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Abstract

Constrained Markov processes, such as reflecting diffusions, behave as an uncon-
strained process in the interior of a domain but upon reaching the boundary are
controlled in some way so that they do not leave the closure of the domain. In this
paper, the behavior in the interior is specified by a generator of a Markov process, and
the constraints are specified by a controlled generator. Together, the generators define
a constrained martingale problem. The desired constrained processes are constructed
by first solving a simpler controlled martingale problem and then obtaining the de-
sired process as a time-change of the controlled process. As for ordinary martingale
problems, it is rarely obvious that the process constructed in this manner is unique.
The primary goal of the paper is to show that from among the processes constructed
in this way one can “select”, in the sense of Krylov, a strong Markov process. Corol-
laries to these constructions include the observation that uniqueness among strong
Markov solutions implies uniqueness among all solutions. These results provide useful
tools for proving uniqueness for constrained processes including reflecting diffusions.
The constructions also yield viscosity semisolutions of the resolvent equation and, if
uniqueness holds, a viscosity solution, without proving a comparison principle. We
illustrate our results by applying them to reflecting diffusions in piecewise smooth
domains. We prove existence of a strong Markov solution to the SDE with reflection,
under conditions more general than in [13]: In fact our conditions are known to be
optimal in the case of simple, convex polyhedrons with constant direction of reflection
on each face ([10]). We also indicate how the results can be applied to processes with
Wentzell boundary conditions and nonlocal boundary conditions.
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Markov selection for constrained martingale problems

1 Introduction

Let A be an operator determining a Markov process X with state space E as the
solution of the martingale problem in which

Mf (t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds (1.1)

is required to be a martingale with respect to a filtration {Ft} for all f ∈ D(A), the
domain of A. The study of stochastic processes that behave like the process determined
by A when in an open subset E0 ⊂ E, are constrained to stay in E0, and must behave
in a prescribed way on ∂E0, is classically carried out by restricting the domain D(A)

by specifying boundary conditions, typically of the form Bf(x) = 0 for x ∈ ∂E0 for
some operator B. Then X is required to remain in E0 and (1.1) is required to be
a martingale for all functions in {f ∈ D(A) : Bf(x) = 0, x ∈ ∂E0}. This approach
to constrained Markov processes, however, frequently introduces difficult analytical
problems in identifying a set of functions both satisfying the boundary conditions and
large enough to characterize the process.

An alternative approach by Stroock and Varadhan [31] introduces a submartingale
problem which weakens the restriction on the domain of A to the requirement that
Bf(x) ≥ 0 for x ∈ ∂E0 and then requires that for all such f ∈ D(A), (1.1) is a submartin-
gale. This approach has been used to great effect by a number of authors. See, for
example, [37, 20, 21].

Restrictions on the values of Bf on the boundary are dropped altogether in [23, 24] at
the cost of introducing a boundary process λ that, in the simplest settings, measures the
amount of time the process spends on the boundary in the sense that λ is nondecreasing
and increases only when X (or more precisely X(·−)) is on the boundary. Then X is
required to take values in E0 and for each f ∈ D(A) ∩ D(B),

Mf (t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds−
∫
Bf(X(s−))dλ(s) (1.2)

is required to be a martingale. As we will see, the form of the boundary term may be
more complicated than this. A process that satisfies these requirements is a solution
of the constrained martingale problem. Clearly, every solution of the constrained
martingale problem is also a solution of the submartingale problem. This approach, or
the corresponding one for stochastic equations, has been used, for example, in [10, 5, 7].

Whether the submartingale problem approach or the constrained martingale problem
approach is used, the critical issue is uniqueness of the solution, which is still an open
question for many examples (see e.g. [17, 18]).

The primary goal of this paper is to prove a Markov selection theorem for solutions of
constrained martingale problems. Beyond the intrinsic interest, this selection theorem
is frequently a crucial ingredient in proving uniqueness for constrained martingale
problems and hence uniqueness for semimartingale reflecting Brownian motion (see, for
example, [26, 34, 10]) and reflecting diffusions.

In the unconstrained case, the Markov selection theorem ensures the existence of
strong Markov solutions to the martingale problem. The construction of the strong
Markov solution also ensures that uniqueness among strong Markov solutions implies
uniqueness among all solutions. See [32], Theorems 12.2.3 and 12.2.4, for diffusions
and [14], Theorem 4.5.19, for general martingale problems. All these results follow [22].
The observation that uniqueness among strong Markov solutions implies uniqueness
among all solutions provides a key tool in uniqueness arguments. Unfortunately, these
results do not apply immediately to solutions of submartingale or constrained martingale
problems.
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Markov selection for constrained martingale problems

We construct solutions of the constrained martingale problem by time-changing
solutions of a controlled martingale problem (Sections 2 and 3). Solutions of the
controlled martingale problem evolve on a slower time scale and may take values in
all of E. Their behavior in Ec0 is determined by the operator B. Since solutions of the
controlled martingale problem capture the intuition behind the controls that constrain
the solution, we will refer to solutions of the constrained martingale problem that
arise as time-changes of solutions of the controlled martingale problem as natural. We
cannot rule out the possibility that there are solutions of the constrained martingale
problem which are not natural, but, under very general conditions, uniqueness for
natural solutions implies uniqueness for all solutions. See Remark 4.14.

In Section 2.1, we introduce the controlled martingale problem and discuss properties
of the collection of solutions. In particular, we prove weak compactness of the collection
of solutions. In Section 3, we introduce the time-changed process. Under mild conditions,
the time-changed process is a natural solution of the constrained martingale problem.
We note however that, even when it is not, the time-changed process still models a
process constrained in E0, with behavior in the interior determined by A and constraints
determined by B.

In Section 4 we prove that there exists a natural strong Markov solution of the
constrained martingale problem (Theorem 4.9 and Corollary 4.12) and that uniqueness
among natural strong Markov solutions implies uniqueness among all natural solutions
(Corollary 4.13).

In Section 5, we discuss connections between solutions of the constrained martingale
problem and viscosity semisolutions of the corresponding resolvent equation. In particu-
lar, generalizing the results of Section 5 of [6], we see that existence of a comparison
principle for the viscosity semisolutions implies uniqueness for natural solutions of the
constrained martingale problem. Conversely, uniqueness of natural solutions of the
constrained martingale problem gives a viscosity solution of the resolvent equation.
Thus one can obtain existence of a viscosity solution from purely probabilistic arguments,
without first proving a comparison principle for the resolvent equation.

In Section 6 we apply the results of Section 4 to diffusion processes in piecewise
smooth domains of Rd with varying, oblique directions of reflection on each face. Exis-
tence and uniqueness results for these processes have been obtained by many authors
([34, 10] for convex polyhedrons with constant direction of reflection on each face,
[33, 28, 4, 13] for nonpolyhedral domains, etc.). For nonpolyhedral domains, [13] is
perhaps the most general result, but it still requires a condition that is not satisfied in
some very natural examples (see Example 6.1) or is difficult to verify in other ones (see
e.g. [18]). In addition, [13] does not cover the case of cusp like singularities, such as
in [17] (in dimension 2, cusp like singularities are covered by [7]). In [34] and [10] a
key point in proving uniqueness is the fact that there exist strong Markov processes
that satisfy the definition of reflecting diffusion and that uniqueness among these strong
Markov processes implies uniqueness. By the results of Section 4, we obtain existence
of a strong Markov natural solution of the constrained martingale problem under con-
ditions that coincide with those of [10] in the case of simple, convex polyhedrons with
constant direction of reflection on each face (see Remark 6.3). In this case, [10] have
shown that these conditions are necessary for existence of a semimartingale reflecting
Brownian motion. Under the same assumptions, the results of Section 4 ensure also that
uniqueness among strong Markov natural solutions implies uniqueness among all natural
solutions. Moreover we show that the set of natural solutions of the constrained martin-
gale problem coincides with the set of weak solutions to the corresponding stochastic
differential equation with reflection (Theorem 6.12).

Further examples of application of the results of Section 4 are presented in Section 7.
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1.1 Notation

For a metric space (E, r), B(E) will denote the σ-algebra of Borel subsets of E,
B(E) will denote the set of bounded, Borel measurable functions on E, and ‖ · ‖
will denote the supremum norm on B(E).

P(E) will denote the set of probability measures on (E,B(E)). For F ∈ B(E), with
a slight abuse of notation, P(F ) will denote {P ∈ P(E) : P (F ) = 1}.
For x ∈ E and F ∈ B(E), d(x, F ) will denote the distance from x to F , that is,
d(x, F ) = infy∈F r(x, y).

1 will denote the function identically equal to 1 and, for F ∈ B(E), 1F will denote
the indicator function of F .

|I| will denote the cardinality of a finite set I.

For any function or operator, R(·) will denote the range and D(·) the domain.

L(·) will denote the distribution of a stochastic process or a random variable.

If Z is a stochastic process defined on an arbitrary probability space, {FZt } will
denote the filtration generated by Z.

If Z is a stochastic process defined on an arbitrary filtered probability space, Z will
also denote the canonical process defined on the path space. {Bt} will denote the
filtration generated by the canonical process.

2 Controlled martingale problems

We use the control formulation of constrained martingale problems given in [24]
rather than the earlier version given in [23] that was based on “patchwork” martingale
problems. The control formulation may be less intuitive, but it is more general and
notationally simpler, and models described in the earlier manner can be translated to
the control formulation.

Let E be a compact metric space, and let E0 be an open subset of E. The requirement
that E be compact is not particularly restrictive since, for example, for most processes
in Rd, one can take E to be the one-point compactification of Rd. Let A ⊂ C(E)× C(E)

with (1, 0) ∈ A.

Let U also be a compact metric space, and let Ξ be a closed subset of Ec0 × U . For
each x ∈ Ec0, let ξx ≡ {u : (x, u) ∈ Ξ} be the set of controls that are admissible at x, and
define F1 ≡ {x ∈ Ec0 : ξx 6= ∅} which is the set of points at which a control exists. Let
B ⊂ C(E)× C(Ξ) with (1, 0) ∈ B. Using A and B, we define a controlled process Y that
outside E0 evolves on a slower time scale than the desired process X. Like X, inside E0

the behavior of Y is determined by A, and outside E0 the behavior of Y is determined by
B. In particular, Y may take values in E0 ∪ F1.

Let LU be the space of measures on [0,∞)×U such that µ([0, t]×U) <∞ for all t > 0.
LU is topologized so that µn ∈ LU → µ ∈ LU if and only if∫

[0,∞)×U
f(s, u)µn(ds× du)→

∫
[0,∞)×U

f(s, u)µ(ds× du)

for all continuous f with compact support in [0,∞)× U . It is possible to define a metric
on LU that induces the above topology and makes LU into a complete, separable metric
space. We will say that an LU -valued random variable Λ1 is adapted to a filtration {Ft} if

Λ1([0, ·]× C) is {Ft} − adapted, ∀C ∈ B(U).
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Definition 2.1. (Y, λ0,Λ1) is a solution of the controlled martingale problem for
(A,E0, B,Ξ), if Y is a process in DE [0,∞), λ0 is nonnegative and nondecreasing and
increases only when Y ∈ E0, Λ1 is a random measure in LU such that

λ1(t) ≡ Λ1([0, t]× U) =

∫
[0,t]×U

1Ξ(Y (s), u)Λ1(ds× du), (2.1)

λ0(t) + λ1(t) = t,

and there exists a filtration {Ft} such that Y , λ0, and Λ1 are {Ft}-adapted and

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫

[0,t]×U
Bf(Y (s), u)Λ1(ds× du) (2.2)

is an {Ft}-martingale for all f ∈ D ≡ D(A)∩D(B). By the continuity of f , we can assume,
without loss of generality, that {Ft} is right continuous.

Remark 2.2. To get some intuition on λ0 and Λ1, consider the case in which A is a
bounded Markov process generator and at each point x ∈ (E0)c there is exactly one
control u(x), so B is the bounded Markov process generator that, at x, produces a jump
u(x). Then Y is the pure jump process with generatorAf(x)1E0

(x)+Bf(x, u(x))1(E0)c(x).
λ0(t) and Λ1([0, t]× C) are the time that Y spends in E0 and the time that Y spends in
(E0)c while the control lies in C, respectively, i.e.

λ0(t) ≡
∫ t

0

1E0
(Y (s)) ds, Λ1([0, t]× C) ≡

∫ t

0

1(E0)c(Y (s))1C(u(Y (s))) ds.

For general A and B, frequently (Y, λ0,Λ1) can be obtained as a limit of a sequence
{(Y n, λn0 ,Λn1 )} corresponding to a sequence of bounded Markov process generators
{(An, Bn)} (with jump rates going to infinity, if A, B are not bounded) that approximates
(A,B). This construction is carried out rigorously in Theorem 2.2 of [24] and yields a
quite general method to obtain solutions of the controlled martingale problem. In the
case when there is a corresponding patchwork martingale problem, as defined in [23]
(see Definition 6.6), this essentially amounts to constructing a solution of the patchwork
martingale problem, which will be a solution of the controlled martingale problem as
well: This approach is followed in Section 6. See also Section 7.2 for an example of
another construction by approximation.

Remark 2.3. Note that the requirement that λ0(t) + λ1(t) = t implies any solution of
the controlled martingale problem for (A,E0, B,Ξ) must satisfy Y ∈ DE0∪F1

[0,∞). In

fact, if Y (t) ∈
(
E0 ∪ F1

)c
for some t, necessarily Y (s) ∈

(
E0 ∪ F1

)c
for all s ∈ [t, t′)

for some t′ > t. Then λ0(t′) − λ0(t) = λ1(t′) − λ1(t) = 0, because λ1 increases only
when Y ∈ F1, by (2.1), and λ0 increases only when Y ∈ E0, and this contradicts
t′ − t =

(
λ0(t′)− λ0(t))

)
+
(
λ1(t′)− λ1(t)

)
.

Remark 2.4. If (Y, λ0,Λ1) is a solution of the controlled martingale problem for
(A,E0, B,Ξ) with distribution P , the canonical process on DE [0,∞)× C[0,∞)[0,∞)× LU
under P is also obviously a solution with respect to the filtration {Bt} generated by itself.
As mentioned in Section 1.1, we denote the canonical process under P by (Y, λ0,Λ1) as
well.

Remark 2.5. One can always assume, without loss of generality, that {Ft} is complete.
Then, denoting by {FYt } the smallest complete and right continuous filtration to which
Y is adapted, λ0 and Λ1 can be replaced by their dual predictable projections on {FYt }
so that (2.2) is a {FYt }-martingale for each f ∈ D (see Lemma 6.1, [25]).

Remark 2.6. Note that the controlled martingale problem can also be formulated by
setting

Cf(y, u, v) = vAf(y) + (1− v)Bf(y, u)
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with controls (u, v) ∈ U × [0, 1]. The analog of Ξ is Ξ0 ⊂ E × U × [0, 1] such that

Ξ0 ∩ E0 × U × [0, 1] = E0 × U × {1}
Ξ0 ∩ ∂E0 × U × [0, 1] = (∂E0 × U ∩ Ξ)× [0, 1]| ∪ ∂E0 × U × {1}
Ξ0 ∩ E

c

0 × U × [0, 1] = (E
c

0 × U ∩ Ξ)× {0}.

Then (Y, µ), with Y ∈ DE [0,∞) and µ a P(U × [0, 1])-valued process is a solution of
the controlled martingale for (C,Ξ0) if there exists a filtration {Ft} such that (Y, µ) is
{Ft}-adapted and

f(Y (t))− f(Y (0))−
∫ t

0

∫
U×[0,1]

Cf(Y (s), u, v)µs(du× dv)ds

is an {Ft}-martingale. Every solution of the controlled martingale problem for (C,Ξ0)

gives a solution for the controlled martingale problem for (A,E0, B,Ξ) by defining

λ0(t) =

∫ t

0

∫
U×[0,1]

vµs(du× dv)ds

and

Λ1(D) =

∫ ∞
0

∫
U×[0,1]

(1− v)1D(s, u)µs(du× dv)ds.

Conversely, every solution of the controlled martingale problem for (A,E0, B,Ξ) gives a
solution of the controlled martingale problem for (C,Ξ0).

Definition 2.7. We define Π ⊂ P(DE [0,∞)× C[0,∞)[0,∞)× LU ) to be the collection of
the distributions of solutions of the controlled martingale problem for (A,E0, B,Ξ), and
for ν ∈ P(E), Πν ⊂ Π to be the collection of distributions such that Y (0) has distribution
ν.
P0 denotes the collection of ν ∈ P(E0 ∪ F1) such that Πν 6= ∅.

Lemma 2.8. If D is dense in C(E), then the collection of distributions of solutions
(Y, λ0,Λ1) of the controlled martingale problem is compact in P(DE [0,∞)×C[0,∞)[0,∞)×
LU ) in the sense of weak convergence (taking the Skorohod topology on DE [0,∞) and
the compact uniform topology on C[0,∞)[0,∞)). Consequently, Π and Πν , ν ∈ P0, are
compact and convex.

Proof. Relative compactness for the family of Y follows from Theorems 3.9.4 and 3.9.1 of
[14]. The relative compactness of the λ0 and Λ1 is immediate, as λ0 and λ1 are Lipschitz
continuous with Lipschitz constant 1. The fact that every limit point is a solution of the
controlled martingale problem follows by standard arguments from the properties of
weakly converging measures and from uniform integrability of the martingales in (2.2).

Convexity is immediate.

2.1 Closure properties of Π

Lemma 2.9. Let (Y, λ0,Λ1) be a solution of the controlled martingale problem for
(A,E0, B,Ξ) with filtration {Ft}. Let H ≥ 0 be a F0-measurable random variable such
that E[H] = 1. Then PH ∈ P(DE [0,∞)× C[0,∞)[0,∞)× LU ) defined by

PH(C) ≡ E[H 1C(Y, λ0,Λ1)], C ∈ B(DE [0,∞)× C[0,∞)[0,∞)× LU ),

is in Π.

Proof. If M is a {Ft}-martingale under P and |M(t)| ≤ C(1 + t) for some C > 0, then M
is a {Ft}-martingale under PH .
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Lemma 2.10.

a) If ν1 << ν2 and Πν2 6= ∅, then Πν1 6= ∅.
b) There exists a closed F2 ⊂ E0 ∪ F1 such that P0 = P(F2).

Proof. Taking H = dν1
dν2

, part (a) follows from Lemma 2.9.
Suppose P ∈ Πν and z ∈ supp(ν). Then for each ε > 0, ν(Bε(z)) > 0, and setting

Hε(x) = 1
ν(Bε(z))

1Bε(z)(x), by Lemma 2.9, PHε ∈ Π. By the compactness of Π, PHε will
have at least one limit point Pz as ε→ 0, and Pz ∈ Πδz .

Let F2 be the closure of ∪ν∈P0
supp(ν). Then for each x ∈ F2, Πδx 6= ∅, and by

convexity, for νx,p =
∑m
i=1 piδxi , x

i ∈ F2, pi ≥ 0,
∑m
i=1 pi = 1, Πνx,p 6= ∅. Since every

ν ∈ P(F2) can be approximated by probability measures of this form, Πν 6= ∅ for each
ν ∈ P(F2).

Lemma 2.11. Define Y τ , λτ0 , and Λτ1 by

Y τ (t) = Y (τ + t), λτ0(t) = λ0(τ + t)− λ0(τ), t ≥ 0,

Λτ1([0, t]× C) = Λ1([τ, τ + t]× C), t ≥ 0, C ∈ B(U).
(2.3)

Note that Y τ , λτ0 , and Λτ1 are adapted to the filtration {Fτ+t}.
Then the measure P τ,H ∈ P(DE [0,∞)× C[0,∞)[0,∞)× LU ) defined by

P τ,H(C) = E[H1C(Y τ , λτ0 ,Λ
τ
1)], C ∈ B(DE [0,∞)× C[0,∞)[0,∞)× LU ) (2.4)

is the distribution of a solution of the controlled martingale problem for (A,E0, B,Ξ).

Proof. For 0 ≤ t < t+ r and C ∈ Bt

EP
τ,H
[{
f(Y (t+ r))− f(Y (t))−

∫ t+r

t

Af(Y (s))dλ0(s)

−
∫

(t,t+r]×U
Bf(Y (s), u)Λ1(ds× du)

}
1C(Y, λ0,Λ1)

]
= E

[{
f(Y τ (t+ r))− f(Y τ (t))−

∫ t+r

t

Af(Y τ (s))dλτ0(s)

−
∫

(t,t+r]×U
Bf(Y τ (s), u)Λτ1(ds× du)

}
H1C(Y τ , λτ0 ,Λ

τ
1)
]

= 0

by the optional sampling theorem. Therefore, P τ,H ∈ Π.

Lemma 2.12. Suppose that (Y, λ0,Λ1) is a solution of the controlled martingale problem
with filtration {Ft} and that τ is a finite {Ft}-stopping time. Let P 0 ∈ P(DE [0,∞) ×
C[0,∞)[0,∞) × LU × [0,∞)) be the joint distribution of the 4-tuple of random variables
(Y, λ0,Λ1, τ). Let ν be the distribution of Y (τ), and let P 1 ∈ Πν (not empty by Lemma
2.11). Then there exists P ∈ P(DE [0,∞) × C[0,∞)[0,∞) × LU × [0,∞)) and a filtration
{Ht} in DE [0,∞)×C[0,∞)[0,∞)×LU × [0,∞) such that, under P , (Y, λ0,Λ1) is a solution
of the controlled martingale problem with filtration {Ht}, τ is a {Ht}-stopping time,
(Y (· ∧ τ), λ0(· ∧ τ),Λ1(· ∧ τ, ·), τ) has the same distribution under P 0 and P and the
distribution of (Y τ , λτ0 ,Λ

τ
1) under P is P 1.

Proof. Let

Ω = DE [0,∞)× C[0,∞)[0,∞)× LU × [0,∞)×DE [0,∞)× C[0,∞)[0,∞)× LU ,
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and denote the elements by (Y 0, λ0
0,Λ

0
1, τ

0, Y 1, λ1
0,Λ

1
1). Apply Lemma 4.5.15 of [14] to P 0

and P 1 to obtain P on Ω such that Y 0(τ) = Y 1(0) and define

Y (t) =

{
Y 0(t), t < τ0

Y 1(t− τ0), t ≥ τ0

λ0(t) =

{
λ0

0(t), t < τ0

λ0
0(τ0) + λ1

0(t− τ0), t ≥ τ0

Λ1([0, t]× C) =

{
Λ0

1([0, t]× C), t < τ0

Λ0
1([0, τ0]× C) + Λ1

1([0, t− τ0]× C), t ≥ τ0.

The fact that (Y, λ0,Λ1) is a solution of the controlled martingale problem follows as in
the proof of Lemma 4.5.16 of [14].

3 Constrained martingale problems

As discussed in the Introduction and at the beginning of Section 2, we are interested
in processes that in E0 behave like solutions of the martingale problem for the operator
A, are constrained to remain in E0, and whose behavior on ∂E0 is determined by the
operator B. In Section 2, we have introduced a controlled process Y with values in
all of E, that evolves on a slower time scale and whose behavior in Ec0 is determined
by B. Y is the first element of a triple (Y, λ0,Λ1) that is a solution of the controlled
martingale problem (Definition 2.1). We now construct the constrained process, X, by
time changing Y , where the time change is obtained by inverting λ0. The following
lemma gives conditions that ensure that the process obtained by inverting λ0 is defined
for all time.

Lemma 3.1. Let (Y, λ0,Λ1) be a solution of the controlled martingale problem for
(A,E0, B,Ξ), and define

τ(t) = inf{s : λ0(s) > t}, t ≥ 0. (3.1)

Suppose there is an f ∈ D and ε > 0 such that∫
[0,t]×U

Bf(Y (s), u)Λ1(ds, du) ≥ ελ1(t). (3.2)

Then limt→∞ λ0(t) =∞ almost surely and E[τ(t)] <∞, for all t ≥ 0.

Proof. See Lemma 2.9 of [24].

Remark 3.2. (3.2) is a natural condition which is also used in the study of PDEs (see,
e.g., [9], Lemma 7.6). An example where it is satisfied is a reflecting diffusion in
a smooth domain with a nontangential direction of reflection. More precisely, let
E0 ≡ {x : ψ(x) > 0} for some function ψ ∈ C2(Rd) such that ψ(x) = 0 implies ∇ψ(x) 6= 0,
so that, in particular, the unit inward normal at x ∈ ∂E0 is given by n(x) ≡ ∇ψ(x)

|∇ψ(x)| . Let

g : Rd → Rd be a continuous vector field, of unit length on ∂E0, such that 〈g(x), n(x)〉 > 0

at every x ∈ ∂E0. Consider the controlled martingale problem for (A,E0, B,Ξ), where

Af(x) ≡ 〈∇f(x), b(x)〉+ 1
2 tr
(
σ(x)σT (x)D2f(x)

)
,

U ≡ {u ∈ Rd : |u| = 1}, Ξ ≡ {(x, u) : x ∈ ∂E0, u = g(x)},
Bf(x, u) ≡ 〈∇f(x), u〉,

and D ≡ C2
c (Rd). Then ψ itself satisfies (3.2) (recall that ∂E0 is compact).

EJP 24 (2019), paper 135.
Page 8/31

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP393
http://www.imstat.org/ejp/


Markov selection for constrained martingale problems

Lemma 3.3. Under the assumptions of Lemma 2.8, if, for each P ∈ Π, P{τ(0) <∞} = 1,
then for each P ∈ Π, limt→∞ λ0(t) =∞ a.s.

Proof. Let (Y, λ0,Λ1) have distribution in Π. Then by Lemma 2.11 and the compactness
of Π (Lemma 2.8), there exists tn →∞ such that (Y tn , λtn0 ,Λ

tn
1 )⇒ (Y∞, λ∞0 ,Λ

∞
1 ). But

P{ lim
t→∞

λ0(t) <∞} ≤ P{ lim
n→∞

lim
t→∞

λ0(tn + t)− λ0(tn) = 0} ≤ P{sup
t
λ∞0 (t) = 0}.

Since by assumption, P{τ∞(0) <∞} = 1, P{supt λ
∞
0 (t) = 0} = 0.

Lemma 3.4. Suppose every solution of the controlled martingale problem for
(A,E0, B,Ξ) satisfies λ0(t) > 0 for all t > 0, a.s. (i.e. P{τ(0) = 0} = 1 for each
P ∈ Π). Then, for every solution, λ0 is a.s. strictly increasing.

Proof. For each s > 0, for every solution (Y, λ0,Λ1) of the controlled martingale problem
for (A,E0, B,Ξ), with the notation of Lemma 2.11 (Y s, λs0,Λ

s
1) is also a solution.

With Lemmas 2.8, 3.1, 3.4 and 3.3 in mind, throughout the remainder of the paper,
we assume the following:

Condition 3.5.

a) D is dense in C(E).

b) For each ν ∈ P(E0), Πν 6= ∅ (hence F2 ⊃ E0, where F2 is defined in Lemma 2.10).

c) For each solution (Y, λ0,Λ1) of the controlled martingale problem for (A,E0, B,Ξ),
limt→∞ λ0(t) =∞ almost surely.

Theorem 3.6. Let (Y, λ0,Λ1) be a solution of the controlled martingale problem for
(A,E0, B,Ξ) with right continuous filtration {Ft}. Let τ(t) be given by (3.1), and define
Gt = Fτ(t). Define

X(t) ≡ Y (τ(t))

and

Λ([0, t]× C) ≡
∫

[0,τ(t)]×U
1C(Y (s), u)Λ1(ds× du), C ∈ B(Ξ).

Suppose there exists a sequence ηn of {Gt}-stopping times such that ηn → ∞ and, for
each n, E[τ(ηn)] <∞.

Then X ∈ DE0
[0,∞), and, for each f ∈ D,

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds−
∫

[0,t]×Ξ

Bf(x, u)Λ(ds× dx× du) (3.3)

is a {Gt}-local martingale.

Proof. Since τ(t) must be a point of increase of λ0, Y (τ(t)) must be in E0. Since Y and τ
are right continuous, X must be in DE0

[0,∞).

Since∣∣∣∣ ∫
[0,t∧ηn]×Ξ

Bf(x, u)Λ(ds× dx× du)

∣∣∣∣ ≤ ‖Bf‖λ1(τ(t ∧ ηn)) ≤ ‖Bf‖τ(t ∧ ηn),

(3.3) stopped at ηn is a martingale.
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Remark 3.7. If λ0(t) > 0 for all t > 0, in particular if Y (0) ∈ E0, then X(0) = Y (0), but
if λ0(t) = 0 for some t > 0, then τ(0) > 0, and X(0) = Y (τ(0)) may not be Y (0).

Let Q0 be the collection of ν ∈ P(E0) such that ν = L(X(0)) = L(Y (τ(0))), for some
solution (Y, λ0,Λ1) of the controlled martingale problem, i.e. Q0 is the set of possible
initial distributions of the process X constructed in Theorem 3.6. Then, by Lemma 2.11,
Q0 is the collection of ν ∈ P(E0) such that there exists (Y, λ0,Λ1) with initial distribution
ν for which λ0(t) > 0 for all t > 0 a.s. Note that Q0 ⊃ P(E0).

Definition 3.8. A process X in DE0
[0,∞) is a solution of the constrained (local) martin-

gale problem for (A,E0, B,Ξ) if there exists a random measure Λ in LΞ and a filtration
{Gt} such that X and Λ are {Gt}-adapted and for each f ∈ D, (3.3) is a {Gt}-(local)
martingale. We may assume, without loss of generality, that {Gt} is right continuous.

A solution obtained as in Theorem 3.6 from a solution of the controlled martingale
problem will be called natural. Γ ⊂ P(DE0

[0,∞)) will denote the set of distributions of

natural solutions and, for ν ∈ P(E0), Γν will denote the set of distributions of natural
solutions X such that X(0) has distribution ν.

Corollary 3.9.

a) For ν ∈ Q0 (Q0 defined in Remark 3.7), if there exists a solution (Y, λ0,Λ1) of
the controlled martingale problem for (A,E0, B,Ξ) with initial distribution ν that
satisfies the conditions of Lemma 3.1, then there exists a natural solution to the
constrained martingale problem for (A,E0, B,Ξ) with initial distribution ν.

b) For ν ∈ P(E0), if there exists a solution (Y, λ0,Λ1) of the controlled martingale
problem for (A,E0, B,Ξ) with initial distribution ν such that λ0 is strictly increasing
a.s. (see Lemma 3.4 for a sufficient condition), then there exists a natural solution to
the constrained local martingale problem for (A,E0, B,Ξ) with initial distribution ν.

Proof.

a) Under the conditions of Lemma 3.1, we can take ηn = n and (3.3) is actually a
martingale.

b) If λ0 is strictly increasing, then τ is continuous and we can take ηn = inf{t :

τ(t) > n}.

We conclude this section with a result giving conditions that imply a solution of the
constrained martingale problem is natural.

Proposition 3.10. Suppose that X is a solution of the constrained martingale problem
for (A,E0, B,Ξ) and Λ is the associated random measure. If Λ([0, ·] × Ξ) is continuous
and for all h ∈ C(Ξ) and t > 0,∫

[0,t]×Ξ

h(x, u)Λ(ds× dx× du) =

∫
[0,t]×Ξ

h(X(s), u)Λ(ds× dx× du), (3.4)

then X is natural.

Proof. Define

λ0(t) ≡ inf{s : s+ Λ([0, s]× Ξ) > t}, Y (t) ≡ X(λ0(t))

and

Λ1([0, t]× C) ≡
∫

[0,λ0(t)]×Ξ

1C(u) Λ(ds× dx× du), C ∈ B(U).
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Then

f(X(λ0(t)))− f(X(0))−
∫ λ0(t)

0

Af(X(s))ds−
∫

[0,λ0(t)]×Ξ

Bf(x, u)Λ(ds× dx× du)

= f(Y (t))− f(X(0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫

[0,λ0(t)]×Ξ

Bf(X(s), u)Λ(ds× dx× du)

= f(Y (t))− f(X(0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫

[0,t]×U
Bf(Y (s), u)Λ1(ds× du).

4 The Markov selection theorem

Our strategy for obtaining a Markov solution for the constrained martingale problem
for (A,E0, B,Ξ) generally follows the approach in Section 4.5 of [14] (which in turn is
based on an unpublished paper [16]). With reference to these results, for h ∈ C(E0),
and ν ∈ P(F2) (F2 defined in Lemma 2.10), define

γ(Πν , h) ≡ sup
P∈Πν

EP [

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)]. (4.1)

Recalling that Πν is compact (Lemma 2.8), we see that the supremum is achieved.

Lemma 4.1. For h ∈ C(E0), there exists vh ∈ B(F2) such that

γ(Πν , h) =

∫
F2

vh(x)ν(dx), ∀ν ∈ P(F2),

and vh is upper semicontinuous.

Proof. Suppose first that h is nonnegative. Let 0 < α < 1 and ν, µ1, µ2 ∈ P(F2). Suppose
ν = αµ1 + (1− α)µ2. Then by convexity of Π,

γ(Πν , h)

≥ sup
P1∈Πµ1 ,P2∈Πµ2

{
αEP1 [

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)] (4.2)

+(1− α)EP2 [

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)]

}
= αγ(Πµ1 , h) + (1− α)γ(Πµ2 , h)

But µ1 and µ2 are absolutely continuos with respect to ν, so setting Hi = dµi
dν , by Lemma

2.9, for P ∈ Πν ,

EP [

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)]

= αEP
H1

[

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)] + (1− α)EP
H2

[

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)]

so the reverse of the previous inequality holds and hence

γ(Πν , h) = αγ(Πµ1
, h) + (1− α)γ(Πµ2

, h). (4.3)

The compactness of Π and the continuity of (Y, λ0,Λ1)→
∫∞

0
e−λ0(s)h(Y (s))dλ0(s) ensure

that the mapping ν → γ(Πν , h) is upper semicontinuous, and the lemma follows by
Lemma 4.5.9 of [14].

If h is not nonnegative, take vh ≡ vh−inf h + inf h.
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Lemma 4.2. Let Πh
ν ⊂ Πν be the subset for which the supremum in (4.1) is achieved,

that is, Q ∈ Πh
ν if and only if

EQ[

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)] = γ(Πν , h) =

∫
F2

vh(x)ν(dx).

Defining Πh = ∪ν∈P(F2)Π
h
ν , Πh is convex, and for each ν, Πh

ν is compact (however, it is
not clear whether or not Πh is compact).

Proof. Let P1 ∈ Πh
µ1

, P2 ∈ Πh
µ1

and P = αP1 + (1 − α)P2, 0 < α < 1. Setting ν =

αµ1 + (1− α)µ2,

EP [

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)] = αγ(Πµ1
, h) + (1− α)γ(Πµ2

, h) = γ(Πν , h),

where the last equality follows from (4.3).

Compactness of Πh
ν follows from the compactness of Πν and the continuity of the

functional (Y, λ0)→
∫∞

0
e−λ0(s)h(Y (s))dλ0(s).

Now consider {hn} ⊂ C(E0), hn ≥ 0, and define Πh1,h2
ν to be the subset of distribu-

tions Q ∈ Πh1
ν such that

EQ[

∫ ∞
0

e−λ0(s)h2(Y (s))dλ0(s)] = γ(Πh1
ν , h2) ≡ sup

P∈Π
h1
ν

EP [

∫ ∞
0

e−λ0(s)h2(Y (s))dλ0(s)],

and recursively, define Π
h1,...,hn+1
ν to be the subset of distributions Q ∈ Πh1,...,hn

ν such
that

EQ[

∫ ∞
0

e−λ0(s)hn+1(Y (s))dλ0(s)] = γ(Πh1,...,hn
ν , hn+1)

≡ sup
P∈Π

h1,...,hn
ν

EP [

∫ ∞
0

e−λ0(s)hh+1(Y (s))dλ0(s)]

Inductively, the compactness of Πh1,...,hn
ν and the continuity of the functional (Y, λ0)→∫∞

0
e−λ0(s)hn+1(Y (s))dλ0(s) ensure that Π

h1,...,hn+1
ν is compact and nonempty. Let

Πh1,...,hn = ∪ν∈P(F2)Π
h1,...,hn
ν .

We now need to show the existence of a function vh1,...,hn
hn+1

such that

γ(Πh1,...hn
ν , hn+1) =

∫
F2

vh1,...,hn
hn+1

(x)ν(dx), ∀ν ∈ P(F2).

If ν = αµ1 + (1− α)µ2, then, by the same argument used for (4.3),

γ(Πh1,...hn
ν , hn+1) = αγ(Πh1,...hn

µ1
, hn+1) + (1− α)γ(Πh1,...hn

µ2
, hn+1);

however, we do not know the upper semicontinuity of γ(Πh1,...hn
ν , hn+1) as a function of

ν, because it is not clear whether or not Πh1,...hn is compact. Consequently, we cannot
apply Lemma 4.5.9 of [14] as we did in Lemma 4.1.

Lemma 4.3. For each n = 1, 2, . . ., ν ∈ P(F2), and g ∈ C(E0), there exists vh1,...,hn
g ≡

vn+1
g ∈ B(F2) such that

γ(Πh1,...hn
ν , g) =

∫
E2

vn+1
g (x)ν(dx). (4.4)
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Proof. Suppose first that g ≥ 0. Following the argument on page 214 of [14], we proceed
by induction. For n = 1, (4.4) is given by Lemma 4.1. Assuming (4.4) holds for n, we
claim

vn+1
g (x) ≡ lim

ε→0+
ε−1(vnhn+εg(x)− vnhn(x))

satisfies (4.4). Note that for all ν ∈ P(F2),∫
F2

vnhn+εg(x)ν(dx) ≥
∫
F2

vnhn(x)ν(dx) + εγ(Πh1,...,hn
ν , g), (4.5)

and hence, for all x ∈ F2,

lim inf
ε→0

ε−1(vnhn+εg(x)− vnhn(x)) ≥ γ(Πh1,...,hn
δx

, g).

For each ε > 0, let P εν ∈ Π
h1,...,hn−1
ν satisfy∫

F2

vnhn+εg(x)ν(dx) = EP
ε
ν [

∫ ∞
0

e−λ0(s)(hn + εg)(Y (s))dλ0(s)]]

≤
∫
F2

vnhn(x)νdx) + εEP
ε
ν [

∫ ∞
0

e−λ0(s)g(Y (s))dλ0(s)]]. (4.6)

By (4.5) and (4.6), all limit points of P εν as ε→ 0 are in Πh1,...,hn
ν , so

lim sup
ε→0

∫
F2

ε−1(vnhn+εg(x)− vnhn(x))ν(dx) ≤ lim sup
ε→0

EP
ε
ν [

∫ ∞
0

e−λ0(s)g(Y (s))dλ0(s)]]

≤ γ(Πh1,...,hn
ν , g).

Therefore,
vn+1
g (x) ≡ lim

ε→0
ε−1(vnhn+εg(x)− vnhn(x))

exists, and since, again by (4.5) and (4.6),

0 ≤ ε−1(vnhn+εg(x)− vnhn(x)) ≤ sup
z
g(z),

(4.4) holds by the dominated convergence theorem.
If g is not nonnegative, take vn+1

g ≡ vg−inf g + inf g.

4.1 Closure properties of Πh1,...,hn

Lemma 4.4. Suppose (Y, λ0,Λ1) is a solution of the controlled martingale problem with
filtration {Ft} and distribution P ∈ Πh1,...,hn . Let H ≥ 0 be F0-measurable with E[H] = 1.
Then PH defined as in Lemma 2.9 is in Πh1,...,hn .

Proof. Let c > 0, Hc = H∧c
E[H∧c] , and Gc = c−H∧c

E[c−H∧c] . Then

EP [vnhn(Y (0))] =
E[H ∧ c]

c
EP

Hc

[

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)]

+
E[c−H ∧ c]

c
EP

Gc

[

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)]

≤ E[H ∧ c]
c

EP
Hc

[vnhn(Y (0))] +
E[c−H ∧ c]

c
EP

Gc

[vnhn(Y (0))]

= EP [vnhn(Y (0))],

and since the inequality is termwise, we must have

EP
Hc

[

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)] = EP
Hc

[vnhn(Y (0))].
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Letting c→∞, the monotone convergence theorem implies

EP
H

[

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)] = EP
H

[vnhn(Y (0))], (4.7)

and PH ∈ Πh1,...,hn .

Remark 4.5. Note that (4.7) implies

EP [

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)|B0] = vnhn(Y (0)).

In particular

vnhn(x) = EP [

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)], P ∈ Πh1,...,hn
δx

, x ∈ F2.

Lemma 4.6. Suppose (Y, λ0,Λ1) is a solution of the controlled martingale problem with
filtration {Ft} with distribution P ∈ Πh1,...,hn . Let τ be a finite {Ft}-stopping time and
let H ≥ 0 be Fτ -measurable with E[H] = 1. Then, for (Y τ , λτ0 ,Λ

τ
1) defined by (2.3), P τ,H

defined by (2.4) is in Πh1,...,hn and Πh1,...,hn is closed under the pasting operation in
Lemma 2.12.

Proof. Again we proceed by induction. By Lemma 2.11,

γ(Πν , h1)

= E[

∫ ∞
0

e−λ0(s)h1(Y (s))dλ0(s)]

= E[

∫ τ

0

e−λ0(s)h1(Y (s))dλ0(s)] + E[e−λ0(τ)

∫ ∞
0

e−λ
τ
0 (s)h1(Y τ (s))dλτ0(s)] (4.8)

= E[

∫ τ

0

e−λ0(s)h1(Y (s))dλ0(s)] + E[e−λ0(τ)]EP
τ,H0

[

∫ ∞
0

e−λ
τ
0 (s)h1(Y τ (s))dλτ0(s)]

≤ E[

∫ τ

0

e−λ0(s)h1(Y (s))dλ0(s)] + E[e−λ0(τ)]γ(Πµ, h1),

where

H0 ≡
e−λ0(τ)

E[e−λ0(τ)]
, µ(C) ≡ E[H01C(Y (τ))].

Let ζ be the distribution of Y (τ) and let P 1 ∈ Πh1

ζ . Taking (Y 0, λ0
0,Λ

0
1, τ

0) with the same

distribution as (Y, λ0,Λ1, τ) and (Y 1, λ1
0,Λ

1
1) with distribution P 1, let (Ŷ , λ̂0, Λ̂1, τ̂) be

given by Lemma 2.12. Then, for Ĥ0 ≡ e−λ̂0(τ̂)

E[e−λ̂0(τ̂)]
,

E[

∫ ∞
0

e−λ̂0(s)h1(Ŷ (s))ds]

= E[

∫ τ

0

e−λ0(s)h1(Y (s))dλ0(s)] + E[e−λ̂0(τ̂)]E[Ĥ0

∫ ∞
0

e−λ̂
τ̂
0 (s)h1(Ŷ τ̂ (s))dλ̂τ̂0(s)]

= E[

∫ τ

0

e−λ0(s)h1(Y (s))dλ0(s)] + E[e−λ̂0(τ̂)]EP
Ĥ0

[

∫ ∞
0

e−λ̂
τ̂
0 (s)h1(Ŷ τ̂ (s))dλ̂τ̂0(s)]

= E[

∫ τ

0

e−λ0(s)h1(Y (s))dλ0(s)] + E[e−λ0(τ)]γ(Πµ, h1)

≥ γ(Πν , h1),

where the third equality holds by Lemma 4.4 and the inequality is given by (4.8).
Consequently, equality must hold here and in (4.8), giving both that P τ,H0 is in Πh1
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and that Πh1 is closed under the pasting operation. Now for an arbitrary H as in the
statement of the theorem, note that the probability measure PH can be written as

PH(C) = EP
H0

[HH−1
0 1C ], C ∈ B(DE [0,∞)× C[0,∞)[0,∞)× LU ),

where EP
H0

[HH−1
0 ] = 1. Since P τ,H0 is the distribution of (Y τ , λτ0 ,Λ

τ
1) under PH0 ,

Lemma 4.4 yields that the distribution of (Y τ , λτ0 ,Λ
τ
1) under PH is in Πh1 , i.e. P τ,H is in

Πh1 .
Now suppose that the result holds for 1 ≤ k ≤ n−1. In particular, if the distribution of

(Y, λ0,Λ1) is in Πh1,...,hn−1 , then the distribution of (Y τ , λτ0 ,Λ
τ
1) under PH0 is in Πh1,...,hn−1 .

With this observation, the proof of the result for n follows.

4.2 The martingale property and the Markov selection theorem

Lemma 4.7. Let (Y, λ0,Λ1) be a solution of the controlled martingale problem for
(A,E0, B,Ξ) with filtration {Ft} and distribution in Πh1,...,hn . For vnhn given by Lemma
4.3,

e−λ0(t)vnhn(Y (t)) +

∫ t

0

e−λ0(s)hn(Y (s))dλ0(s)

is a {Ft}-martingale, and

vhn(Y (0)) = E[

∫ ∞
0

e−λ0(t)hn(Y (s))dλ0(s)|F0]. (4.9)

Proof. For t ≥ 0 and H bounded and Ft-measurable, by Lemma 4.6 and Remark 4.5

E[

∫ ∞
t

e−λ0(s)hn(Y (s)dλ0(s)H] = E[e−λ0(t)

∫ ∞
0

e−λ
t
0hn(Y t(s)dλt0(s)H]

= E[e−λ0(t)vnhn(Y (t))H],

and hence

E[

∫ ∞
t

e−λ0(s)hn(Y (s)dλ0(s)|Ft] = e−λ0(t)vnhn(Y (t))

and

E[

∫ ∞
0

e−λ0(s)hn(Y (s)dλ0(s)|Ft] = e−λ0tvnhn(Y (t)) +

∫ t

0

e−λ0(s)hn(Y (s))dλ0(s).

The left side is clearly a martingale, and (4.9) follows by taking t = 0.

Recall that we are assuming Condition 3.5. In particular, we are assuming that for all
solutions of the controlled martingale problem, λ0(t)→∞.

Theorem 4.8. For ν ∈ P(F2), let Π∞ν ≡ ∩nΠh1,...,hn
ν (note that Π∞ν 6= ∅) and Π∞ ≡

∪ν∈P(F2)Π
∞
ν . Let (Y, λ0,Λ1) be a solution of the controlled martingale problem with

filtration {Ft} and distribution in Π∞. Define, as in Theorem 3.6, τ(t) ≡ inf{s : λ0(s) > t}
and X(t) ≡ Y (τ(t)). Then for all hn,

vnhn(X(t))−
∫ t

0

(vnhn(X(s))− hn(X(s)))ds,

is a {Fτ(t)}-martingale.

Proof. For each hn, by Lemma 4.7

e−λ0(t)vnhn(Y (t)) +

∫ t

0

e−λ0(s)hn(Y (s))dλ0(s)
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is a {Ft}-martingale, so the time changed process

e−tvnhn(X(t)) +

∫ t

0

e−shn(X(s))ds

is a {Fτ(t)}-martingale. Hence by Lemma 4.3.2 in [14],

vnhn(X(t))−
∫ t

0

(vnhn(X(s))− hn(X(s)))ds,

is a {Fτ(t)}-martingale.

Let Q∞0 be the collection of ν ∈ P(E0) such that ν = L(X(0)) = L(Y (τ(0))), for some
(Y, λ0,Λ1) with distribution in Π∞ and τ and X as in Theorem 4.8. Then, by Lemma 4.6,
Q∞0 is the collection of ν ∈ P(E0) such that there exists (Y, λ0,Λ1) with distribution in
Π∞ν for which λ0(t) > 0 for all t > 0 a.s. Note that Q∞0 ⊃ P(E0). In particular δx ∈ Q∞0
for every x ∈ E0.

Theorem 4.9. Let {hn} ⊂ C(E0) be such that its linear span is dense in B(E0) under
bounded pointwise convergence. For ν ∈ Q∞0 , let Γ∞ν be the collection of distributions
of processes X ≡ Y ◦ τ defined as in Theorem 4.8 with ν = L(X(0)) and (Y, λ0,Λ1) with
distribution in Π∞. Then, there exists one and only one distribution in Γ∞ν and it is the
distribution of a strong Markov process.

Proof. By Remark 4.5 and Theorem 4.8, for each n, (vnhn , hn) is a pair(vh, h) such that

vh(Y (0)) = EP [

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)|B0], ∀P ∈ Π∞, (4.10)

and

vh(X(t))−
∫ t

0

[vh(X(s))− h(X(s)]ds (4.11)

is a {Bτ(t)}-martingale for each X = Y ◦ τ , (Y, λ0,Λ1) with distribution in Π∞. Let

A = {(vh|E0
, vh|E0

− h) : such that (vh, h) ∈ B(F2)×B(E0) satisfies (4.10) and (4.11}.

A is linear and closed under bounded pointwise convergence.
For (vh, h) such that (vh|E0

, vh|E0
− h) ∈ A, by Lemma 4.3.2 of [14], for each η > 0

and X = Y ◦ τ as in (4.11),

e−ηtvh(X(t)) +

∫ t

0

e−ηs(ηvh(X(s))− vh(X(s)) + h(X(s)))ds

is a {Bτ(t)}-martingale, and hence

vh(X(0)) = E[

∫ ∞
0

e−ηs(ηvh(X(s))− vh(X(s)) + h(X(s)))ds|Bτ(0)]. (4.12)

(4.12) with η = 1 and (4.10) imply

vh(Y (0)) = E[vh(X(0))|B0].

Consequently, for each x ∈ E0, for (Y, λ0,Λ1) with distribution in Π∞δx , X = Y ◦ τ ,

vh(x) = E[

∫ ∞
0

e−ηs(ηvh(X(s))− vh(X(s)) + h(X(s)))ds],

and, as in Proposition 4.3.5 of [14], this implies that A is dissipative.
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Since R(I − A) ⊃ {hn} and the linear span of {hn} is bounded pointwise dense

in B(E0), we have R(I −A)
bp

= B(E0). The properties of resolvents of dissipative

operators (for example, Lemma 1.2.3 of [14]) ensure that R(ηI −A)
bp

= B(E0) for all
η > 0. Therefore, by Corollary 4.4.4 of [14], for each ν ∈ Q∞0 uniqueness holds for the
martingale problem forA with initial distribution ν, and, by construction, the distribution
of the solution is the unique distribution in Γ∞ν .

Now let (Y, λ0,Λ1) be the canonical process with distribution P ∈ Π∞ such that
L(Y (τ(0))) = ν, so that the distribution of X ≡ Y ◦ τ , defined as in Theorem 4.8, is the
unique distribution in Γ∞ν . In order to show that X is a strong Markov process we need
to show that, for each {Bτ(t)} finite stopping time σ, τ(σ) is a {Bt}-stopping time and,
setting Xσ(·) = X(σ + ·), for every F ∈ Bτ(σ),

EP [1F1B(Xσ)] = EP [1FE[1B(Xσ)|X(σ)]], ∀B ∈ B(DE0
[0,∞)). (4.13)

The fact that τ(σ) is a {Bt}-stopping time follows by the right continuity of {Bt} and
the observation that

{τ(σ) < s} = ∪t∈Q∩[0,∞){σ ≤ t} ∩ {τ(t) < s}, s > 0.

Fix F ∈ Bτ(σ) with P (F ) > 0, and define two probability measures P1 and P2 on
DE [0,∞)× C[0,∞)[0,∞)× LU by

P1(C) ≡ 1

P (F )
EP [1F1C ], P2(C) ≡ 1

P (F )
EP [1FE[1C |Y (τ(σ))]].

Note that

LP1(Xσ(0)) = LP1(Y (τ(σ)) = LP2(Y (τ(σ)) = LP2(Xσ(0)) ≡ µ.

Since

Xσ(t) = Y τ(σ)(τσ(t)),

where τσ is given by

τσ(t) ≡ inf{s : λ
τ(σ)
0 (s) > t},

and (Y τ(σ), λ
τ(σ)
0 ,Λ

τ(σ)
1 ) is defined as in (2.3), Lemma 4.6 yields that LP1(Xσ) ∈ Γ∞µ . On

the other hand LP2(Y τ(σ), λ
τ(σ)
0 ,Λ

τ(σ)
1 ) ∈ Π by the optional sampling theorem. Moreover,

for each n,

EP2 [

∫ ∞
0

e−λ
τ(σ)
0 (s)hn(Y τ(σ)(s))dλ

τ(σ)
0 (s)]

=
1

P (F )
EP [1FE[

∫ ∞
0

e−λ
τ(σ)
0 (s)hn(Y τ(σ)(s))dλ

τ(σ)
0 (s)|Y (τ(σ))]]

=
1

P (F )
EP [E[1F |Y (τ(σ))]E[

∫ ∞
0

e−λ
τ(σ)
0 (s)hn(Y τ(σ)(s))dλ

τ(σ)
0 (s)|Y (τ(σ))]]

=
1

P (F )
EP [E[1F |Y (τ(σ))]

∫ ∞
0

e−λ
τ(σ)
0 (s)hn(Y τ(σ)(s))dλ

τ(σ)
0 (s)]

= γ(Πh1,...,hn−1
µ , hn),
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where the last equality follows from Lemma 4.6. Therefore the distribution of
(Y τ(σ), λ

τ(σ)
0 ,Λ

τ(σ)
1 ) under P2 belongs to Π∞, so that LP2(Xσ) ∈ Γ∞µ . Then, by uniqueness

of the distribution in Γ∞µ , it must hold LP1(Xσ) = LP2(Xσ), which gives (4.13).

Remark 4.10. The process constructed in Theorem 4.9 may not be a solution of the con-
strained (local) martingale problem because (3.3) is not necessarily a (local) martingale
for all f ∈ D. However it is, by construction, a solution of the martingale problem for A.
Note that D(A) ⊃ {f |E0

: f ∈ D and Bf(x, u) = 0, ∀(x, u) ∈ Ξ ∩ ∂E0}.

Lemma 4.11. Let ν ∈ P(E0). Suppose every solution (Y, λ0,Λ1) of the controlled
martingale problem for (A,E0, B,Ξ) with initial distribution ν satisfies λ0(t) > 0 for all
t > 0 a.s. Then, for every choice of the {hn} in Theorem 4.9, ν ∈ Q∞0 .

Proof. If (Y, λ0,Λ1) has distribution in Π∞ν , then τ(0) = 0.

Corollary 4.12.

a) Let ν ∈ P(E0). If every solution (Y, λ0,Λ1) of the controlled martingale problem for
(A,E0, B,Ξ) with initial distribution ν satisfies the conditions of Lemma 4.11 and
Lemma 3.1, then there exists a strong Markov, natural solution to the constrained
martingale problem for (A,E0, B,Ξ) with initial distribution ν.

b) Let ν ∈ P(E0). If λ0 is a.s. strictly increasing for every solution of the controlled
martingale problem for (A,E0, B,Ξ) with initial distribution ν (see Lemma 3.4
for a sufficient condition), then there exists a strong Markov, natural solution
to the constrained local martingale problem for (A,E0, B,Ξ) with initial distribu-
tion ν.

Proof. By Lemma 4.11, ν ∈ Q∞0 , and the assertion follows immediately from Theorem
4.9 by the same arguments as in Corollary 3.9.

Corollary 4.13. Assume Condition 3.5. Let ν ∈ P(E0). If every solution (Y, λ0,Λ1) of
the controlled martingale problem for (A,E0, B,Ξ) with initial distribution ν ∈ P(E0)

satisfies the conditions of Lemma 4.11 and there is a unique (in distribution) strong
Markov process X = Y ◦ τ with initial distribution ν that can be obtained from a solution
of the controlled martingale problem as in Theorem 3.6, then there is a unique (in
distribution) process that can be obtained in this way.

In particular, under either condition a) or b) of Corollary 4.12, if there is a unique
strong Markov, natural solution of the constrained (local) martingale problem with initial
distribution ν, then there exists a unique natural solution.

Proof. If Γν contains more than one distribution, then, by selecting appropriate se-
quences {hn}, more than one strong Markov solution can be constructed.

Remark 4.14. We can’t rule out the possibility that there exist solutions of the con-
strained martingale problem that are not natural, but, under Condition 1.2 of [25],
Theorem 2.2 of that paper yields that for any solution of the constrained martingale
problem there exists a natural solution that has the same one dimensional distributions.
By Theorem 3.2 of [24], uniqueness of one dimensional distributions for solutions with
any given initial distribution implies uniqueness of finite dimensional distributions, so
under Condition 1.2 of [25], uniqueness among natural solutions will imply uniqueness
among all solutions.
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5 Viscosity solutions

The approach taken above in the construction of a strong Markov solution to the con-
strained martingale problem simplifies the proof of existence of viscosity semisolutions
to the problem

v(x)−Av(x) = h(x), for x ∈ E0,

Bv(x, u) = 0, for x ∈ ∂E0 and some u ∈ ξx
(5.1)

given in [6], Section 5. In fact Theorem 5.1 below shows that the function vh defined
by (4.1) and Lemma 4.1 is a viscosity subsolution of (5.1), and hence the function −v−h
is a viscosity supersolution. As a consequence, under mild assumptions, uniqueness
of the strong Markov solution of the constrained martingale problem starting at each
x ∈ E0 implies existence of a viscosity solution (Corollary 5.3). This construction is
a “probabilistic” alternative to Perron’s method, and it does not require proving the
comparison principle for (5.1).

For unconstrained martingale problems, the analogous result follows immediately
from Section 3 of [6]. For a class of jump-diffusion processes, for which uniqueness in law
holds, [8] proves existence of a viscosity solution to the backward Kolmogorov equation
directly, and then uniqueness of the viscosity solution by the comparison principle. The
fact that the comparison principle for (5.1) implies uniqueness of the solution to the
constrained (or unconstrained) martingale problem is the object of [6].

Theorem 5.1. Let (Y, λ0,Λ1) be a solution to the controlled martingale problem for
(A,E0, B,Ξ). For h ∈ C(E0), let v ≡ vh be the function defined by (4.1) and Lem-
ma 4.1.

Then v
∣∣
E0

is a viscosity subsolution of (5.1), that is, it is upper semicontinuous, and

if f ∈ D and x ∈ E0 satisfy

sup
z∈E0

(v − f)(z) = (v − f)(x), (5.2)

then

v(x)−Af(x) ≤ h(x), if x ∈ E0 ∪ (∂E0 − F1),

(v(x)−Af(x)− h(x)) ∧ (−max
u∈ξx

Bf(x, u)) ≤ 0, if x ∈ ∂E0 ∩ F1,

(ξx and F1 being defined at the beginning of Section 2).

Proof. v is upper semicontinuous by Lemma 4.1.

Suppose x is a point such that v(x)− f(x) = supz(v(z)− f(z)). As we can always add
a constant to f , we can assume v(x)− f(x) = 0. By compactness, we have

v(x) = EP
[∫ ∞

0

e−λ0(s)h(Y (s))dλ0(s)

]
for some P ∈ Πδx . For ε > 0, define

τε = ε ∧ inf{t > 0 : r(Y (t), x) ≥ ε or r(Y (t−), x) ≥ ε},

where r is the metric in E, and let Hε = e−λ0(τε). Since (Y, λ0,Λ1) is a solution to the
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controlled martingale problem for (A,E0, B,Ξ), we have

0

= v(x)− f(x)

= EP

[∫ ∞
0

e−λ0(s)(h− f +Af)(Y (s)) dλ0(s) +

∫
[0,∞)×U

e−λ0(s)Bf(Y (s), u)Λ1(ds× du)

]

= EP

[∫ τε

0

e−λ0(s)(h− f +Af)(Y (s)) dλ0(s) +

∫
[0,τε]×U

e−λ0(s)Bf(Y (s), u)Λ1(ds× du)

]

+ EP
[
e−λ0(τε)

∫ ∞
0

e−λ
τε
0 (s)(h− f +Af)(Y τε(s)) dλτε0 (s)

]
+ EP

[
e−λ0(τε)

∫
[0,∞)×U

e−λ
τε
0 (s)Bf(Y τε(s), u)Λτε1 (ds× du)

]

= EP
[∫ τε

0

e−λ0(s)(h− f +Af)(Y (s)) dλ0(s)

]
+ EP

[∫
[0,τε]×U

e−λ0(s)Bf(Y (s), u)Λ1(ds× du)

]

+ EP [Hε]E
P τε,Hε

[∫ ∞
0

e−λ0(s)(h− f +Af)(Y (s)) dλ0(s)

]
+ EP [Hε]E

P τε,Hε

[∫
[0,∞)×U

e−λ0(s)Bf(Y (s), u)Λ1(ds× du)

]
,

with (Y τε , λτε0 (s),Λτε1 ) and P τε,Hε as in Lemma 2.11. Setting µε(·) ≡ P τε,Hε(Y (0) ∈ ·) =

P (Y (τε) ∈ ·), and denoting µεf ≡
∫
F2
f(z)µε(dz), by Lemma 2.11 and Lemma 4.1 we

have

EP [Hε]E
P τε,Hε

[∫ ∞
0

e−λ0(s) (h(Y (s))− f(Y (s)) +Af(Y (s))) dλ0(s)

]
+EP [Hε]E

P τε,Hε

[∫
[0,∞)×U

e−λ0(s)Bf(Y (s), u)Λ1(ds× du)

]
≤ EP [Hε](γ(Πµε , h)− µεf) = EP [Hε](µεv − µεf)

≤ 0,

where the last inequality uses the fact that v − f ≤ 0. Therefore

0

≤ lim
ε→0

EP
[ ∫ τε

0
e−λ0(s)(h− f +Af)(Y (s))dλ0(s) +

∫
[0,τε]×U

e−λ0(s)Bf(Y (s), u)Λ1(ds× du)
]

EP [τε]

= h(x)− f(x) +Af(x0) = h(x)− v(x) +Af(x)

if x ∈ E0 ∪ (∂E0 − F1), and

0 ≤ (h(x)− v(x) +Af(x)) ∨max
u∈ξx

Bf(x, u)),

if x ∈ ∂E0 ∩ F1.

Remark 5.2. Note that, for each x ∈ E0,

v(x) ≡ vh(x) = E

[∫ ∞
0

e−sh(Xh(s))ds

]
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for some strong Markov process Xh = Y ◦ τ obtained from a solution of the controlled
martingale problem as in Theorem 3.6 with Y (0) = x.

Corollary 5.3.

a) If, for each x ∈ E0, there is a unique solution (Y, λ0,Λ1) of the controlled martingale
problem for (A,E0, B,Ξ) with Y (0) = x, then there exists a viscosity solution to
(5.1).

b) If the assumptions of Corollary 4.12 a) or b) are satisfied for each δx, x ∈ E0,
and there is a unique strong Markov, natural solution to the (local) constrained
martingale problem with X(0) = x, then there exists a viscosity solution to (5.1).

Proof. For each x ∈ E0, let v ≡ vh be the function defined by (4.1) and Lemma 4.1. Then,
by uniqueness of the solution to the controlled martingale problem for (A,E0, B,Ξ),

v(x) ≡ vh(x) = −v−h(x),

and, as noted at the beginning of this subsection, −v−h is a supersolution of (5.1).
The second assertion follows from Remark 5.2 by the same argument.

6 Diffusions with oblique reflection in piecewise smooth domains:
existence and Markov property

Let E0 be a bounded, simply connected, open subset of Rd such that E0 ≡ ∩mi=1E
i
0,

where Ei0, i = 1, ...,m, are simply connected open sets in Rd with C1 boundaries.
Specifically, we will assume that for each i there is a function ψi ∈ C1(Rd) such
that Ei0 = {x : ψi(x) > 0} and that ψi(x) = 0 implies ∇ψi(x) 6= 0. In particular,
∂Ei0 = {x : ψi(x) = 0}, and the inward normal at x ∈ ∂Ei0 is ni(x) = ∇ψi(x)

|∇ψi(x)| . We will
assume that

E0 = ∩mi=1E
i
0. (6.1)

Suppose that on ∂Ei0 a variable direction of reflection gi is assigned. We assume
that gi is continuous on ∂Ei0 and 〈∇ψi(x), gi(x)〉 > 0, x ∈ ∂Ei0. It is convenient, and
no loss of generality to assume that gi : Rd → Rd and is continuous on all of Rd with
〈∇ψi(x), gi(x)〉 ≥ 0 (allowing 0 away from ∂Ei0). Noting that x ∈ ∂E0 may be in more
than one ∂Ei0, for x ∈ ∂E0, we define the cone of possible directions of reflection

G(x) ≡

 ∑
i:x∈∂Ei0

ηig
i(x), ηi ≥ 0

 (6.2)

and also define

N(x) ≡

 ∑
i:x∈∂Ei0

ηin
i(x), ηi ≥ 0

 . (6.3)

Starting from the late ’70s, there has been a considerable amount of work devoted
to proving existence and uniqueness of reflecting diffusions in E0 with direction of
reflection gi on ∂Ei0. Perhaps the most general result in this sense is [13]. However
the assumptions in [13] are not satisfied in many natural situations, as in the following
example.

Example 6.1. Let E0 ≡ E1
0 ∩ E2

0 , where E1
0 is the unit ball centered at (1, 0) and E2

0 is
the upper half plane. Let ni, i = 1, 2, denote the unit, inward normal to Ei0, and

gi(x) ≡
[

cos(ϑ) sin(ϑ)

− sin(ϑ) cos(ϑ)

]
ni(x), ϑ a constant angle,

π

4
≤ ϑ < π

2
.

EJP 24 (2019), paper 135.
Page 21/31

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP393
http://www.imstat.org/ejp/


Markov selection for constrained martingale problems

Then, at x0 = 0, it can be proved by contradiction that there is no convex compact set
that satisfies (3.7) of [13].

In addition [13] does not cover the case of cusp like singularities (covered by [7] in
dimension 2).

[10] considers convex polyhedrons (take ψi(x) = 〈ni, x〉 − bi, ni and bi constant) with
constant direction of reflection gi on each face. In this context, [10] proves existence
and uniqueness (in distribution) of semimartingale reflecting Brownian motion under a
condition which, in the case of simple polyhedrons, reduces to the assumption that, for
every x ∈ ∂E0, there exists e(x) ∈ N(x), |e(x)| = 1, such that

〈g, e(x)〉 > 0, ∀g ∈ G(x)− {0}. (6.4)

Moreover, for simple polyhedrons, [10], Propositions 1.1 and 1.2, shows that (6.4) is nec-
essary for existence of semimartingale reflecting Brownian motion. (Non-semimartingale
reflecting Brownian motion, which is studied, for example, in [19], [21] and [27], is not
considered here.) Note that (6.4) is satisfied in Example 6.1.

In [10], a key point in proving uniqueness is the fact that there exist strong Markov
processes that satisfy the definition of semimartingale reflecting Brownian motion and
that uniqueness among these strong Markov processes implies uniqueness among all
processes that satisfy the definition (analogously in [26] and [34]). Our goal here is to
prove that this key point holds for general diffusion processes on domains E0 as defined
above under Condition 6.2 below, thus providing the first step in extending proofs of
uniqueness to this more general setting

In [13], [10] and in most of the literature, reflecting diffusions are defined as (weak)
solutions of stochastic differential equations with reflection. Here we start by studying
the corresponding controlled martingale problem and constrained martingale problem,
and then show that the set of natural solutions to the constrained martingale problem
coincides with the set of solutions of the stochastic differential equation with reflection.

We consider the controlled martingale problem for (A,E0, B,Ξ), with

Af(x) ≡ 〈∇f(x), b(x)〉+ 1
2 tr
(
σ(x)σT (x)D2f(x)

)
,

Bf(x, u) ≡ 〈∇f(x), u〉, (6.5)

U ≡ {u ∈ Rd : |u| = 1},
Ξ ≡ {(x, u) ∈ ∂E0 × U : u ∈ G(x)},

D ≡ C2
c (Rd), and we assume that σ and b are bounded and continuous on Rd.

Note that F1, defined at the beginning of Section 2, in this case is ∂E0, so a solution
of the controlled martingale problem must take values in E0 (Remark 2.3).

For x ∈ (E0)c = ∪mi=1(Ei0)c, let

I(x) ≡ {i : x ∈ (Ei0)c}. (6.6)

Since (Ej0)c is closed, if j ∈ I(zk) for some sequence zk → x, then j ∈ I(x). Consequently,
for each x ∈ (E0)c there exists δ(x) such that

I(z) ⊂ I(x), for z ∈ (E0)c with |z − x| < δ(x). (6.7)

Note that, for x ∈ ∂E0,
I(x) ≡ {i : x ∈ ∂Ei0}. (6.8)

Define also, for x ∈ ∂E0,

I(x) ≡ {I ⊂ I(x) : ∃z ∈ (E0)c, |z − x| < δ(x), s.t. I = I(z)}. (6.9)

We assume that Ei0 and gi, i = 1, ...,m, satisfy the following condition.
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Condition 6.2.

a) For i = 1, ...,m, gi : Rd → Rd are continuous vector fields of unit length on ∂Ei0,
that satisfy

〈gi(x), ni(x)〉 > 0, ∀x ∈ ∂Ei0.

b) For each x ∈ ∂E0, there exists e(x) ∈ N(x), |e(x)| = 1, that satisfies

〈g, e(x)〉 > 0, ∀g ∈ G(x)− {0}.

c) For each x ∈ ∂E0, I ∈ I(x), and n =
∑
i∈I ηin

i(x), ηi ≥ 0,
∑
i∈I ηi > 0, there exists

j ∈ I such that

〈n, gj(x)〉 > 0.

Remark 6.3. In the case of simple, convex polyhedrons with constant direction of
reflection on each face, Condition 6.2 b) becomes (S.b) of [10] and Condition 6.2 c) is
immediately implied by (S.a) of [10]. In fact, since (S.a) and (S.b) are equivalent for
simple polyhedrons ([10], Proposition 1.1), in this case Condition 6.2 is equivalent to the
assumptions of [10].

Example 6.4. For domains with curved boundaries and singularities, e.g. cusp-like
singularities, Condition 6.2 may be satisfied, whereas (S.a) and (S.b) of [10] are not. As
an example, consider the domain

E0 ≡ {x ∈ R2 : 0 < x1, −x4
1 < x2 < x2

1, x
2
1 + x2

2 < 1}.

Then E0 = ∩4
i=1E

i
0 with

ψ1(x) ≡ x2 + x4
1, ψ2(x) ≡ x2

1 − x2, ψ3(x) ≡ 1− x2
1 − x2

2, ψ4(x) ≡ x1.

Let g1 and g2 be continuous vector fields defined on ∂E1
0 and ∂E2

0 , respectively, such

that g1(0) = [− 1
2 ,
√

3
2 ]T , g2(0) = [

√
2

2 ,−
√

2
2 ]T , and take g4(0) ≡ [1, 0]T . Then I(0) ={

{1}, {2}, {4}, {1, 4}, {2, 4}
}

and it is easy to check that Condition 6.2 is satisfied at 0.

Remark 6.5. In general, there are multiple possible choices of Ei0 and gi, i = 1, ...,m,
that determine the same domain E0 = ∩mi=1E

i
0 and the same direction of reflection at

each point of the smooth part of the boundary of E0. In some cases, some of these
choices satisfy Condition 6.2 and others do not. For instance, in Example 6.4 one can
take E0 = ∩3

i=1Ẽ
i
0 with ψ̃3 = ψ3 and

ψ̃1(x) ≡
{
x2 + x4

1, x1 ≥ 0,

x2 − x4
1, x1 < 0,

, ψ̃2(x) ≡
{
x2

1 − x2, x1 ≥ 0,

−x2
1 − x2, x1 < 0.

Then I(0) =
{
{1}, {2}, {1, 2}

}
and, with the same g1(0) and g2(0) as above, Condition 6.2

is not satisfied at 0.

As anticipated in Remark 2.2, we will obtain a solution to the controlled martingale
problem (6.5) by constructing a solution to the corresponding patchwork martingale
problem ([23]), which will also be a solution to the controlled martingale problem.

Definition 6.6 ([23], Lemma 1.1). Given a complete, separable metric space E, an open
subset E0 of E, a partition of E−E0 into Borel sets {E1, ..., Em} and dissipative operators
A,B1, ..., Bm ⊂ C(E)× C(E), each containing (1, 0) and with a common domain D dense
in C(E), a solution to the patchwork martingale problem for (A,E0, B1, E1, ...Bm, Em) is a
process (Y, λ0, l1, ..., lm) such that Y has paths inDE [0,∞), λ0, l1, ..., lm are nondecreasing,
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l1 increases only when Y ∈ Ei, λ0(t) +
∑m
i=1 li(t) = t, and there exists a filtration {Ft}

such that (Y, λ0, l1, ..., lm) is {Ft}-adapted and

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
m∑
i=1

∫ t

0

Bif(Y (s))dli(s)

is a {Ft}-martingale for all f ∈ D.

Theorem 6.7. For each ν ∈ P(E0), there exists a solution (Y, λ0,Λ1) of the controlled
martingale problem for (A,E0, B,Ξ) defined by (6.5), with initial distribution ν.

Proof. Let χ : R→ R be a C∞ function such that χ(r) = 0 for r ≤ 0, χ(r) = 1 for r ≥ 1,
χ′(r) > 0 for 0 < r < 1, and define

φ(x) ≡
m∑
i=1

χ(−ψi(x)). (6.10)

For x ∈ ∂E0 and I ∈ I(x), let

N I
1 (x) = {n : n =

∑
i∈I

ηin
i(x), ηi ≥ 0,

∑
i∈I

ηi = 1},

and define
β ≡ inf

x∈∂E0

min
I∈I(x)

inf
n∈NI1 (x)

max
j∈I
〈n, gj(x)〉.

By Condition 6.2c) and compactness,

β > 0. (6.11)

Let 0 < ε0 ≤ 1 be sufficiently small so that for all i = 1, ...,m,

inf
x∈(E0)c: d(x,E0)≤ε0

ψi(x) > −1, inf
x∈(E0)c: d(x,E0)≤ε0

|∇ψi(x)| > 0,

and for |x− z| ≤ ε0, d(x, ∂Ei0 ∩ ∂E0) ≤ ε0, d(z, ∂Ei0 ∩ ∂E0) ≤ ε0,

|gi(x)− gi(z)| ≤ β

4
and |ni(x)− ni(z)| ≤ β

4
.

Then, in particular, by (6.1), for x ∈ (E0)c, d(x,E0) ≤ ε0,

φ(x) > 0,
∑
i∈I(x)

χ′(−ψi(x))|∇ψi(x)| > 0. (6.12)

For z ∈ ∂E0, let δ(z) be as in (6.7). By compactness, there exists δ0 > 0 such that, for
every x ∈ (E0)c with d(x,E0) ≤ δ0, there exists z ∈ ∂E0 such that |x − z| < δ(z), hence
I(x) ∈ I(z).

For each j = 1, ...,m, x ∈ (E0)c with d(x,E0) ≤ δ0 ∧ ε0, and z ∈ ∂E0 with |x− z| < δ(z),

− 〈∇φ(x), gj(x)〉

=
∑
i∈I(x)

χ′(−ψi(x))|∇ψi(x)| 〈∇ψi(x), gj(x)〉
|∇ψi(x)|

=
∑
i∈I(x)

χ′(−ψi(x))|∇ψi(x)| 〈ni(x), gj(x)〉

≥
∑
i∈I(x)

χ′(−ψi(x))|∇ψi(x)|
(
〈ni(z), gj(z)〉 − |〈ni(x), gj(x)〉 − 〈ni(z), gj(z)〉|

)
≥
∑
i∈I(x)

χ′(−ψi(x))|∇ψi(x)|
(
〈n, gj(z)〉 − β

2

)
,

EJP 24 (2019), paper 135.
Page 24/31

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP393
http://www.imstat.org/ejp/


Markov selection for constrained martingale problems

where

n ≡ 1∑
i∈I(x) χ

′(−ψi(x))|∇ψi(x)|
∑
i∈I(x)

χ′(−ψi(x))|∇ψi(x)|ni(z)

belongs to N I(x)
1 (z) since I(x) ∈ I(z). (6.11) implies that for some j ∈ I(x),

− 〈∇φ(x), gj(x)〉 ≥
∑
i∈I(x)

χ′(−ψi(x))|∇ψi(x)| β
2
> 0. (6.13)

Define
E ≡ {x : d(x,E0) ≤ δ0 ∧ ε0}

and
F̃i = {x ∈ E : ψi(x) ≤ 0, 〈∇φ(x), gi(x)〉 ≤ 0}. (6.14)

By (6.13), each x ∈ E − E0 is in at least one of the F̃i, so defining

Ẽ1 = {x ∈ E : ψ1(x) ≤ 0, 〈∇φ(x), g1(x)〉 ≤ 0}

and
Ẽi = {x ∈ E : ψi(x) ≤ 0, 〈∇φ(x), gi(x)〉 ≤ 0} − ∪j<iẼj , i = 2, . . . ,m,

E0, Ẽ1, . . . , Ẽm are disjoint and

E = E0 ∪
m⋃
i=1

Ẽi.

Setting D̃ = C2(E), ρ(x) = [1 − χ(d(x,E0)
δ0∧ε0 )], Ãf(x) = ρ(x)Af(x), and B̃if =

ρ(x)〈∇f(x), gi(x)〉, Ã and the B̃i are dissipative, and Lemma 1.1 of [23] yields that,
for each ν ∈ P(E0), there exists a solution, (Y, λ0, l1, ..., lm), of the patchwork martingale
problem for (Ã, E0, B̃1, Ẽ1, ...B̃m, Ẽm) with initial distribution ν. Then, for f ∈ D̃

Mf (t) = f(Y (t))−
∫ t

0

Af(Y (s))dλ0(s)−
m∑
i=1

∫ t

0

B̃if(Y (s))dli(s)

= f(Y (t))−
∫ t

0

Af(Y (s))dλ0(s)−
m∑
i=1

∫ t

0

ρ(Y (s))〈∇f(Y (s), gi(Y (s)〉dli(s)

is a {Ft}-martingale. (We can write A rather than Ã since Af = Ãf on E0.)
Since φ is constant on E0, if φ were C2, then

Mφ(t) = φ(Y (t))−
m∑
i=1

∫ t

0

ρ(Y (s))〈∇φ(Y (s), gi(Y (s)〉dli(s) (6.15)

would be a martingale. Since we can approximate φ by C2 functions {φn} in such a way
that φn is constant on E0 and ∇φn → ∇φ uniformly on E, Mφ is a martingale even if φ is

not C2. Mφ is a nonnegative martingale because 〈∇φ, gi〉 ≤ 0 on Ẽi. If Y (0) ∈ E0, then
Mφ(0) = 0 so, as in the proof of Lemma 1.4 of [23], Mφ(t) = 0 for all t ≥ 0. As all terms in
Mφ are nonnegative, φ(Y (t)) must be zero for all t ≥ 0, and hence, by (6.12), Y (t) ∈ E0

for all t ≥ 0. Therefore (Y, λ0, l1, ..., lm) is a solution of the patchwork martingale problem
for (A,E0, B1, E1, ...Bm, Em), where

E1 ≡ {x ∈ ∂E0 : ψ1(x) = 0}
Ei ≡ {x ∈ ∂E0 : ψ1(x) > 0, .., ψi−1(x) > 0, ψi(x) = 0}, i = 2, ...,m, (6.16)

Bif(x) ≡ 〈∇f(x), gi(x)〉 .
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If we define

Λ1([0, t]× C) ≡
m∑
i=1

∫ t

0

1C(gi(Y (s))dli(s) (6.17)

then (Y, λ0,Λ1) is a solution of the controlled martingale problem for (A,E0, B,Ξ).

Let (Y, λ0,Λ1) be a solution of the controlled martingale problem for (A,E0, B,Ξ). It
is easy to verify that Y is continuous and

Y (t)− Y (0)−
∫ t

0

b(Y (s))dλ0(s)−
∫

[0,t]×U
uΛ1(ds× du) ≡M(t) (6.18)

is a continuous martingale with [M ](t) =
∫ t

0
(σσT )(Y (s))dλ0(s).

The following lemma is the analog of Lemma 3.1 of [10] and its proof is based on
similar arguments.

Lemma 6.8. For every solution (Y, λ0,Λ1) of the controlled martingale problem for
(A,E0, B,Ξ) defined by (6.5), λ0(t) > 0 for all t > 0, a.s.

Proof. By (6.18), for τ(0) = inf{t ≥ 0 : λ0(t) > 0},

Y (t ∧ τ(0)) = Y (0) +

∫
[0,t∧τ(0)]×U

uΛ1(ds× du). (6.19)

For every path such that τ(0) > 0, λ1(t ∧ τ(0)) = t ∧ τ(0), and we must have Y (t) ∈ ∂E0

for all t ∈ [0, τ(0)). Setting, for I ⊂ {1, ...,m},

∂IE0 ≡ {x ∈ ∂E0 : I(x) = I}

there must exist a k such that
Y (t) ∈

⋃
I: |I|≥k

∂IE0 (6.20)

for all t ∈ [0, τ(0)). Let k0 be the maximal such k, that is, k = k0 satisfies (6.20) and there
exists t ∈ [0, τ(0)) such that |I(Y (t))| = k0.

By (6.7) and the continuity of Y , for s > t close enough to t, I(Y (r)) ⊂ I(Y (t)) for all
r ∈ [t, s]. Since by definition of k0, |I(Y (r))| ≥ k0, we must have I(Y (r)) = I(Y (t)) for all
r ∈ [t, s].

Since ∂Ei0 is C1,

|〈Y (s)− Y (t), ni(Y (t))〉| = o(|Y (s)− Y (t)|), ∀i ∈ I(Y (t)).

In addition, by (6.19) and the fact that λ1(t) = Λ1([0, t]× U) is Lipschitz,

|Y (s)− Y (t)| ≤ O(s− t),

so that∣∣ ∫
(s,t]×U

〈u, n〉Λ1(ds× du)
∣∣ = |〈Y (s)− Y (t), n〉| = o(|s− t|), ∀n ∈ N(Y (t)).

On the other hand, setting GI(y)(x) ≡
{∑

i∈I(y) ηig
i(x), ηi ≥ 0

}
, (6.7) implies G(Y (r)) ⊂

GI(Y (t))(Y (r)) for all r ∈ [t, s]. Since the Hausdorff distance d(GI(y)(x)∩U,G(y)∩U)→ 0

as x→ y, if s is close enough to t, by 6.2 b) we have, for some e ∈ N(Y (t)), |e| = 1,

〈Y (s)− Y (t), e〉 =

∫
(t,s]×U

〈u, e〉1Ξ(Y (r), u) Λ1(dr × du) ≥ 1

2
inf

u∈G(Y (t))∩U
〈u, e〉(s− t).

Consequently, by contradiction, τ(0) must be zero almost surely.

EJP 24 (2019), paper 135.
Page 26/31

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP393
http://www.imstat.org/ejp/


Markov selection for constrained martingale problems

Lemma 6.9. The controlled martingale problem for (A,E0, B,Ξ) defined by (6.5) satis-
fies Condition 3.5.

Proof. Condition 3.5 a) is clearly satisfied. Condition 3.5 b) is satisfied by Theorem 6.7,
while Condition 3.5 c) is satisfied by Lemma 6.8 and Lemma 3.3.

Theorem 6.10. For each ν ∈ P(E0) there exists a natural solution of the constrained
martingale problem for (A,E0, B,Ξ) defined by (6.5).

Proof. By Lemma 6.8 and Lemma 3.4, Corollary 3.9 b) applies.

As mentioned at the beginning of this section, a reflecting diffusion in E0 with
direction of reflection gi on {x ∈ ∂E0 : ψi(x) = 0, ψj(x) > 0, for j 6= i}, i = 1, ...,m, is
often defined as a weak solution of a stochastic differential equation with reflection of
the form

X(t) = X(0) +
∫ t

0
b(X(s))ds+

∫ t
0
σ(X(s))dW (s) +

∫ t
0
γ(s) dλ(s), t ≥ 0,

γ(t) ∈ G(X(t)), |γ(t)| = 1, dλ− a.e., t ≥ 0, (6.21)

X(t) ∈ E0, λ(t) =
∫ t

0
1∂E0

(X(s))dλ(s), t ≥ 0.

Definition 6.11. X, defined on some probability space, is a weak solution of (6.21)
if there are λ a.s. continuous and nondecreasing, γ a.s. measurable and a standard
Brownian motion W , all defined on the same probability space as X, such that (X, γ, λ)

is compatible with W (i.e. W (t+ ·)−W (t) is independent of FW,X,γ,λt , where {FW,X,γ,λt }
is the filtration generated by (W,X, γ, λ)) and (6.21) is satisfied.

Theorem 6.12. Every weak solution of (6.21) is a natural solution of the constrained
martingale problem for (A,E0, B,Ξ) defined by (6.5).

Conversely, for every natural solution, X, of the constrained martingale problem for
(A,E0, B,Ξ) there exists a weak solution of (6.21) with the same distribution as X.

Proof. Let X be a weak solution of (6.21). Setting

Λ([0, t]× C) ≡
∫ t

0

1C(X(s), γ(s))dλ(s), C ∈ B(Ξ),

we see that X is a solution of the constrained martingale problem for (A,E0, B,Ξ).
Since Λ([0, ·]× Ξ) is continuous and (3.4) is satisfied, by Proposition 3.10, X is a natural
solution.

Conversely, let X = Y ◦ τ , where (Y, λ0,Λ1) is a solution of the controlled martingale
problem (A,E0, B,Ξ) with filtration {Ft} and τ is given by (3.1). Without loss of generality
we can suppose {Ft} complete. Then (see [24], page 141) there is a {Ft}-predictable,
P(U)-valued process L such that, in particular,∫

[0,t]×U
uΛ1(ds× du) =

∫ t

0

∫
U

uL(s, du) dλ1(s) =

∫ t

0

∫
U∩G(Y (s))

uL(s, du) dλ1(s).

Note that
∣∣ ∫
U∩G(Y (s))

uL(s, du)
∣∣ > 0 dλ1-a.e. by Condition 6.2 b) and (2.4) of [24]. Then,

setting

γ̃(s) ≡

∫
U∩G(Y (s))

uL(s, du)∣∣ ∫
U∩G(Y (s))

uL(s, du)
∣∣ , λ̃1(t) ≡

∫ t

0

∣∣ ∫
U∩G(Y (s))

uL(s, du)
∣∣dλ1(s),

we see that (6.18) can be written as

Y (t) = Y (0) +

∫ t

0

b(Y (s))dλ0(s) +

∫ t

0

γ̃(s)dλ̃1(s) +M(t).
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By Lemma 6.8 and Lemma 3.4, λ0 is strictly increasing, therefore τ = (λ0)−1 and X

satisfies

X(t) = X(0) +

∫ t

0

b(X(s))ds+

∫ t

0

γ(s)dλ(s) +N(t),

where γ ≡ γ̃ ◦ τ , λ ≡ λ̃1 ◦ τ and N ≡ M ◦ τ is a continuous martingale with [N ](t) =∫ t
0
(σσT )(X(s))ds. Then the assertion follows by classical arguments.

Theorem 6.13. For each ν ∈ P(E0), there exists a strong Markov solution of (6.21). If
uniqueness in distribution holds among strong Markov solutions of (6.21), then it holds
among all solutions.

Proof. The assertion follows from Theorem 6.10, Theorem 6.12, Corollary 4.12 and
Corollary 4.13.

We conclude this section with the proof of the equivalence between the controlled
martingale problem (6.5) and the corresponding patchwork martingale problem (6.16)
(see Definition 6.6). This equivalence is a valuable tool. For instance, in the last step of
the proof of Theorem 6.7) we have already used one direction of the equivalence, which
is immediate to see, namely the fact that every solution of the patchwork martingale
problem yields a solution of the controlled martingale problem. On the contrary, the
other direction of the equivalence is nontrivial and is proved in the following theorem.

Theorem 6.14. For every solution (Y, λ0,Λ1) of the controlled martingale problem for
(A,E0, B,Ξ) defined by (6.5) there exist l1, ..., lm such that (Y, λ0, l1, ..., lm) is a solution
of the patchwork martingale for (A,E0, B1, E1, ...Bm, Em) defined by (6.16).

Proof. First, we show that there is a Borel mapping Θ : Ξ→ {η ∈ [0,∞)m :
∑m
i=1 ηi = 1}

such that

u =

m∑
i=1

Θi(x, u)gi(x), Θi(x, u) = 0 for i /∈ I(x).

Let G(x) ≡ [g1(x), . . . , gm(x))], and let G+(x) be the Moore-Penrose pseudo-inverse (see
[3], Chapter 1). G+(x) is a Borel function of G(x), hence of x. Then, for each u ∈ Rd
such that G(x)η = u has at least one solution, all solutions have the form

η(w) = G+(x)u+ (I −G+(x)G(x))w, w ∈ Rm.

For (x, u) ∈ Ξ, let w0(x, u) ≡ argmin|w|, where the minimum is taken over all w such that
ηi(w) ≥ 0, i = 1, ...,m, ηi(w) = 0, i /∈ I(x),

∑m
i=1 ηi(w) = 1. w0 is a Borel function ([12]).

Then the mapping

Θ(x, u) ≡ G+(x)u+ (I −G+(x)G(x))w0(x, u)

has the desired properties.
The assertion follows by defining

li(t) =

∫
[0,t]×U

Θi(Y (s), u)Λ1(ds× du), i = 1, . . . ,m. (6.22)

7 Examples of application to other boundary conditions

7.1 Non-local boundary conditions

Let A ⊂ C(E)×C(E) with D(A) dense in C(E), and assume that there exist solutions
of the martingale problem for A with sample paths in DE [0,∞) for all initial distributions
ν ∈ P(E).
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Let U ≡ {1} and B be defined by

Bf(x, 1) ≡ Bf(x) ≡
∫

(f(y)− f(x))η(x, dy),

where η is a transition function on E and, for all x ∈ E,

η(x,E0) = η(x,E) = 1.

Then the controlled martingale problem requires

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

Bf(Y (s))dλ1(s)

to be a martingale. Note that the assumption that η(x,E0) = 1 implies that for every
solution of the controlled martingale problem P{τ(0) < ∞} = 1. In fact, if Y (0) ∈ Ec0,
P{τ(0) > t} ≤ e−t, since B is a generator of a pure jump process with unit exponential
holding times. Consequently, by Lemma 3.3, λ0(t)→∞.

Processes of this type have been considered in a variety of settings, for example
[11, 30]. Semigroups corresponding to processes with nonlocal boundary conditions of
this type have been considered in [2]. Related models are considered in [29].

7.2 Wentzell boundary conditions

LetA ⊂ C(E)×C(E) andB ⊂ C(E)×C(E) be generators such that for every µ ∈ P(E)

there exist solutions of the martingale problem for (A,µ) and (B,µ), every solution of
the martingale problem for A has continuous sample paths and every solution for B has
cadlag sample paths. In addition, assume that if Z is a solution of the martingale problem
for B with Z(0) ∈ E0, then Z(t) ∈ E0 for all t > 0. Set U ≡ {1} and Bf(·, 1) ≡ Bf .

Let µ ∈ P(E0), let Y ε(0) have distribution µ and let Y ε evolve as a solution of
the martingale problem for A until the first time τ ε1 that Y ε hits ∂E0. After time τ ε1 ,
let Y ε evolve as a solution of the martingale problem for B until σε1 ≡ inf{t > τ ε1 :

infx∈∂E0
|Y ε(t) − x| ≥ ε}. Recursively define τ εk and σεk and assume σε0 = 0. By pasting,

Y ε is constructed so that for f ∈ D,

f(Y ε(t))− f(Y (0))−
∫ t

0

( ∞∑
k=0

1[σεk,τ
ε
k+1)(s)Af(Y ε(s)) +

∞∑
k=1

1[τεk,σ
ε
k)(s)Bf(Y ε(s))

)
ds

is a martingale. Define

λε0(t) =

∫ t

0

∞∑
k=0

1[σεk,τ
ε
k+1)(s)ds.

Assume that D = D(A) = D(B) is dense in C(E). Then, by Theorem 3.9.4 of [14],
{(Y ε, λε0, λε1), ε > 0} is relatively compact, and every limit point (Y, λ0, λ1) will give a
solution of the controlled martingale problem, that is, for every f ∈ D

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

Bf(Y (s))dλ1(s)

is a {F (Y,λ0,λ1)
t }-martingale.

Our assumptions imply that λ0 is strictly increasing, so λ0(t)→∞ by Lemma 3.3.
Diffusions with Wentzell boundary conditions have been studied in [35, 36, 1]. Note

that [35, 36] study the models using stochastic differential equations while [1] uses
submartingale problems. [15] formulates what we call the constrained martingale
problem.
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