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A deterministic walk on the randomly oriented
Manhattan lattice
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Abstract

Consider a randomly-oriented two dimensional Manhattan lattice where each hori-
zontal line and each vertical line is assigned, once and for all, a random direction by
flipping independent and identically distributed coins. A deterministic walk is then
started at the origin and at each step moves diagonally to the nearest vertex in the
direction of the horizontal and vertical lines of the present location. This definition
can be generalized, in a natural way, to larger dimensions, but we mainly focus on
the two dimensional case. In this context the process localizes on two vertices at all
large times, almost surely. We also provide estimates for the tail of the length of paths,
when the walk is defined on the two dimensional lattice. In particular, the probability
of the path to be larger than n decays sub-exponentially in n. It is easy to show that
higher dimensional paths may not localize on two vertices but will still eventually
become periodic, and are therefore bounded.
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1 Introduction

Random walks receive significant attention in the probability literature. The source
of randomness can be associated to the walker, the environment in which she evolves
or both. When the environment is random, most of the effort has concentrated on
the independent and identically distributed (i.i.d.) case. In this paper, we study a
deterministic walk in a random environment with infinite length correlation. The set-
ting is that of the randomly oriented Manhattan lattice in Zd, in which lines that are
parallel to the axes are uniformly and independently oriented. Ledger et al. [6] study
the simple random walk on this oriented lattice, i.e. a walker that chooses her next
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A walk on the random Manhattan lattice

step uniformly at random amongst the d coordinate directions and with the orien-
tation prescribed by the environment. They prove bounds that point to the super-
diffusivity of this process in dimensions 2 and 3 but the question of transience remains
an open problem. See [2, 3, 4] for more precise results on a partially oriented lat-
tice, and [2, 7] for the role and importance of such models in quantum statistical
physics.

Our goal is to study a deterministic process that moves diagonally on the randomly
oriented Manhattan lattice by following the local drift of the previous walk, i.e. in a
direction that combines all d orientations at the present vertex: From a vertex x ∈ Zd,
the walk travels to the vertex y where, for i = 1, . . . , d, yi − xi = ±1 depending on the
orientation of the line parallel to the ith axis and going through x.

In our analysis we focus mostly on the two dimensional case, which is formally similar
to the so-called corner percolation of Pete [9]. In the latter the walk alternates between
horizontal and vertical steps, following the random orientation of the corresponding line.
It is shown ([9]) that the path forms a finite cycle, almost surely, and that the distribution
of its diameter has a polynomial tail, with an explicit exponent. Let us remark that such
a path can also be viewed as a beam of light among mirrors placed on vertices of Z2 and
rotated according to the random line orientations; such random mirror models (see e.g.
[5] for the usual i.i.d. setting), as discrete analogs of Lorentz gas, are another important
instance of deterministic motion in random environment.

In contrast to corner percolation, we prove that in dimension 2 the above defined
process eventually localizes on exactly two vertices. We also study the tail of the length
of the path starting from the origin and show that it has as a stretched exponential
decay. While the fact that paths are eventually periodic is rather natural, and expected
for wide classes of deterministic walks, the property that the only cycles are trivial ones
(i.e. of length 2) seems to single this model out. Our approach to prove this property
is combinatorial in nature, and does not rely on the i.i.d. structure of the orientation of
lines.

Let us finally note that deterministic walks in random environment can also be viewed,
by “integrating the environment out”, i.e. under the annealed measure, as random walks
with a long memory, with the further property that they are automatically self avoiding
(before possibly cycling). A remarkable example in that respect is the exploration path
of the frontier of a percolation cluster, subject to some boundary conditions (see for
instance [1] for a celebrated result of convergence to an SLE6 process).

1.1 Model and main results

Let U = (Uy)y∈Z and V = (Vx)x∈Z be sequences of random variables in {−1, 1}
defined on a probability space (Ω,A,P). U and V can be thought of as orientations of
respectively horizontal and vertical lines in Z2.

We assume all variables Ux, Vy, x, y ∈ Z2, to be independent and have symmetric
distribution.

Given (U, V ), we are interested in the discrete path Z = (Zn)n≥0 = ((Xn, Yn))n≥0 in
Z2 that starts at Z0 = (0, 0) and follows diagonals given by the orientations (U, V ):

for all n ≥ 0, Zn+1 = Zn + (UYn , VXn).

Note that all the randomness of Z is contained in the data of (U, V ).

Our main result is the following.

Theorem 1.1. Almost surely, the path Z gets eventually stuck on one edge, i.e. it is
eventually 2-periodic.
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A walk on the random Manhattan lattice
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Figure 1: Example of orientation of lines and the associated path Z, eventually trapped.

Since Z is a deterministic function of (U, V ), it is actually useful to see this result as
a more general property of the graph ω made of the union of such paths started at all
initial locations in Z2.

Define L = (Z2,E) as the directed graph whose vertex set is Z2 and whose edge set E
consists of all diagonal edges across faces, i.e. ((x, y), (x′, y′)) with |x− x′| = |y − y′| = 1.
Given (U, V ), define ω to be the following subset of E:

ω =
{(

(x, y), (x+ Uy, y + Vx)
)

: (x, y) ∈ Z2
}
⊂ E.

Notice that ω contains exactly one (directed) outgoing edge at each vertex, and that Z is
the only path in ω starting at (0, 0).

The above theorem expresses that almost surely, every path in ω ends with a trap, i.e.
a pair of opposite edges (Uy + Uy+Vx = 0 and Vx + Vx+Uy = 0). The content is twofold:
paths in ω don’t leave to infinity, and the only cycles in ω are made of two edges. We can
be a little more precise about ω by also excluding paths coming from infinity:

Theorem 1.2. Almost surely, every connected component of ω is bounded and contains
one trap.

In other words, the connected components of ω are finite trees rooted at a trap. Note
that we will commonly view subsets of E as graphs, meaning implicitly that their vertex
set is the set of endpoints of the edges they contain, which will usually be the whole
set Z2.

1.2 Extension of the model to Z3

The model admits a natural extension to Z3, where every east-west, north-south and
up-down line is randomly oriented. Thus one needs random variables (U(y,z))(y,z)∈Z2 ,
(V(x,z))(x,z)∈Z2 and (W(x,y))(x,y)∈Z2 to define Z = (Zn)n≥0 by Z0 = (0, 0, 0) and, for n ≥ 0,

Zn+1 = Zn + (U(Yn,Zn), V(Zn,Xn),W(Xn,Yn)).

We still assume all orientations to be independent and symmetric. The graph ω is defined
similarly as before.

Theorem 1.3. Almost surely, the path Z gets eventually periodic.
Almost surely, every component of ω is bounded.

However, in contrast to the two-dimensional case, nontrivial cycles exist in higher
dimension, as illustrated on Figure 2.

1.3 Definitions: traps, sources and crossings

Let us come back to Z2. The proof relies on geometrical properties of the graph ω
and it will be convenient to introduce a set of definitions regarding this graph, both to
write the formal proof and to first describe its principle.
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A walk on the random Manhattan lattice

Figure 2: Example of a nontrivial cycle in Z3 (in black). The colored arrows indicate the
orientations of the lines relevant to the cycle.

We already noticed that ω may contain traps, which are pairs of opposite edges
that cross diagonally a face of the square lattice Z2. Let us classify more generally the
different types of faces.

Definition 1.4. A cell is a face of the square lattice Z2; it can be identified with its
center (x+ 1

2 , y + 1
2 ) for some (x, y) ∈ Z2. We say that an edge in E crosses a given cell

if both its endpoints are corners of that cell.
A cell (x+ 1

2 , y + 1
2 ) is a source (resp. a crossing, resp. a trap) in ω if it is crossed by

no edge (resp. by one edge, resp. by two edges) in ω.

This definition is illustrated on Fig. 3. One should in particular notice that, from
the definition of ω, the two edges crossing a trap cell are always opposite edges, hence
indeed corresponding to what we earlier called a trap, and that no more than two edges
may cross a cell, hence each cell is either a source, a crossing or a trap.

++ + +−−−−Vx

+

+

+

−

Uy

−

+

−

Trap cell Source cell

Crossing cell

Outward trap vertex

Inward trap vertex

Source vertex

Figure 3: Representation (left) of all paths (i.e., of ω) in a box. As reminded on the right,
black circles indicate source cells, black diagonal strokes indicate trap cells; Red circles
indicate source vertices, blue circles indicate inward trap vertices and blue crosses
indicate outward trap vertices. These three types of vertices can be cumulated.

Definition 1.5. A vertex v ∈ Z2 is a source vertex if it is a corner of a source cell. If v
is a corner of a trap cell, it is an inward trap vertex if it is one of two endpoints of the
crossing edges, and an outward trap vertex otherwise.
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A walk on the random Manhattan lattice

Note that not every vertex has one among these qualifiers, and that they are not
mutually exclusive. Indeed, source cells and trap cells may lie next to each other.
However, an important tool in our analysis is a reduced model that is precisely made so
as to avoid this situation (see Section 2).

We will always view the edges in ω as embedded into R2 in the following way: every
edge is represented by a straight line between its endpoints except for traps, which
are embedded as two disjoint arcs in the same cell. Although E is not planar, using
this embedding we have the following deterministic statement, which simply follows by
inspection of each type of cell:

Lemma 1.6. ω is a planar graph.

Let us also remind the useful fact that E has two connected components, given by
odd and even vertices in Z2 respectively, each of which is planar and isomorphic to the
square lattice.

1.4 Organization of the paper

The next section introduces a certain transformation of the graph that plays a
technical role by preventing trap and source cells from being neighbours. This is
instrumental in Section 3 to prove the combinatorial property that the only cycles in
ω are the traps. Section 4 finally proves that the components of ω are bounded almost
surely and obtains estimates on the distribution of their size.

2 Reduced model

In this section we argue that, in proving Theorem 1.1, we may replace the i.i.d.
distributions of U and V by a distribution that is still shift invariant and symmetric,
but also such that the alternating patterns (+1,−1,+1) and (−1,+1,−1) don’t appear
anymore. The model where U and V follow this new distribution will be called the
reduced model, in the sense that it will intuitively be obtained by removing all such
patterns from the initial U and V wherever they occur.

2.1 Local reduction

Let us first justify that if, in the sequence of orientations of horizontal lines, we
replace one occurrence of (−1,+1,−1) by (−1) (i.e. we remove two lines and shift the
next ones), then connectivities are preserved, hence in particular cycles and infinite
paths remain (shorter) cycles and infinite paths. See Figure 4 for an illustration.

Let us first consider occurrence of patterns −1,+1,−1 or +1,−1,+1 at zero: define

C0 = {(uk)k∈Z : (u−1, u0, u1) ∈ {(−1,+1,−1), (+1,−1,+1)}}.
Define the bijection σ0 : Z → Z \ {0, 1} by σ0(k) = k if k < 0 and σ0(k) = k + 2 if

k ≥ 0, and its inverse π0 : Z \ {0, 1} → Z. Then we let, for u ∈ {−1,+1}Z, ũ = (uσ0(n))n∈Z,
which corresponds to deleting the values u0 and u1 and shifting the next ones.

By extension, if a = (x, y) ∈ Z2 and x /∈ {0, 1}, we define π0(a) = (π0(x), y).
Finally, if V ∈ C0 (where V = (Vx)x∈Z gives the orientations of vertical lines), we

define π0(ω) in the same way as ω, using Ṽ = (Vσ0(x))x∈Z instead of V .
For a, b ∈ Z2, we shall write “a→ b in ω” if there is a path a = a0, a1, . . . , an = b in ω

where a1, . . . , an−1 are not inward trap vertices, i.e. the path doesn’t cross a trap.

Lemma 2.1. If V ∈ C0, and a, b ∈ Z2 \ ({0, 1} × Z) are such that a → b in ω, then
π0(a)→ π0(b) in π0(ω).

Proof. Assume for instance (V−1, V0, V1) = (−1,+1,−1). We work by induction on the
length of the path from a to b in ω. If a and b are at distance 1, then clearly π0(a)→ π0(b)
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Figure 4: Reduction of a configuration: the occurrence of the alternating pattern
(−1,+1,−1) on horizontal lines is replaced by a single −1, the only effect on paths of
which is the “removal of a zigzag pattern”.

since the edge (π0(a), π0(b)) is in π0(ω). Assume there is a path a = (x0, y0), a1 =

(x1, y1), . . . , (xn, yn) = b in ω. If xn−1 /∈ {0, 1}, then by induction π0(a) → π0(an−1) in
π0(ω) hence a path to π0(b) using the final edge (π0(an−1), π0(b)). Assume xn−1 = 1

(the other case is symmetric). Thus, xn = 2 since xn = xn−1 ± 1 and xn /∈ {0, 1} by
assumption; this implies that Uy = +1 where y = yn−1. If xn−2 = 2, then it means
Uy+1 = −1; we can apply the induction to have π0(a) → π0(an−2) = (0, y + 1), and it
remains to notice that we still have (0, y + 1) → (−1, y) → (0, y − 1) = π0(b) because
Ṽ (−1) = V (−1) = −1 = V (1). Assume finally that xn−2 = 0. Since V (0) = +1, we
must have yn−2 = y − 1 and Uy−1 = +1. This forces an−3 = (−1, y). By induction,
π0(a) → π0(an−3) in π0(ω). We also have π0(an−3) = (−1, y) → (0, y − 1) = π0(b) hence
π0(a)→ π0(b). This concludes the proof.

More generally, for any x ∈ Z, we can consider the occurrence of alternating patterns
at x by defining Cx = θxC0, and πx : Z \ {x, x+ 1} → Z is given by πx = θxπ0θ−x.

2.2 Global reduction

Next, we define a global reduction by applying the local reduction everywhere
possible on Z, so as to obtain sequences Ũ and Ṽ that do not contain any alternating
pattern.

Note first that the local reduction can be applied repeatedly to an alternating block
of even size “(−) +−+−+−(+)” (where parentheses are used to distinguish certain
signs), so as to obtain “(−)(+)”, and to an alternating block of odd size “(−) +−+ (−)”
so as to obtain “(−)”; in the latter case one has to choose which of the bounding signs is
taken out, although the resulting sequence is the same either way. Let us thus define
the set of alternance sites as follows: first, let

A = {x ∈ Z : Ux−1 6= Ux 6= Ux+1},

and then due to the previous remark define, for x ∈ A,

`x = inf{y > x : y /∈ A} − sup{y < x : y /∈ A} − 1,

the length of the block around x, and the set of sites to be removed as

B = A ∪ {x+ 1 : x ∈ A, x+ 1 /∈ A, `x is odd}.
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A walk on the random Manhattan lattice

Note that removing sites in B produces a sequence without alternating pattern. Indeed,
first, the blocks in A are separated by definition by blocks of at least two consecutive
identical signs; and removing the extra signs in B \A does not create blocks of length
one since these odd-length blocks separate identical signs on their left and right.

Let us introduce the bijection σB : Z→ Z\B denoting by σB(n) the (n+1)-th element
of {0, 1, 2, . . .} not in B, when n ≥ 0, and the (−n)-th element of {−1,−2, . . .} not in B

when n ≤ −1, so that Ũ = (UσB(x))x∈Z is obtained from U by removing indices in B

and shifting the others toward zero in order to “fill the gaps”. Note that almost surely
σB(n)→ ±∞ as n→ ±∞. Denote by πB : Z \B → Z its inverse function.

After removal, i.e. in the sequence Ũ , the lengths of blocks of consecutive identical
signs are i.i.d. and integrable (they have a geometric distribution). In particular, up to a
random shift this sequence can be made stationary.

Define as before πB(a) = (πB(x), y) for a = (x, y) ∈ Z2 with x /∈ B, and πB(ω) by
reindexing all edges whose ends have a first component not in B.

Recall the notation a → b in ω to denote the existence of a path in ω that connects
b to a (i.e. b is accessible from a). By applying the local reduction several times, we
immediately obtain:

Lemma 2.2. If a, b ∈ Z2 \ ({0, 1} × B) are such that a → b in ω, then πB(a) → πB(b) in
πB(ω).

Corollary 2.3. For any nontrivial cycle σ in ω, πB(σ) is a nontrivial cycle in πB(ω).
Almost surely, for any infinite path γ in ω starting from a /∈ B, πB(γ) is an infinite

path starting from πB(a).
Almost surely, for any infinite path γ in ω ending at a /∈ B, πB(γ) is an infinite path

ending at πB(a).
Almost surely, for any bi-infinite path γ in ω, πB(γ) is a bi-infinite path.

Proof. Due to the previous lemma (local reduction), we only need to check that no
degeneracy could happen: that a nontrivial cycle σ can be neither completely removed
nor reduced to a trivial cycle; and that infinite paths keep being infinite.

For πB(σ) to be empty, the cycle σ would have to lie entirely on B × {0, 1}, hence by
connectivity to lie inside one block of alternating + and −. However a similar analysis
as in the previous lemma shows that the only paths in such blocks are trivial cycles or
paths that cross in a zig-zag shape and in particular exit the block.

Furthermore, πB(σ) cannot be trivial since at least four edges of σ connect a point
outside B to another point (possibly in B); consider indeed exit points out of a block of
B. These edges are all kept in πB(ω) hence πB(σ) must have at least four edges.

Finally, if γ is an infinite path in ω, then it must stay only finite intervals of time
within each block of B. Indeed, the only paths in such blocks are trivial traps or zig-zags
crossing the blocks and thus exiting at each side. Therefore πB(ω) is still an infinite
path.

By symmetry, the same procedure can be applied to the second coordinate to define
a sequence Ṽ out of V by removing alternating patterns. What we shall call the reduced
model refers to the sequences Ũ , Ṽ . Due to the previous corollary, we conclude that
proving Theorem 1.1 for these sequences will imply the result for U, V .

3 Nonexistence of nontrivial cycles

The aim of this section is to prove the following deterministic statement, where we
recall that a cycle in ω is a sequence a0, . . . , an in Z2 such that an = a0 and (ak, ak+1) ∈ ω
for k = 0, . . . , n− 1, and a trap is a cycle in ω of length n = 2.
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Proposition 3.1. The only cycles in ω are traps.

Let us first give a sketch of the argument. The heuristic idea is that a cycle should
contain as many source and trap cells due to a conservation argument: each path inside
the cycle has a beginning and an end (or merges into the cycle); and on the other hand,
each source cell is the beginning of 4 paths, while each trap cell sees the end of 2 paths
and the merging of 4 paths into 2, thus contributing a net loss of 4 paths. However, a
parity constraint due to the alternance of up/down and left/right slopes in the path forces
these numbers to differ by 1 unit, leading to a contradiction.

The conservation argument is made somewhat less transparent in situations with
neighbouring source and trap cells, therefore for this part we will actually work with the
reduced model from the previous section.

We start with the parity constraint, which will decompose into two steps. We first
consider cycles on a new graph M, for which we prove that any cycle must circumscribe
one more source cell than trap cells. We further argue than any nontrivial (non trap)
cycle in ω maps into a cycle of the previous type, in a way that preserves the number of
circumscribed source and trap cells.

3.1 Parity constraint

Let us first notice that the set of trap and source cells has a simple structure: they
are located at the lattice of intersections of the sign change lines (definition follows),
and traps and sources alternate in a checkered pattern (cf. Figure 5).

Definition 3.2. The sign change lines are the vertical lines {x + 1
2} × R for which x

is such that Vx 6= Vx+1 and the horizontal lines R × {y + 1
2} for which y is such that

Uy 6= Uy+1.

The connected components of the complement of this set of lines are called sign
blocks. Thus, (Uy, Vx) is constant for (x, y) inside a given sign block.

The block lattice B is the lattice induced by the intersections of the sign change
lines, i.e. whose vertices are the traps and sources, and whose edges connect nearest
neighbours on the sign change lines.

Remark. Although the graph structure of B is that of Z2, its embedding in R2 depends
on ω. This is precisely the feature that distinguishes B from Z2.

Definition 3.3. The mid-edge graph M (see Figure 6, left) is a directed (non planar)
graph whose vertex set consists of the middle points of the edges of B, and whose edges
connect middle points across a face of B (a “block”) according to its orientation in the
wider sense, i.e. according to the following rule (up to symmetries i.e. rotations and
reflection):

Thus each vertex of M has two neighbours, and if a path in ω crosses two edges of B
consecutively then their middle points are connected in M, in the order of their crossing.
See Figure 6.

To avoid confusions with paths, i.e. paths of ω, we call paths in M mid-edge paths.
And a mid-edge cycle is a cycle in M.

EJP 24 (2019), paper 137.
Page 8/20

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP385
http://www.imstat.org/ejp/


A walk on the random Manhattan lattice

{
{
{
{

{ { {{{{{ {

Figure 5: Dotted lines are the sign change lines. Their intersections define the block
lattice B, whose vertices are either sources (circles) or traps (diagonal strokes). A few
examples of paths are represented in red.

To a nontrivial cycle in ω (if there would exist any), we associate a mid-edge path
given by the sequence of edges of B that it crosses: the definition of M ensures that
these middles of edges form a path in M. Note that the original cycle doesn’t visit traps
or sources hence this is well defined; and that the resulting path is obviously again a
cycle.

A cycle cannot cross the same edge of B more than once. Let us suppose that such
a cycle exists and let us assume w.l.o.g. that it crosses a vertical edge of B from left
to right in two locations. Then by planarity, and because it is a simple path, there
must be a crossing in the opposite direction (right to left) in-between the left-to-right
crossings. This leads to a contradiction and proves that the previous procedure does
not introduce multiple edges. The resulting cycle is thus a simple cycle, which can be
homeomorphically deduced from the initial cycle. This also ensures that it is planar,
i.e. without crossings in its simple embedding. By Jordan curve theorem, we may then
consider the interior of this cycle.

Lemma 3.4. Consider a simple planar mid-edge cycle σ. Denoting by s and t the
numbers of sources and traps in the interior of σ, we have

s = t+ 1.

Proof. The proof procedes by induction on the number of vertices of B (both sources
and traps) in the interior of σ.

The lemma holds in the case when σ surrounds only one vertex of B. Given the graph
M, this one vertex indeed has to be a source.

Let n ∈ N, n ≥ 1, and assume that the lemma holds for simple planar mid-edge cycles
containing at most n vertices of B in their interior. Let σ be a simple planar mid-edge
cycle containing n+ 1 vertices of B in its interior.

Up to symmetrizing the argument, we may assume that σ turns counterclockwise.
Consider, among the leftmost vertices of σ, the one that is highest, and denote it by

x. Due to the location of x and the orientation of σ, the last step before x was at the
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Figure 6: (Left) Mid-edge graph M, and an example of mid-edge cycle, enclosing 5
sources and 4 traps. The dotted lines correspond to the sign change lines, where the
signs are suggested by the arrows to the left and top sides of the graph. The square
marks are the mid-edge vertices of the block lattice B, i.e. the vertices of M. The
circles are the sources and the diagonal dashes are the traps. (Right) The corresponding
hypothetical cycle in ω with an “illegal” edge (in blue), added for the sake of illustration.

north-east of x. Regarding the next step after x, two cases may occur: either σ goes in
the south-east or the south direction.

In the case when σ goes in the south-east direction after x, Figure 7 indicates how
to modify locally the path around x to construct a simple planar mid-edge cycle σ′ that
now contains one source and one trap fewer than σ. By the assumption, σ therefore
fulfills the lemma. Note that the case of a cycle of length 4 is excluded by the fact that
n+ 1 ≥ 2.

Figure 7: Reduction of the size of the cycle in the proof of Lemma 3.4. The top sketches
represent the possible shapes of σ around the leftmost vertex x, while the line below
shows the local transformation into a smaller mid-edge cycle σ′. The grey area represents
a part that is necessarily in the interior of σ, which justifies the possibility of defining σ′

as shown.

Assume we are in the other case, i.e. that σ goes south after x. If, before x, σ
comes from the north-east and then from the south-east, then we can use again the
simplification from Figure 7, up to a quarter-turn rotation. We may therefore assume
that the steps before x were from the north-east and then from the east, whence the
different situations are displayed in Figure 8. Let us further distinguish whether the
source that lies south-east from the source next to x is inside or outside of σ. If it is
outside, then the figure shows how to introduce two smaller planar simple mid-edge
cycles σ1 and σ2 whose numbers of sources and traps satisfy by induction s1 = t1 + 1
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and s2 = t2 + 1, but are also given by s = s1 + s2 − 1 and t = t1 + t2, which implies the
lemma for σ. If it is inside, then σ can be reduced to a simple planar mid-edge cycle σ′ in
the way shown by Figure 8 and since σ′ contains 2 fewer sources and traps than σ, the
lemma follows as well by induction.

Figure 8: Reduction of the size of the cycle in the proof of Lemma 3.4, second case.
Here, on the first line the dark grey region is assumed to be in the interior of σ, which
forces the light grey region to be as well.

3.2 Conservation argument

Notice that the number of source cells in the interior of a cycle is the same as the
number of sources in the interior of the corresponding mid-edge cycle, and similarly
for traps. The conclusion of the proof then follows by contradiction by comparing the
previous lemma with this one:

Lemma 3.5. Any nontrivial cycle in the reduced model must enclose an equal number
of source and trap cells.

Note that no path crosses a source cell and that the only path that crosses a trap
cell is a trivial cycle. Thus, a nontrivial cycle does not cross diagonally any source or
trap cells and the number of source and trap cells it encloses is therefore a well-defined
integer.

Proof. Recall that, in the reduced model, each block of consecutive lines sharing the
same orientation has size at least 2, so that trap cells and source cells are never
contiguous. Therefore, it always holds true that source vertices are the starts of paths,
and that among the four corners of any trap, two of them (the outward trap vertices) are
points where two paths merge into one, and at the other two (the inward trap vertices)
there is one path entering the trap and thus ending there.

As is readily checked on each connected component individually (the components are
either binary trees or cycle-rooted binary trees), the number of starts of paths inside
the cycle is equal to the total number of ends and of merges of paths inside the cycle
plus the number of merges of paths with the cycle from its interior. Starts correspond
to source vertices, ends to inward trap vertices, and merges to outward trap vertices.
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Notice also that, by planarity constraints, when a path merges with the cycle from inside,
then the trap cell of this outward trap vertex must lie inside the cycle. We conclude from
this that the number of source vertices inside the cycle is equal to the number of trap
vertices inside the cycle whose cell lies inside the cycle. This proves the lemma.

Although the previous lemma suffices to prove the main theorem, we sketch a proof
of the following slightly stronger result about the original (non-reduced) model. This
indeed shows how the initial intuition could be made formal, although the introduction
of the reduced model leads to a more transparent proof.

Lemma 3.6. Any nontrivial cycle in the initial model must enclose an equal number of
sources and traps.

Proof. In order to adapt the proof of the previous lemma to the general case, we shall
first introduce a decoration of the graph that keeps planarity and removes particular
cases. At each source, we add four vertices marking starts of paths, each connected to
one of the four corners, cf. Figure 9; and at each trap, we replace the two diagonal paths
by two noncrossing paths ending in two new vertices called sinks.

Figure 9: Local modification of paths, in the proof of Lemma 3.6: case of a trap (left) and
of a source (right).

With these modifications, each source always “creates 4 paths”, in that it contains
4 starts of paths. And each trap always terminates 2 paths at the sinks and produces
2 merges at the other corners, as can be checked in each case on Figure 10. Other
merges may also happen at the other two corners of a trap, but only when they are also a
merging corner of another trap. Note at last that merges only happen at corners of traps
(which may at the same time be corners of sources). Hence, we can apply a counting
argument similar to one used in Lemma 3.5.

4 Finiteness of paths

The following proposition is based on a simple renewal argument. The proof builds
on the next three lemmas.

Proposition 4.1. In any dimension, almost surely, the path starting at vertex o is
bounded.

Remember X0 = Y0 = 0. Let

T = inf{n ≥ 0 : Xn 6∈ [ min
k≤n−1

Xk, max
k≤n−1

Xk] and UYn = −1}

be the first time the path meets a new vertical line and a horizontal line that points to
the left (with the understanding that mink≤−1Xk = +∞ and maxk≤−1Xk = −∞).

Lemma 4.2. On {T < +∞}, XT ≥ 0, and on {1 ≤ T < +∞}, XT−1 = maxk≤T−1Xk and
XT = XT−1 + 1. Furthermore, T = inf{n ≥ 0 : Xn+1 = Xn − 1}.
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Figure 10: List of all configurations of lines surrounding a trap, up to symmetries. Note
that in each case, of the four corners around a trap, two lead into the trap and the other
two are merging points; the first two corners may also be merging points (in the 2nd,
4th and 7th cases), but only when next to another trap.

Proof. Suppose T < +∞ and XT < 0. Then UY0
= U0 = +1. Indeed, if UY0

= −1,
then T = 0 and XT = 0, contradicting the assumption XT < 0. It follows that X1 = 1.
Again, if UY1

= −1, then T = 1 (X1 6∈ [mink≤0Xk,maxk≤0Xk] = {0}) and XT = 1, again
contradicting the assumption XT < 0. It follows that UY1

= +1 and X2 = 2. This
argument can be repeated to show that ∀n, UYn = +1 and Xn = n; that is τ = +∞.

Lemma 4.3. P(VXT = +1, T < +∞) = 1/2 and more generally, for any A ∈ FT , P(VXT =

+1, A ∩ {T < +∞}) = 1/2P(A ∩ {T < +∞}); that is

P(VXT = +1|FT ∩ {T < +∞}) = P(VXT = −1|FT ∩ {T < +∞}) = 1/2.

In particular VXT 1T<+∞ is independent of FT ∩ {T < +∞}.

Proof. The proof follows from the following observations.

First, Zn is σ((Uy)|y|≤n−1, (Vx)|x|≤n−1)-measurable. It follows that UYn is σ((Uy)|y|≤n,

(Vx)|x|≤n−1)-measurable, and VXn is σ((Uy)|y|≤n−1, (Vx)|x|≤n)-measurable, and that
(UYn , VXn) is σ((Uy)|y|≤n, (Vx)|x|≤n)-measurable.

Then, for x ≥ 0, {XT = x, T < +∞} ∈ σ((Uy)y∈Z, (Va)a<x) and is independent
of Vx.

For any v ∈ Z2, we write v ∈ trap when v is an inward trap vertex.

Lemma 4.4. P(ZT ∈ trap|FT ∩ {T < +∞}) = 1/2.

Proof. This is an immediate application of the above lemma and the fact that ZT is a trap
if and only if either YT−1 = YT + 1 and VXT = +1, or YT−1 = YT − 1 and VXT = −1.

Proof of Proposition 4.1

We write the proof for d = 2 and then explain the (simple) adaptation to higher dimen-
sions.

Fix the horizontal environment such that at least one arrow points to the left and one
arrow points to the right (i.e. not all arrows point in the same direction).
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Let Tn be the consecutive times the path meets a new vertical line (to the right
of o) and a horizontal line that points to the left. Set Tn = +∞ if fewer than n such
occurrences exist, and T0 = 0 (T1 = T ).

It follows from Lemma 4.4 that,

P(Tn+1 = +∞|FTn , Tn < +∞) ≥ P(ZTn ∈ trap|FTn , Tn < +∞) = 1/2.

It follows that P(Tn+1 = +∞, Tn < +∞) ≥ (1/2)P(Tn < +∞), that P(Tn+1 < +∞) ≤
(1/2)P(Tn < +∞) and that

P(Tn+1 < +∞) ≤ (1/2)nP(T1 < +∞).

By virtue of the Borel-Cantelli lemma, we conclude that P(Tn < +∞ i.o.) = 0 and that
P(Tn = +∞ i.o.) = 1 (recall that the sequence Tn is increasing).

Now, on the event {Tn−1 < +∞, Tn = +∞, XTn−1
= x}, either supkXk ≤ x and the

path is bounded on the right, or ∃k such that Xk = x + 1. In this case, Ux+1 = +1

(otherwise Tn < +∞) and Xk+1 = x+ 2. In turn, this implies that Ux+2 = +1 and so on.
We end up with a setting where all horizontal lines met after Tn−1 are pointing to the
right, and Zk+` = (Xk + `, Yk +W`), where W` = Vx+1 + . . .+ Vx+` is a simple symmetric
random walk. This is not possible as sooner or later the path must meet a horizontal
line that points to the left, proving that such a k cannot exist and that the path is indeed
bounded.

The principle of this proof adapts in any dimension: for the same reason, in any
direction where the path is unbounded, there must be infinitely many hyperplanes that
are entered for the first time at a place where the orthogonal direction is pointing
backward, and each time, with probability 1/2d−1, the other orientations (which are
newly discovered) push the path to its previous location, thereby creating a trap. Due to
the independence, we again conclude that almost surely this happens eventually.

The non-existence of paths coming from infinity will now follow from a simple appli-
cation of the mass transportation principle (cf. [8]) that we first remind:

Lemma 4.5 (Mass transport principle). Let f : (u, v, ω) ∈ Z2×Z2×Ω 7→ f(u, v, ω) ∈ R+ be
a measurable function. We shall henceforth view ω 7→ f(u, v, ω) as random variables and
drop ω from the notation. Assume that E[f(u, v)] = E[f(u+ w, v + w)] for all u, v, w ∈ Z2.
Then for any vertex o ∈ Z2,

E

[ ∑
u∈Z2

f(o, u)

]
= E

[ ∑
u∈Z2

f(u, o)

]
.

Proof. The assumption yields∑
u∈Z2

E[f(o, u)] =
∑
u∈Z2

E[f(2o− u, o)],

and the second sum is equal, up to reindexing to
∑
u∈Z2 E[f(u, o)].

Recall, for a, b ∈ Z2, we write a→ b in ω if there is a path a = a0, a1, . . . , an = b in ω
and a1, . . . , an−1 /∈ trap, i.e. the path doesn’t cross a trap (recall that trap is the set of
vertices of trivial traps).

For every o ∈ Z2, if o→∞, let us denote τ(o) =∞ and otherwise denote by τ(o) the
only v ∈ trap such that o→ v, i.e. τ(o) is the trap where the path starting at o ends.

Let us also denote by C(o) the connected component of o in ω:

C(o) = {u ∈ Z2 : u→ o or o→ u}.

Note that, from the definition of→, the set C(o) contains at most one vertex in trap.
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Proposition 4.6. Almost surely, ω contains no semi-infinite path ending at a trap vertex.
Furthermore,

E[|C(o)| | o ∈ trap] <∞.

Proof. Let n ∈ N. Let us apply the mass transportation principle to

f(u, v) = 1{v=τ(u)6=∞},

which sends unit mass, from every vertex leading to a trap, toward this trap. This gives

P(o 6→ ∞) = E[1{o∈trap}#{u : u→ o}] = E[1{o∈trap}|C(o)|],

In particular, we deduce that |C(o)| <∞ a.s. if o ∈ trap, which shows that almost surely
no infinite path leads to a trap vertex.

Now Theorem 1.2 is a consequence of the previous two propositions: almost surely
the path starting from o ends in a trap, and almost surely the component of a trap is of
integrable size, hence almost surely the connected component of o is finite.

5 Integrability of components

We are interested in an estimation of the size of the component of the origin. To that
aim, we shall derive a quantitative version of Proposition 4.1, which will show that the
tail of the distribution of the size of C(o) (either diameter or number of vertices) decays
sub-exponentially, as a stretched exponential. As a significant corollary, this will entail
integrability of the size of C(o).

Note indeed that, although we proved (cf. Proposition 4.6) E[|C(o)| | o ∈ trap] < ∞,
this doesn’t imply E[|C(o)|] < ∞ due to a size bias caused by the conditioning. More
precisely, we actually need a second moment: we have

E[|C(o)|] = E[|C(o)|2, o ∈ trap],

as an instance of a general size biasing principle:

Lemma 5.1. For any measurable function Φ : Ω→ R+ such that almost surely Φ◦τu = Φ

for all u ∈ C(o), where τu : Ω→ Ω denotes the translation by u ∈ Z2,

E[Φ] = E[Φ · |C(o)|, o ∈ trap].

Proof. As an application of the mass transport principle to the function f : (u, v) 7→
Φ ◦ τu · 1{u→v, v∈trap}, one gets∑

u

E[Φ ◦ τu1{u→o, o∈trap}] =
∑
u

E[Φ1{o→u, u∈trap}].

However, due to the assumption on Φ, the left hand side rewrites as∑
u

E[Φ1{u→o, o∈trap}] = E

[
Φ
∑
u

1{u→o}1{o∈trap}

]
= E[Φ · |C(o)|1{o∈trap}],

and it follows from Theorem 1.1 that a.s. there is a (clearly unique) u ∈ trap such that
o→ u hence the right hand side rewrites as

E

[
Φ
∑
u

1{o→u,u∈trap}

]
= E[Φ].

The lemma follows.
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In addition to considering C(o), we are also interested in the trajectory

Path(o) := {u : o→ u} = {Zn : n ∈ N},

and more precisely to the maximum distance reached by the trajectory:

Theorem 5.2. There exists positive constants c1, C1, c2, C2 such that, for all n,

C1e
−c1n1/3 ≤ P(max

i≥0
‖Zi‖ > n) ≤ C2e

−c2n1/4

.

Let us already deduce tail asymptotics for the diameter of C(o):

Corollary 5.3. There exists positive constants c1, C1, c2, C2 such that, for all n,

C1e
−c1n1/3 ≤ P(diamC(o) > n) ≤ C2e

−c2n1/4

and
C1e

−c1n1/3 ≤ P(|C(o)| > n) ≤ C2e
−c2n1/8

.

In particular, E[diamC(o)] <∞ and E[|C(o)|] <∞.

Proof of the corollary. Since diamC(o) ≤ |C(o)| ≤ (diamC(o))2, it suffices to prove the
bounds for the diameter. The lower bound follows immediately from the lower bound of
Theorem 5.2.

For the upper bound, in order to reduce from C(o) to Path(o) we start by using the
size-biasing identity (Lemma 5.1) so as to make o a trap:

P(diamC(o) > n) = E[|C(o)|1{diamC(o)>n}, o ∈ trap].

Then, if diamC(o) > n and o ∈ trap, there exist v, w such that v → o, w → o and
‖v − w‖ > n, hence there exists u (either v or w) such that ‖u‖ > n/2 and u→ 0:

P(diamC(o) > n) ≤
∑
‖u‖>n

2

E[|C(o)|1{u→o}, o ∈ trap]

=
∑
‖u‖>n

2

∑
v

P(u→ o, v → o, o ∈ trap)

≤
∑
‖u‖>n

2

∑
v

P(u→ o)1/2P(v → o)1/2

by Cauchy-Schwarz inequality. The upper bound of Theorem 5.2 applied to all vertices
u, v gives

P(diamC(o) > n) ≤
∑
‖u‖>n

2

P(u→ o)1/2
∑
v

P(v → o)1/2

≤
∑
‖u‖>n

2

C
1/2
2 e−

1
2 c2‖u‖

1/4 ∑
v

C
1/2
2 e−

1
2 c2‖v‖

1/4

.

By comparing ‖u‖∞ ≤ ‖u‖ ≤
√
d‖u‖∞, we have∑

‖u‖>n
2

e−
1
2 c2‖u‖

1/4 ≤
∑

‖u‖∞> n

2
√
d

e−
1
2 c2‖u‖

1/4
∞

=
∑

k> n

2
√
d

(
(2k + 1)d − (2k − 1)d

)
e−

1
2 c2k

1/4

,

and the last sum is bounded, for large n, by C(d)

∫ ∞
n

2
√
d
−1
rd−1e−

1
2 c2r

1/4

dr, which is asymp-
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totically equivalent to C ′(d)nd−
1
4 e−

1
2 c2n

1/4 ≤ C ′(d)e−c
′
2n

1/4

. Finally, the above sum in v in
particular converges.

Proof of Theorem 5.2. Let us observe that, when the walker enters a stripe of adjacent
right-pushing horizontal lines, then its vertical motion is a symmetric simple random
walk until it exits this stripe (and possibly conditioned by some information on the
vertical lines due to the past of the walk).

(Lower bound) In particular, the maximum distance of the path from o is at least n
in the case where it keeps going (North- or South-)East during at least n steps, which
happens if, for some α > 0, the nα lines above and below the origin are pointing eastward,
and the exit time of an independent symmetric simple random walk out of (−nα, nα)

exceeds n:

P(max
i≥0
‖Zi‖ > n) ≥ P(∀y ∈ (−nα, nα) ∩Z, Uy = +1)P(τnα > n),

where, for any L > 0, τL denotes the exit time out of (−L,L) for a symmetric simple
random walk. By Lemma 5.4 in the Appendix, we get (for large n)

P(max
i≥0
‖Zi‖ > n) ≥ 2−(2n

α−1)e−cn
1−2α

,

for some constant c, which gives the lower bound of the theorem by taking the optimal
value α = 1/3.

(Upper bound) Up to using a union bound on all four directions, it is sufficient to
consider the eastward extent, i.e. to show P(maxi≥0Xi > n) ≤ Ce−cn1/4

for some c, C > 0

and all n ≥ 0. The following computation makes the reasoning of Proposition 4.1 more
quantitative, which necessitates an extra control in the transverse direction. Let us
already refer the reader to Figure 11 depicting the forthcoming definitions.

Let us denote by [S1, T1], [S2, T2],. . . , [Sn, Tn] the (maximal) intervals of times when
the walk discovers new lines eastward:

S1 = 0, T1 = inf{n ≥ S1 : Xn+1 = Xn − 1},

and then, for all r ≥ 1,

Sr+1 = inf{n ≥ Tr : Xn+1 = max
k≤n

Xk + 1},

Tr+1 = inf{n ≥ Sr+1 : Xn+1 = Xn − 1},

with Sr =∞ as soon as the above defining set is empty, and Tr =∞ as a consequence.
For r = 1, . . . , N , let Lr = Tr − Sr, and notice that, by definition, Lr = XTr −XSr too.

Denote

N = max{r ≥ 0 : Sr+1 <∞} ∈ {0, 1, 2, . . .}.

From the reasoning of the proof of Proposition 4.1, we know that N is stochastically
bounded by a geometric distribution of parameter 1/2 (corresponding the first r such
that the vertical line at XTr is oriented in the direction that produces a trap). Denote
also

D− = −min
n≥0

Yn, D+ = max
n≥0

Yn,
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}

}
}

L1 L2 L3 LN· · ·

D+

D−

ZT1

ZT2

ZT3

ZTN

0(=ZS1
)

ZS2

ZS3

ZS4

ZT4

Figure 11: Sketch for the proof of Theorem 5.2. The pink stripes represent the stripes of
east-going lines that are involved in the eastward discovery pieces (ZSr , . . . , ZTr ). Each
piece of path within these stripes is a one-dimensional space-time symmetric simple
random walk. Note that the black pieces of path are only sketched and do not follow
every constraint they should. In the case pictured here, N = 5 and the path ends with a
trap at ZT5

; alternatively, N = 5 could also happen with a trap encountered after T5, and
before S6 (in that case, the rightmost vertical line would be pointing down).

and D = max(D−, D+). Let α > 0, and write f(n) = n2 (this choice is arbitrary within
certain bounds to be specified below). We have, for all n,

P
(

max
i≥0

Xi > n, D ≤ f(n)
)

≤ P
( N∑
i=1

Li > n, D ≤ f(n)
)

≤ P(N > nα) + P

(
N ≤ nα,

N∑
i=1

Lr > n, D ≤ f(n)

)

≤ P(N > nα) +

nα∑
r=1

P
(
Lr > n1−α, r ≤ N, Dr ≤ f(n)

)
where Dr = maxn≤Sr |Yn|.

Since N is stochastically dominated by a geometric distribution of parameter 1/2,

P(N > nα) ≤ 2−n
α

.

On the other hand, given all horizontal orientations (Uy)y∈Z, and the past trajectory
(Z0, . . . , ZSr ) before time Sr, the sequence (YSr , YSr+1, . . .) coincides with a simple sym-
metric random walk starting at YSr and running until it hits a value y ∈ Z with Uy = −1.
Denote by Mn the maximum number of consecutive +1 in (Uy)y∈Z, starting from an
index y ∈ [−f(n), f(n)]:

Mn = max{k ∈ N : ∃i ∈ {−f(n)− k, . . . , f(n)}, Ui = · · · = Ui+k−1 = +1}.
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Then, given (Uy)y∈Z and (Z0, . . . , ZSr ), on {N ≤ r, Dr ≤ f(n), Mn ≤ nγ}, where γ > 0,
we have that Lr is stochastically smaller than the exit time of a symmetric simple
random walk out of [−nγ/2, nγ/2], starting from 0 (indeed this is the worst case): on
{N ≤ r, Dr ≤ f(n), Mn ≤ nγ},

P
(
Lr > n1−α

∣∣∣Z0, . . . , ZSr , (Uy)y∈Z

)
≤ P

(
τnγ

2
> n1−α

)
.

As a consequence, for any γ > 0,

P
(
Lr > n1−α, r ≤ N, Dr ≤ f(n)

)
≤ P(Mn > nγ)

+ E
[
P
(
Lr > n1−α|Z0, . . . , ZSr , (Uy)y∈Z

)
, r ≤ N,Dr ≤ f(n),Mn ≤ nγ

]
≤ P(Mn > nγ) + P(τnγ

2
> n1−α).

We have, by a simple union bound,

P(Mn > nγ) ≤ (f(n) + nγ)2−n
γ

hence with Lemma 5.4 we get (for large n)

P
(

max
i≥0

Xi > n, D ≤ f(n)
)
≤ 2−n

α

+ nα
(
(f(n) + nγ)2−n

γ

+
nγ

2
e−c2n

1−α−2γ)
.

Since log f(n) = o(nγ), we get, for some positive constants c, C,

P
(

max
i≥0

Xi > n, D ≤ f(n)
)
≤ Ce−c nmin(α,γ,1−α−2γ)

,

which for the optimal choice α = γ = 1
4 gives

P
(

max
i≥0

Xi > n, D ≤ f(n)
)
≤ Ce−c n1/4

.

Up to changing the constants, we may assume that the statement of the theorem is
with respect to ‖·‖∞, in which case it follows by a union bound on directions that (up to
changing the above C),

P(n < max
i
‖Zi‖ ≤ f(n)) ≤ 4P(max

i
Xi > n, D ≤ f(n)) ≤ Ce−c n1/4

.

In order to conclude, we decompose

P(max
i
‖Zi‖ > n) =

∞∑
k=0

P(uk < max
i
‖Zi‖ ≤ uk+1) ≤

∞∑
k=0

Ce−cu
1/4
k ,

where u0 = n and, for all k ≥ 0, uk+1 = f(uk). Remember we chose f : n 7→ n2, so that

uk = n2
k

for all k ≥ 0. In particular, for n ≥ 24, for all k,

(uk)1/4 = n1/4 +
(
(n1/4)2

k − n1/4
)
≥ n1/4 + (22

k − 2)

(indeed, x 7→ x2
k − x is increasing on [1,∞)) so that

P(max
i
‖Zi‖ > n) ≤ Ce−cn1/4

∞∑
k=0

e−c(2
2k−2) = C ′e−cn

1/4

,

which concludes the proof.
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Appendix

The following lemma is standard. For the sake of completeness, and for lack of a
simple reference to this specific result, we sketch a short proof.

Lemma 5.4. Let τL denote the exit time out of (−L,L) for a simple symmetric random
walk (Sn)n≥0 on Z started at 0. For all n ∈ N and L ≥ 2, one has

e−nφ(L) ≤ P(τL > n) ≤ Le−nφ(L),
where φ(L) = − log cos π

2L ∼ π2

8L2 as L→∞. In particular, for any c2 <
π2

8 < c1, there is
L0 such that, for all n ∈ N, for all L ≥ L0,

e−c1
n
L2 ≤ P(τL > n) ≤ Le−c2 n

L2 .

Proof of Lemma 5.4. Let us denote by Pk the law of the simple symmetric random walk
(Sn)n started at k ∈ Z. Consider the martingale (Mn)n≥0 defined by Mn = cos(θSn)

(cos θ)n

where θ = π
2L < π

2 (note that Mn is the real part of the classical exponential martingale
eiθSn/(cos θ)n) and the bounded stopping time n ∧ τL. One has

1{n<τL}
1

L
≤ 1{n<τL} sin

π

2L
= 1{n<τL} cos

π(L− 1)

2L
≤ cos

πSn∧τL
2L

≤ 1{n<τL},

and, by the stopping theorem,

1 = M0 = E0[Mn∧τL ] = E0

[
cos
( π

2L
Sn∧τL

)
cos
( π

2L

)−n∧τL]
,

hence (
cos

π

2L

)−n
P0(τL > n)

1

L
≤ 1 ≤

(
cos

π

2L

)−n
P0(τL > n)

and thus (
cos

π

2L

)n
≤ P0(τL > n) ≤ L

(
cos

π

2L

)n
.

The result follows.
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