
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 24 (2019), no. 144, 1–22.
ISSN: 1083-6489 https://doi.org/10.1214/19-EJP394

Modular bootstrap agrees with the path integral in the
large moduli limit
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Abstract

Based on the rigorous path integral formulation of Liouville Conformal Field Theory
initiated by David-Kupiainen-Rhodes-Vargas [6] on the Riemann sphere and David-
Rhodes-Vargas [11] on the torus of modulus τ , we give the exact asymptotic behaviour
of the 1-point toric correlation function as Imτ → ∞.

In agreement with formulae predicted within the bootstrap formalism of theoretical
physics, our results feature an (Imτ)−3/2 decay rate and we identify the derivative of
DOZZ formula in the limit.
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1 Introduction

In theoretical physics, there are two approaches to Conformal Field Theories (CFTs).
The first is the Hamiltonian approach: it consists in quantising an action functional and
is usually treated with Feynman path integrals. The second is the conformal bootstrap:
an abstract machinery used to classify CFTs from the algebraic information encoded by
conformal invariance. Liouville CFT arises in the Hamiltonian approach in many fields of
theoretical physics, notably in string theory [21, 5, 10]. In the conformal bootstrap, it is
the first CFT with continuous spectrum that physicists were able to “solve” [24].

From a mathematical point of view, path integrals are not rigorous, but recently, a
rigorous probabilistic framework based on the Gaussian Free Field (GFF) and Gaussian
Multiplicative Chaos (GMC) was introduced in order to make sense of the path integral
approach to LCFT on any compact Riemann surface [6, 11, 14]. The remaining challenge
for probabilists is to show that the path integral carries all the representation theoretic
aspects predicted by the conformal bootstrap.
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Modular bootstrap and path integral

A first step was made in this direction when [18] showed that the structure constants
of LCFT (see Section 1.2) satisfy the so-called DOZZ formula. The term “bootstrapping”
refers to the recursive computation of correlation functions from the structure constants,
and this paper checks the validity of this recursion in a weakly interacting regime. From
a probabilistic point of view, the DOZZ formula is a highly non-trivial integrability result
on GMC, and it was soon followed by the results of [22, 23] where similar methods were
implemented in order to compute the law of GMC on the unit circle and interval.

1.1 Path integral

Let M be either the Riemann sphere S2 ' Ĉ = C∪ {∞} or the torus Tτ ' C/(Z+ τZ)

for some τ ∈ H := {Imτ > 0}. The Liouville action with background metric g on M is the
map SL : Σ→ R (where Σ is some function space to be determined) defined by1

SL(X; g) =
1

4π

∫
M

(
|∇X|2 + 4πµeγXg(z)

)
dz, (1.1)

where µ > 0 is the cosmological constant (whose value is unimportant for this paper) and
γ ∈ (0, 2) is the parameter of the theory. Liouville quantum field theory is the measure
formally defined by

〈F 〉 :=

∫
F (X)e−SL(X;g)DX (1.2)

for all continuous functional F . Here, DX should stand for “Lebesgue” measure on Σ.
Of course, this does not make sense mathematically but it is possible to interpret the
formal measure

1

ZGFF
e−

1
4π

∫
M
|∇X|2dzDX (1.3)

as a Gaussian probability measure on some Hilbert space (to be determined). The
resulting field is called the Gaussian Free Field and the quantity ZGFF is a “normalising
constant” turning the measure (1.3) into a probability measure. We will refer to it as the
partition function of the GFF (see Section 2.1).

As it turns out, the GFF does not live in the space of continuous functions (not even
in L2) but is rather a distribution in the sense of Schwartz. It can be shown that the GFF
almost surely lives in the topological dual of the Sobolev space H1 with respect to the L2

product. Hence the exponential term eγXdz appearing in the action is not a priori well
defined, but it can be made sense of after a regularising procedure based on Kahane’s
theory of Gaussian Mutiplicative Chaos (GMC) (see Section 2.2).

The main observables of the theory are the vertex operators Vα(z0) = eαX(z0) for
any z0 ∈ M and α < Q := 2

γ + γ
2 . The point z0 is called an insertion as it has the

interpretation of puncturing M with a conical singularity of order α/Q (see [16] and
Appendix B). The coefficient α is called the Liouville momentum and ∆α := α

2 (Q − α
2 )

is called the conformal dimension. The vertex operators give rise to the correlation
functions 〈

∏N
n=1 Vαn(zn)〉 which are defined for any pairwise disjoint z1, ..., zN ∈M and

α1, ..., αN ∈ R satisfying the so-called Seiberg bounds

N∑
n=1

αn
Q
− χ(M) > 0 ∀n, αn < Q, (1.4)

where χ(M) is the Euler characteristic. The Seiberg bounds have a geometric nature:
the αn/Q singularity introduced by Vαn(zn) is integrable only if αn < Q, hence the
second bound in (1.4). On the other hand, Gauss-Bonnet theorem shows that the first

1Usually the Liouville action features an additional curvature term. We omitted it since we will work with a
background metric which is flat everywhere except on the unit circle.
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Modular bootstrap and path integral

bound is equivalent to asking for the total curvature on the surface M \ {z1, ..., zN} with
prescribed conical singularities αn/Q at zn to be negative. In particular, the correlation
function exists only if N ≥ 3 for the sphere and N ≥ 1 for the torus.

We now briefly recall the results that will be needed in order to state the main result.
Consider the Riemann sphere S2 ' Ĉ equipped with the metric g(z) = |z|−4

+ (with the
notation |z|+ = max(1, |z|)). We will refer to this metric as the crêpe metric as it consists
in two flat disks glued together (as can be seen from the change of variable z 7→ 1/z).
The 3-point function enjoys some conformal covariance under Möbius transformations
[6], implying that we can choose to put the insertions at 0, 1,∞. It was shown in [18] that
for all α1, α2, α3 satisfying the Seiberg bounds, 〈Vα1

(0)Vα2
(1)Vα3

(∞)〉S2 = Cγ(α1, α2, α3)

where Cγ(α1, α2, α3) is the celebrated DOZZ formula (see Appendix A).
Recall that a torus is a curve C/(Z+ τZ) with τ ∈ H. The moduli group Γ = PSL(2,Z)

acts on H via linear fractional transformation

ψ.τ =
aτ + b

cτ + d

for all ψ =

(
a b

c d

)
∈ Γ. The moduli space is the quotient M := Γ \ H. Two tori

with moduli τ, τ ′ respectively are conformally equivalent if and only if there exists
ψ ∈ Γ such that τ ′ = ψ.τ . The fundamental domain of M is the set {z ∈ H, <(z) ∈
(−1/2, 1/2] and |z| > 1} ∪ {eiθ, θ ∈ [π3 ,

π
2 ]} (see Figure 1), so that the boundary of the

moduli space can be approached by moduli τ = it
π for large t. These correspond to

“skinny” tori. From [11] it is possible to define the 1-point correlation function 〈Vα(0)〉τ
with flat backgroud metric for each modulus τ ∈M and α ∈ (0, Q),

H

e
iπ
3

i

0 1/2 1−1/20

Figure 1: The moduli spaceM = Γ \H (hashed). The vertical lines are identified, so that
it is topologically a sphere with three marked points at eiπ/3, i and∞. The interesting
boundary point is ∞, and we will approach it using moduli τ = it

π for large t. These
correspond to “skinny” tori.

Using the framework of CFT known as the conformal bootstrap, phycisists have
argued that all correlation functions on any surface can be derived from the three-point
function on the sphere by some topological recursion (see Section 1.2). In the case of the
one-point function on the torus, the formula involves an integral over some algebraically
defined objects that do not yet have a probabilistic representation (see Equation (1.6)).
However, these objects have nice asymptotic behaviours as Imτ →∞, explaining why
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Modular bootstrap and path integral

we were able to compute the asymptotic behaviour of the one-point toric function and
match it with the bootstrap prediction in this limit.

1.2 Conformal bootstrap

From the operator theoretic perspective, a quantum field theory is the data of a
self-adjoint non-negative Hamiltonian acting on some Hilbert space. In their founding
paper, [3] argued that the Hilbert space of a 2d conformal field theory must carry a
representation of the Virasoro algebra. This strong constraint on the structure of the
Hilbert space led to spectacular integrability results, among which the DOZZ formula
from Liouville theory. Although the representation theory of the Virasoro algebra is
well-understood mathematically, it is only a conjecture that the path integral of the
quantised Liouville action carries the expected algebraic structure. Thus, except for the
results of [17, 18], all the formulae from the conformal bootstrap are to be considered as
predictions and not facts.

In the conformal bootstrap framework, any CFT should be characterised by

1. The spectrum of the Hamiltonian S ⊂ R+. For each α ∈ C such that ∆α ∈ S, the
field Vα(·) is called a primary field. It is important to note that the conformal boot-
strap assumes that vertex operators are defined for all α ∈ C and not necessarily for
α in the “physical region” defined by the Seiberg bounds. The spectrum of Liouville

theory is conjectured to be [Q
2

4 ,∞), corresponding to momenta α ∈ Q+ iR.

2. The structure constants, i.e. the three-point functions on the sphere Cγ(α1, α2, α3)=

〈Vα1
(0)Vα2

(1)Vα3
(∞)〉S2 . In Liouville CFT, the structure constants are given by the

DOZZ formula [9, 27]. Correlation functions are meromorphic functions of each
αi ∈ C.

From the data of the spectrum and the structure constants, the bootstrap machinery
gives a way to compute recursively all correlation functions on any Riemann surface of
any genus. Thus, “solving” a theory means finding both the spectrum and the structure
constants.

The two most simple examples are the 4-point spherical and the 1-point toric corre-
lation function. Given two copies M1,M2 of the thrice punctured sphere S2 \ {0, 1,∞},
one can glue together annuli neighbourhoods of punctures in M1 and M2 to produce a
4-punctured sphere (see Figure 2). Similarly, given one instance of the thrice-punctured
sphere, one can glue together annuli neighbourhoods of 0 and∞ to produce the once-
punctured torus.

More generally, this procedure gives a way to construct any Riemann surface of
genus g1 +g2 and n1 +n2 punctures by gluing a surface of genus g1 and n1 + 1 punctures
to a surface of genus g2 and n2 + 1 punctures (see [26] for details of this construction).
Similarly a surface of genus g and n+ 2 punctures gives a surface of genus g + 1 and
n+ 2 punctures after gluing together two distinct punctured neighbourhoods. This gives
a recursive procedure to construct any Riemann surface using only instances of the
thrice-punctured sphere. This construction is one of the driving ideas behind the fact
that three-point functions are building blocks for CFTs.

The two simple examples above are the starting point of the bootstrap programme as
they require only one gluing. Physicists have predicted formulae – called the bootstrap
equations – that compute these correlation functions using the spectrum and the struc-
ture constants. The bootstrap equation for the 4-point function on the sphere is given
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glue

glue

Figure 2: Top: On the left, two instances of the thrice-punctured sphere with annuli
neighbourhoods to be identified (curves of the same colour are identified). The resulting
surface on the right: a sphere with 4 marked points. Bottom: Annuli neighbourhoods of
the north and south pole are identified to produce a torus with one marked point.

by2[4]

〈Vα1
(0)Vα2

(z)Vα3
(1)Vα4

(∞)〉cb
S2 =

1

8π
|z|2(Q

2

4 −∆1−∆2)

×
∫ ∞
−∞
|z|2P

2

Cγ(α1, α2, Q− iP )Cγ(Q+ iP, α3, α4)|Fα1234

P (z)|2dP,
(1.5)

where ∆i = αi
2 (Q − αi

2 ) (i = 1, 2) and Fα1234

P (z) = 1 + o(1) is the so-called Virasoro
conformal block – a holomorphic function of z, universal in the sense that it only depends
on the αi’s, P and γ.

There is a similar formula to (1.11) for the 1-point toric function [15, Equation (20)],
which is the one this paper is concerned about. For a torus of modulus τ , we have

〈Vα(0)〉cb
τ =

1

2

∫
R

Cγ(Q− iP, α,Q+ iP )
∣∣∣q P2

4 η(q)−1Hαγ,P (q)
∣∣∣2 dP, (1.6)

where q = e2iπτ is the nome and η(·) is Dedekind’s êta function. Here the so-called
elliptic conformal bloc Hαγ,P admits a power series expansion in q

Hαγ,P (q) =
η(q)

q1/24

(
1 +

∞∑
n=1

Hα,n
γ,P q

n

)

and the function in the brackets is holomorphic in q. The elliptic conformal blocks
should be understood as a basis of solutions for the one-point toric function, and they
are universal in the sense that they depend only on α, γ and P . We will refer to equation
(1.6) as the modular bootstrap. Again, this formula should be valid a priori only for a
primary field but we will show that it is true for α ∈ (0, Q) in the path integral framework
when Imτ →∞.

At this stage, let us stress again that equations (1.5) and (1.6) should be understood
only as guesses since there is still no mathematical justification for them. In general, one
way to establish rigorously the validity of the conformal bootstrap would be to recover its

2We add the superscript cb for “conformal bootstrap” and to differentiate it from the path integral correlation
function.
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results using the rigorous path integral approach of DKRV. This is usually a hard matter
but some works were made in this direction [17, 18]. In the first paper, the authors
showed the validity of some aspects of the bootstrap approach – namely BPZ equation
and Ward identities –, while the second is a proof of the DOZZ formula.

From the point of view of probability, both the conformal blocks and the spectrum
are not understood (there is not even a probabilistic interpretation of complex Liouville
momenta). As we mentioned earlier, the integral in (1.6) simplifies as Imτ →∞, namely
the conformal blocks tend to 1 and the integral freezes at P = 0, avoiding to deal with
complex insertions.

1.3 Main result and outline

Suppose τ = it
π with t > 0 large, so that q = e−2t is real and small. Recall that the

DOZZ formula is meromorphic and symmetric with respect to the real axis, hence

Cγ(Q+ iP, α,Q− iP ) ∼
P→0

P 2∂2
α1α3

Cγ(Q,α,Q).

Taking Hαγ,P (q) ≡ 1 uniformly in q as P → 0, equation (1.6) gives in the limit t→∞

〈Vα(0)〉cb
it
π

=
|η( itπ )|−2

2

∫
R

Cγ(Q− iP, α,Q+ iP )
∣∣∣q P2

4 Hαγ,P (q)
∣∣∣2 dP

∼
|η( itπ )|−2

2

∫
R

Cγ(Q− iP, α,Q+ iP )e−
tP2

2

∣∣Hαγ,P (q)
∣∣2 dP

=
|η( itπ )|−2

2
t−1/2

∫
R

Cγ

(
Q− i P√

t
, α,Q+ i

P√
t

)
e−

P2

2

∣∣∣∣Hαγ, P√
t

(q)

∣∣∣∣2 dP
∼
|η( itπ )|−2

2
t−3/2∂2

α1α3
Cγ(Q,α,Q)

∫
R

P 2e−
P2

2 dP

∼
√
π

2

∣∣∣∣η( itπ
)∣∣∣∣−2

t−3/2∂2
α1α3

Cγ(Q,α,Q).

(1.7)

Rewriting this in terms of the modulus, we have in the limit Imτ →∞

〈Vα(0)〉cb
τ ∼

√
2

π
|η(τ)|−2(Imτ)−3/2∂2

α1α3
Cγ(Q,α,Q). (1.8)

There are two noticeable facts about the asymptotic behaviour of 〈Vα(0)〉 it
π

:

• There is a polynomial decay in t−3/2 correcting the exponential term |η( itπ )|−2.

• The limit is expressed using the derivative of the DOZZ formula at the critical
points α1 = α3 = Q.

Throughout, we will write Tt for a torus with modulus τ = it
π and think of t large.

Our representation for Tt is the rectangle Tt := (−t, t] × S1 with edges {−t} × S1 and
{t} × S1 identified, and equipped with the flat metric. The reason for this choice of
parametrisation is that the variable t will appear as the time driving a Brownian motion.

Let C∞ := R × S1 be the infinite cylinder. This surface is the image of the twice-
punctured sphere Ĉ\{0,∞} under the change of coordinates ψ : C∞ → Ĉ\{0,∞}, z 7→ e−z.
In the sequel, we will always parametrise the sphere with these coordinates. Of particular
interest for us will be the correlation function 〈Vλ(0)Vα(1)Vλ(∞)〉S2 for λ, α ∈ (0, Q) and
σ = 2(λ−Q) + α > 0. In the cylinder coordinates, these take the form [18]

〈Vλ(0)Vα(1)Vλ(∞)〉S2 =
2

γ
µ−

Qσ
γ Γ

(
Qσ

γ

)
E

[(∫
C∞

eγ((λ−Q)|t|+αG(0,t+iθ))dMγ(t, θ)

)−Qσγ ]
(1.9)
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where G is Green’s function on C∞ with zero average on {0} × S1 and Mγ is the chaos
measure associated to a GFF on C∞.

The negative drift λ−Q is essential in order to make the total GMC mass finite near
±∞. On the contrary if λ = Q, the GMC mass is a.s. infinite and the correlation function
vanishes. In this critical case, we consider the truncated correlation function

〈VQ(0)Vα(1)VQ(∞)〉t = 2γ−1µ−
α
γ Γ

(
α

γ

)
E

[(∫
Ct
eγαG(0,·)dMγ(s, θ)

)−αγ ]
, (1.10)

where Ct := (−t, t)× S1.
The truncated correlation function is just the correlation function where we integrate

the GMC measure outside a small disks of radius e−t away from the singularities (when
seen in the planar coordinates).

As for the torus Tt, the 1-point function is defined by

〈Vα(0)〉 it
π

:= 2γ−1µ−
α
γ Γ

(
α

γ

)(
t

π

)−1/2

|η(
it

π
)|−2E

[(∫
Tt

eγαGt(0,·)dMγ
t

)−αγ ]
, (1.11)

where Gt is Green’s function on Tt.
Our main result, stated as Theorem 1.1 below shows that we recover the same

polynomial rate and the derivative DOZZ formula when working with the correlation
function computed in the path integral framework.

Theorem 1.1. Let 〈Vα(0)〉 it
π

be the 1-point toric correlation function given by (1.11).
Then

〈Vα(0)〉 it
π
∼

t→∞

3

4
√
π

∣∣∣∣η(
it

π
)

∣∣∣∣−2

t−3/2∂2
α1α3

Cγ(Q,α,Q). (1.12)

Corollary 1.2. In the setting of Theorem 1.1, we have for τ ∈M:

〈Vα(0)〉τ ∼
Imτ→∞

3

4π2
|η(τ)|−2(Imτ)−3/2∂2

α1α3
Cγ(Q,α,Q).

Remark 1.3. The fact that we don’t recover the same global overall factor as in equation
(1.8) is irrelevant since the correlation functions are defined up to multiplicative factor.

1.4 Steps of the proof

There will be two steps in the proof of Theorem 1.1. First we will compute the exact
asymptotic behaviour of 〈VQ(0)Vα(1)VQ(∞)〉t as t → ∞ (Proposition 1.4) and second
we will compare 〈Vα(0)〉 it

π
to 〈VQ(0)Vα(1)VQ(∞)〉t (Proposition 1.5). This is the point of

using the cylinder coordinates for the sphere, as we can embed Tt into Ct. Namely, we
will show that negative moments of GMC on Tt and on Ct have the same asymptotic
behaviour, up to some explicit constant.

Proposition 1.4. For all α ∈ (0, Q),

lim
t→∞

t〈VQ(0)Vα(1)VQ(∞)〉t =
1

2π
∂2
α1α3

Cγ(Q,α,Q). (1.13)

Proposition 1.5. Let X be a GFF on C∞ and Xt be a GFF on Tt, i.e. X and Xt have
respective covariances G and Gt (Green’s function with zero average on {0} × S1). Let
dMγ and dMγ

t be the associated chaos measures. Then for all r > 0 and α ∈ (0, Q),

lim
t→∞

tE

[(∫
Tt

eγαGt(0,z)dMγ
t (z)

)−r]
=

3

2
lim
t→∞

tE

[(∫
Ct
eγαG(0,z)dMγ(z)

)−r]
. (1.14)
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We will prove these propositions in Section 3. For now, we use Propositions 1.4 and
1.5 to prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Using Propositions 1.4 and 1.5, we have

〈Vα(0)〉 it
π

=
√
π

2γ−1µ−
α
γ Γ
(
α
γ

)
t1/2|η( itπ )|2

E

[(∫
Tt

eγαGt(0,·)dMγ
t

)−αγ ]

∼
t→∞

3
√
π

2
t−1/2|η(

it

π
)|−2〈VQ(0)Vα(1)VQ(∞)〉t

∼
t→∞

3

4
√
π
t−3/2|η(

it

π
)|−2∂2

α1α3
Cγ(Q,α,Q).

(1.15)

In particular we recover the asymptotic formula of equation (1.7) up to an explicit global
multiplicative constant.

Proof of Corollary 1.2. In this proof and this proof only, we make change the embedding
and embed all tori in the square [0, 1]2 as in [11]. We only need to compare the negative
moments of GMC for tori with moduli τ, τ ′ such that Imτ = Imτ ′ and show that they have
the same asymptotic behaviour as Imτ →∞.

Let τ ∈ M with Imτ = t
π . Let Gτ be Green’s function on the torus Tτ of modulus τ

and set Gτ (x) := Gτ (0, x). It is readily seen from [11, Equation (3.4)] that

|Gτ (x)−G it
π

(x)| = O(e−2t)

uniformly in x ∈ Tτ . Now let dMγ
τ and dMγ

it
π

be the GMC measures of a GFF on Tτ and

T it
π

respectively. By Kahane’s convexity inequality (see Section 2.2) we have for all r > 0

E

[(∫
Tτ

eγαGτ (0,·)dMγ
τ

)−r]
= E

∫
T it
π

e
γαG it

π
(0,·)

dMγ
it
π

−r (1 +O(e−2t)). (1.16)

This concludes the proof.

The rest of this paper is devoted to proving Propositions 1.4, 1.5. This will be done is
Section 3 while Section 2 gives the necessary probabilistic background needed for the
proofs.

2 Background

In this section, we recall the definitions of the basic objects needed to define the
correlation functions (1.9) and (1.11) (namely the GFF and GMC) and we give a derivation
of the expression of these correlation functions.

2.1 Gaussian Free Field

We give a basic introduction to the Gaussian Free Field (GFF) on the complete
cylinder C∞ and the torus Tt (we refer the reader to [12, 8, 6, 11]).

To begin with, let us consider the case of C∞ endowed with the flat metric. Let
H1

0 (C∞) be the set of functions f : C∞ → R with weak derivative in L2(C∞) and such that∫ 2π

0
f(0, θ)dθ = 0. Then the (non-negative) Laplacian − 1

2π∆ has a well defined inverse
G : L2(C∞)→ H1

0 (C∞) called the Green function. It has a kernel satisfying for all x ∈ C∞
− 1

2π
∆G(x, ·) = δx∫ 2π

0

G(x, iθ)dθ = 0.

(2.1)
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The GFF on C∞ is the Gaussian field X on whose covariance kernel is given by Green’s
function

E[X(x)X(y)] = G(x, y).

This is done at the formal level, since Green’s function blows up logarithmically near the
diagonal. However, it is possible to show that such a field exists and that it almost surely
lives in H−1

0 (C∞). Hence the GFF on C∞ is a distribution on C∞ (and not a function).
We can define H1

0 (Tt) similarly as the space of functions f : Tt → R with weak
derivatives in L2(Tt) and vanishing mean on Tt. The Laplacian − 1

2π∆t on Tt also has a
Green’s function Gt : L2(Tt)→ H1

0 (Tt).
As explained in Section 1.1, the formal measure e−

1
4π

∫
M
|∇X|2DX should be inter-

preted as a Gaussian measure. To fix ideas, let us consider the case of the torus Tt. Then
the map

(f, g) 7→ − 1

2π

∫
Tt

∆tf · g =: 〈f, g〉∇

defines an inner-product on H1
0 (Tt) that we call the Dirichlet energy. We write ‖·‖∇ for

the associated norm. By analogy with the finite dimensional case, we want to interpret
the density e−

1
2‖X‖

2
∇DX as that of a centred Gaussian random variable with covariance

kernel given by the inverse of − 1
2π∆, i.e. Green’s function Gt. This is nothing but the

GFF of the previous paragraph. To keep with the analogy with the finite dimensional
case, the partition function of the GFF (i.e. the “normalising constant”) is given by [13]

ZGFF(t) := det′(−∆t)
1/2 =

t

π
|η(

it

π
)|2, (2.2)

where det′(−∆t) is the zêta regularised determinant of the Laplacian (see [20, Section
1] for a general definition and [13] p10 for the value on the torus).

The GFF on Tt can be constructed using an orthonormal basis of L2(Tt) of eigenfunc-
tions of −∆t. If (fn)n≥0 is such a basis with associated eigenvalues 0 = λ0 < λ1, ..,≤ λn...,
then (

√
2π
λn
fn)n≥1 is an orthonormal basis of H1

0 (Tt) and we set

Xt :=
√

2π
∑
n≥1

αn√
λn
fn,

where (αn)n≥1 is a sequence of i.i.d. normal random variables. It can be shown that this
formal series indeed converges almost surely in H−1

0 (Tt) [11, Section 3.2].
As such, the constant coefficient of the GFF (a.k.a. the zero mode) depends on the

choice of the background metric, since we impose a vanishing mean in the flat metric. In
order to get rid of this dependence, we complete the definition of the field by “sampling”
the constant coefficient with Lebesgue measure (see the discussion in [6, Section 2.2]).
Informally, we can interpret the zero mode as a Gaussian random variable with variance

1/λ0 = ∞ since
√

2π
λ times the law of an N (0, λ−1) converges vaguely to Lebesgue as

λ→ 0. So we arrive at the field decomposition

X = Xt +
c√
t/π

and the final intepretation is that for all continuous functional F : H−1
0 (Tt)→ R, we set3∫

F (X)e
− 1

4π

∫
Tt
|∇X|2

DX = 2 det′(−∆t)
−1/2

∫
R

E

[
F (Xt +

c√
t/π

)

]
dc

= 2(
t

π
)−1/2|η(

it

π
)|−2

∫
R

E[F (Xt + c)]dc.

(2.3)

3We add a factor 2 to conform with [18].
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Modular bootstrap and path integral

This formula explains the t−1/2|η( itπ )|−2 appearing in the asymptotic formula of Theorem
1.1. Applying this to a regularisation of the vertex operator Vα(0) leads to the expression
(1.11) of the correlation function 〈Vα(0)〉 it

π
[11, Theorem 4.3].

For the torus, the natural eigenbasis of L2(Tt) is given by the functions

feen,m(s, θ) :=
1√

(1 + 1n=0)(1 + 1m=0)πt
cos(

nπs

t
) cos(mθ)

feon,m(s, θ) :=
1√

(1 + 1n=0)πt
cos(

nπs

t
) sin(mθ)

foen,m(s, θ) :=
1√

(1 + 1m=0)πt
sin(

nπs

t
) cos(mθ)

foon,m(s, θ) :=
1√
πt

sin(
nπs

t
) sin(mθ),

(2.4)

and the eigenvalue associated to the eigenfunction fee,eo,oe,oom,n is λn,m := n2π2

t2 +m2. Then
we can set

Xt :=
√

2π
∑

n,m 6=(0,0)

αeen,m√
λn,m

feen,m +
αeon,m√
λn,m

feon,m +
αoen,m√
λn,m

foen,m +
αoon,m√
λn,m

foon,m, (2.5)

where αee,eo,oe,oon,m are i.i.d. centred normal random variables.

An immediate consequence of this decomposition is that we can sample Xt as follows

1. Sample a GFF XD
t with zero (a.k.a. Dirichlet) boundary conditions4 on the cylinder

(0, t)× S1

2. Sample an independent GFF XN
t with free (a.k.a. Neumann) boundary conditions

on the cylinder (0, t)× S1.

3. For all (s, θ) ∈ (−t, t)× S1, set Xt(s, θ) :=
XN
t (|s|,θ)+sign(s)XD

t (|s|,θ)√
2

.

We call this decomposition the odd/even decomposition of fieds, which is based on
the orthogonal decomposition H1

0 (Ct) = H1,e
0 (Ct)⊕H1,o

0 (Ct) where H1,e
0 (Ct), H1,o

0 (Ct) are
respectively the subspaces of even and odd functions with respect to s ∈ (−t, t). The
nice property of this decomposition is that we can view the GFF Xt on Tt as a GFF on Ct
whose odd part is a GFF with zero (Dirichlet) boundary conditions and whose even part
is a GFF with free (Neumann) boundary conditions (see [2, Section 5.1] for a discussion
of this decomposition).

Let us now introduce the radial/angular decomposition of fields [8, 18], which is
based on the orthogonal decomposition H1

0 (Ct) = H1,R
0 (Ct)⊕H1,A

0 (Ct) (for all t ∈ (0,∞])
where

H1,R
0 (Ct) = {f ∈ H1

0 (Ct), f(s, ·) is constant on S1 for all s ∈ (−t, t)}

H1,A
0 (Ct) = {f ∈ H1

0 (Ct), ∀s ∈ (−t, t)
∫
S1
f(s, θ)dθ = 0.}

(2.6)

For a field X on C∞, we will write X0(t) := 1
2π

∫
S1
X(t, θ)dθ for its mean on the circle

{t} × S1 for all t ∈ R. Viewed in the planar coordinates, X0(t) is the mean value of X on
the circle of radius e−t about 0.

4We refer the reader to [2, Section 5] for an introduction to different types of boundary conditions.
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Modular bootstrap and path integral

Now let X be a GFF on C∞, normalised such that X0(0) = 0. Then, from [7, Lemmata
4.2-3], we can write X(t, θ) = Bt + Y (t, θ) with B independent of Y and

1. Bt = X0(t) has the law of a standard two-sided Brownian motion on R.
2. Y is a log-correlated field with covariance kernel

H(t, θ, t′, θ′) := E[Y (t, θ)Y (t′, θ′)] = log
e−t ∨ e−t′

|e−t+iθ − e−t′+iθ′ |
. (2.7)

For a GFF Xt on Tt, the radial part is given by the sum of the radial parts of XD
t and

XN
t . Hence (

√
2Bs)0≤s≤t is the independent sum of a Brownian bridge and a standard

Brownian motion with its mean subtracted.

2.2 Gaussian Multiplicative Chaos

Recall that a GFF X (on C∞ or Tt) is only defined as a distribution, so the exponential
term eγX is ill-defined a priori. However it is possible to make sense of the measure
eγX(s,θ)dsdθ using a regularising procedure based on Kahane’s theory of Gaussian Multi-
plicative Chaos (GMC) (see [25, 1] for more detailed reviews). We use the regularisation
called the circle average: let Xε(x) be a jointly continuous version of the average of
the field on the circle of (Euclidean) radius ε about x ∈ M [2, Section 2]. From [6,
Proposition 2.6] and [11, Proposition 3.8], the sequence of measures

dMγ
ε (x) := eγXε(x)− 1

2γ
2E[Xε(x)2]dx (2.8)

converges in probability as ε→ 0 (in the sense of weak convergence of measures) to an
almost surely non-trivial measure dMγ with no atoms, for all γ ∈ (0, 2). Moreover, the
result of [1, Theorem 1.1] together with universality of the limit (see the discussion in
[2] after Theorem 2.1) shows that Mγ

ε (D)→Mγ(D) in L1 as ε→ 0 for all Borel set D.
An important tool in GMC is Kahane’s convexity inequality, which we will use in form

of Theorem 2.1 below. In this form, this theorem is a consequence of [25, Theorem 2.1]
(see the discussion after Theorem 2.3 of [25]).

Theorem 2.1. [25, Theorem 2.1] Let X and Y be two continuous Gaussian fields on
D ⊂ C such that for all x, y ∈ D

E[X(x)X(y)] ≤ E[Y (x)Y (y)].

Then for all convex function F : R+ → R with at most polynomial growth at infinity,

E

[
F

(∫
D

eγX(x)− γ
2

2 E[X(x)2]dx

)]
≤ E

[
F

(∫
D

eγY (x)− γ
2

2 E[Y (x)2]dx

)]
.

In practice, we can apply this result to the GMC measures of log-correlated fields
(like the GFF) using the regularising procedure. Suppose X,Y are log-correlated fields
with |E[X(x)X(y)− E[Y (x)Y (y)]| ≤ ε for all x, y, and write Mγ , Nγ for their respective
chaos measure. In particular we have

E[X(x)X(y)] ≤ E[Y (x)Y (y)] + ε.

Notice that the field Z(x) = Y (x) +
√
εδ – with δ ∼ N (0, 1) independent of everything –

has covariance kernel E[Y (x)Y (y)] + ε. The argument of [25] in the discussion following
Theorem 2.3 shows that we can apply Kahane’s inequality in the limit, and we get:

E[Mγ(D)−r] ≤ E[e−rγ
√
εδNγ(D)−r] = e

1
2γ

2r2εE[Nγ(D)−r].

By symmetry of the roles of X and Y , the converse inequality is also true, so that in the
end

E[Mγ(D)−r] = E[Nγ(D)−r](1 +Oε→0(ε)).
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2.3 Derivation of the correlation function

Using the GFF and GMC, we give a short derivation of the correlation function
〈Vα(0)〉 it

π
on the torus. In [11], this object is constructed so as to satisfy some invariance

properties, e.g. the Weyl anomaly (Theorem 4.1) and modular invariance (Theorem 4.6).
Hence, as in [18, Section 2.2], we suppose that we have fixed the geometric setting
described above (Green’s function Gt, representative of the modulus τ = it

π ) and take
the invariance properties as part of the definition.

We renormalise the vertex operator Vα(0) by setting

Vα,ε(0) := eαXε(0)−α2

2 E[Xε(0)2]. (2.9)

Applying Girsanov’s theorem, then taking ε → 0 and making the change of variables
u = eγc we can set:

〈Vα(0)〉 it
π

:= lim
ε→0

2(
t

π
)−1/2|η(

it

π
)|−2

∫
R

eαcE
[
eαXε(0)−α2

2 E[Xε(0)2] exp(−µeγcMγ(Tt))
]
dc

= 2(
t

π
)−1/2|η(

it

π
)|−2

∫
R

eαcE

[
exp(−µeγc

∫
Tt

eγαGt(0,·)dMγ)

]
dc

= 2(
t

π
)−1/2|η(

it

π
)|−2γ−1µ−

α
γ Γ(

α

γ
)E

[(∫
Tt

eγαGt(0,·)dMγ

)−αγ ]
.

(2.10)

Remark 2.2. At first glance, our choices of renormalisation in (2.8) and (2.9) may

seem different than the ones in [11] where the renormalisation factors are ε
γ2

2 and ε
α2

2

respectively. However, notice that for the lateral noise Y on the infinite cylinder C∞, we
have E[Y 2

ε (x)] = log 1
ε + o(1) with o(1) uniform, so we get the same limit by Kahane’s

inequality. Moreover, our parametrisation is made precisely to have the Green function
for the lateral noise Yt on Tt converging in a suitable sense to that of Y as t→∞ (see
Section 3.2 and in particular (3.16)).

3 Proofs

3.1 Proof of Proposition 1.4

We will start by showing in Section 3.1.1 that t〈VQ(0)Vα(1)VQ(∞)〉t has a limit t→∞
and find its expression in terms of the derivative DOZZ formula in Section 3.1.2. Section
3.1.3 gives a heuristic explanation for this limit.

3.1.1 Background and notations

Let g(z) = |z|−4
+ be the crêpe metric on Ĉ. Under the conformal change of coordinates

ψ : C∞ → Ĉ defined by ψ(z) = − log z, we get the metric gψ(t, θ) = e−2|t| on the infinite
cylinder.

Let X(t, θ) = Bt + Y (t, θ) be a GFF on C∞. By conformal covariance [14, Equation
(3.13)], taking the chaos of X with respect to gψ is the same as taking the chaos of
X(t, θ)−Q|t| with respect to Lebesgue measure. Equivalently, this is the same as taking
the radial part of the GFF to be the drifted Brownian motion Bt −Q|t|. Notice that the
angular part is unchanged in this process and we write dNγ for the GMC measure of
Y . We will be interested in the negative moments of GMC. To this end, for all t < t′, we
introduce the random variable

Zt,t′(λ) :=

∫
[t,t′]×S1

eγ(Bs+(λ−Q)|s|+αG(0,s+iθ))dNγ(s, θ), (3.1)
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Modular bootstrap and path integral

where r > 0 is fixed throughout the proof and recall G(·, ·) is Green’s function on C∞. For
notational convenience, we also define Zt(λ) := Z−t,t(λ).

We can see in the expression of Zt(λ) that the Brownian motion has a drift that makes
the chaos measure integrable when |t| → ∞. The value of the drift is precisely linked
to the strength of the singularity and in vanishes when λ = Q, causing the mass to
explode and the negative moments to vanish, so we have Z∞(Q) := lim

t→∞
Zt(Q) =∞ a.s.,

and lim
t→∞

E[Zt(Q)−r] = 0 [6, Theorem 3.2]. On the other hand, Zt(λ) converges a.s. to a

positive, finite random variable Z∞(λ) for all λ ∈ (Q− α
2 , Q), and all negative moments

of Z∞(λ) are positive and finite. Furthermore, the DOZZ formula states that for all
λ ∈ (Q− α

2 , Q), we have

Cγ(λ, α, λ) = 2γ−1µ−
α
γ Γ

(
α

γ

)
E
[
Z∞(λ)−

α
γ

]
.

The rate at which the negative moments of Zt(Q) vanish with t was studied in [7]
where it was shown that tE[Zt(Q)−r] has a non-trivial limit as t→∞ (Theorem 2.1 with
k = 2 and t = log 1

ε ). Let us briefly recall what the strategy was, as we will need some
ingredients from the proof. What we state from here to equation (3.10) is the idea of the
proof of Proposition 3.1 of [7]. For b, t > 0, define the event

Ab,t :=

{
sup
−t≤s≤t

Bs < b

}
. (3.2)

By independence of the Brownian motions (Bt)t≥0 and (B−t)t≥0, we have

P(Ab,t) =

(
2

∫ b/
√
t

0

e−
x2

2

√
2π

dx

)2

=: f(b/
√
t)2, (3.3)

with the elementary estimates f(x)→ 1 as x→∞ and

f(x) ∼
√

2

π
x as x→ 0. (3.4)

The law of (b−Bs)−t≤s≤t converges as t→∞ to a two-sided, 3-dimensional Bessel
process on R taking the value b at t = 0 [7, Lemma 4.5] and the independence of the
left and right processes). Hence the limiting process (Bs)s∈R goes to −∞ as |s| → ∞ at
scale roughly −

√
|s|.

Let Pb be the law of the GFF on C∞ where the radial part is replaced by b minus a
2-sided, 3-dimensional Bessel process taking the value b at t = 0. Under Pb, Z∞(Q) is
a.s. a non-trivial random variable, and Eb[Z∞(Q)] < ∞ [7, Equations (5.5) and (5.6)].
Furthermore the authors show that Eb [Z∞(Q)−r] ∈ (0,∞) and its value is characterised
by [7, Proposition 3.1]:

lim
t→∞

tE
[
Zt(Q)−r

]
= lim
t→∞

lim
b→∞

tE[Zt(Q)−r1Ab,t ]

= lim
t→∞

lim
b→∞

tf(b/
√
t)2E

[
Zt(Q)−r

∣∣Ab,t]
= lim
b→∞

lim
t→∞

tf(b/
√
t)2E

[
Zt(Q)−r

∣∣Ab,t]
=

2

π
lim
b→∞

b2Eb
[
Z∞(Q)−r

]
.

(3.5)

The exchange of limits in b and in t is justified by the uniform convergence in b with
respect to t. In the last line, the limit in b can be shown to be finite using estimates on
hitting probabilities of Bessel processes.
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3.1.2 Characterisation of the limit

We now turn to the study of the behaviour of E[Z∞(λ)−r] as λ → Q. From the in-
dependence of the left and right radial processes, it suffices to study the one-sided

problem and show that E[Z0,∞(λ)−r]
2(Q−λ) has a limit as λ → Q and that this limit coincides

with lim
b→∞

bEb[Z0,∞(Q)−r].

Let λ ∈ (Q− α
2 , Q). By the Williams path decomposition (see e.g. [18, Lemma 2.6]),

we can sample a Brownian motion in R+ with drift λ−Q < 0 as follows:

1. Sample an exponential random variable M ∼ Exp(2(Q− λ)) (this is the supremum
of the process).

2. Conditionally on M , run an independent Brownian motion with drift Q−λ > 0 until
its hitting time Tλ,b of b.

3. Conditionally on Tλ,b, run an independent Brownian motion in [Tλ,b,∞) with drift
λ−Q < 0 started from b and conditioned to stay below b.

By definition, what is meant by Brownian motion with drift ν > 0 conditioned to stay
positive is the process with generator 1

2
d2

dx2 + ν cot(νx) d
dx [18, Section 12.4]. In the limit

ν → 0, we get the generator 1
2
d2

dx2 + 1
x
d
dx of the 3d Bessel process. Thus, on the event

that M = b, the Williams path decomposition converges in law as λ→ Q to the joining of
a Brownian motion run until its hitting time of b and a Brownian motion conditioned to
stay below b (i.e. b minus a 3d Bessel process). Thus, Williams’ path decomposition gives
a way to make sense of conditioning on the value of the supremum of the radial process,
and we can write for all r > 0,

E [Z0,∞(λ)−r]

2(Q− λ)
=

∫ ∞
0

E
[
Z0,∞(λ)−r|M = b

]
e2b(λ−Q)db.

As already seen in Section 3.1.1, the properties of the Bessel process imply that, for all b >
0, E[Z0,∞(Q)−r|M = b] := lim

λ→Q
E[Z0,∞(λ)−r|M = b] exists and is positive. Furthermore,

the positivity of the GMC measure implies

E
[
Z0,∞(λ)−r|M = b

]
≤ E

[
Zτb−1,τb(λ)−r|M = b

]
≤ e−rγ(b−1)E

[
Z0,τ1(λ)−r|M = 1

]
, (3.6)

where we wrote τx for the hitting time of x by the drifted process, and used the Markov
property and the stationarity of the lateral noise. From [7, Lemma 4.4], we know that
E[Z0,τ1(Q)−r|M = b] < ∞. Actually, this lemma also holds in the case λ < Q since it
relies on an estimate of P(τ1 < t) as t→ 0 which gives the same result in the drifted case.
This implies that E [Z0,∞(λ)−r|M = b] decays exponentially fast as b→∞. By stochastic
domination [18, Section 9.2], E[Z0,∞(λ)−r|M = b] is also decreasing in λ for all b. It then
follows from the dominated convergence theorem that

lim
λ→Q

E [Z0,∞(λ)−r]

2(Q− λ)
=

∫ ∞
0

E
[
Z0,∞(Q)−r|M = b

]
db. (3.7)

To conclude, we must show that this limit coincides with lim
b→∞

bEb[Z∞(Q)−r]. Under

Pb, (b−Bs)s≥0 is a 3d-Bessel process started from b, so (b−Bs)−1 is a positive continuous
local martingale a.s. converging to 0 as s→∞. Applying the optional stopping theorem,
we find that Pb(σx < ∞) = x

b for all x ∈ (0, b), where σx is the first hitting time of x by
(b−Bs)s≥0 (this is the well-known fact that the infimum of a Bessel process started from
b > 0 is uniformly distributed in (0, b), see also [19, Exercise 2.5] for a more general
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setting). It follows that under Pb, M = sup
s≥0

Bs is uniformly distributed in [0, b]. Hence

lim
b→∞

bEb
[
Z0,∞(Q)−r

]
= lim
b→∞

∫ b

0

Eb
[
Z0,∞(Q)−r|M = b′

]
db′

=

∫ ∞
0

E
[
Z0,∞(Q)−r|M = b

]
db.

(3.8)

Thus we find the same limit as in (3.7). Now we go back to the two-sided setting.
Since the left and right radial processes are i.i.d. Brownian motions, we can apply the
strategy outlined in (3.5), (3.7) and (3.8) simultaneously to each one of these Brownian
motions. This yields:

lim
λ→Q

E [Z∞(λ)−r]

4(Q− λ)2
= lim
t→∞

πt

2
E
[
Zt(Q)−r

]
.

Plugging this into the expression for the correlation function yields

π

2
lim
t→∞

t〈VQ(0)Vα(1)VQ(∞)〉t = 2γ−1µ−
α
γ Γ

(
α

γ

)
lim
t→∞

π

2
tE
[
Z−rt

]
= 2γ−1µ−

α
γ Γ

(
α

γ

)
lim
λ→Q

E [Z∞(λ)−r]

4(λ−Q)2

=
1

4
lim
λ→Q

Cγ(λ, α, λ)

(λ−Q)2
.

(3.9)

3.1.3 Heuristic interpretation of the limit

For the record, we give a heuristic interpretation of the result of Proposition 1.4. Using
the expression of the Radon-Nikodym derivative of the Bessel process with respect to
Brownian motion, one can rewrite (3.5) as

lim
t→∞

tE
[
Z−rt

]
=

2

π
lim
t→∞

E
[
BtB−tZ

−r
t

]
(3.10)

and we define the (renormalised) correlation function to be

R〈VQ(0)Vα(1)VQ(∞)〉S2 := 2γ−1µ−
α
γ Γ

(
α

γ

)
lim
t→∞

E
[
BtB−tZ

−r
t

]
. (3.11)

We have seen that this correlation function can be expressed using the deriva-
tive of DOZZ formula at the critical point α1 = α3 = Q. The usual interpretation of
R〈VQ(0)Vα(1)VQ(∞)〉S2 is that of a derivative operator. Indeed, the value of Bt in equa-
tion (3.11) is the average of the field on the circle of radius e−t about 0, so it is formally
X(0) in the limit t→∞. Still on the formal level, we have the interpretation

R〈VQ(0)Vα(1)VQ(∞)〉 = 〈X(0)VQ(0)Vα(1)X(∞)VQ(∞)〉S2

=

〈
d

dλ
Vλ(0)|λ=QVα(1)

d

dλ
Vλ(∞)|λ=Q

〉
S2

.
(3.12)

This explains why we could expect R〈VQ(0)Vα(1)VQ(∞)〉S2 to be expressed in terms
of the (second) derivative of DOZZ formula at the critical point.

3.2 Proof of Proposition 1.5

The second item in the proof of Theorem 1.1 is the equivalent asymptotic behaviour
of 〈Vα(0)〉 it

π
and 〈VQ(0)Vα(1)VQ(∞)〉t. This will follow from comparisons between Green’s

function on the infinite cylinder and the torus.
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Lemma 3.1. Let Xt be a GFF on the torus Tt (embedded into Ct) with the normalisation∫
S1
Xt(0, θ)dθ = 0. Then we can write Xt(s, θ) = Bt(s) + Yt(s, θ) with Bt independent of

Yt and

1. For all s ∈ (−t, t), Bt(s) = Be(|s|)+sign(s)Bo(|s|)√
2

where (Bo(s))0≤s≤t is standard Brow-

nian bridge and (Be(s))0≤s≤t is an independent standard Brownian motion.

2. Yt is a log-correlated Gaussian field with covariance kernel (recall equation (2.7))

Ht(s, θ, s
′, θ′) =

∑
n∈Z

H(s, θ, s′ + 2nt, θ′). (3.13)

Proof. With the choice of normalisation of the Lemma, we can sample Xt simply by
setting Xt := X̃t −

∫
S1
Xt(0, θ)dθ where X̃t is a GFF on Tt with vanishing mean on Tt.

From Section 2.1, the radial part of X̃t on (0, t)× S1 is Bo(s)+Be(s)√
2

where (Bo(s))0≤s≤t is

a standard Brownian bridge and Be(s) is an independent Brownian motion whose mean
has been subtracted. The normalisation of Xt is simply translating Bo along the y axis
such that Bot (0) = 0, so the radial part is the claimed one.

Now we deal with the angular part Xt. From equation (2.7), we have for all s ∈ (−t, t),
θ ∈ S1 and n ∈ Z \ {0}

H(0, 0, s+ 2nt, θ) = log
1

|1− e−|s+2n|t−iθ|
= O|n|→∞(e−2|n|t),

implying that the series (3.13) converges absolutely on compact subsets of Ct \ {(s, θ)}
for all (s, θ) ∈ Ct (we used the translation invariance of H). In particular, Ht(s, θ, ·, ·)
defines a function on Tt.

For all (s, θ) ∈ Ct, the function (s′, θ′) 7→
∑
n 6=0H(s, θ, s′ + 2nt, θ′) defined on Ct is an

absolutely convergent sum of harmonic functions on Ct (with respect to the Laplacian on
C∞), and the second derivatives also converge absolutely. Hence the function is harmonic
on Ct. Note also that Ht(s, θ, ·, ·) is a sum of angular functions, so it is also angular. Let
ϕ ∈ C∞(Tt) be an angular function. We can view ϕ as a 2t-periodic function on C∞ and
we have 〈− 1

2π∆tHt(s, θ, ·, ·), ϕ〉 = 〈−1
2π ∆H(s, θ, ·, ·), ϕ〉 = ϕ(s, θ). So by definition Ht is the

angular part of Green’s function on Tt.

Proof of Proposition 1.5. Let us introduce some notation. Fix δ > 0 and write

Zt :=

∫
Ct
eγ(B(s)+αG(0,s+iθ))dNγ(s, θ) = Ut + ξt, (3.14)

where

Ut =

∫
C
t1−δ

eγ(B(s)+αG(0,s+iθ))dNγ(s, θ)

ξt =

∫
(−t,−t1−δ)∪(t1−δ,t)×S1

eγ(B(s)+αG(0,s+iθ))dNγ(s, θ)

(3.15)

We define also

Z̃t :=

∫
Tt

eγ(Bt(s)+αGt(0,s+iθ))dNγ
t (s, θ) = Ũt + ξ̃t

where Ũt and ξ̃t are defined similarly (here dNγ
t is the GMC measure of the field Yt). The

term Ũt is the core of the mass while ξ̃t is some error term that we have to control. We
will see that Ũt behaves exaclty as Ut as t→∞.
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It follows from Lemma 3.1 that for all x, y ∈ Ct1−δ

|Ht(x, y)−H(x, y)| =

∣∣∣∣∣∣
∑
n6=0

H(x, y + 2nt)

∣∣∣∣∣∣ ≤ Ce−2t (3.16)

for some constant C > 0 independent of t.
Let b > 0 and define the event

Ãb,t :=

{
sup
−t≤s≤t

Bt(s) < b

}
.

By Brownian scaling, there exists a function g : R+ → [0, 1] such that P
(
Ãb,t

)
= g(b/

√
t).

It is clear that lim
x→∞

g(x) = 1 and we will show in Lemma 3.2 (at the end of this section)

that g(x) ∼
x→0

3
πx

2.

On Ãb,t, the process (b − Bt(s))0≤s≤t is absolutely continuous with respect to a 3d-
Bessel process started from b. Hence there exists ν > 0 such that the event{

∀s ∈ (t1−δ, t) ∪ (−t,−t1−δ), Bt(s) ≤ −t1/2−ν
}

occurs with high probability as t→∞, implying that ξ̃t → 0 in probability conditionally
on Ãb,t as t→∞. Similarly, ξt → 0 in probability as t→∞ when conditioned on Ab,t.

From the previous subsection we know that Zt conditioned on Ab,t has a non-trivial
limit Z∞ as t→∞, and the negative moments of Z∞ are finite. Now for each ε > 0, we
have

E[U−rt |Ab,t] ≥ E[Z−rt |Ab,t] ≥ E[(Ut + ε)−r1ξt<ε|Ab,t], (3.17)

and taking first t→∞ then ε→ 0 yields

lim
t→∞

E[U−rt |Ab,t] = lim
t→∞

E[Z−rt |Ab,t].

We now turn to the study of Ũt. Let Et be the Radon-Nikodym derivative of the
law of the process (Bt(s))−t1−δ≤s≤t1−δ (conditioned on Ãb,t) with respect to that of the
process (B(s))−t1−δ≤s≤t1−δ (conditioned on Ab,t). From Lemma 3.1, this is the Radon-
Nikodym derivative of the Brownian bridge Bo in [0, t] stopped at t1−δ with respect
to Brownian motion in [0, t1−δ]. From [19, Exercise 9.4], this is explicitely given by

(1− t−δ)−1/2e
−

(Bo
t1−δ

)2

2(t−t1−δ) , so Et → 1 a.s. and in L1. Thus:

E
[
Ũ−rt |Ãb,t

]
= E

Et (∫
C
t1−δ

eγ(B(s)+αGt(0,s+iθ))dNγ
t (s, θ)

)−r∣∣∣∣∣∣Ab,t


= E
[
EtU−rt |Ab,t

]
(1 +O(e−2t)),

(3.18)

where we have used the estimate (3.16) and Kahane’s convexity inequality (Section 2.2)
to go from Yt (resp. Gt(0, ·)) to Y (resp. G(0, ·)). Hence

lim
t→∞

E[Ũ−rt |Ãb,t] = lim
t→∞

E[U−rt |Ab,t].

Since ξ̃t → 0 in probability conditionally on Ãb,t, we find using the same argument as
in (3.17)

lim
t→∞

E[Z̃−rt |Ãb,t] = lim
t→∞

E[Ũ−rt |Ãb,t] = lim
t→∞

E[U−rt |Ab,t] = lim
t→∞

E[Z−rt |Ab,t]. (3.19)
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Finally, we want to take the limit b→∞ in the above equation and then exchange the
order of the limits. This is the argument of [7] leading to (3.5) but we briefly recall it for
completeness. Recall that E[Z−rt | sup0≤s≤tBs = x] = e−γxr ×O(1) as x→∞, where O(1)

is independent of t > 0. This is because factorising out the maximum gives a contribution
e−bxr on this event (see also (3.6)). Moreover, the law of sup0≤s≤tBs conditionally on

{sup0≤s≤tBs < b} is absolutely continuous with respect to
1(0,b)dx

b (the uniform measure
on (0, b)), and the density is uniformly bounded in t > 0. Thus, the convergence of
b2E[Z−rt |Ab,t] as b→∞ is exponentially fast, with a rate O(e−γbr) independent of t > 0.
This uniform convergence enables to exchange limits, and with the estimate (3.4) we find
lim
b→∞

lim
t→∞

b2E[Z−rt |Ab,t] = π
2 lim
t→∞

tE[Z−rt ]. The same argument applies to Z̃t, and Lemma

3.2 then entails:

lim
t→∞

π

3
tE[Z̃−rt ] = lim

b→∞
b2 lim
t→∞

E
[
Z̃−rt |Ãb,t

]
= lim
b→∞

b2 lim
t→∞

E
[
Z−rt |Ab,t

]
= lim
t→∞

π

2
tE
[
Z−rt

]
,

(3.20)

i.e. lim
t→∞

tE
[
Z̃−rt

]
= 3

2 lim
t→∞

tE
[
Z−rt

]
.

We conclude this section by stating and proving Lemma 3.2.

Lemma 3.2. Let (Bt)−1≤t≤1 be a standard 2-sided Brownian motion. Then

P

(
sup
−1≤t≤1

Bt < x

∣∣∣∣B1 = B−1

)
∼
x→0

3

π
x2,

where we abuse notation by writing P( · |B1 = B−1) = lim
ε→0

P( · | |B1 −B−1| ≤ ε).

Proof. For ε > 0 we have

P

(
sup
−1≤t≤1

Bt < x

∣∣∣∣ |B1 −B−1| < ε

)

= P

(
sup
−1≤t≤1

Bt < x

) P(|B1 −B−1| < ε

∣∣∣∣ sup
−1≤t≤1

Bt < x

)
P (|B1 −B−1| < ε)

.

(3.21)

We have the basic estimate

P(|B1 −B−1| < ε) ∼
ε→0

2ε

∫
R

e−x
2

2π
dx =

ε√
π
.

Now we need to estimate the same probability when conditioned on

{
sup
−1≤t≤1

Bt < x

}
.

On this event, the process (x − Bt)−1≤t≤1 has the law of a two-sided Bessel process
started from x. At time 1, the density of this Bessel process is the density of ((x +

X)2 + Y 2 + Z2))1/2 where (X,Y, Z) are i.i.d. normal random variables. Let fx(·) be the
density function of this random variable. It is straightforward to check that f0(r) =√

2
π r

2e−
r2

2 1u≥0 and furthermore∫ ∞
0

f0(r)2dr =
2

π

∫ ∞
0

r4e−r
2

dr =
3

4
√
π
.

Now we have the following bounds on fx (recall x ≥ 0)√
2

π
r2e−

(r+x)2

2 ≤ fx(r) ≤
√

2

π
r2e−

(r−x)2
2 ,
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so that ∫ ∞
0

fx(r)2dr =
3

4
√
π

+ ox(1).

From here a straightforward computation shows

lim
ε→0

P

(
|B1 −B−1| < ε

∣∣∣∣ sup
−1≤t≤1

Bt < x

)
P(|B1 −B−1| < ε)

=

∫∞
0
f0(r)2dr∫

R
e−r2

2π dr
+ ox(1) =

3

2
+ ox(1).

Hence recalling (3.21):

P

(
sup
−1≤t≤1

Bt < x

∣∣∣∣B1 = B−1

)
= lim
ε→0

P

(
sup
−1≤t≤1

Bt < x

∣∣∣∣ |B1 −B−1| < ε

)
∼
x→0

3

π
x2.

Let us see how the Lemma is useful. Let (Bt)−1≤t≤1 be standard two-sided Brownian
motion. Then the even partBet := Bt+B−t√

2
and the odd partBot := Bt−B−t√

2
are independent

Brownian motions, and |B1 − B−1| =
√

2|Bo1 |. So conditioning on the event B1 =

B−1 is conditioning on Bo1 = Bo−1, i.e. taking the odd part to be a Brownian bridge.

Hence if B̃−1≤t≤1 is the radial part of the GFF on T1, we have P

(
sup
−1≤t≤1

B̃t < x

)
=

P

(
sup
−1≤t≤1

Bt < x

∣∣∣∣B1 = B−1

)
. The general case follows by Brownian scaling.

A The DOZZ formula

The DOZZ formula is the expression of the 3-point correlation function on the sphere
〈Vα1(0)Vα2(1)Vα3(∞)〉S2 . The formula reads

Cγ(α1, α2, α3) =

(
πµ
(γ

2

)2− γ
2

2 Γ(γ2/4)

Γ(1− γ2/4)

)−α−2Q
γ

×
Υ′γ

2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2

(
α−2Q

2

)
Υ γ

2

(
α
2 − α1

)
Υ γ

2

(
α
2 − α2

)
Υ γ

2

(
α
2 − α3

) ,
(A.1)

where α = α1 + α2 + α3 and Υ γ
2

is Zamolodchikov’s special function. It has the following
integral representation for <z ∈ (0, Q)

logU(z) =

∫ ∞
0

(Q
2
− z
)2

e−t −
sinh2

((
Q
2 − z

)
t
2

)
sinh

(
γt
4

)
sinh

(
t
γ

)
 dt

t

and it extends holomorphically to C.
It satisfies the functional relation U(Q − z) = U(z) and it has a simple zero at 0 if

γ2 ∈ R \Q.5 Thus it also has a simple zero at Q and U′(Q) = −U′(0) 6= 0.
Of great importance in this paper is the derivative DOZZ formula at the critical point

α1 = Q = α3 which has the expression

∂2
α1α3

Cγ(Q,α,Q) =

(
πµ
(γ

2

)2− γ
2

2 Γ(γ2/4)

Γ(1− γ2/4)

)−αγ Υ′γ
2
(0)3Υ γ

2
(α)

Υ γ
2

(
α
2

)4 .

B Conical singularities

We study the effect of a change of measure with respect to the Liouville field. Let
X be a GFF on S26 with some background metric g and dMγ

g be the associated chaos

5This is not really a restriction since the theory is continuous in γ.
6We work on the sphere for concreteness but this argument is valid on any compact Riemann surface.
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λ = 0

0 < λ < Q

λ = Q

0
∞

1

1

∞
0

0
∞

1

Figure 3: Conic degeneration under the insertion of the vertex operators Vλ(0) and
Vλ(∞). Top: For λ = 0, we have the crêpe metric, i.e. two disks glued together. Middle:
For 0 < λ < Q, we have two Euclidean cones glued together. Bottom: For λ = Q, the
angle of the cones is 0, so we get a bi-infinite cylinder. The limit λ→ Q is the setting of
the proof of Proposition 1.4

measure (regularised in g). Let ω ∈ H1
0 be a function such that e

Q
2 ω ∈ L1(dMγ). Let

ĝ := eωg and dMγ
ĝ be the chaos of X regularised in ĝ. Then for all r > 0, applying

succesively Girsanov’s theorem and conformal covariance, we find

E

[
e〈X,

Q
2 ω〉∇−

Q2

8 ‖ω‖
2
∇Mγ(S2)−r

]
= E

[(∫
S2
e
γQ
2 ωdMγ

g

)−r]
= E

[
Mγ
ĝ (S2)−r

]
. (B.1)

In particular, the vertex operator which is formally written Vα(z) = eαX(z)−α2

2 E[X(z)2] is
a special case of the previous setting with ω = 2α

Q G(z, ·). Hence, after regularising, we
find that adding a vertex operator is the same as conformally multiplying the metric and
set ĝ = e

2α
Q G(z,·)g, i.e. the new metric satisfies log ĝ(z + h) = − 2α

Q log |h|+Oh(1) so it has
a conical singularity of order α/Q at z.

Another way to see this is to look at the curvature, which reads in the distributional
sense

Kĝ = e−
2α
Q G(z,·)

(
Kg +

4πα

Q

(
δz −

1

Volg(S2)

))
,

where Volg(S
2) is the volume of the sphere in the metric g. Thus the metric has an atom

of curvature at z, meaning it has a conical singularity.
If α = Q, the singularity is no longer integrable, so the volume is infinite and the

surface has a semi-infinite cylinder. Loosely, we will refer to this situation as a cusp,
even though the hyperbolic cusp has finite volume because of the extra log-correction in
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the metric:

log ĝ(z + h) = −2 log |h| − 2 log log
1

|h|
+O(1).

The reason for this abuse of terminology is that we are interested in GMC measure.
Indeed, suppose z = 0 in the sphere coordinates. By conformal covariance, if we use
the cylinder coordinates, the log-correction term is the same as shifting the radial
part of the GFF from the Brownian motion (Bs)s≥0 to (Bs − Q log(1 + s))s≥0. Up to
time t, this corresponds to a change of measure given by the exponential martingale

e
−Q

∫ t
0
dBs
1+s−

Q2

2

∫ t
0

1
(1+s)2

ds
, which is uniformly integrable since

∫∞
0

1
(1+t)2 dt < ∞. So the

new field is absolutely continuous with respect to the old one, meaning that GMC does
not make a difference between a Euclidean cylinder and a hyperbolic cusp.
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