stationary sequence (in fact, it is ffiid with exponential tails) and X0 has
exponential tails. Moreover, since Xi is a stopping time with respect to ({Yj}|j−i|≤n)n, it
follows that X is stopping-like (with ∆ = 1). On the other hand, P(Xb

1 + · · ·+Xb
n ≥ an) ≥

P(Y1 = · · · = Yd(an)βe = 1) = 2−d(an)βe.

Proof of Lemma 5.3. As Lemma 5.2 implies that both update methods yield the same
probability for the event in question, we may assume here that update method (B) is
used in the algorithm. Denote L∞w := supn L

n
w. Let L denote the vertices which remain

loaded indefinitely. Let v ∈ Zd. For an integer i, we write v+i for the element v+ie1 ∈ Zd.
Let us check that if, for some k ≥ 0,

Lk := {0 ≤ i ≤ k : v + i ∈ L} 6= ∅ or Nk :=

k∑
i=0

(L∞v+i + 1) >

k∑
i=0

|Bτv+i(X)| =: Mk,

EJP 25 (2020), paper 8.
Page 23/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

then v is satisfied at time Nk. Assume towards a contradiction that v is not satisfied at
time Nk. Then, by Claim 5.1,

(v,−1) = (U0
v , I

0
v ) ≺ (U1

v , I
1
v ) ≺ · · · ≺ (UNk+1

v , INk+1
v ).

Thus, since 0 ≤ Inv ≤ L∞Unv for all n ≥ 1 by definition of Lnu, we have v + k ≺ UNk+1
v . In

particular, the set of times

T := {1 ≤ n ≤ Nk : Unv ≺ Un+1
v }

at which the v-simulator moved its source location to the right is of size |T | ≥ k + 1.
Moreover, since, for 1 ≤ n ≤ Nk, n ∈ T if and only if case (iii) of the algorithm
is executed at step n for the vertex v, which in turn occurs only if Un−1

v /∈ L and
In−1
v = Ln−1

Un−1
v

= L∞
Un−1
v

, we conclude that

Lk = ∅, |T | = k + 1, (UNk+1
v , INk+1

v ) = (v + k + 1, 0).

Note that if the input from some location (u, i) is transported by some v′-simulator by
time n (i.e., (v′, u, i, w, j) ∈ Dn for some (w, j)), then v′ � u and every v′′ such that
v′ ≺ v′′ � u must be satisfied at time n. Thus, since by step Nk + 1, Nk inputs were
transported from locations (u, i) with v � u � v + k, but no more than Mk inputs were
transported by v′-simulators with v � v′ � v + k, it follows that v is satisfied at time Nk,
which is a contradiction. Hence, v is satisfied at time Nk.

We have thus shown that

P(v is not satisfied at time n) ≤ P
(
∀k ≥ 0 (Lk = ∅ and Nk ≤Mk) or Nk > n

)
.

Using that Lnv ≤ σv(Y n) ≤ m almost surely for some m ≥ 1, and taking k = n
4m , we get

P(v is not satisfied at time n) ≤ P
(
L n

4m
= ∅ and N n

4m
≤M n

4m

)
.

Let a be such that Eσv + 1 > a > E|Bτv |, and note that

P
(
L n

4m
= ∅ and N n

4m
≤M n

4m

)
≤ P

(
L n

4m
= ∅ and N n

4m
≤ an

4m

)
+ P

(
M n

4m
≥ an

4m

)
.

It remains to bound the terms on the right-hand side. Note that, if u /∈ L then L∞u =

σu(X). Thus, since (σv+i(X) + 1)i∈Z is an i.i.d. sequence of bounded random variables
with expectation strictly larger than a, standard large deviation bounds yield that
P
(
Ln/4m = ∅ and Nn/4m ≤ an

4m

)
is exponentially small in n (alternatively, we could appeal

to Lemma 5.5 with the sequence (m − σv+i(X))i∈Z to obtain the required stretched-
exponential bound). Towards establishing the bound on the second term, observe that,
by (3.1) and (3.2), (τv+i)i∈Z is a non-negative stopping-like stationary sequence with
exponential tails. Thus, since |Bn| = O(nd+1) by (3.2), Lemma 5.5 implies that

P
(
Mn/4m ≥ an

4m

)
≤ e−Ω

(
n1/(d+2)

)
as n→∞.

5.3 Proof of Lemma 5.4

Let Fv,r denote the σ-algebra generated by (Xu,i)|u−v|≤r,0≤i≤σu . Set r0 := 0 and let rn
denote the smallest integer r > rn−1 for which the random variables stated in the lemma
are Fv,r-measurable. To prove the lemma, it suffices to show that rn ≤ rn−1 + 5∆n for
n ≥ 1, as this implies that rn ≤ 5∆n2. We henceforth abbreviate “is F -measurable” to “is
in F”.

EJP 25 (2020), paper 8.
Page 24/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

Let n ≥ 1 and denote r := rn−1. We aim to show that Snv and {Znw,j}|w−v|≤∆n,j≥0 are in

Fv,r+5∆n, using that Sn−1
v and {Zn−1

w,j }|w−v|≤∆(n−1),j≥0 are in Fv,r. Throughout the proof,
we repeatedly make use of the following easily verifiable properties:

v � Unv � v + ne1 and (Wn
v , J

n
v ) ∈ v +Bn for all v ∈ Zd and n ≥ 0,

which, in particular, by (3.2), imply that

|Unv − v| ≤ n and |Wn
v − v| ≤ ∆n for all v ∈ Zd and n ≥ 0.

Step 1: Consider step n of the algorithm for v and let Cnv ∈ {i, . . . , iv} denote which case
of the algorithm was executed. Let us show that Cnv is in Fv,r+n. To this end, we first check
that the event {Cnv = i} = {v is satified at time n− 1} = {(Wn−1

v , Jn−1
v ) /∈ Bτv(Zn−1)} is in

Fv,r. Indeed, since (Wn−1
v , Jn−1

v ) ∈ v + Bn−1, this event depends only on (Wn−1
v , Jn−1

v )

and {Zn−1
w,j }(w,j)∈v+Bn−1

, both of which are in Fv,r by the definition of r and by (3.2).

Next, let us check that Ln−1

Un−1
v

is in Fv,r+n. Since Un−1
v is in Fv,r and since v′ � Un−1

v′ ≺
v′ + ne1 for all v′, it suffices to check that the event {(v′, u, i, w, j) ∈ Dn−1 for some w, j}
is in Fv,r+n for any v − ne1 � v′ � u ≺ v + ne1 and any i. Indeed, this event is in
Fv′,r ⊂ Fv,r+|v′−v| ⊂ Fv,r+n.

Finally, we check that the event that Un−1
v is loaded at time n− 1 is in Fv,r+n. Note

that, by (4.3), Y n−1
u,i = Xu,i for i ≤ Ln−1

u and Y n−1
u,i = ∅ for i > Ln−1

u . Thus, since Un−1
v

and Ln−1

Un−1
v

are in Fv,r+n and since |Un−1
v − v| ≤ n, it follows that (Y n−1

Un−1
v ,i

)i≥0 is in Fv,r+n.

Hence, as σ is a simple stopping-process, we have that {σUn−1
v

(Y n−1) > Ln−1

Un−1
v
} is in

Fv,r+n, showing that the event that Un−1
v is loaded at time n− 1 is in Fv,r+n.

Step 2: Observe that (Unv , I
n
v ,W

n
v , J

n
v ) is in Fv,r+n. Indeed, this follows from step

1, since in any case of the algorithm, (Unv , I
n
v ,W

n
v , J

n
v ) is a deterministic function of

(Un−1
v , In−1

v ,Wn−1
v , Jn−1

v ).

Step 3: Let us check that Tnv is in Fv,r+3∆n. To this end, it suffices to check that the
event that v is the lexicographical-minimal element of Qn−1(Wn−1

v , Jn−1
v ) is in Fv,r+3∆n,

as Tnv equals 1 in this case and 0 otherwise. For this, it suffices to check that the
set Qn−1(Wn−1

v , Jn−1
v ) itself is in Fv,r+3∆n. Since (Wn−1

v , Jn−1
v ) is in Fv,r and since

|Wn−1
v − v| ≤ ∆(n − 1), it suffices to check that Qn−1(w, j) is in Fv,r+3∆n for any (w, j)

such that |w − v| ≤ ∆n. Fix such a (w, j). We need to show that the event {v′ ∈
Qn−1(w, j)} is in Fv′,r+3∆n for any v′ ∈ Zd. Fix v′ and note that v′ /∈ Qn−1(w, j) unless
|v′ − w| ≤ ∆(n − 1). Thus, we may assume that |v′ − w| ≤ ∆(n − 1). Then, by what
we have shown in step 1 and since Zn−1

w,j is in Fv′,r (by the definition of r), the event
{v′ ∈ Qn−1(w, j)} is in Fv′,r+n ⊂ Fw,r+n+|v′−w|. We have therefore shown that Qn−1(w, j)

is in Fw,r+2∆n ⊂ Fv,r+2∆n+|w−v| ⊂ Fv,r+3∆n.

Step 4: Observe that Snv is in Fv,r+3∆n. Indeed, this follows immediately from steps 2
and 3 using that Dn

v is determined by {(U tv, Itv,W t
v , J

t
v, T

t
v)}1≤t≤n.

Step 5: Let us show that {Znw,j}|w−v|≤∆n,j≥0 is in Fv,r+5∆n. To this end, let (w, j) be
such that |w − v| ≤ ∆n and denote

Dn
w,j := {(v′, u, i) : (v′, u, i, w, j) ∈ Dn}.

By step 4, for any (v′, u, i), the event {(v′, u, i) ∈ Dn
w,j} is in Fv′,r+3∆n ⊂ Fw,r+3∆n+|v′−w|.

Since (v′, u, i) /∈ Dn
w,j unless |v′ − w| ≤ ∆n, we conclude that Dn

w,j is in Fw,r+4∆n ⊂
Fv,r+4∆n+|w−v| ⊂ Fv,r+5∆n. Recall that |Dn

w,j | ≤ 1 by (4.2). If Dn
w,j = ∅ then Znw,j = ∅.

Otherwise, Dn
w,j = {(v′, u, i)} and Znw,j = Xu,i for some (v′, u, i) such that |u − v′| ≤ n,

in which case, |u − v| ≤ |u − v′| + |v′ − w| + |w − v| ≤ 3∆n. It follows that Znw,j is in
Fv,r+5∆n.

EJP 25 (2020), paper 8.
Page 25/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

6 Open questions

We have shown in Theorem 1.1 that the sub-critical Ising measure is fv-ffiid with
stretched-exponential tails, and we know from Remark 1.3 that it is also ffiid with
exponential tails. The following question naturally arises:

Question 6.1. Let d ≥ 2 and let µ be the unique Gibbs measure for the Ising model on
Zd at inverse temperature β < βc(d). Is µ fv-ffiid with exponential tails?

A similar situation occurs in the more general setting of PCAs considered in Section 2,
where we have shown in Theorem 2.1 that the limiting distribution of an exponentially
uniformly ergodic PCA is fv-ffiid with stretched-exponential tails, and we know from
Theorem 2.2 that it is also ffiid with exponential tails. A positive answer to the following
natural question would yield a positive answer to the previous one:

Question 6.2. Let µ be the limiting distribution of an exponentially uniformly ergodic
PCA (as defined in Section 2). Is µ fv-ffiid with exponential tails?

As we have mentioned in remarks after Theorem 1.1, the critical Ising measure is
known to be ffiid, but is not known to be fv-ffiid. This question was raised by van den
Berg and Steif [5, Question 1] and we reiterate it here:

Question 6.3. Let d ≥ 2 and let µ be the unique Gibbs measure for the Ising model on
Zd at the critical inverse temperature β = βc(d). Is µ fv-ffiid?

References

[1] Scot Adams, Følner independence and the amenable Ising model, Ergodic Theory Dynam.
Systems 12 (1992), no. 4, 633–657. MR-1200333

[2] Michael Aizenman, Hugo Duminil-Copin, and Vladas Sidoravicius, Random currents and
continuity of Ising model’s spontaneous magnetization, Comm. Math. Phys. 334 (2015), no. 2,
719–742. MR-3306602

[3] Michael Aizenman and Roberto Fernández, On the critical behavior of the magnetization in
high-dimensional Ising models, J. Statist. Phys. 44 (1986), no. 3–4, 393–454. MR-857063

[4] Jacob van den Berg and Christian Maes, Disagreement percolation in the study of Markov
fields, Ann. Probab. 22 (1994), no. 2, 749–763. MR-1288130

[5] Jacob van den Berg and Jeffrey E. Steif, On the existence and nonexistence of finitary codings
for a class of random fields, Ann. Probab. 27 (1999), no. 3, 1501–1522. MR-1733157

[6] Roland L. Dobrushin, The description of a random field by means of conditional probabilities
and conditions of its regularity, Theor. Probab. Appl. 13 (1968), 197–224.

[7] Robert G. Edwards and Alan D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-
Wang representation and Monte Carlo algorithm, Phys. Rev. D (3) 38 (1988), no. 6, 2009–2012.
MR-965465

[8] Hans-Otto Georgii, Olle Häggström, and Christian Maes, The random geometry of equilibrium
phases, Phase transitions and critical phenomena, Vol. 18, Phase Transit. Crit. Phenom.,
vol. 18, Academic Press, San Diego, CA, 2001, pp. 1–142. MR-2014387

[9] Geoffrey Grimmett, The random-cluster model, Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 333, Springer-Verlag,
Berlin, 2006. MR-2243761

[10] Olle Häggström and Jeffrey E. Steif, Propp-Wilson algorithms and finitary codings for high
noise Markov random fields, Combin. Probab. Comput. 9 (2000), no. 5, 425–439. MR-1810150

[11] Matan Harel and Yinon Spinka, Finitary codings for the random-cluster model and other
infinite-range monotone models, arXiv:1808.02333 (2018).

[12] Nate Harvey, Alexander E. Holroyd, Yuval Peres, and Dan Romik, Universal finitary codes
with exponential tails, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 475–496. MR-2308235

[13] Mark Huber, Exact sampling and approximate counting techniques, STOC ’98 (Dallas, TX),
ACM, New York, 1999, pp. 31–40. MR-1731559

EJP 25 (2020), paper 8.
Page 26/27

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1200333
http://www.ams.org/mathscinet-getitem?mr=3306602
http://www.ams.org/mathscinet-getitem?mr=857063
http://www.ams.org/mathscinet-getitem?mr=1288130
http://www.ams.org/mathscinet-getitem?mr=1733157
http://www.ams.org/mathscinet-getitem?mr=965465
http://www.ams.org/mathscinet-getitem?mr=2014387
http://www.ams.org/mathscinet-getitem?mr=2243761
http://www.ams.org/mathscinet-getitem?mr=1810150
http://arXiv.org/abs/1808.02333
http://www.ams.org/mathscinet-getitem?mr=2308235
http://www.ams.org/mathscinet-getitem?mr=1731559
https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Finitary coding for the sub-critical Ising model with finite expected coding volume

[14] Mark Huber, Perfect sampling using bounding chains, Ann. Appl. Probab. 14 (2004), no. 2,
734–753. MR-2052900

[15] Michael Keane and Meir Smorodinsky, Bernoulli schemes of the same entropy are finitarily
isomorphic, Ann. of Math. (2) 109 (1979), no. 2, 397–406. MR-528969

[16] Michael Keane and Meir Smorodinsky, Finitary isomorphisms of irreducible Markov shifts,
Israel J. Math. 34 (1979), no. 4, 281–286 (1980). MR-570887

[17] Thomas M. Liggett, Interacting particle systems, Classics in Mathematics, Springer-Verlag,
Berlin, 2005, Reprint of the 1985 original. MR-2108619

[18] Fabio Martinelli and Enzo Olivieri, Approach to equilibrium of Glauber dynamics in the
one phase region. I. The attractive case, Comm. Math. Phys. 161 (1994), no. 3, 447–486.
MR-1269387

[19] Donald S. Ornstein, Ergodic theory, randomness, and dynamical systems, Yale University
Press, New Haven, Conn.-London, 1974, James K. Whittemore Lectures in Mathematics given
at Yale University, Yale Mathematical Monographs, No. 5. MR-0447525

[20] Donald S. Ornstein and Benjamin Weiss, Zd-actions and the Ising model, Unpublished, 1977.

[21] James G. Propp and David B. Wilson, Exact sampling with coupled Markov chains and
applications to statistical mechanics, Proceedings of the Seventh International Conference
on Random Structures and Algorithms (Atlanta, GA, 1995), vol. 9, 1996, pp. 223–252. MR-
1611693

[22] Jesús Salas and Alan D. Sokal, Absence of phase transition for antiferromagnetic Potts
models via the Dobrushin uniqueness theorem, J. Statist. Phys. 86 (1997), no. 3-4, 551–579.
MR-1438965

[23] Robert H. Swendsen and Jian-Sheng Wang, Nonuniversal critical dynamics in Monte Carlo
simulations, Physical Review Letters 58 (1987), no. 2, 86.

[24] David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge
University Press, Cambridge, 1991. MR-1155402

[25] Chen N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev.
(2) 85 (1952), 808–816. MR-51740

Acknowledgments. This research was supported by Israeli Science Foundation grant
861/15, the European Research Council starting grant 678520 (LocalOrder), and the
Adams Fellowship Program of the Israel Academy of Sciences and Humanities. I would
like to thank Nishant Chandgotia, Peleg Michaeli, Ron Peled and Jeff Steif for useful
discussions and comments, and Matan Harel for help in proving Lemma 5.5. I am
also grateful to the anonymous referee for suggestions which greatly improved the
presentation.

EJP 25 (2020), paper 8.
Page 27/27

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2052900
http://www.ams.org/mathscinet-getitem?mr=528969
http://www.ams.org/mathscinet-getitem?mr=570887
http://www.ams.org/mathscinet-getitem?mr=2108619
http://www.ams.org/mathscinet-getitem?mr=1269387
http://www.ams.org/mathscinet-getitem?mr=0447525
http://www.ams.org/mathscinet-getitem?mr=1611693
http://www.ams.org/mathscinet-getitem?mr=1611693
http://www.ams.org/mathscinet-getitem?mr=1438965
http://www.ams.org/mathscinet-getitem?mr=1155402
http://www.ams.org/mathscinet-getitem?mr=51740
https://doi.org/10.1214/20-EJP420
http://www.imstat.org/ejp/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction and main results
	Finitary codings for limiting distributions of PCAs
	The Ising model – proof of Theorem 1.1
	High-noise Markov random fields – proof of Theorem 1.9
	Proper colorings – proof of Theorem 1.7

	A general result and proof of Theorem 2.1
	The algorithm
	Informal description of the algorithm
	Further explanation of the figure
	Formal definition of the algorithm
	Comparison between our algorithm and that of van den Berg and Steif [5]

	Proof of Proposition 3.2
	Proof of Proposition 3.2
	Proof of Lemma 5.3
	Proof of Lemma 5.4

	Open questions
	References

