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Abstract

Consider tossing a collection of coins, each fair or biased towards heads, and take the
distribution of the total number of heads that result. It is natural to suppose that this
distribution should be ‘more random’ when each coin is fairer. In this paper, we prove
a 40 year old conjecture of Shepp and Olkin, by showing that the Shannon entropy
is monotonically increasing in this case, using a construction inspired by optimal
transport theory. We discuss whether this result can be generalized to q-Rényi and
q-Tsallis entropies, for a range of values of q.
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1 Introduction and notation

We consider the entropy of Poisson–binomial random variables (sums of independent
Bernoulli random variables). Given parameters p = (p1, . . . , pn) (where 0 ≤ pi ≤ 1) we
will write fp for the probability mass function of the random variable B1 + . . . + Bn,
where Bi are independent with Bi ∼ Bernoulli(pi). We can write the Shannon entropy as
a function of the parameters:

H(p) = −
n∑

k=0

fp(k) log fp(k). (1.1)

Shepp and Olkin [16] made the following conjecture “on the basis of numerical calcula-
tions and verification in the special cases n = 2, 3”:

Conjecture 1.1 (Shepp–Olkin monotonicity conjecture). If all pi ≤ 1/2 then H(p) is a
non-decreasing function of p.
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Proof of Shepp–Olkin entropy monotonicity conjecture

The main contribution of the present paper is to prove that this conjecture is correct,
and to give conditions for equality (see Theorem 3.6). The heart of our argument will be
a representation of one probability distribution in terms of another, via so-called mixing
coefficients αk (see Definition 2.1) previously introduced in [7] in a form motivated
by optimal transport. The key property of these coefficients is that their differences
are decreasing functions (see Proposition 2.8). We analyse the resulting expressions
using elementary tools; specifically the interplay between the product rule (3.1) for
discrete differentiation and an integration by parts formula, Lemma 3.3. It may be
surprising that only such simple tools are required to resolve this conjecture, however
we remark that the interplay between product rules and integration by parts lies behind
much of the power of the Bakry-Émery Γ2-calculus for continuous random variables (as
alluded to in the dedication of [1]). This may suggest that the Shepp–Olkin conjecture
should be viewed in the context of an emerging discrete Bakry-Émery theory (see also
[4, 9]).

Given the naturalness of Conjecture 1.1, and its simplicity of statement, it is perhaps
surprising that it has remained open for over 40 years (although [16] was published as a
book chapter in 1981, the conjecture was first formulated in the corresponding technical
report [15] in July 1978). Indeed, we are not even aware of any published work that
resolves special cases.

In the same paper [16], Shepp and Olkin also conjectured that the entropy H(p) is
concave in p ∈ [0, 1]n, which was proved in [7] and [8], using constructions based on
optimal transport which we will describe below. Similarly to the monotonicity conjecture,
little published work had previously addressed the entropy concavity conjecture, though
limited progress in special cases had been made in [18] and [6].

In their original paper [16], Shepp and Olkin did prove some related results. In
particular, they showed [16, Theorem 1] that the entropy H(p) is Schur concave in p,
and hence deduced a maximum entropy property for binomial random variables (see
also contemporary work of Mateev [11], as well as later extensions by [5, 19]). Further,
they showed [16, Theorem 2] that the entropy of H(p) is concave in a single argument
pi (see (1.4) below) and [16, Theorem 4] that the entropy of the binomial distribution is
concave. The Schur concavity property of Shepp and Olkin was generalized to a wider
range of functionals and parametric families including negative binomials by Karlin and
Rinott [10].

However, none of these results appear to be particularly relevant to the monotonicity
conjecture, Conjecture 1.1. We can reformulate the conjecture to say that if pi ≤ qi ≤ 1/2

for each i = 1, 2, . . . n then H(p) ≤ H(q). Clearly, by symmetry of the arguments, it is
sufficient to verify this in the case where pi = qi for i = 1, 2, . . . n − 1, which in turn
means that it is enough to check that ∂

∂pn
H(p) ≥ 0. Without loss of generality we

will assume throughout that all pi are non-zero, so that f(k) is non-zero for all k in
{0, 1, . . . , n}.

In this case, following standard calculations in [16], we can take p(t) =

(p1, . . . , pn−1, pn(t)) where pn(t) = pn + t, omit the subscript on fp(t) for brevity and
write f(k) = pn(t)g(k − 1) + (1− pn(t))g(k) to deduce

∂f

∂t
(k) = g(k − 1)− g(k), for k = 0, 1, . . . , n, (1.2)

where g is the probability mass function of B1 + . . .+Bn−1, which is supported on the set
{0, . . . , n− 1} and does not depend on t. Here and throughout we take g(−1) = g(n) = 0

if necessary.
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Proof of Shepp–Olkin entropy monotonicity conjecture

As in [16, Theorem 2] we can use (1.2) to evaluate the first two derivatives of H(p(t))

as a function of t. Direct substitution gives

∂H

∂t
=

n∑
k=0

(g(k)− g(k − 1)) log f(k), (1.3)

∂2H

∂t2
= −

n∑
k=0

(g(k)− g(k − 1))
2

f(k)
. (1.4)

The negativity of each term in (1.4) tells us directly that (as proved in [16, Theorem 2])
the entropy H(p(t)) is concave in t (of course, we also know this from the full Shepp–
Olkin theorem proved in [7, 8]) so it is sufficient to prove that the derivative ∂H

∂t is
non-negative in the case pn = 1/2, since the derivative is therefore larger for any smaller
values of pn.

However, at this stage, further progress is elusive. Considering convolution with Bn

means that we can express f(k) = (g(k) + g(k− 1))/2. However, substituting this in (1.3)
does not suggest an obvious way forward in general, though it is possible to use the
resulting formula to resolve certain special cases. For example, careful cancellation in
the case where p1 = p2 = . . . = pn−1 = 1/2 and hence g is binomial allows us to deduce
that, in this case, the entropy derivative (1.3) equals zero (see Example 2.7 below for an
alternative view of this). However, this calculation does not give any particular insight
into why the binomial case might be extreme in the sense of the conjecture.

Instead of expressing f as a linear combination of g, our key observation is that
we can express g as a weighted linear combination of f , as described in the following
section.

2 Entropy derivative and mixing coefficients

The following construction and notation were introduced in [7], based on the ‘hyper-
geometric thinning’ construction of Yu [19, Definition 2.2]. The key is to observe that in
general we can write

g(k) = αk+1f(k + 1) + (1− αk)f(k), (2.1)

for certain ‘mixing coefficients’ (αk)k=0,1,...,n. The general construction for αk in the case
of Shepp–Olkin paths is given in [7, Proposition 5.1], but in the specific case where only
pn varies, in the case pn = 1/2, we can simply define the following values:

Definition 2.1. For k = 0, . . . , n, define

αk :=
g(k − 1)

2f(k)
=

g(k − 1)

g(k − 1) + g(k)
. (2.2)

By direct calculation using (2.2) we can see that in this case

αk+1 − αk =
g(k)2 − g(k − 1)g(k + 1)

(g(k − 1) + g(k))(g(k) + g(k + 1))
,

so the fact that g(k)2 > g(k − 1)g(k + 1) (see [12]) means that the mixing coefficients
satisfy

0 = α0 < α1 < α2 < . . . < αn = 1. (2.3)

In [7, Proposition 5.2] this result was stated in the form αk−1 ≤ αk, but the strict
inequalities will help us to resolve the case of equality in Conjecture 1.1. It will often be
useful for us to observe that Definition 2.1 implies that for k = 0, 1, . . . , n

g(k) = 2αk+1f(k + 1) = 2(1− αk)f(k), (2.4)
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Proof of Shepp–Olkin entropy monotonicity conjecture

and that for k = 0, 1, . . . , n− 1

αk+1g(k + 1) = (1− αk+1)g(k). (2.5)

Remark 2.2. Summing (2.4), we can directly calculate that

n∑
k=0

f(k)αk =
1

2
, (2.6)

which will play an important role in our proof of Conjecture 1.1. Further, it is interesting
to note by rearranging (2.2) that αk ≤ 1/2 if and only if g(k − 1) ≤ g(k), which by the
unimodality of g (see for example [12]) means that k ≤ mode(g). This may suggest that
the Shepp-Olkin conjecture can be understood as relating to the skewness of the random
variables g. Direct calculation shows that the centred third moment of B1 + . . .+Bn−1 is∑n−1

i=1 pi(1− pi)(1− 2pi) ≥ 0, but it is not immediately clear how this positive skew will
affect the entropy of f .

Remark 2.3. In [7] we used these mixing coefficients (αk)k=0,1,...,n to formulate a dis-
crete analogue of the Benamou–Brenier formula [2] from optimal transport theory, which
gave an understanding of certain interpolation paths of discrete probability measures
(including Shepp–Olkin paths) as geodesics in a metric space. We do not require this
interpretation here, but simply study the properties of αk in their own right.

We now define a function which will form the basis of our proof of Conjecture 1.1:

Definition 2.4. Define

ψ(α) := α logα− (1− α) log(1− α)− (2− 2 log 2)(α− 1/2),

where we take 0 log 0 = 0 to ensure that ψ is continuous at 0 and at 1.

Remark 2.5.

1. Note that we can express

ψ(α) = −
∞∑
r=1

(2α− 1)2r+1

2r(2r + 1)
, (2.7)

as a power series with only odd terms with all coefficients negative. Further,
comparison with

∑∞
r=1

1
2r(2r+1) = 1 − log 2 < ∞ shows that this series converges

absolutely for all α ∈ [0, 1].

2. Hence the ψ is non-increasing and antisymmetric about 1/2 (with ψ(α) = −ψ(1−α))
and with ψ(0) = 1− log 2 > 0, ψ(1/2) = 0 and ψ(1) = −(1− log 2) < 0.

We can express the derivative of entropy in terms of these functions and the mixing
coefficients, as follows:

Proposition 2.6.

∂H

∂t
= 2

n∑
k=0

f(k)ψ(αk). (2.8)

Hence by (2.7), the entropy derivative (1.3) is positive if each of the odd centred moments∑n
k=0 f(k)(αk − 1/2)2r+1 ≤ 0, for r = 1, 2, . . ..

Proof. Using the fact that g(−1) = g(n) = 0 and adding cancelling terms into the sum
(1.3), we can use g(k)/(2f(k)) = 1 − αk and g(k − 1)/(2f(k)) = αk (see (2.4)) to obtain
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Proof of Shepp–Olkin entropy monotonicity conjecture

that

∂H

∂t
=

n−1∑
k=0

g(k) log f(k)−
n∑

k=1

g(k − 1) log f(k)

=

n−1∑
k=0

g(k) log

(
f(k)

g(k)/2

)
−

n∑
k=1

g(k − 1) log

(
f(k)

g(k − 1)/2

)

= 2

n−1∑
k=0

f(k) (−(1− αk) log(1− αk)) + 2

n∑
k=1

f(k) (αk logαk)

= 2

n∑
k=0

f(k) (αk logαk − (1− αk) log(1− αk)) (2.9)

since α0 = 0 and αn = 1 so that α0 logα0 = (1− αn) log(1− αn) = 0.
Since by (2.6) the

∑n
k=0 f(k)αk = 1/2, subtracting off the linear term makes no

difference to the sum and we can rewrite (2.9) as 2
∑n

k=0 f(k)ψ(αk), as required.
We can exchange the order of summation in

2
n∑

k=0

f(k)ψ(αk) = −2

n∑
k=0

f(k)

∞∑
r=1

(2αk − 1)2r+1

2r(2r + 1)

= −
∞∑
r=1

22r+1

r(2r + 1)

n∑
k=0

f(k)(αk − 1/2)2r+1,

because of Fubini’s theorem, since as mentioned above the power series for ψ converges
absolutely. Hence if each odd centered moment is negative then the entropy derivative
(1.3) is positive.

Notice that, using Remark 2.5 and Proposition 2.6, we can immediately deduce that
the entropy derivative must lie between −2(1− log 2) and 2(1− log 2).

Example 2.7. In the case where p1 = p2 = . . . = pn, since g is Binomial(n− 1, 1/2), we
know that g(k)/g(k − 1) = (n− k)/k for k = 1, . . . , n, so that

αk =
1

1 + g(k)/g(k − 1)
=

1

1 + (n− k)/k
=
k

n

Using this, and the fact that α0 = 0, since f is Binomial(n, 1/2) we know that f(k) =

f(n− k) and αk − 1/2 = −(αn−k − 1/2) so each odd centred moment satisfies

n∑
k=0

f(k)(αk − 1/2)2r+1 = −
n∑

k=0

f(n− k)(αn−k − 1/2)2r+1

= −
n∑

l=0

f(l)(αl − 1/2)2r+1

by relabelling, and hence equals zero.

We shall argue that the binomial example, Example 2.7, represents the extreme case
using the following property, which will be key for us:

Proposition 2.8. If all the pi ≤ 1/2 then

αk+1 − αk is decreasing in k = 0, . . . , n− 1. (2.10)

Proof. See Appendix A.
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Proof of Shepp–Olkin entropy monotonicity conjecture

Note that comparing averages, and taking the values of α0 = 0 and αn = 1 from (2.3),
Proposition 2.8 implies that

αk

k
=

∑k−1
`=0 (α`+1 − α`)

k
≥
∑n−1

`=0 (α`+1 − α`)

n
=
αn

n
=

1

n
,

or that if all the pi ≤ 1/2 then αk ≥ k/n for 0 ≤ k ≤ n, showing that the binomial
distribution of Example 2.7 is the extreme case in this sense.

3 Proof of Shepp–Olkin monotonicity conjecture

We are now in a position to complete our proof of Conjecture 1.1.

Definition 3.1. First we introduce some further notation:

1. We denote βk = αk − 1/2. In particular αk+1 + αk−p − 1 = βk+1 + βk−p. As proven
in (2.3) and Proposition 2.8 respectively, the sequence (βk)k is increasing and
(βk+1 − βk)k is decreasing.

2. We define the family (Ap(k))k by A0(k) = 1 and, for p ≥ 1, Ap(k) =
∏p−1

j=0 αk−j .
Here if p ≥ k + 1, we take Ap(k) = 0 (this reflects that the product includes the
term α0 = 0).

3. We define the family (Bp(k))k by B0(k) = 1 and, for 1 ≤ p ≤ k + 1, write Bp(k) =∏p−1
j=0(βk+1 − βk−j). For other values of k, Bp(k) is not defined.

4. The notation ∇ stands for the left-derivative operator: ∇v(k) = v(k)−v(k−1). This
operator satisfies a product rule of the form:

∇(vw)(k) = v(k)∇w(k) + w(k − 1)∇v(k). (3.1)

5. For n ≥ 1 and p ≥ 1 we define the polynomial (symmetric in its inputs)

Qn,p(X1, . . . , Xp) =
∑

Xi1
1 . . . Xip

p , (3.2)

where the sum is taken over all the p-tuples 0 ≤ i1, . . . , ip ≤ n such that i1+. . .+ip =

n. We also set Q0,p = 1 and Q−1,p = 0 for all p ≥ 1. Clearly, Qn,p(X1, . . . , Xp) is
non-negative if X1, . . . , Xp are non-negative.

We now state three technical lemmas that we will require in the proof; each of these
are proved in Appendix B. First, the fact that Bp(k) is decreasing in k:

Lemma 3.2. Given p ≥ 0, we have ∇Bp(k) = Bp(k)−Bp(k − 1) ≤ 0 for k ≥ p.
We next give an integration by parts formula. Note that although we restrict the

range of summation for technical reasons, the values Ap(k) and Ap+1(k) are zero outside
the respective ranges:

Lemma 3.3. For any function v(k) that is well-defined on p ≤ k ≤ n− 1 and any p ≥ 0

we have
n−1∑
k=p

g(k)Ap(k)v(k)(βk+1 + βk−p) =

n−1∑
k=p+1

g(k)Ap+1(k)∇v(k). (3.3)

Finally, a result concerning differences of the Q polynomials:

Lemma 3.4. For n ≥ 0 and p ≥ 1, we have

Qn,p(X2, . . . , Xp+1)−Qn,p(X1, . . . , Xp) = (Xp+1 −X1)Qn−1,p+1(X1, . . . , Xp+1). (3.4)

We now state and prove the key Proposition:
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Proof of Shepp–Olkin entropy monotonicity conjecture

Proposition 3.5. Fix r ≥ 1. The sequence (Sr,p)1≤p≤r+1 defined by

Sr,p =

n−1∑
k=p−1

g(k)Ap−1(k)Bp(k)Qr−p,p+1(β2
k+1, . . . , β

2
k−p+1) (βk+1 + βk−p+1) ,

is increasing in p. Here note that Sr,r+1 = 0 since Q−1,p+1 = 0.

(Note that by restricting to this range of summation the Bp(k) is well-defined).

Proof. We first take v(k) = Bp(k)Qr−p,p+1(β2
k+1, . . . , β

2
k−p+1) in the integration by parts

formula (3.3) from Lemma 3.3 to write

Sr,p =

n−1∑
k=p

g(k)Ap(k)∇
[
Bp(k)Qr−p,p+1(β2

k+1, . . . , β
2
k−p+1)

]
,

where here and throughout the proof, the ∇ refers to a difference in the k parameter.
Now, using the product rule (3.1) with v(k)=Bp(k) and w(k)=Qr−p,p+1(β2

k+1, . . . , β
2
k−p+1)

yields:

Sr,p =

n−1∑
k=p

g(k)Ap(k)Bp(k)∇
[
Qr−p,p+1(β2

k+1, . . . , β
2
k−p+1)

]
+

n−1∑
k=p

g(k)Ap(k)Qr−p,p+1(β2
k, . . . , β

2
k−p)∇Bp(k)

In order to transform the first sum, we use equation (3.4) from Lemma 3.4:

∇
[
Qr−p,p+1(β2

k+1, . . . , β
2
k−p+1)

]
= Qr−p,p+1(β2

k+1, . . . , β
2
k−p+1)−Qr−p,p+1(β2

k, . . . , β
2
k−p)

= (β2
k+1 − β2

k−p)Qr−p−1,p+2(β2
k+1, . . . , β

2
k−p)

= (βk+1 − βk−p)Qr−p−1,p+2(β2
k+1, . . . , β

2
k−p)(βk+1 + βk−p).

Further Lemma 3.2 gives that ∇Bp(k) ≤ 0 for k ≥ p and since the arguments are positive
Qr−p,p+1(β2

k, . . . , β
2
k−p) ≥ 0, so the second sum is ≤ 0. We finally conclude that

Sr,p ≤
n−1∑
k=p

g(k)Ap(k)Bp+1(k)Qr−p−1,p+2(β2
k+1, . . . , β

2
k−p) (βk+1 + βk−p)

= Sr,p+1,

as we have Bp(k)(βk+1 − βk−p) = Bp+1(k).

We are now able to prove the following theorem, which confirms Conjecture 1.1:

Theorem 3.6. If all pi ≤ 1/2 then H(p) is a non-decreasing function of p. Equality holds
if and only if each pi equals 0 or 1

2 .

Proof. As described in Proposition 2.6, it is sufficient for us to prove that for every r ≥ 1

we have
n∑

k=0

f(k)(αk − 1/2)2r+1 =

n∑
k=0

f(k)β2r+1
k ≤ 0. (3.5)

Using (2.4) we know that αk = g(k − 1)/(2f(k)) and 1 − αk = g(k)/(2f(k)), so that
(subtracting these two expressions)

βk = αk − 1/2 =
(g(k − 1)− g(k)

4f(k)
.
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Proof of Shepp–Olkin entropy monotonicity conjecture

This means that, using a standard factorization of
(
β2r
k+1 − β2r

k

)
, since g(−1) = g(n) = 0

we can write

4

n∑
k=0

f(k)β2r+1
k

=

n∑
k=0

(g(k − 1)− g(k))β2r
k

=

n−1∑
k=0

g(k)
(
β2r
k+1 − β2r

k

)
=

n−1∑
k=0

g(k) (βk+1 − βk) (βk+1 + βk)Qr−1,2(β2
k+1, β

2
k) (3.6)

= Sr,1.

However, Proposition 3.5 gives
Sr,1 ≤ Sr,r+1 = 0,

and we are done. Note that an examination of (3.6) allows us to deduce conditions under
which equality holds for the cubic case (r = 1). In this case we can rewrite (3.6) using
the integration by parts formula (3.3) as

n−1∑
k=0

g(k) (βk+1 − βk) (βk+1 + βk)

=

n−1∑
k=0

g(k)αk ((βk+1 − βk)− (βk − βk−1)) (3.7)

Here g(k) and αk are positive for k ≥ 1, and Proposition 2.8 tells us that the second
bracket is negative, and so the centered third moment equals zero if and only βk+1 − βk
is constant in k, which means that αk = k/n. However, (2.6) tells us that this implies that

1

2
=

n∑
k=0

f(k)αk =
1

n

n∑
k=0

f(k)k =
1

n

n∑
i=1

pi,

so that equality can hold if and only if pi ≡ 1/2.

4 Monotonicity of Rényi and Tsallis entropies

As in [8, Section 4] where a similar discussion considered the question of concavity
of entropies, we briefly discuss whether Theorem 3.6 may extend to prove that q-Rényi
and q-Tsallis entropies are always increasing functions of p for pi ≤ 1/2. We make the
following definitions, each of which reduce to the Shannon entropy (1.1) as q → 1.

Definition 4.1. For fp as defined above, for 0 ≤ q ≤ ∞ define

1. q-Rényi entropy [14]: HR,q(p) =
1

1− q
log

(
n∑

x=0

fp(x)q

)
, (4.1)

2. q-Tsallis entropy [17]: HT,q(p) =
1

q − 1

(
1−

n∑
x=0

fp(x)q

)
. (4.2)

Note that, unlike the concavity case of [8, Section 4], since they are both monotone
functions of

∑n
x=0 fp(x)q, both HR,q(p) and HT,q(p) will be increasing in p in the same

EJP 24 (2019), paper 126.
Page 8/14

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP380
http://www.imstat.org/ejp/


Proof of Shepp–Olkin entropy monotonicity conjecture

cases. We can provide analogues of (1.3) and (1.4) by (for q 6= 1)

∂HT,q

∂t
= − q

q − 1

n∑
k=0

(g(k − 1)− g(k)) f(k)q−1, (4.3)

∂2HT,q

∂t2
= −q

n∑
k=0

(g(k − 1)− g(k))
2
f(k)q−2. (4.4)

Again, the second term is negative, and therefore HT,q(p) will be increasing for all
pn ≤ 1/2 if it is increasing in the case pn = 1/2. Clearly for q = 0 (4.3) shows that the
entropy is constant (indeed we know that in this case HR,q = log(n+ 1) and HT,q = n).

Curiously, we can simplify (4.3) in the case of collision entropy (q = 2) by substituting
for f as a linear combination of g (which is the argument that did not work for q = 1).

Lemma 4.2. For q = 2, if pn ≤ 1/2

∂HT,q

∂t
= (1− 2pn)

n∑
k=0

(g(k − 1)− g(k))
2 ≥ 0. (4.5)

Proof. In (4.3) we obtain

∂HT,q

∂t
= −2

n∑
k=0

(g(k − 1)− g(k)) f(k)

= −2

n∑
k=0

(g(k − 1)− g(k)) ((1− pn)g(k) + png(k − 1))

= 2

n∑
k=0

(1− pn − pn)g(k)2 − (1− pn − pn)g(k)g(k − 1),

which is equal to the term stated in (4.5) by relabelling. Note that (curiously) this
property will hold for any g, including the mass function of any B1 + . . . + Bn−1 (not
necessarily with pi < 1/2).

It may be natural to conjecture that Tsallis (and hence Rényi) entropy is increasing
for all q. However, the following example shows that this property in fact can fail for
q > 2 (note that Rényi entropy is not concave in the same range – see [8, Lemma 4.3]).

Example 4.3. Consider n = 2 with p1 = 1/2− ε and p2 = 1/2. Direct substitution in (4.3)
gives that the entropy derivative is exactly

− q21−q

q − 1

((
1

2
− ε
)q

−
(

1

2
+ ε

)q

+ 2ε

)
= −q2

2−2q

q − 1
(2q − 2q)ε+O(ε3), (4.6)

and we note that 2q − 2q ≥ 0 for q > 2, so the leading coefficient is negative and so the
derivative will be negative for ε sufficiently small.

However, we conjecture that these entropies are increasing for 0 ≤ q ≤ 2, since we
know that the result holds for q = 0, 1, 2:

Conjecture 4.4. If all pi ≤ 1/2 then Tsallis entropy HT,q(p) and Rényi entropy HR,q(p)

are non-decreasing functions of p for 0 ≤ q ≤ 2.

We use an argument similar to that which gave Proposition 2.6 to give a moment-
based condition related to this conjecture.
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Proof of Shepp–Olkin entropy monotonicity conjecture

Proposition 4.5. Let us fix 0 < q < 2. If, for all r ≥ 1,

n∑
k=0

f(k)qβ2r+1
k ≤ 0, (4.7)

then ∂HT,q

∂t ≥ 0 holds.

Proof. We first add a telescoping sum in equation (4.3) to express the derivative as

− q

q − 1

n∑
k=0

(g(k − 1)− g(k)) f(k)q−1 +
1

q − 1

n∑
k=0

g(k − 1)q − g(k)q

= − 1

q − 1

n∑
k=0

f(k)q
[(

g(k)

f(k)

)q

−
(
g(k − 1)

f(k)

)q

+ q

(
g(k)

f(k)
− g(k − 1)

f(k)

)]

= − 1

q − 1

n∑
k=0

f(k)q [(2(1− αk))
q − (2αk)

q
+ q (2(1− αk)− 2αk)]

= − 1

q − 1

n∑
k=0

f(k)q [(1− 2βk)
q − (1 + 2βk)

q
+ 4βkq]

=

n∑
k=0

f(k)qψq(2βk),

where, using the binomial theorem, the function ψq can be expressed as

ψq(x) = − (1− x)q − (1 + x)q + 2qx

q − 1
=

∞∑
r=1

(
q

2r∏
i=2

(q − i)

)
1

(2r + 1)!
x2r+1. (4.8)

From the assumption 0 < q < 2, it follows that q
∏2r

i=2(q − i) < 0. The proof is completed
as in Proposition 2.6.

A Proof of Proposition 2.8

Proof. Using αk+1 = g(k)/(g(k) + g(k + 1)), we can express the difference αk+1 − αk as

g(k)2 − g(k + 1)g(k − 1)

(g(k + 1) + g(k))(g(k) + g(k − 1))
=

Dg(k)

(g(k + 1) + g(k))(g(k) + g(k − 1))
,

so the property is equivalent to

(g(k + 2) + g(k + 1))Dg(k) ≥ (g(k − 1) + g(k))Dg(k + 1), (A.1)

where we write Dg(k) = g(k)2 − g(k + 1)g(k − 1).
We write g(i) for the mass function of

∑
j 6=iBi, the sum of the first (n− 1) Bernoulli

variables with the ith one omitted, and write D(i)(k) =
(
g(i)(k)

)2 − g(i)(k + 1)g(i)(k − 1)

and E(i)(k) = g(i)(k)g(i)(k + 1)− g(i)(k + 2)g(i)(k − 1).
The cases q = 1 and q = 2 of [7, Lemma A1] give that

g(k)g(k − 1) =

n−1∑
i=1

pi(1− pi)D(i)(k − 1), (A.2)

2g(k − 1)g(k + 1) =

n−1∑
i=1

pi(1− pi)E(i)(k − 1), (A.3)
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Proof of Shepp–Olkin entropy monotonicity conjecture

and by direct substitution we deduce that

g(k)2g(k + 1) + g(k − 1)g(k)g(k + 2)− 2g(k − 1)g(k + 1)2

=

n−1∑
i=1

pi(1− pi)
(
g(k)D(i)(k) + g(k + 2)D(i)(k − 1)− g(k + 1)E(i)(k − 1)

)
=

n−1∑
i=1

pi(1− pi)

(
(1− pi)

(
D(i)(k)

)2 −D(i)(k − 1)D(i)(k + 1)

g(i)(k)

)
, (A.4)

where the second equality follows directly by taking g(k) = (1− pi)g(i)(k) + pig
(i)(k − 1)

for each i and simplifying inside the bracket. Similarly, we can find

g(k)g(k + 1)2 + g(k − 1)g(k + 1)g(k + 2)− 2g(k)2g(k + 2)

=

n−1∑
i=1

pi(1− pi)
(
g(k + 1)D(i)(k) + g(k − 1)D(i)(k + 1)− g(k)E(i)(k)

)
=

n−1∑
i=1

pi(1− pi)

(
pi

(
D(i)(k)

)2 −D(i)(k − 1)D(i)(k + 1)

g(i)(k)

)
. (A.5)

Comparing (A.4) and (A.5), using the fact that
(
D(i)(k)

)2−D(i)(k− 1)D(i)(k+ 1) ≥ 0 (see
[3] or [8, Section 2.2]) we deduce that if all pi ≤ 1/2 then

g(k)2g(k + 1) + g(k − 1)g(k)g(k + 2)− 2g(k − 1)g(k + 1)2

≥ g(k)g(k + 1)2 + g(k − 1)g(k + 1)g(k + 2)− 2g(k)2g(k + 2),

which by rearranging is precisely (A.1) above.

B Proof of technical lemmas

Proof of Lemma 3.2. Given j ≥ 0, each sequence (βk+1 − βk−j)k is non-negative and
non-increasing, so any product of such sequences is also non-increasing. In more detail,
the

∇Bp(k) = Bp(k)−Bp(k − 1) =

p−1∏
j=0

(βk+1 − βk−j)−
p−1∏
j=0

(βk − βk−j−1),

and for each j ≥ 0, the (βk+1 − βk−j) ≤ (βk − βk−j−1) because Proposition 2.8 gives
(βk+1 − βk) ≤ (βk−j − βk−j−1), and each term in the product is positive by (2.3). Further,
each of these terms is well-defined since k − j − 1 ≥ k − p ≥ 0.

Proof of Lemma 3.3. Using the facts that g(n) = 0 and that Ap+1(0) = 0, we write the
RHS of (3.3) as

n−1∑
k=p+1

Ap+1(k)g(k)v(k)−
n∑

k=p+1

Ap+1(k)g(k)v(k − 1)

=

n−1∑
k=p

v(k)

(
g(k)Ap+1(k)− g(k + 1)Ap+1(k + 1)

)

=

n−1∑
k=p

g(k)Ap(k)v(k)

(
αk−p − αk+1

g(k + 1)

g(k)

)
.

Here, we use the facts that by definition Ap+1(k) = Ap(k)αk−p and Ap+1(k + 1) =

Ap(k)αk+1. We conclude by substituting for αk+1g(k + 1) using (2.5), and noting that
αk+1 + αk−p − 1 = βk+1 + βk−p.
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Proof of Shepp–Olkin entropy monotonicity conjecture

To prove Lemma 3.4, we observe that equivalently, the family of polynomials
(Qn,p(X1, . . . , Xp))n≥0 can be defined using the generating function:

∞∑
n=0

Qn,p(X1, . . . , Xp)tn =
1

(1− tX1)(1− tX2) . . . (1− tXp)
(B.1)

Proof of Lemma 3.4. We first notice by direct calculation that

1

(1− tX2) . . . (1− tXp+1)
− 1

(1− tX1) . . . (1− tXp)

=
t(Xp+1 −X1)

(1− tX1) . . . (1− tXp+1)
.

Using equation (B.1), we thus have

∞∑
n=0

Qn,p(X2, . . . , Xp+1)tn −
∞∑

n=0

Qn,p(X1, . . . , Xp)tn

= (Xp+1 −X1)

∞∑
n=0

Qn,p+1(X1, . . . , Xp+1)tn+1

= (Xp+1 −X1)

∞∑
n=1

Qn−1,p+1(X1, . . . , Xp+1)tn,

which yields equation (3.4) for n ≥ 1. The case n = 0 is obvious.

C Heuristics in continuous case

We now explain some calculations in the continuous case that helped us to find a
rigorous proof of Theorem 3.6, and that help suggest our conjecture about Renyi and
Tsallis entropies. We remark that Ordentlich [13] used the original paper of Shepp and
Olkin [16] to motivate conjectures concerning continuous random variables.

Let us consider a density function f(x), defined for x ∈ R, which is assumed to be
everywhere positive, smooth and with all derivatives well-behaved at ±∞. This density
will serve as a continuous analogue of both the mass functions (f(k))k and (g(k))k. As a

consequence, one could also see the function 1
2−

log(f)′(x)
4 (resp. − log(f)′(x)

4 ) as continuous
analogues of the family (α)k (resp. (β)k). We will make the assumptions that (log f)′′ ≤ 0

and (log f)′′′ ≥ 0, which correspond to the property αk ≤ αk+1 and αk−2αk+1 +αk+2 ≤ 0.
We now prove the continuous version of equation (3.5) (in the case where q = 1) and (4.7)
(for q 6= 1):

Proposition C.1. Suppose that (log f)′′ ≤ 0 and (log f)′′′ ≥ 0 then for every real parame-
ter q > 0 and every integer r ≥ 1 we have:∫

R

f(x)q(log f(x)′)2r+1dx ≥ 0.

Proof. For any 0 ≤ p ≤ r we set

Ir,p = (−1)p
Ap

qp

∫
R

f(x)q (log f(x)′)
2r−2p+1

(log f(x)′′)
p
dx,

with A0 = 1 and Ap =
∏p−1

k=0(2r − 2k) for p ≥ 1. In particular Ar = 0 so Ir,r = 0. We now
prove that the sequence (Ir,p) is non-increasing in p: for every 0 ≤ p ≤ r − 1, using the

EJP 24 (2019), paper 126.
Page 12/14

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP380
http://www.imstat.org/ejp/


Proof of Shepp–Olkin entropy monotonicity conjecture

fact that fq(log f)′ = fqf ′/f = fq−1f ′ = (fq)′/q we have:

Ir,p = (−1)p
Ap

qp+1

∫
R

(f(x)q)′(log f(x)′)2r−2p(log f(x)′′)pdx

= (−1)p+1 Ap

qp+1
(2r − 2p)

∫
R

f(x)q(log f(x)′)2r−2p−1(log f(x)′′)p+1dx

+(−1)p+1 Ap

qp+1
p

∫
R

f(x)q(log f(x)′)2r−2p(log f(x)′′)p−1 log f(x)′′′dx.

Here, again we apply integration by parts, followed by the product rule. The first integral
is exactly Ir,p+1, and the second one is non-negative because of the assumptions on log f ′′

and log f ′′′. We thus have Ir,p ≥ Ir,p+1. We thus have∫
R

f(x)q(log f(x)′)2r+1dx = Ir,0 ≥ Ir,r = 0,

which proves the result.
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