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Abstract

We investigate a class of models for opinion dynamics in a population with two
interacting families of individuals. Each family has an intrinsic mean field “Voter-like”
dynamics which is influenced by interaction with the other family. The interaction
terms describe a cooperative/conformist or competitive/nonconformist attitude of one
family with respect to the other. We prove chaos propagation, i.e., we show that on any
time interval [0, T ], as the size of the system goes to infinity, each individual behaves
independently of the others with transition rates driven by a macroscopic equation.
We focus in particular on models with Lotka-Volterra type interactions, i.e., models
with cooperative vs. competitive families. For these models, although the microscopic
system is driven a.s. to consensus within each family, a periodic behaviour arises in
the macroscopic scale.

In order to describe fluctuations between the limiting periodic orbits, we identify a
slow variable in the microscopic system and, through an averaging principle, we find
a diffusion which describes the macroscopic dynamics of such variable on a larger
time scale.
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1 Introduction

A frequent phenomenon observed in social communities is the emergence of self-
organized behaviours. In many large communities of randomly interacting individuals,
such behaviours appear on a macroscopic scale and seem to follow an independent rule,
namely, each individual in the community feels the influence of other individuals through
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one or more macroscopic variables whose time evolution is deterministic. On a first
approximation, one can assume that members of a social community are described by
identical units that evolve randomly in time, choosing their actions from a set of possible
“states” and interacting with their “neighbours”. This assumption has motivated the
interest in describing social systems with models based on a statistical physics approach.
An introduction to the most popular of these models, with a general discussion on the
usefulness of ideas and tools of statistical physics in the description of social dynamics,
can be found in [6]. Typical questions for these models concern their behaviour when
the size of the population or time becomes large.

Within this context, the field of opinion dynamics models is extremely vast and has
attracted researchers from different areas such as social scientists, physicists, computer
scientists and mathematicians. All these models differ from one another depending
on the set of possible opinions, the structure of the underlying social network and the
interaction mechanism between members of the population. Without claiming to give
a complete description of such a wide field, we limit ourselves to mentioning here few
standard examples coming from the classes of discrete and continuous opinion dynamics.
According to social scientists (see, e.g., [4], [14], [10]), two fundamental characteristics
in opinion formation are social influence, i.e. the tendency of each individual to adjust
her opinion to the one of her neighbours, and homophily, i.e. the tendency to interact
more frequently with individuals who are more similar. In dichotomic models, opinions
are binary and social influence is usually described in terms of an attractive interaction
between agents. A basic example is the voter model [18], where each agent, at random
times, adopts the opinion of an agent who is randomly chosen from the set of her
neighbours. A similar mechanism holds for the Axelrod model ([4], [21]), where opinions
are vector valued (with entries belonging to a finite set) and an agent interacts with one
neighbour by copying one of the entries of her opinion. In continuous dynamics models,
opinions are represented by points in a subset of Rd and each agent may adjust her
opinion by adopting a weighted average of her and one (or more) neighbour’s opinion.
Examples of such models are the Deffuant-Weisbuch ([1], [16]) and the Hegselmann-
Krause [17] models. In the Axelrod and Deffuant-Weisbuch models, the mechanism of
homophily is introduced as follows: two agents interact only if their “cultural distance”,
i.e. the distance between the vectors representing their opinions (which is given by the
discrete L1 distance for the Axelrod model and the euclidean distance for the Deffuant-
Weisbuch model) does not exceed a certain threshold. Models with this feature are
known as bounded confidence models (see [22] for a survey. See also [9] for models with
heterogeneous populations). With this mechanism, convergence to consensus, which
typically occurs when social influence is present, may fail yielding phenomena such as
polarization or fragmentation of opinions within the population.

A way of describing homophily in dichotomic opinion models could be the introduction
of some form of inhomogeneity in the population. For example, one may assume that
individuals in the population have different cultural traits, which affect the way one
agent’s opinion is influenced by the opinion of other agents (see, e.g., the models
considered in [7]).

In this paper we consider a dichotomic opinion model where the population is divided
into two social groups, each one characterized by its attitude with respect to the other.
Members of the same group interact with each other, while the other group exerts on
them a social influence, that may also be null or even negative. We assume that the
cultural characteristics of an individual do not change with her opinions.

The model is defined as an interacting particle system with quenched disorder taking
values in {0, 1}N , where N is the size of the population, and can be informally described
as follows. A population is divided into two families of individuals that may have one of

EJP 24 (2019), paper 122.
Page 2/31

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP373
http://www.imstat.org/ejp/


Opinion dynamics with Lotka-Volterra type interactions

two possible opinions (labelled as 0 and 1) on a certain subject. For i = 1, 2, an individual
of family i chooses at random one member of the population and interaction occurs only
if such member belongs to her family: then, the decision to adopt the opinion of her
neighbour is amplified or damped by a perceived utility, which is a (strictly positive)
function φi of the fraction of individuals with the same opinion in the other community.

The derivative of such functions may be interpreted as a measure of the social
influence of one community with respect to the other. For example, an increasing
function describes a “cooperative” attitude, while a decreasing one corresponds to a
“competitive” attitude. A zealot family may be represented by a φi constant or with a
derivative close to zero. Other classes of functions can be considered, for example the
attitude of one family could change from competitive to cooperative if consensus on
a given opinion becomes widespread in the other community. Notice that this system
has four absorbing states, corresponding to configurations where each one of the two
families reaches consensus.

We consider the mean field variables mN
i = {mN

i (t)}t≥0, i = 1, 2 where mN
i (t)

denotes the fraction of agents with opinion 1 in family i at time t, and we show that they
satisfy a law of large numbers: for large N , the behaviour of such variables is described
by a macroscopic deterministic equation. Then we prove chaos propagation, i.e., we
show that, for large populations, any finite set of particles evolves as an independent
family with jump rates driven by the macroscopic mean field variables.

We are mainly interested in the case of a cooperative family interacting with a
competitive one. For this model, the microscopic interaction between individuals of
the two families is a generalization of the Lotka-Volterra classical interaction, where
the utility functions are linear. In particular, the macroscopic system evolves through
periodic orbits and we are able to identify a quantity H that is conserved along such
orbits.

Stochastic Lotka-Volterra models (see, e.g., [20] and the references therein) have
been introduced to study extinction in predator-prey models. Indeed, the deterministic
models exhibit a cyclic behaviour and extinction is never achieved, while the introduction
of noise drives the system towards extinction. However, in real social interactions
extinction of a given opinion rarely occurs, so we adopt the opposite viewpoint: we give
a stochastic microscopic description of a bipartite particle system with “predator-prey”
type interactions. Such system converges a.s. to a configuration where all the members
of the same family share the same opinion. On the other hand, letting the size of the
population grow to infinity, we obtain a deterministic Lotka-Volterra type dynamics as a
result of a law of large numbers.

The emergence of orbitally stable solutions in the macroscopic dynamics suggests
that the microscopic system spends a considerably long time close to these sets. A
one dimensional analogue of this scenario is given, for example, in the epidemic model
considered in [13], where the authors show that the macroscopic equation has a stable
fixed point close to which the microscopic system spends a time that is exponential
in the size of the population. Thus, we consider the microscopic counterpart of the
quantity H and, through a change of variables, we represent the microscopic system by
means of an “action-angle” pair (HN ,ΘN ) with a slow component HN = {HN (t)}t∈[0,T ]

and a fast one ΘN = {ΘN (t)}t∈[0,T ]. Then, in order to study how the system fluctuates
between the mean field periodic orbits before reaching its absorbing set, we speed up
the dynamics and consider the process (H̃N , Θ̃N ) = ({HN (Nt)}t∈[0,T ], {ΘN (Nt)}t∈[0,T ]).
Following the approach of [11], where a two population Curie-Weiss model is considered,
we prove an averaging principle, extending their result to the case when the velocity
of the fast variable is not constant. From such principle we derive that, for large N , the
dynamics of the pair (H̃N , Θ̃N ) becomes essentially one dimensional and we prove that
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the process H̃N weakly converges, as N →∞, to the solution of a stochastic differential
equation.

If we interpret as “more evolved” a population where two possible opinions coexist
and have majorities that change over time, our model suggests that evolution is promoted
by cultural diversity, but when the speed of interactions is large compared to the size of
the population convergence to consensus within one community is favoured, leading the
system to a “less evolved” state.

2 The model and its mean-field approximation in the quenched
regime

Microscopic system In what follows, we fix two positive real functions, φ1, φ2 of class
C2 on [0, 1]. Consider a filtered probability space (Ω,F , {Ft}, P ) satisfying the usual
conditions, in which it is defined a family N = {N i,k; k = 1, 2, i ≥ 1} of i.i.d. adapted
Poisson random measures with intensity `⊗ `, where ` denotes the restriction to [0,∞)

of the Lebesgue measure, and a probability space (Ω′,F ′, ν) in which it is defined a
sequence of i.i.d. Bernoulli random variables {Φi; i ≥ 1} with values in {φ1, φ2} and
P{Φi = φ1} = r1 ∈ (0, 1).

Our reference probability space will be (Ω,A,P), where Ω = Ω′ × Ω,A = F ′ ⊗F and
P = ν ⊗ P .

For a fixed integer N ≥ 2, we consider N interacting particles, each one assuming
two possible values, 0 or 1. We denote by σN the particles configuration and by σNi , i =

1, . . . , N the state of particle i. At each particle i we assign a function Φi, which is
randomly chosen from {φ1, φ2}, so that particles are divided into two (random) families,
which we call 1 and 2. Let Mi = {h : Φh = φi} be the set of neighbours of particle i
and M̄i its complement in {1, . . . N}. Then, conditionally on {Φi; i ≥ 1}, particle i jumps
between states 0 and 1 with the following rates:

0→ 1 1
N

∑
j∈Mi

σNj Φi(
1
N

∑
j∈M̄i

σNj ),

1→ 0 1
N

∑
j∈Mi

(1− σNj )Φi(
1
N

∑
j∈M̄i

(1− σNj ))

with the convention
∑
j∈A aj = 0 if A = ∅. Since particles in the same family have the

same jump rates, denoting, for k = 1, 2, by Nk =
∑
i I{Φi=φk} the number of particles

in family k and, for j = 1, . . . Nk, by σNj,k the state of particle j in family k, for each
realization of {Φi; i ≥ 1}, we can write the jump rates for families 1 and 2 as follows:

0→ 1 1
N

∑N1

j=1 σ
N
j,1φ1( 1

N

∑N2

j=1 σ
N
j,2),

1→ 0 1
N

∑N1

j=1(1− σNj,1)φ1( 1
N

∑N2

j=1(1− σNj,2));

(2.1)

0→ 1 1
N

∑N2

j=1 σ
N
j,2φ2( 1

N

∑N1

j=1 σ
N
j,1),

1→ 0 1
N

∑N2

j=1(1− σNj,2)φ2( 1
N

∑N1

j=1(1− σNj,1)).

We consider the system in the quenched regime, so that, letting r2 = 1− r1, we have ν−
a.s.

Nk
N
−→ rk, k ∈ {1, 2}

We stress that all the results that follow have to be intended as holding ν-almost surely.

Moreover, since we want to study the system for large N , we can assume without
loss of generality that N1, N2 > 0 for all N .
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Let mN
1 ,m

N
2 be the fraction of 1’s of the first and second family, i.e., mN

k =
1
Nk

∑Nk
j=1 σ

N
j,k, k = 1, 2. We can rewrite the rates (2.1) as:

c(i, k, σN ) =

{
Nk
N mN

k φk(Nk′N mN
k′) if σNi,k = 0

Nk
N (1−mN

k )φk(Nk′N (1−mN
k′)) if σNi,k = 1

where k′ = 3− k and k ∈ {1, 2}, so that the N -particles system in the quenched regime
is described by the Markov process on {0, 1}N with generator:

LNf(σN ) =

2∑
k=1

Nk∑
i=1

c(i, k, σN )[f(σN,i,k)− f(σN )] (2.2)

where f : {0, 1}N → R and σN,i,k denotes the configuration obtained by σN by replacing
σNi,k with 1− σNi,k. Note that the process has four absorbing states, corresponding to the
configurations where all the particles within a given family have the same state. In the
language of opinion dynamics, such configurations are usually called “consensus”, when
all the particles in the population share the same state, or “polarization” otherwise.

In what follows, we shall use the bold notation σN = {σN (t)}t≥0 to denote a Markov
process with generator (2.2). We denote by σNi,k(t) the state of particle i of family k at

time t and by
(
mN

1 ,m
N
2

)
the stochastic process {(mN

1 (t),mN
2 (t))}t≥0 where

mN
k (t) =

1

Nk

Nk∑
j=1

σNj,k(t), k = 1, 2.

The process σN can be realized on (Ω,F , {Ft}t, P ) as the solution of the following SDE:

dσNi,k(t) =

∫ ∞
0

ψ(σNi,k(t−))1(0,λN (σNi,k(t−),mN
k (t−),mN

k′ (t−))](u)N i,k(du,dt) (2.3)

i = 1, . . . , N , k = 1, 2, k′ = 3− k, where λN : {0, 1} × [0, 1]× [0, 1]→ R+ is the jump rate
function

λN (σNi,k,m
N
k ,m

N
k′) = (1− σNi,k)

Nk
N
mN
k φk

(
Nk′

N
mN
k′

)
+ σNi,k

Nk
N

(1−mN
k )φk

(
Nk′

N
(1−mN

k′)

)
(2.4)

and ψ : {0, 1} → R+ is the jump amplitude function

ψ(σNi,k) = 1− 2σNi,k.

Remark 2.1. Note that the functions ψ and λN are uniformly bounded. Moreover, since
ψ and φk are Lipschitz functions, if we let f(σNi,k, u) = ψ(σNi,k)1(0,λN (σNi,k,mk(σN ),mk′ (σ

N ))](u),

where mk(σN ) = 1
Nk

∑Nk
j=1 σ

N
j,k, the following Lipschitz condition holds:∑

i,k

∫
|f(σNi,k, u)− f(ηNi,k, u)|du ≤ C‖σN − ηN‖ for all σN , ηN ∈ {0, 1}N ,

where ‖ · ‖ denotes the L1 norm on RN and C is a suitable constant. Strong existence
and uniqueness of solutions to (2.3), with any initial condition σN (0) independent of N ,
can be derived by adapting the proof of Theorem 1.2 in [15].

We then obtain a family of Markov processes
{
σN ;N > 1

}
where σN has sample

paths in the space of càdlàg functions D([0,∞),RN ) and generator given by LN .
In all the propositions and theorems that follow, unless otherwise specified, by “weak

convergence” (or “convergence in distribution”) we mean convergence with respect to
the classical Skorohod topology (see e.g. [12]).
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Macroscopic system At an heuristic level, let us make the assumption that a law
of large numbers holds for

{
mN
k ;N > 1

}
, k = 1, 2, i.e., it converges, as N → ∞, to

a deterministic function mk. Then, for large N , the system can be described by a
macroscopic dynamics: if σk denotes the state of the “limit particle” of family k, we
expect that it evolves as a time-inhomogeneous Markov process with jump rates:

0→ 1 rkmkφk(rk′mk′),

1→ 0 rk(1−mk)φk(rk′(1−mk′))
(2.5)

where mk(t) = E[σk(t)] for all t and mk satisfy a suitable evolution equation.
We can obtain such equation using the generator of the Markov process above, which

we denote by L:

ṁk =
d

dt
E[σk] = E[Lσk]

= E[(1− σk)rkmkφk(rk′mk′)− σkrk(1−mk)φk(rk′(1−mk′))]

= mk(1−mk)rk
[
φk(rk′mk′)− φk(rk′(1−mk′))

]
.

We obtain the system:

ṁ1 = r1m1(1−m1)[φ1(r2m2)− φ1(r2(1−m2))];

ṁ2 = r2m2(1−m2)[φ2(r1m1)− φ2(r1(1−m1))].
(2.6)

The following proposition shows indeed that, asN → +∞, the sequence {(mN
1 ,m

N
2 );N >

1} converges in distribution to the deterministic process (m1,m2) described by equation
(2.6).

Proposition 2.2. Suppose there exists a non-random pair (m̄1, m̄2) ∈ [0, 1]2 such that,
for every ε > 0,

lim
N→+∞

max
k=1,2

P
(
|mN

k (0)− m̄k| > ε
)

= 0.

Then the sequence of Markov processes
{

(mN
1 ,m

N
2 ) ;N > 1

}
converges in distribution,

as N → +∞, to the unique solution of equation (2.6) with (m1(0),m2(0)) = (m̄1, m̄2).

Proof. Let LN be the generator of the evolution of the particles and EN = {(x1, x2) ∈
[0, 1]2 : xk = j

Nk
, 0 ≤ j ≤ Nk, k = 1, 2}. For f : EN → R we can write f(mN

1 ,m
N
2 ) =

(f ◦ h)(σN ) for a suitable function h : {0, 1}N → EN . Then, a direct computation yields:

LN (f ◦ h)(σN ) = GNf(mN
1 ,m

N
2 )

where

GNf(x, y) = N1
N1

N
x(1− x)φ1

(
N2

N
y

)[
f

(
x+

1

N1
, y

)
− f(x, y)

]
+ N1

N1

N
x(1− x)φ1

(
N2

N
(1− y)

)[
f

(
x− 1

N1
, y

)
− f(x, y)

]
+ N2

N2

N
y(1− y)φ2

(
N1

N
x

)[
f

(
x, y +

1

N2

)
− f(x, y)

]
+ N2

N2

N
y(1− y)φ2

(
N1

N
(1− x)

)[
f

(
x, y − 1

N2

)
− f(x, y)

]
.

Denote by G the generator of the semigroup associated to the deterministic evolution
(2.6). If f ∈ C1([0, 1]2), one checks that:

lim
N→+∞

sup
(x,y)∈EN

|GNf(x, y)− Gf(x, y)| = 0.

The conclusion then follows applying standard results on convergence of Markov pro-
cesses (see, e.g., [12], Ch. 3, Corollary 7.4 and Ch. 4, Theorem 8.10).
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(a) φ′2 > φ′1 > 0 (b) φ′1 > 0, φ′2 < 0

Figure 1: Trajectories of the macroscopic system for φ1, φ2 monotonic.

(a) φ1 = φ2 (b) φ1 = −φ2

Figure 2: Trajectories of the macroscopic system for φ1, φ2 non monotonic.

Figures 1 and 2 show a picture of the solutions of the macroscopic equation (2.6) for
different choices of φi, i = 1, 2.

Now we analyse equation (2.6) in the case when φ1 and φ2 are strictly monotonic
functions. We define, for i, j = 1, 2, i 6= j and z ∈ [0, 1]:

ψi(z) := φi(rjz)− φi(rj(1− z)).

Since, for all z, ψi(z) = φ′i(rjξ)rj(2z−1) for some convex combination ξ of z and 1−z, the
set of fixed points of (2.6) is given by S = {(0, 0), (0, 1), (1, 0), (1, 1), ( 1

2 ,
1
2 )}; their stability,

as can be easily checked by linearising the system, depends on the sign of ψi(0), i = 1, 2,
which in turn depends on the sign of φ′i, i = 1, 2. In particular, when both φ1 and φ2 are
increasing (resp. decreasing), the points (0, 0) and (1, 1) (resp. (0, 1) and (1, 0)) are stable,
while (0, 1) and (1, 0) (resp. (0, 0) and (1, 1)) are unstable. Moreover, the characteristic
equation for the Jacobian matrix at (1/2, 1/2) is given by:

λ2 − (r1r2)2

4
φ′1(

r2

2
)φ′2(

r1

2
) = 0

and, for φ′1φ
′
2 > 0, the point (1/2, 1/2) is unstable.

Now, let us assume that φ1 is increasing and φ2 is decreasing. In this case, the
point (1/2, 1/2) is a center for the linearised system. Indeed, consider equation (2.6) for
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(m1,m2) ∈ (0, 1)2; multiplying both terms of the first equation by ψ2(m1)
r1m1(1−m1) and using

the second equation we obtain:

ψ2(m1)

r1m1(1−m1)
ṁ1 −

ψ1(m2)

r2m2(1−m2)
ṁ2 = 0.

Then, if we pose Ψ1(z) :=
∫ ψ2(z)
r1z(1−z)dz and Ψ2(w) := −

∫ ψ1(w)
r2w(1−w)dw, the function H :

(0, 1)2 → R defined by H(z, w) = Ψ1(z) + Ψ2(w) is such that dH
dt (m1,m2) = 0, and so the

sets of the form Ck = {(z, w) ∈ (0, 1)2 : H(z, w) = k} are invariant for the dynamics (2.6).

The Hessian of H is diagonal with entries given by h11 =
ψ′2(z)

r1z(1−z) − ψ2(z) 2z−1
r1z2(1−z)2

and h22 = − ψ′1(w)
r2w(1−w) + ψ1(w) 2w−1

r2w2(1−w)2 . Recalling that ψ′2 < 0, ψ′1 > 0 and, for i = 1, 2,

ψi(z) = ψ′i(ξz)(2z − 1) where ξz = αz + (1− α)(1− z) for some α ∈ (0, 1), we have hii < 0

for i = 1, 2, so that H is a concave function with maximum at (1/2, 1/2). Notice that, for
all z̄ ∈ (0, 1), Ψ1(z̄) − Ψ1( 1

2 ) =
∫ z̄

1/2
ψ2(z)

r1z(1−z)dz =
∫ z̄

1/2
−ψ2(1−z)
r1z(1−z) dz =

∫ 1−z̄
1/2

ψ2(w)
r1w(1−w)dw from

which it follows Ψ1(z) = Ψ1(1− z). Analogously, Ψ2(w) = Ψ2(1− w), then for (z, w) ∈ Ck
we have also (1 − z, w), (z, 1 − w), (1 − z, 1 − w) ∈ Ck and this shows that Ck is a closed
curve. Moreover, one can easily check that the curves Ck are orbitally stable solutions of
(2.6) and that, as (z, w) approaches the boundary of the square [0, 1]2, the Hamiltonian
H tends to −∞.

Remark 2.3. The above computation shows that the system undergoes a Hopf bifur-
cation determined by the sign of φ′1( r22 )φ′2( r12 ). When φ1 and φ2 are not both montone,
other equilibria may appear in the macroscopic equation and their stability depends
locally on the sign of φ′i, i = 1, 2. In particular, periodic orbits may be observed around
different points of the phase space (see Figure 2).

3 Propagation of chaos

In this section we prove propagation of chaos, i.e., as N → ∞ particles of both
families behave independently according to the evolution (2.5) with transition rates
depending on the solution (m1,m2) of equation (2.6). To this purpose, we will use a
coupling technique following the approach of [15] and [2].

Definition 3.1. Let (E, d) be a Polish space, µ a probability measure on E and, for each
N ≥ 1, let µN be a probability measure on EN . For a fixed integer n, denote by µN1,...,n
the marginal distribution of µN over the first n components. The sequence {µN ;N ≥ 1}
is said to be µ-chaotic if, for each N , µN is permutation invariant and for every n < N

the sequence {µN1,...,n;N ≥ 1} converges weakly to the product measure µ⊗n as N →∞.
We say that propagation of chaos holds for a sequence of random vectors {XN ;N ≥ 1},
where XN takes values on EN , if the sequence of their distributions is µ-chaotic for
some probability µ on E.

A stronger notion of chaoticity uses convergence with respect to the Wasserstein
distance, which implies weak convergence. LetM1(E) be the set of probability measures
on E with finite first moment. The Wasserstein metric onM1(E) is defined by:

W 1
d (µ, ν) = inf

{∫
d(x, y)π(dx,dy) : π has marginals µ and ν

}
.

For n ≥ 1 and T > 0, we call ρn and ρn,T the Wasserstein distances W 1
‖·‖ onM1(Rn) and

W 1
‖·‖∞ on M1(D([0, T ];Rn)) respectively, where ‖ · ‖ denotes the L1 metric on Rn and
‖ ·‖∞ denotes the uniform metric on the Skorohod space of càdlàg functions D([0, T ];Rn).

Definition 3.2. Let µ ∈ M1(R) (respectively, µ ∈ M1(D([0, T ];R))). We say that a
sequence {µN ;N ≥ 1} of permutation invariant probability measures (or, equivalently, a
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sequence of random vectors {XN ;N ≥ 1}, where XN has distribution µN ) on RN (resp.
D([0, T ];RN )) is µ-chaotic in W 1, if, for each n ≥ 1, the sequence {µN1,...,n} converges to
µ⊗n with respect to the metric ρn (resp. ρn,T ).

Now, consider the following SDE on (Ω,F , {Ft}t, P ):

dσ̄Ni,k(t) =

∫ ∞
0

ψ(σ̄Ni,k(t−))1(0,λ(σ̄Ni,k(t−),mk(t−),mk′ (t−))](u)N i,k(du,dt) (3.1)

with i = 1, . . . , N , k = 1, 2, k′ = 3 − k, where (m1,m2) is the solution of equation (2.6),
the Poisson random measures N i,k, i = 1, . . . , Nk, k = 1, 2 are the same of equation (2.3),
the jump rate function is given by

λ(σi,k,mk,mk′) = (1− σi,k)rkmkφk(rk′mk′) + σi,krk(1−mk)φk(rk′(1−mk′))

and the jump amplitude is
ψ(σi,k) = 1− 2σi,k.

The solution σ̄N of equation (3.1) is given by a system of N = N1 + N2 particles
evolving independently on {0, 1} with jump rates (2.5) and it is coupled with the solution
σN of equation (2.3) through the random measures (N i,k). Such a coupling allows to
prove propagation of chaos for the sequence {σN ;N > 1}.
Remark 3.3. The proof of the proposition below is a simple adaptation of the one of
Proposition 3.2 in [2]. We write it explicitly to emphasize that here the L1-Lipschitz
assumption on the jump coefficients required in [2] is not satisfied (since λN changes with
N ) and we have to use the law of large numbers for Nk

N , k = 1, 2 to get the conclusion.

Proposition 3.4. For any integer N > 1, let {σNk = (σNi,k)1≤i≤Nk ; k = 1, 2} and {σ̄Nk =

(σ̄Ni,k)1≤i≤Nk ; k = 1, 2} be the solutions of the microscopic equation (2.3) and the macro-

scopic equation (3.1) respectively, with initial conditions σNk (0) and σ̄Nk (0), k = 1, 2,

independent of the family of Poisson random measures N . Denote by µ(k)
[0,T ] the law of

{σ̄N1,k(t)}t∈[0,T ].

Assume that, for k = 1, 2, (σ̄Ni,k(0))1≤i≤Nk are i.i.d. with common distribution µ(k)
0 on

{0, 1}, {σNk (0);N > 1} is µ(k)
0 -chaotic in W 1 and limN→∞E

[
|σNi,k(0)− σ̄Ni,k(0)|

]
= 0. Then,

for k = 1, 2 and for any T > 0, the sequence {{σNk (t)}t∈[0,T ];N > 1} is µ(k)
[0,T ]-chaotic in

W 1.

Proof. Let us fix k ∈ {1, 2}. Clearly, for each N > 1, the distribution of {σNk (t)}t∈[0,T ] =

{(σNi,k(t))1≤i≤Nk}t∈[0,T ] is permutation invariant. To prove chaoticity in W 1 it is enough
to prove that, for any T > 0 and i ∈ {1, . . . , Nk} we have:

E
[

sup
t∈[0,T ]

∣∣σNi,k(t)− σ̄Ni,k(t)
∣∣ ] N→∞−−−−→ 0. (3.2)

For a shorter notation we write:

λNi,k(s−) := λN (σNi,k(s−),mN
k (s−),mN

k′(s
−)),

λ̄i,k(s−) := λ(σ̄Ni,k(s−),mk(s−),mk′(s
−)),

ΛNi,k := E
[
|σNi,k(0)− σ̄Ni,k(0)|

]
.

For any t ≥ 0 we have:

sup
r∈[0,t]

|σNi,k(r)− σ̄Ni,k(r)| ≤ |σi,k(0)N − σ̄Ni,k(0)|

+

∫ t

0

∫ ∞
0

∣∣∣ψ(σNi,k(s−))1(0,λNi,k(s−)](u)− ψ(σ̄Ni,k(s−))1(0,λ̄i,k(s−)](u)
∣∣∣N i,k(du,ds).
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Taking the expectation on both sides, and recalling that the compensator of N i,k is
given by the Lebesgue measure, we obtain:

E
[

sup
r∈[0,t]

∣∣σNi,k(r)− σ̄Ni,k(r)
∣∣ ] ≤ ΛNi,k

+ E

[∫ t

0

∫ ∞
0

∣∣∣ψ(σNi,k(s−))1(0,λNi,k(s−)](u)− ψ(σ̄Ni,k(s−))1(0,λ̄i,k(s−)](u)
∣∣∣ duds

]
. (3.3)

Consider the integral in the expectation above∫ t

0

∫ ∞
0

∣∣∣ψ(σNi,k(s−))1(0,λNi,k(s−)](u)− ψ(σ̄Ni,k(s−))1(0,λ̄i,k(s−)](u)
∣∣∣duds

≤
∫ t

0

∫ ∞
0

∣∣∣ψ(σNi,k(s−))
(
1(0,λNi,k(s−)](u)− 1(0,λ̄i,k(s−)](u)

)∣∣∣duds

+

∫ t

0

∫ ∞
0

∣∣ψ(σNi,k(s−))− ψ(σ̄Ni,k(s−))
∣∣1(0,λ̄i,k(s−)](u)duds.

Observe that:∣∣λNi,k(s−)− λ̄i,k(s−)
∣∣ ≤ 2‖φk‖1,∞

{ ∣∣σNi,k(s−)− σ̄Ni,k(s−)
∣∣

+
∑
h=1,2

∣∣∣Nh
N
mN
h (s−)− rhmh(s−)

∣∣∣}+ ‖φk‖1,∞
∑
h=1,2

∣∣∣Nh
N
− rh

∣∣∣,
where ‖φk‖1,∞ := ‖φk‖∞ + ‖φ′k‖∞, and

λ̄i,k(s−)
∣∣ψ(σNi,k(s−))− ψ(σ̄Ni,k(s−))

∣∣ ≤ 2‖φk‖∞|σNi,k(s−)− σ̄Ni,k(s−)|.

Then, from (3.3) we obtain:

E
[

sup
r∈[0,t]

∣∣σNi,k(r)− σ̄Ni,k(r)
∣∣ ] ≤ ΛNi,k + 4‖φk‖1,∞

∫ t

0

E
[ ∣∣σNi,k(s−)− σ̄Ni,k(s−)

∣∣ ]ds
+ 2‖φk‖1,∞

∫ t

0

∑
h=1,2

E
[∣∣∣Nh
N
mN
h (s−)− rhmh(s−)

∣∣∣]ds+ t‖φk‖1,∞
∑
h=1,2

∣∣∣Nh
N
− rh

∣∣∣. (3.4)

Moreover, if we set m̄N
k = 1

Nk

∑Nk
j=1 σ̄

N
j,k we have:

E
[∣∣∣Nk
N
mN
k (s−)− rkmk(s−)

∣∣∣] ≤ E[∣∣∣Nk
N
mN
k (s−)− Nk

N
m̄N
k (s−)

∣∣∣]
+ E

[∣∣∣Nk
N
m̄N
k (s−)− rkmk(s−)

∣∣∣]
≤ Nk

N

1

Nk

Nk∑
j=1

E
[∣∣∣σNj,k(s−)− σ̄Nj,k(s−)

∣∣∣]+ E
[∣∣∣Nk
N
m̄N
k (s−)− rkmk(s−)

∣∣∣]
=
Nk
N
E
[∣∣∣σNi,k(s−)− σ̄Ni,k(s−)

∣∣∣]+ E
[∣∣∣Nk
N
m̄N
k (s−)− rkmk(s−)

∣∣∣] (3.5)

where the last equality holds by symmetry.
Now, fix i1 ∈ {1, . . . N1} and i2 ∈ {1, . . . , N2}. Using (3.4) and (3.5) we obtain:

∑
h=1,2

E
[

sup
r∈[0,t]

∣∣σNih,h(r)− σ̄Nih,h(r)
∣∣ ] ≤ 8C

∫ t

0

∑
h=1,2

E
[

sup
r∈[0,s]

∣∣σNih,h(r)− σ̄Nih,h(r)
∣∣ ]ds

+
∑
h=1,2

{
ΛNih,h + 2tC

∣∣∣Nh
N
− rh

∣∣∣+ 4C

∫ t

0

E
[∣∣∣Nh
N
m̄N
h (s−)− rkmh(s−)

∣∣∣]ds}
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where C = ‖φ1‖1,∞ ∨ ‖φ2‖1,∞. By Gronwall inequality we have:∑
h=1,2

E
[

sup
r∈[0,t]

∣∣σNih,h(r)− σ̄Nih,h(r)
∣∣ ]

≤ e8Ct
∑
h=1,2

{
ΛNih,h + 2tC

∣∣∣Nh
N
− rh

∣∣∣+ 4C

∫ t

0

E
[∣∣∣Nh
N
m̄N
h (s−)− rhmk(s−)

∣∣∣]ds} .
By the hypothesis on ΛNih,h and the law of large numbers for {m̄h

N ;N > 1}, choosing
ih = i for h = k and t = T in the above inequality we obtain (3.2).

4 Cooperative vs. competitive families: fluctuations around the
mean field limit

From now on we focus on the case when φ′1φ
′
2 < 0. Our aim in next sections is to

investigate how the microscopic dynamics fluctuates around its mean field approximation
before it reaches its absorbing states. As observed in section 2, the macroscopic system
has an Hamiltonian H that is conserved on the mean-field orbits Ck, k ∈ (−∞, 0). Then,
H may be considered as a radial coordinate and we can change variables in such a way
to represent the system through “action-angle” variables (H,Θ) (see [3]).

Consider the macroscopic equation (2.6) for (m1,m2) ∈ (0, 1)2. Even though our
results will be proved for general monotonic functions φ1, φ2, let us restrict for the
moment to a simpler case for which we can write explicit formulas. Set

φ1(z) = az + b1, φ2(z) = −az + b2 (4.1)

where a > 0 and b1, b2 are such that the two functions are positive. In this case
ψ1(z) = r2a(2z−1) and ψ2(z) = −r1a(2z−1) and the Hamiltonian is given byH(m1,m2) =

a ln
(
m1(1−m1)m2(1−m2)

)
.

We first change variables in order to shift the point ( 1
2 ,

1
2 ) at the origin setting

x = m1 − 1
2 , y = m2 − 1

2 . For (x, y) ∈
(
− 1

2 ,
1
2

)2 \ {(0, 0)}, the macroscopic equation (2.6)
becomes:

ẋ = 2ar1r2y( 1
4 − x

2)

ẏ = −2ar1r2x( 1
4 − y

2)
(4.2)

Taking the equivalent Hamiltonian ea
−1H(m1,m2) and, with an abuse of notation, denoting

it again by H we consider the change of variables given by:

H(x, y) =

(
1

4
− x2

)(
1

4
− y2

)
; (4.3)

Θ(x, y) =



arctan y
x if x > 0, y ≥ 0,

π
2 if x = 0, y > 0,

arctan y
x + π if x < 0,

3π
2 if x = 0, y < 0,

arctan y
x + 2π if x > 0, y < 0

(4.4)

where H ∈
(
0, 1

16

)
, Θ ∈ R/2πZ. The derivative of Θ is given by

Θ̇ =
1

1 + ( yx )2

(
− y

x2
ẋ+

1

x
ẏ

)
= − 2ar1r2

1 + ( yx )2

[(y
x

)2
(

1

4
− x2

)
+

(
1

4
− y2

)]
.

For x = 0 we have y = ± 1
2

√
1− 16H. For x 6= 0, replacing y2 = x2 tan2 Θ in (4.3) and

recalling that x2 ∈
(
0, 1

4

)
, we get

x2 = 1
2 tan2 Θ

(
tan2 Θ+1

4 −
√

( tan2 Θ+1
4 )2 − 4 tan2 Θ( 1

16 −H)
)
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from which we obtain:

x2 =
1

8 sin2 Θ

(
1−

√
1− sin2(2Θ)(1− 16H)

)
;

y = x tan Θ.

Equation (4.2) in the new coordinates is thus given by:

{
Ḣ = 0

Θ̇ = −ar1r22

√
1− sin2(2Θ)(1− 16H)

For each fixed H ∈ (0, 1
16 ), the second equation can be solved by separating variables

to obtain F (2Θ|1 − 16H) = −ar1r2t + k(Θ0), where F (ϕ|m) =
∫ ϕ

0
dθ√

1−m sin2 θ
is the

Legendre’s elliptic integral of the first kind with amplitude ϕ and parameter m, and
k(Θ0) denotes a constant which depends on the initial condition. The solution is then
given by Θ(t) = − 1

2am1−16H(ar1r2t+ k(Θ0)), with amm(u) denoting the inverse function
to F (ϕ|m), known as Jacobi amplitude function (see [24]).

Note that, if we pose F (H,Θ) = ar1r2
2

√
1− sin2(2Θ)(1− 16H), for each fixed H = h

with h ∈ (0, 1/16), equation Θ̇ = −F (h,Θ) generates an ergodic dynamical system with
invariant distribution µh(dΘ) = 1

T (h)F (h,Θ)dΘ, where T (h) =
∫ 2π

0
1

F (h,Θ)dΘ is the period
of the motion.

The above representation suggests that the microscopic dynamics may be described
in terms of a slow motion (of the microscopic variable corresponding to H) and a faster
one (of the variable corresponding to Θ). In particular, assuming that the fast motion
has an invariant distribution µx for each fixed value x of the slow component H, we
expect that on the “larger” time scale at which the slow motion of H is observable,
the fast variable Θ averages out. This means that on such time scale, for N large
enough, the dynamics becomes essentially one dimensional, being described by H, and
its dependence on Θ should appear as an integral with respect to the measure µH .

4.1 A change of variables for the microscopic system

In the light of what we have discussed above, we shall give a new representation of
the microscopic system by introducing two variables (H,Θ). The resulting markovian
dynamics has a generator whose form shows that such variables evolve on different time
scales.

Proposition 4.1. For N > 1, let (xN ,yN ) be the process defined by xN (t) = mN
1 (t) −

1/2, yN (t) = mN
2 (t)−1/2 and let ϕ : D → (−∞, 0)×R/2πZ, with D =

(
− 1

2 ,
1
2

)2−{(0, 0)},
be the change of variables defined by ϕ(x, y) = (H(x, y),Θ(x, y)), where Θ is the function
defined in (4.4) and

H(x, y) =

∫ x

0

ψ2( 1
2 + z)

r1( 1
4 − z2)

dz +

∫ y

0

−ψ1( 1
2 + z)

r2( 1
4 − z2)

dz.

We pose ϕ−1(h, θ) = (x(h, θ), y(h, θ)).

Consider the process (HN ,ΘN ) defined by (HN (t),ΘN (t)) = ϕ(xN (t ∧ τN ),yN (t ∧ τN )),
where τN = inf{t ≥ 0 : (xN (t),yN (t)) /∈ D}.
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Define, for any ε, ε′ > 0, τN− 1
ε ,−ε′

= inf{t ≥ 0 : HN (t) /∈
(
− 1
ε ,−ε

′)}. Then, the stopped

process
{(
HN (t ∧ τN− 1

ε ,−ε′
),ΘN (t ∧ τN− 1

ε ,−ε′
)
)}

t≥0
has a generator of the form:

Kε,ε
′

N f(h, θ) =
1

N

{
aH(h, θ)fh(h, θ) + aHH(h, θ)fhh(h, θ) + aHΘ(h, θ)fhθ(h, θ)

+ [N(−F (h, θ) + o(1)) +G(h, θ)] fθ(h, θ) + aΘΘ(h, θ)fθθ(h, θ)
}
1(− 1

ε ,−ε′)
(h) + o(1)

(4.5)

where f is a C3 function on
[
− 1
ε ,−ε

′] × R/2πZ, limN→∞ o(1) = 0 and aH , aHH , F,G,
aHΘ, aΘΘ are regular functions (at least C1) obtained by the coefficients in formula (4.7)
by taking x = x(h, θ), y = y(h, θ).

Proof. We recall that, for i, j = 1, 2,

ψi
(

1
2 + z

)
= φi

(
rj(

1
2 + z)

)
− φi

(
rj(

1
2 − z)

)
.

Observe that, H(x, y) = Ψ1(x) + Ψ2(y), where Ψ1 (respectively Ψ2) is a negative C1-
function which (by the properties of φi, i = 1, 2), is strictly increasing for x < 0 (resp.
y < 0) and strictly decreasing for x > 0 (resp. y > 0). From this it follows that ϕ is
a bijective C1-function. Moreover, an easy computation shows that det Jϕ(x, y) 6= 0 for
all (x, y) ∈ D (with Jϕ denoting the Jacobian matrix of ϕ), which implies that ϕ is a
C1-diffeomorphism.

In what follows, for i, j = 1, 2, we use the notations:

ψNi
(

1
2 + z

)
= φi

(
Nj
N ( 1

2 + z)
)
− φi

(
Nj
N ( 1

2 − z)
)
,

ψN+
i

(
1
2 + z

)
= φi

(
Nj
N ( 1

2 + z)
)

+ φi

(
Nj
N ( 1

2 − z)
)
,

ψ+
i

(
1
2 + z

)
= φi

(
rj(

1
2 + z)

)
+ φi

(
rj(

1
2 − z)

)
.

For N > 1, let (xN ,yN ) be the process defined by xN (t) = mN
1 (t) − 1/2, yN (t) =

mN
2 (t) − 1/2 and τN = inf{t ≥ 0 : (xN (t),yN (t)) /∈ D}. The generator of the process

(xN (· ∧ τN ),yN (· ∧ τN )) for a function g : ĒN → R, with ĒN = {(x1, x2) ∈ [− 1
2 ,−

1
2 ]2 :

xk = j
Nk
− 1

2 , 0 ≤ j ≤ Nk, k = 1, 2}, is given by:

GNg(x, y) =

{
N1(

1

4
− x2)

N1

N
φ1

(
N2

N
(
1

2
+ y)

)[
g

(
x+

1

N1
, y

)
− g(x, y)

]
+ N1(

1

4
− x2)

N1

N
φ1

(
N2

N
(
1

2
− y)

)[
g

(
x− 1

N1
, y

)
− g(x, y)

]
+ N2(

1

4
− y2)

N2

N
φ2

(
N1

N
(
1

2
+ x)

)[
g

(
x, y +

1

N2

)
− g(x, y)

]
+ N2(

1

4
− y2)

N2

N
φ2

(
N1

N
(
1

2
− xN )

)[
g

(
x, y − 1

N2

)
− g(x, y)

]}
1D(x, y).

Let (HN ,ΘN ) be the Markov process defined by (HN (t),ΘN (t)) = ϕ(xN (t∧ τN ),yN (t∧
τN )). Notice that (HN ,ΘN ) has as absorbing states all the points of the form (−∞, θ)
with θ ∈ R/2πZ and the state corresponding to x = y = 0, which can be identified with
the point (0, 0).

Define, for ε, ε′ > 0, Dε,ε′ = ϕ−1
[
(− 1

ε ,−ε
′)×R/2πZ

]
and τN− 1

ε ,−ε′
= inf{t ≥ 0 : HN /∈

(− 1
ε ,−ε

′)}.
Now, consider the stopped process

(
HN (· ∧ τN− 1

ε ,−ε′
),ΘN (· ∧ τN− 1

ε ,−ε′
)
)

and let Gε,ε
′

N

be the generator obtained from GN by replacing 1D with 1Dε,ε′ . Let us apply Gε,ε
′

N to
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g = f ◦ ϕ where f : [− 1
ε′ ,−ε] ×R/2πZ → R is a smooth function. Then, with the usual

notations (·)x := ∂/∂x for the partial derivatives we can write:

Gε,ε
′

N (f ◦ ϕ)(x, y) =

{
N1

N

(
1

4
− x2

)
ψN1 (

1

2
+ y)(f ◦ ϕ)x

+
N1

N

(
1

4
− x2

)
ψN+

1 (
1

2
+ y)

1

N1
(f ◦ ϕ)xx +

N2

N

(
1

4
− y2

)
ψN2 (

1

2
+ x)(f ◦ ϕ)y

+
N2

N

(
1

4
− y2

)
ψN+

2 (
1

2
+ x)

1

N2
(f ◦ ϕ)yy

}
1Dε,ε′ (x, y) +Rε,ε

′

N (x, y) (4.6)

where limN→∞NRε,ε
′

N (x, y) = 0. The above derivatives are given by:

(f ◦ ϕ)x =
ψ2( 1

2 + x)

r1( 1
4 − x2)

fh −
y

x2 + y2
fθ;

(f ◦ ϕ)xx =

[
ψ2( 1

2 + x)

r1( 1
4 − x2)

]2

fhh +

{
(ψ2)′( 1

2 + x)

r1( 1
4 − x2)

+
ψ2( 1

2 + x)2x

r1( 1
4 − x2)2

}
fh

−
ψ2( 1

2 + x)2y

r1( 1
4 − x2)(x2 + y2)

fhθ +
y2

(x2 + y2)2
fθθ +

2xy

(x2 + y2)2
fθ.

(f ◦ ϕ)y =
−ψ1( 1

2 + y)

r2( 1
4 − y2)

fh +
x

x2 + y2
fθ;

(f ◦ ϕ)yy =

[
ψ1( 1

2 + y)

r2( 1
4 − y2)

]2

fhh +

{−(ψ1)′( 1
2 + y)

r2( 1
4 − y2)

−
ψ1( 1

2 + y)2y

r2( 1
4 − y2)2

}
fh

−
ψ1( 1

2 + y)2x

r2( 1
4 − y2)(x2 + y2)

fhθ +
x2

(x2 + y2)2
fθθ −

2xy

(x2 + y2)2
fθ.

Now observe that, by the regularity of the functions φ1, φ2 and f ◦ ϕ on the compact
set D̄ε,ε′ (where Ā denotes the closure of a set A), we have ψNi (z) = ψi(z) + o(1),

ψN+
i (z) = ψ+

i (z) + o(1), i = 1, 2, sup(x,y)∈Dε,ε′ R
ε,ε′

N (x, y) ≤ o( 1
N ) and (4.6) can be written

as follows:

Gε,ε
′

N (f ◦ ϕ)(x, y) =

{
1

N

(
ψ+

1 ( 1
2 + y)

r1

[
(ψ2)′(

1

2
+ x) +

ψ2( 1
2 + x)2x

1
4 − x2

]
−
ψ+

2 ( 1
2 + x)

r2

[
(ψ1)′(

1

2
+ y) +

ψ1( 1
2 + y)2y

1
4 − y2

])
fh

+
1

N

([
ψ2( 1

2 + x)
]2
ψ+

1 ( 1
2 + y)

r2
1( 1

4 − x2)
+

[
ψ1( 1

2 + y)
]2
ψ+

2 ( 1
2 + x)

r2
2( 1

4 − y2)

)
fhh

− 1

N

(
ψ2( 1

2 + x)ψ+
1 ( 1

2 + y)2y

r1(x2 + y2)
+
ψ1( 1

2 + y)ψ+
2 ( 1

2 + x)2x

r2(x2 + y2)

)
fhθ (4.7)

+

(
1

N

2xy[( 1
4 − x

2)ψ+
1 ( 1

2 + y)− ( 1
4 − y

2)ψ+
2 ( 1

2 + x)]

(x2 + y2)2

−
r1ψ1( 1

2 + y)y( 1
4 − x

2)− r2ψ2( 1
2 + x)x( 1

4 − y
2)

x2 + y2
+ o(1)

)
fθ

+
1

N

( 1
4 − x

2)ψ+
1 ( 1

2 + y)y2 + ( 1
4 − y

2)ψ+
2 ( 1

2 + x)x2

(x2 + y2)2
fθθ

}
1Dε,ε′ (x, y) + o

(
1

N

)
.

We rewrite (4.7) as:

Gε,ε
′

N (f ◦ ϕ) =
1

N

{
a(h)fh + a(hh)fhh + a(θ)fθ + a(hθ)fhθ + a(θθ)fθθ

}
1Dε,ε′ + o(

1

N
).
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Opinion dynamics with Lotka-Volterra type interactions

Using the inverse change of variables ϕ−1(h, θ) = (x(h, θ), y(h, θ)), the above expression
can be written in terms of the variables (h, θ). We pose aH(h, θ) = a(h)(ϕ−1(h, θ)) and
define analogously aHH , aΘ, aHΘ, aΘΘ. Then, using (4.7), we can write the asymptotic of

the generator Kε,ε
′

N of
(
HN (· ∧ τN− 1

ε ,−ε′
),ΘN (· ∧ τN− 1

ε ,−ε′
)
)

on f for large N :

Kε,ε
′

N f(h, θ) =
1

N

{
aH(h, θ)fh(h, θ) + aHH(h, θ)fhh(h, θ) + aΘ(h, θ)fθ(h, θ)

+aHΘ(h, θ)fhθ(h, θ) + aΘΘ(h, θ)fθθ(h, θ)
}
1(− 1

ε ,−ε′)
(h) + o(

1

N
) (4.8)

where, to emphasize the presence of the term of order N in aΘ, we can write aΘ(h, θ) =

N(−F (h, θ) + o(1)) +G(h, θ).

Note that by (4.8) and the form of aΘ we obtain the macroscopic dynamics (2.6) in
terms of the new variables: {

Ḣ = 0;

Θ̇ = −F (H,Θ).

In next subsection we shall prove that for each fixed h ∈ (−∞, 0), the function F (h, ·) is
C1 and bounded from below by a positive constant c(h) (see the first part of the proof of
Proposition 4.5), so that the dynamics Θ̇ = −F (h,Θ) has a unique invariant distribution
given by µh(dθ) = 1

T (h)
1

F (h,θ)dθ with T (h) being the normalizing constant.

4.2 Main result

As can be seen by the coefficients in (4.5), the term of order 1 which appears in aΘ

indicates that the variable HN jumps at a time scale larger than the one of ΘN .

The goal of this subsection is to describe the macroscopic behaviour of the process
{HN (Nt)}t∈[0,T ] as N →∞.

Let us consider the generator (4.5) and change the time scale by multiplying it by N .
We obtain the following expression:

K̃ε,ε
′

N f =
{
aHfh + aHHfhh + [N(−F + o(1)) +G] fθ

+aHΘfhθ + aΘΘfθθ
}
1(− 1

ε ,−ε′)×R/2πZ
+ o(1). (4.9)

Next Theorem shows that, as N → ∞, the process {HN (Nt)}t∈[0,T ] behaves like the
solution of a stochastic differential equation; the coefficients of such equation are
averages with respect to the invariant distribution for the macroscopic dynamics of the
variable Θ.

For h ∈ (−∞, 0), consider

F (h, θ) =
r1ψ1

(
1
2 + y(h, θ)

)
y(h, θ)

(
1
4 − x(h, θ)2

)
− r2ψ2

(
1
2 + x(h, θ)

)
x(h, θ)

(
1
4 − y(h, θ)2

)
x(h, θ)2 + y(h, θ)2

T (h) =

∫ 2π

0

1

F (h, θ)
dθ

and define

āH(h) :=

∫ 2π

0

aH(h, θ)µh(dθ) =

∫ 2π

0

aH(h, θ)

T (h)F (h, θ)
dθ, (4.10)

āHH(h) :=

∫ 2π

0

aHH(h, θ)µh(dθ) =

∫ 2π

0

aHH(h, θ)

T (h)F (h, θ)
dθ. (4.11)
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Theorem 4.2. Let āH , āHH be defined as in (4.10) and (4.11). Fix T > 0 and, for any
ε > 0, let τN− 1

ε ,0
:= inf{t ∈ [0, T ] : HN (Nt) /∈ (− 1

ε , 0)}. Then, the sequence of stopped

processes
{{
HN (Nt ∧ τN− 1

ε ,0
)
}
t∈[0,T ]

;N > 1
}

converges weakly, as N → ∞, to the

stopped process
{
H(t ∧ τ− 1

ε ,0
)
}
t∈[0,T ]

, where H is the solution in (− 1
ε , 0) of the SDE

dH(t) = āH
(
H(t)

)
dt+

√
āHH

(
H(t)

)
dB(t) (4.12)

with {B(t)}t≥0 being a Brownian motion and τ− 1
ε ,0

:= inf{t ∈ [0, T ] : H(t) /∈ (− 1
ε , 0)}.

The Theorem will be proved in subsection 4.4, using the results of subsection 4.3 and
Proposition 4.5 of next paragraph.

The limit process In order to show that equation (4.12) is well posed and to state its
properties we shall use some known results concerning existence and uniqueness of
solutions of stochastic differential equations in an interval of the real line (see, e.g., [19],
section 5.5, p. 329).

We recall the definition and a fundamental result.

Definition 4.3. Let I = (l, r) be an interval of the real line. A weak solution in I of the
equation

dX(t) = b(X(t))dt+ σ(X(t))dB(t) (4.13)

is a pair Ω = (Ω,F , {Ft}, P ), (X,B), where Ω is a filtered probability space satisfying the
usual conditions, X is a continuous adapted process taking values in [l, r] with X(0) ∈ I
a.s. and B := {B(t),Ft}t≥0 is a standard Brownian motion, such that, for all l̄ > l, r̄ < r,
letting τl̄,r̄ := inf{t ≥ 0 : X(t) /∈ (l̄, r̄)} we have:

P
{∫ t∧τl̄,r̄

0

[
|b(X(s))|+ σ2(X(s))

]
ds <∞

}
= 1 for all t ≥ 0 and

P
{
X(t ∧ τl̄,r̄) = X(0) +

∫ t
0
b(X(s))1{s≤τl̄,r̄}ds+

∫ t
0
σ(X(s))1{s≤τl̄,r̄}dB(s) ∀t ≥ 0

}
= 1.

We denote by τI the exit time from I, i.e.,

τI = lim
n→∞

τln,rn

where {ln} and {rn} are strictly monotonic sequences with l < ln < rn < r for all n and
limn→∞ ln = l, limn→∞ rn = r.

Theorem 4.4 (Thm 5.1 and subsection C of [19]). Suppose that the coefficients of (4.13)
satisfy:

σ2(x) > 0, ∀x ∈ I; (4.14)

∀x ∈ I ∃ε > 0 such that

∫ x+ε

x−ε

1 + |b(y)|
σ2(y)

dy <∞. (4.15)

Then, for every initial distribution µ with µ(I) = 1, the equation (4.13) has a weak
solution in I and this solution is unique in the sense of probability law.

In next proposition we show that (4.12) has a weak solution in (−∞, 0) and, for any
ε > 0, the solution in the interval (− 1

ε , 0) exits a.s. from it and does so by the left side.

Proposition 4.5. For every initial distribution µ with µ{(−∞, 0)} = 1 the equation (4.12)
has a weak solution in the interval I = (−∞, 0) and this solution is unique in the sense
of probability law. Moreover, if we let τI = inf{t ≥ 0 : H(t) /∈ I} and, for all ε > 0,
τ− 1

ε ,0
= inf{t ≥ 0 : H(t) /∈ (− 1

ε , 0)} we have

P

(
lim
t→τI

H(t ∧ τI) = −∞
)

= P

(
sup

0≤t≤τI
H(t ∧ τI) < 0

)
= 1 (4.16)
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and

P (τ− 1
ε ,0

<∞) = 1. (4.17)

Remark 4.6. In next paragraph we illustrate the case when φ1 and φ2 are two linear
functions. In this case we can obtain explicit expressions for the coefficients āH and
āHH and the random time in (4.17) will be replaced by τI . In the general case we have
to restrict to the interval

(
− 1
ε , 0
)
. Indeed, since we cannot have explicit expressions of

aH(h, θ) and aHH(h, θ) in terms of elementary functions, in order to obtain information
about H near the endpoints of (−∞, 0), we need estimates on such coefficients which
are possible only when h is close to 0.

However, we are interested in the behaviour of H before it eventually reaches −∞,
since this should describe the behaviour of the microscopic variable HN (Nt) for large N
before it reaches its absorbing state −∞. Therefore, for our purposes it will be enough
to study the process in the interval

(
− 1
ε , 0
)

for ε arbitrarily small.

Proof. We recall that aH is defined by aH(h, θ) = a(h)(x(h, θ), y(h, θ)), where a(h)(x, y) is
the coefficient of fh in (4.7) and the analogous relation holds for aHH . Let us fix two
small positive numbers ε, ε′ and suppose h ∈ [− 1

ε′ ,−ε]. Consider the term of order 1 in
(4.7), i.e.,

F̃ (x, y) = −
r1ψ1( 1

2 + y)y( 1
4 − x

2)− r2ψ2( 1
2 + x)x( 1

4 − y
2)

x2 + y2

which has been written in (4.9) as −F (h, θ) = F̃ (x(h, θ), y(h, θ)). Note that, for x, y 6= 0

we have ψ1( 1
2 + y)y > 0 and ψ2( 1

2 + x)x > 0. Moreover, for x, y ∈ D̄ε,ε′ there exist
δ = δ(ε) > 0 and δ′ = δ′(ε′) > 0 such that δ2 < (|x| ∨ |y|)2 < 1

4 − δ
′, from which it follows

that:

−F̃ (x, y) ≥ c(ε, ε′)

for a constant c(ε, ε′) > 0. Then, the function F is C1 (hence bounded) on [− 1
ε′ ,−ε]×R/2πZ

and the same holds for the functions 1
F and 1

T where T : [− 1
ε′ ,−ε] → R+ is given by

T (h) =
∫ 2π

0
1

F (h,θ)dθ.

Analogously, the functions aH(h, θ) and aHH(h, θ) are both of class C1 on the same
interval, and so the functions āH and āHH are Lipschitz continuous for h ∈ [− 1

ε′ ,−ε] for
all ε, ε′. Moreover, the function a(hh) is strictly positive for all (x, y) ∈ D, hence the same
holds for āHH for all h ∈ (−∞, 0). Then, conditions (4.14) and (4.15) of Theorem 4.4 are
satisfied.

Now, for a fixed number c ∈ I, let us consider the scale function

p(z) =

∫ z

c

exp

{
−2

∫ u

c

āH(h)

āHH(h)
dh

}
du, x ∈ I. (4.18)

Such function does not depend on the choice of c and, according to Proposition 5.22 of
[19], a sufficient condition for (4.16) is limz→−∞ p(z) > −∞ and limz→0− p(z) =∞.

For the second limit, let us observe that the functions a(h), a(hh) in (4.7) are of class
C1 and C2 respectively in a neighbourhood of (0, 0). Note also that (x, y)→ 0 if and only
if h→ 0. Then, by Taylor expansion, for (x, y) close to (0, 0) we have

a(hh)(x, y) = 32{φ1( r12 )[φ′2( r22 )]2x2 + φ2( r22 )[φ′1( r12 )]2y2}+ o((x+ y)2);

a(h)(x, y) = −4{φ1( r22 )|φ′2( r12 )|+ φ2( r12 )φ′1( r22 )}+ o((x+ y))

and

H(x, y) = −4{|φ′2( r12 )|x2 + φ′1( r22 )y2}+ o((x+ y)2).
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It follows that a(hh)(x, y) ≤ −C1H(x, y) + o((x + y)2) and a(h)(x, y) = −C2 + o((x + y))

with C1 = 8[φ1( r22 )|φ′2( r12 )|]∨ [φ2( r12 )φ′1( r22 )] and C2 = 8[φ1( r22 )|φ′2( r12 )|+φ2( r12 )φ′1( r22 )] and
so C2/C1 > 1. Therefore, for h close to 0, we have the following estimates, that hold
uniformly in θ:

aHH(h, θ) ≤ −C1h+ o(h);

aH(h, θ) ≤ −C2 + o(
√
h).

Integrating with respect to µh we obtain the same inequalities for āHH(h) and āH(h),
then, for c < x < 0 and c sufficiently close to 0, we have

p(z) ≥
∫ z
c

exp
{∫ u

c
C2/C1+o(

√
h)

−h+o(h) dh
}

du ≥
∫ z
c

exp
{∫ u

c
C2/C1

−h+o(h)dh
}
du

which implies limz→0− p(z) =∞.
Now, for h ≤ c we have 1

4 − (|x(h, θ)| ∨ |y(h, θ)|)2 ≤ ρ(c), with limc→−∞ ρ(c) = 0, and
the following inequalities, that hold uniformly with respect to θ:

K1l (x(h, θ), y(h, θ)) ≤ a(HH)(h, θ) ≤ K2l (x(h, θ), y(h, θ)) ;

2l (x(h, θ), y(h, θ)) ≤ −2a(H)(h, θ) ≤ 2(l (x(h, θ), y(h, θ)) +K)

where
l(x, y) = −ψ

+
1 ( 1

2 +y)ψ2( 1
2 +x)2x

r1( 1
4−x2)

+
ψ+

2 ( 1
2 +x)ψ1( 1

2 +y)2y

r2( 1
4−y2)

and K1,K2,K > 0 are constant given by K1 =
inf |φ′2|
r1
∧ inf φ′1

r2
, K2 =

sup |φ′2|
r1

∨ supφ′1
r2

and

K = 4
(

supφ1 sup |φ′2|
r1

∨ supφ2 supφ′1
r2

)
.

Then, integrating aH(h, θ) and aHH(h, θ) with respect to the measure µh and posing
l̄(h) =

∫ 2π

0
l(x(h, θ), y(h, θ))µh(dθ), we obtain:

K1 l̄(h) ≤ ā(HH)(h) ≤ K2 l̄(h);

2l̄(h) ≤ −2ā(H)(h) ≤ 2(l̄(h) +K)

with limh→−∞ l̄(h) = ∞. Therefore p(z) ≥
∫ z
c

exp{
∫ u
c

2
K2

dh}du = K2

2

(
−1 + e

2
K2

(z−c)
)

form which it follows limz→−∞ p(z) > −∞.
Finally, for c, z ∈

(
− 1
ε , 0
)

consider the function

v(z) =

∫ z

c

exp

{
−2

∫ y

c

āH(h)

āHH(h)
dh

}∫ y

c

2

exp
{
−2
∫ w
c

āH(h)
āHH(h)

dh
}
āHH(w)

dw

 dy.

(4.19)
By Proposition 5.32 of [19], P (τ− 1

ε ,0
<∞) = 1 if limz→0− p(z) =∞ and limz→− 1

ε
v(z) <∞,

so we are left to prove the last inequality. This follows immediately by observing that in
the interval

[
− 1
ε , c
]

the functions āH and āHH are both regular and bounded away from
zero.

The limit process in the linear case Let us consider the simpler case proposed in
the introduction of this section, i.e., the case when φ1 and φ2 are as in (4.1) and the
change of variables ϕ is defined by (4.3) and (4.4). Applying the same arguments used in
the proof of Proposition 4.1 we are able to obtain an explicit expression for the equation
satisfied by the limit process.

We recall that the Legendre’s elliptic integrals of the first and second kind are

defined respectively as F (ϕ|m) =
∫ ϕ

0
1√

1−m sin2 θ
dθ and E(ϕ|m) =

∫ ϕ
0

√
1−m sin2 θdθ;
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when ϕ = π
2 the integrals are called complete and we shall denote them respectively by

K(m) and E(m).

In order to simplify notations let us pose R(h, θ) =
√

1− (1− 16h) sin2(2θ) and β =

2[a(r2 − r1) + 2(b1 + b2)]. We have

āH(h) = − (ar2−ar1+2b1+2b2)
32K(1−16h)

∫ 2π

0

(
1− 1−R(h,θ)

2 sin2 θ

)(
1− 1−R(h,θ)

2 cos2 θ

)
dθ

R(h,θ)

= −βh
and

āHH(h) =

(
ar2+2b1

)
256K(1−16h)

∫ 2π

0

[
1−R(h,θ)

2 sin2 θ

(
1− 1−R(h,θ)

2 sin2 θ

)(
1− 1−R(h,θ)

2 cos2 θ

)2
]

dθ
R(h,θ)

+

(
−ar1+2b2

)
256K(1−16h)

∫ 2π

0

[
1−R(h,θ)
2 cos2 θ

(
1− 1−R(h,θ)

2 cos2 θ

)(
1− 1−R(h,θ)

2 sin2 θ

)2
]

dθ
R(h,θ)

= 2(ar2 − ar1 + 2b1 + 2b2)h
[
− 1

8K(1−16h)

∫ 2π

0

(
1−R(h,θ)
cos2(θ)

)
dθ

R(h,θ) + (1− 16h)
]

= βh
[
E(1−16h)
K(1−16h) − 16h

]
.

Then, adapting the proof of Proposition 4.5, we conclude that the limit process is the
(unique, in the sense of probability law) weak solution in the interval I = (0, 1

16 ) of the
equation

dH(t) = −βH(t)dt+

√
βH(t)

[
E(1− 16H(t))

K(1− 16H(t))
− 16H(t)

]
dB(t).

Letting τI = inf{t ≥ 0 : Ht /∈ (0, 1
16 )}, we have

P

(
lim
t→τI

H(t ∧ τI) = 0

)
= P

(
sup

0≤t≤τI
H(t ∧ τI) <

1

16

)
= 1.

Moreover, (4.17) can be improved by showing that:

P (τI <∞) = 1.

Indeed, let us prove that limz→0+ v(z) < ∞. The scale function (4.18) is given by

p(z) =
∫ z
c

exp
{

16
∫ u
c

1
E(1−16h)
K(1−16h)

−16h
dh
}

du. We again simplify notations by posing g(h) =

1
E(1−16h)
K(1−16h)

−16h
, so that we can write function v defined in (4.19) as:

v(z) =
1

β

∫ z

c

[
exp

{
16

∫ y

c

g(h)dh
}∫ y

c

exp
{
− 16

∫ w

c

g(h)dh
}g(w)

w
dw

]
dy.

Note that g is a positive function and, for c > z > 0, we have exp
{

16
∫ x
c
g(h)dh

}
< 1.

Moreover, by the relations limx→K[1−x]− ln( 4
x ) = 0 and limx→0E[1− 16x] = 1 (see [24]

ch.22, p. 521) it follows that:

lim
h→0+

g(h)

(− ln(4h))
= 1.

Then, 0 < −16
∫ z
c
g(h)dh ≤ 16

∫ c
0
g(h)dh ≤ C, where C is a positive constant, and for all

ε > 0 we can choose c sufficiently close to 0 such that:

v(z) ≤ 1

β

∫ c

z

∫ c

y

eC
g(w)

w
dwdy ≤ −e

C

β

∫ c

z

∫ c

y

(1 + ε)
ln(4w)

w
dwdy.

From this it follows limz→0+ v(z) <∞.
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4.3 An averaging principle

In this section we prove an Averaging principle for a sequence
{

(XN , Y N );N ≥ 1
}

of Markov processes, where Y N describes a “fast” variable with values in R/2πZ and
XN describes a “slow” variable with values in a closed interval of R. This result extends
the one of Proposition 3.2 of [11] to the case when the velocity of the fast variable is not
necessarily constant. The idea is to compare (XN , Y N ) with a process close to it, where
the slow variable is piecewise constant in time.

Theorem 4.7. Let T > 0 and I be a closed interval in R. Let ξ : E = I ×R/2πZ→ R be
a Lipschitz function. Let

{
(XN , Y N );N ≥ 1

}
be a sequence of càdlàg Markov processes,

where
{
XN (t), Y N (t)

}
t∈[0,T ]

has state space EN ⊂ I ×R/2πZ, for all N , and denote by

{FNt } its natural filtration. Let γ > 0 and suppose the following conditions hold:

i)
{
XN ;N ≥ 1

}
converges weakly, as N →∞, to a process X̄ :=

{
X̄(t)

}
t∈[0,T ]

with

values in I and for all ζ > 0 there exists a constant Cζ > 0, such that for all
{FNt }-stopping time τ with τ ≤ T :

E

[
sup

t∈[τ,(τ+ζ/Nγ)∧T ]

∣∣XN (t)−XN (τ)
∣∣] ≤ Cζe(N) (4.20)

where limN→∞ e(N) = 0.

ii) Denoting by LN the generator of the process (XN , Y N ) and by py : I ×R/2πZ→
R/2πZ the projection on the second coordinate we can write:

LNpy(xN , yN ) =
[
Nγ

(
F (xN , yN ) + δN

)
+G(xN , yN )

]
(1 + o(1))

where (xN , yN ) ∈ EN and δN is a sequence converging to zero. F is a Lipschitz
function in both variables and inf(x,y)∈E |F (x, y)| ≥ ε > 0; G is a continuous function
and ‖G‖∞ = sup(x,y)∈E |G(x, y)| <∞.

iii) The martingale given by MN (t) = Y N (t) − Y N (0) −
∫ t

0
LNpy

(
XN (s), Y N (s)

)
ds is

such that for all ζ > 0 there exists a constant C̄ζ > 0 such that, for all {FNt }-
stopping time τ with τ ≤ T :

E

[
sup

t∈[τ,(τ+ζ/Nγ)∧T ]

∣∣MN (t)−MN (τ)
∣∣] ≤ C̄ζ ē(N) (4.21)

where limN→∞ ē(N) = 0.

Then, as N →∞ ∫ T

0

ξ
(
XN (t), Y N (t)

)
dt

weakly−−−−→
∫ T

0

ξ̄
(
X̄(t)

)
dt

where ξ̄(x) :=
∫ 2π

0
ξ(x, y)µx(dy) and µx(dy) is the invariant distribution of the dynamics{

Ẋ = 0

Ẏ = F (X,Y )
(4.22)

with X(0) = x.

Proof. In order to simplify notations we assume γ = 1, as the general case can be easily
obtained with small changes in the proof.

Arguing as in [11], by virtue of the Skorohod representation theorem (see, e.g. [5],
Ch. 2 Theorem 2.2.2), we can suppose that the processes {(XN , Y N );N ≥ 1} are defined
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on a suitable probability space where {XN ;N ≥ 1} converges to X̄ almost surely. We
shall prove that on this space we have∫ T

0

ξ
(
XN (t), Y N (t)

)
dt

L1

−−→
∫ T

0

ξ̄
(
X̄(t)

)
dt.

Let us pose T (x) :=
∫ 2π

0
1

F (x,y)dy. Observe that, since by assumption ε ≤ F ≤ ‖F‖∞, we
have, for all x ∈ I,

t :=
2π

‖F‖∞
≤ T (x) ≤ 2π

ε
=: t̄ . (4.23)

Then the invariant distribution of (4.22) is given by µx(dy) = 1
T (x)F (x,y)dy and the

function ξ̄ is Lipschitz. Writing

E
[∣∣ ∫ T

0

ξ
(
XN (t), Y N (t)

)
dt−

∫ T

0

ξ̄
(
X̄(t)

)
dt
∣∣]

≤ E
[∣∣ ∫ T

0

ξ
(
XN (t), Y N (t)

)
dt−

∫ T

0

ξ̄
(
XN (t)

)
dt
∣∣]︸ ︷︷ ︸

B

+ E
[∣∣ ∫ T

0

ξ̄
(
XN (t)

)
dt−

∫ T

0

ξ̄
(
X̄(t)

)
dt
∣∣], (4.24)

the last term in the above inequality goes to zero as N →∞ thanks to the regularity of
ξ̄, the convergence of XN to X̄ and the dominated convergence theorem.

In order to study the term B we introduce a suitable construction. Fix t0 = 0 and
XN (0) = x0, Y

N (0) = y0 as the initial conditions of{
Ẋ1 = 0

Ẏ1 = NF (X1, Y1)

and let Y1 be the solution of the above ODE. By the definition of T we have Y1(T (x0)/N) =

y0.
Now, for i ≥ 0, we proceed recursively as follows: let XN (ti) = xi and Y N (ti) = yi be

the initial conditions of the equation{
Ẋi+1 = 0

Ẏi+1 = NF (Xi+1, Yi+1)

and denote by Yi+1 its solution. Let T (xi) <∞ such that Yi+1(T (xi)/N) = yi. We pose
ti+1 := ti + T (xi)/N and consider the process defined by (X̃(t), Ỹ (t)) := (xi, Yi(t)) if
t ∈ [ti, ti+1).

Note that, by (4.23), letting n := NT
t̄ and n := NT

t , it follows that:

P
(
n ≤

∣∣[0, T ] ∩ {ti; i ≥ 0}
∣∣ ≤ n) = 1

where for a given set A, |A| denotes its cardinality.
Now, for each ω, define n(ω) = inf{i : ti+1(ω) > T}. Then∫ T

0

ξ
(
XN (t), Y N (t)

)
dt =

n−1∑
i=0

∫ ti+1

ti

ξ
(
XN (t), Y N (t)

)
dt+

∫ T

tn

ξ
(
XN (t), Y N (t)

)
dt

=

n−1∑
i=0

∫ ti+1∧T

ti∧T
ξ
(
XN (t), Y N (t)

)
dt.
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For the term B in (4.24) it holds:

B≤
n−1∑
i=0

E
[ ∫ ti+1∧T

ti∧T

∣∣∣ξ (XN (t), Y N (t)
)
− ξ

(
XN (ti), Y

N (t)
) ∣∣∣dt]︸ ︷︷ ︸

B1

+

n−1∑
i=0

E
[ ∫ ti+1∧T

ti∧T

∣∣∣ξ (XN (ti), Y
N (t)

)
− ξ

(
XN (ti), Yi(t)

) ∣∣∣dt]︸ ︷︷ ︸
B2

+

n−1∑
i=0

E
[∣∣∣ ∫ ti+1∧T

ti∧T
ξ
(
XN (ti), Yi(t)

)
− ξ̄

(
XN (t)

)
dt
∣∣∣]︸ ︷︷ ︸

B3

.

We study separately each term of the above inequality. By hypothesis, the function ξ
is Lipschitz (with constant, say, Lξ); using (4.23) and (4.20) we have

B1 ≤
n̄−1∑
i=0

E
[
Lξ

∫ (ti+t̄/N)∧T

ti∧T

∣∣XN (t)−XN (ti)
∣∣ dt]

≤
n̄−1∑
i=0

Lξ
t̄

N
E
[

sup
t∈[ti∧T,(ti+t̄/N)∧T ]

∣∣XN (t)−XN (ti)
∣∣ ] ≤ nLξ t̄

N
Ct̄e(N)

N→∞−−−−→ 0.

Analogously, for the term B2 we obtain

B2 ≤
n̄−1∑
i=0

Lξ
t̄

N
E
[

sup
t∈[ti∧T,(ti+t̄/N)∧T ]

∣∣Y N (t)− Yi(t)
∣∣ ].

By hypothesis ii) and by the construction of Yi we can write:

Y N (t ∧ T )− Yi(t ∧ T ) = N

∫ t∧T

ti∧T
F
(
XN (s), Y N (s)

)
− F

(
XN (ti), Yi(s)

)
ds

+ N

∫ t∧T

ti∧T
δNds+

∫ t∧T

ti∧T
G
(
XN (s), Y N (s)

)
ds+MN (t ∧ T )

− MN (ti ∧ T ) + o(1). (4.25)

The function F is Lipschitz in both variables with constant, say LF , then from (4.25) we
obtain

sup
t∈[ti∧T,(ti+t̄/N)∧T ]

∣∣Y N (t)− Yi(t)
∣∣ ≤ NLF

∫ (ti+t̄/N)∧T

ti∧T
sup

h∈[ti∧T,s∧T ]

∣∣XN (h)−XN (ti)
∣∣ds

+ NLF

∫ (ti+t̄/N)∧T

ti∧T
sup

h∈[ti∧T,s∧T ]

∣∣Y N (h)− Yi(h)
∣∣ds

+ sup
t∈[ti∧T,(ti+t̄/N)∧T ]

|MN (t)−MN (ti)|

+ t̄δN +
t̄

N
‖G‖∞ + o(1).
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Define f i(s) :=
[
supt∈[ti∧T,s∧T ]

∣∣Y N (t)− Yi(t)
∣∣] then

f i(ti + t̄/N) ≤ NLF

∫ (ti+t̄/N)∧T

ti∧T
f i(s)ds

+NLF

∫ (ti+t̄/N)∧T

ti∧T
sup

h∈[ti∧T,s∧T ]

∣∣XN (h)−XN (ti)
∣∣ds

+t̄δN +
t̄

N
‖G‖∞ + sup

t∈[ti∧T,(ti+τ̄/N)∧T ]

∣∣MN (t)−MN (ti)
∣∣+ o(1)

= NLF

∫ (ti+t̄/N)∧T

ti∧T
f i(s)ds+Ri

(
(ti + t̄/N) ∧ T

)
.

By Gronwall inequality we obtain

f i(ti + t̄/N) ≤ eLF t̄Ri
(
(ti + t̄/N) ∧ T

)
.

Then, taking expectations and using (4.20) and (4.21) we have

B2 ≤ Lξ
nt̄

N
eLF t̄

(
LF t̄Ct̄e(N) + t̄δN +

t̄

N
‖G‖+ C̄t̄ē(N)

)
N→∞−−−−→ 0.

Recalling the construction of the process Ỹ , we change variable in each integral of the
sum in B3, setting θ = Yi(t). Note that if ti+1 < T using the periodicity of F and ξ we
can write each integral as∫ ti+1

ti

ξ
(
XN (ti), Yi(t)

)
dt =

∫ Yi(ti+1)

Yi(ti)

ξ
(
XN (ti), θ

) dθ

NF (XN (ti), θ)

=

∫ 2π

0

ξ
(
XN (ti), θ

) dθ

NF
(
XN (ti), θ

) .
Using the definition of the invariant measure µ we have

B3 ≤
n−1∑
i=0

E
[∣∣∣(ti+1 ∧ T − ti ∧ T )

∫ 2π

0

ξ
(
XN (ti), θ

)
µX

N (ti)(dθ)

−
∫ ti+1∧T

ti∧T

∫ 2π

0

ξ
(
XN (t), θ

)
µX

N (t)(dθ)dt
∣∣∣]

+

n−1∑
i=0

E
[
1ti≤T<ti+1

∫ T

ti

∣∣ξ (XN (ti), Yi(t)
) ∣∣dt].

Note that the only non-zero term of the last sum is the one corresponding to i = n

and that t
N ≤ |T − tn| ≤ t̄

N for all N . Therefore, recalling that ξ is uniformly bounded on
E the last term of the inequality tends to zero as N →∞.

For the first sum, arguing as for the term B1 and applying again (4.20) we obtain

B3 ≤
n−1∑
i=0

E
[∣∣∣(ti+1 ∧ T − ti ∧ T )ξ̄

(
XN (ti)

)
−
∫ ti+1∧T

ti∧T
ξ̄
(
XN (t)

)
dt
∣∣∣] ≤ Ke(N)

N→∞−−−−→ 0

where K is a suitable constant.
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4.4 Proof of Theorem 4.2

In this subsection we use the following notation:{{(
H̃N (t), Θ̃N (t)

)}
t∈[0,T ]

;N ≥ 1
}

:=
{{(

HN (Nt),ΘN (Nt)
)}
t∈[0,T ]

;N ≥ 1
}
.

The main tool required for the proof of Theorem 4.2 is the following proposition:

Proposition 4.8. For all ε, ε′ > 0 and for any initial condition h0 ∈ (− 1
ε + δ,−ε′ − δ), the

sequence {H̃N (· ∧ τN− 1
ε ,−ε′

);N ≥ 1} weakly converges (up to passing to a subsequence),

as N →∞, to a continuous process H̃− 1
ε ,−ε′

. Moreover, let H be the unique solution of
(4.12) with H(0) = h0. For a fixed δ > 0, define

τ̃− 1
ε+δ,−ε′−δ = inf

{
t ∈ [0, T ] : H̃− 1

ε ,−ε′
(t) /∈ (−1

ε
+ δ,−ε′ − δ)

}
and

τ− 1
ε+δ,−ε′−δ = inf

{
t ∈ [0, T ] : H(t) /∈ (−1

ε
+ δ,−ε′ − δ)

}
.

Then, H̃− 1
ε ,−ε′

(· ∧ τ̃− 1
ε+δ,−ε′−δ) and H(· ∧ τ− 1

ε+δ,−ε′−δ) have the same distribution.

The proof of this proposition needs some preliminary results.

Tightness Let T > 0 be fixed and let ε, ε′ > 0 be small constants. In order to prove the
tightness for the sequence of stopped processes

{
H̃N (· ∧ τN− 1

ε ,−ε′
);N ≥ 1

}
we use the

Aldous’ tightness criterion (see [8]), namely, we check the following sufficient conditions:

i) for every ε > 0 there exist a constant C > 0 such that

sup
N
P

(
sup
t∈[0,T ]

∣∣∣H̃N (t ∧ τN− 1
ε ,−ε′

)
∣∣∣ ≥ C) ≤ ε;

ii) for any ε > 0 and α > 0 there exists δ > 0 such that

sup
N

sup
0≤τ1≤τ2≤(τ1+δ)∧T
τ1,τ2 stopping times

P
(∣∣∣H̃N (τ2 ∧ τN− 1

ε ,−ε′
)− H̃N (τ1 ∧ τN− 1

ε ,−ε′
)
∣∣∣ ≥ α) ≤ ε.

Proposition 4.9. For any T > 0, the sequence
{
{H̃N (t ∧ τN− 1

ε ,−ε′
)}t∈[0,T ] ;N > 1

}
is

tight.

Proof. As in Proposition 4.10, we can write

H̃N
(
s ∧ τN− 1

ε ,−ε′
)
− H̃N (0) =

∫ s∧τN
− 1
ε
,−ε′

0

K̃ε,ε
′

N px

(
H̃N (u), Θ̃N (u)

)
du

+M̃N (s ∧ τN− 1
ε ,−ε′

), (4.26)

so that condition i) of Aldous’ criterion is satisfied since
∣∣∣H̃N (t ∧ τN− 1

ε ,−ε′
)
∣∣∣ ≤ 1

ε .

In order to check condition ii), let us fix ε, α > 0 and take any pair of stopping times
τ1, τ2 with 0 ≤ τ1 ≤ τ2 ≤ (τ1 + δ) ∧ T for some δ. By (4.26) we have

∣∣∣H̃N (τ2 ∧ τN− 1
ε ,−ε′

)− H̃N (τ1 ∧ τN− 1
ε ,−ε′

)
∣∣∣ =

∣∣∣ ∫ τ2∧τN− 1
ε
,−ε′

τ1∧τN− 1
ε
,−ε′

K̃ε,ε
′

N px

(
H̃N (u), Θ̃N (u)

)
du

+ M̃
N,τ1∧τN− 1

ε
,−ε′ (τ2 ∧ τN− 1

ε ,−ε′
)
∣∣∣
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where M̃
N,τ1∧τN− 1

ε
,−ε′ (τ2 ∧ τN− 1

ε ,−ε′
) := M̃N (τ2 ∧ τN− 1

ε ,−ε′
)− M̃N (τ1 ∧ τN− 1

ε ,−ε′
). Using the

optional stopping theorem and the Ito isometry, we have

E
[(
M̃

N,τ1∧τN− 1
ε
,−ε′ (τ2 ∧ τN− 1

ε ,−ε′
)
)2]

= E
[(
M̃N (τ2 ∧ τN− 1

ε ,−ε′
)
)2

−
(
M̃N (τ1 ∧ τN− 1

ε ,−ε′
)
)2]

= E
[ ∫ τ2∧τN− 1

ε
,−ε′

τ1∧τN− 1
ε
,−ε′

∑
k=1,2

Nk∑
j=1

(∆i,kH̃
N )2(s−)λ̃Ni,k(s−)ds

]
≤ C2(τ1 ∧ τN− 1

ε ,−ε′
− τ2 ∧ τN− 1

ε ,−ε′
) ≤ C2δ

where
(

∆i,kH̃
N
)

(s−) := H̃N (s) − H̃N (s−) denotes the jump amplitude of H̃N corre-

sponding to a jump of the component σNi,k at time s and, by an easy computation, yields

(∆i,kH̃
N )2(s−) ≤ C2

1
N2 , for a constant C2 > 0. Then by Chebychev inequality

P

(∣∣∣M̃N,τ1∧τN− 1
ε
,−ε′ (τ2 ∧ τN− 1

ε ,−ε′
)
∣∣∣ ≥ α) ≤ E

[(
M̃

N,τ1∧τN− 1
ε
,−ε′ (τ2 ∧ τN− 1

ε ,−ε′
)

)2
]

α2
≤ C2δ

α2
.

Choosing δ sufficiently small the proposition holds true.

Averaging principle for the stopped processes In this paragraph we show that the
sequence

{(
H̃N (·∧τN− 1

ε ,−ε′
), Θ̃N (·∧τN− 1

ε ,−ε′
)
)
;N > 1

}
satisfies the conditions of Theorem

4.7. We start by proving the following

Lemma 4.10. For any bounded {Ft}-stopping time τ and any ζ ∈ R+ there exists a
constant Cζ , independent of N and τ , such that:

E

[
sup

s∈[τ,τ+ζ/N ]

∣∣H̃N (s ∧ τN− 1
ε ,−ε′

)− H̃N (t ∧ τN− 1
ε ,−ε′

)
∣∣] ≤ Cζ√

N
.

Proof. From the definition of the process H̃N we can write:

dH̃N (s) =

∫ ∞
0

∑
k=1,2

Nk∑
j=1

(
∆i,kH̃

N
)

(s−)1(0,λ̃N(σNi,k(s−),mN
k (s−),mN

k′ (s−))](u)N i,k(ds,du)

(4.27)
where λ̃N (σNi,k,m

N
k ,m

N
k′) = NλN (σNi,k,m

N
k ,m

N
k′) with λN being the jump rate function

defined in (2.4). In what follows we use the short notation:

λ̃Ni,k(s−) := λ̃N
(
σNi,k(s−),mN

k (s−),mN
k′(s−)

)
.

Let τ be a bounded stopping time and s ≥ 0. Then

H̃N
(

(τ + s) ∧ τN− 1
ε ,−ε′

)
− H̃N

(
τ ∧ τN− 1

ε ,−ε′

)
=∫ (τ+s)∧τN

− 1
ε
,−ε′

τ∧τN
− 1
ε
,−ε′

K̃ε,ε
′

N px

(
H̃N (u), Θ̃N (u)

)
du

+ M̃N
(

(τ + s) ∧ τN− 1
ε ,−ε′

)
− M̃N

(
τ ∧ τN− 1

ε ,−ε′

)
where px is the projection on the first coordinate and the martingale M̃N is obtained by
the sum (4.27) by replacing N i,k with its compensated process Ñ i,k for each k, i. Now,
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applying the Burkholder-Davis-Gundy inequality to the martingale {R̃N (s)}s≥0 defined
by R̃N (s) := M̃N

(
(τ + s) ∧ τN− 1

ε ,−ε′
)
− M̃N

(
τ ∧ τN− 1

ε ,−ε′
)

we get:

E
[

sup
s∈[0,ζ/N ]

∣∣R̃N (s)
∣∣] ≤ C1E

[〈
R̃N

〉 1
2

ζ/N

]
where C1 is a constant and 〈R̃N 〉 denotes the quadratic variation of R̃N . Using the fact
that M̃N is the sum of orthogonal martingales we obtain:

E
[〈
R̃N

〉 1
2

ζ/N

]
=

E
[( ∫ (τ+ζ/N)∧τN

− 1
ε
,−ε′

τ∧τN
− 1
ε
,−ε′

∫ ∞
0

∑
k=1,2

Nk∑
j=1

(∆i,kH̃
N )2(s−)1(0,λ̃Ni,k(s−)](u)N̂ i,k(ds,du)

) 1
2
]

=

E
[( ∫ (τ+ζ/N)∧τN

− 1
ε
,−ε′

τ∧τN
− 1
ε
,−ε′

∑
k=1,2

Nk∑
j=1

(∆i,kH̃
N )2(s−)λ̃Ni,k(s−)ds

) 1
2
]

where N̂ i,k is the compensator of N i,k. We recall that (∆i,kH̃
N )2(s−) ≤ C2

1
N2 and we

note also that the jump rate function satisfies ‖λ̃N‖∞ ≤ C3N for a constant C3 > 0. Then
choosing the right constant Kζ we obtain:

E
[

sup
s∈[0,ζ/N ]

∣∣R̃N (s)
∣∣] ≤ Kζ√

N
. (4.28)

Moreover, from the properties of the generator Kε,ε
′

N we know that, for any C2-function

f , the function
(
Kε,ε

′

N (f ◦ px)
)

is uniformly bounded. Then there exists a constant C > 0,

independent of N such that

E
[

sup
s∈[τ,τ+ζ/N ]

∣∣ ∫ (τ+s)∧τN
− 1
ε
,−ε′

τ∧τN
− 1
ε
,−ε′

K̃ε,ε
′

N px

(
H̃N (u), Θ̃N (u)

)
du
∣∣] ≤ C

N

and the proof is complete.

Let A be the operator defined on functions f ∈ C2
(
(−∞, 0)×R/2πZ

)
by:

Af(h, θ) := aH(h, θ)fH(h, θ) + aHH(h, θ)fHH(h, θ) (4.29)

where aH , aHH are defined as in (4.5).

Proposition 4.11. Consider the sequence
{(
H̃N (· ∧ τN− 1

ε ,−ε′
), Θ̃N (· ∧ τN− 1

ε ,−ε′
)
)
;N > 1

}
and the weak limit H̃− 1

ε ,−ε′
of {H̃N (· ∧ τN− 1

ε ,−ε′
);N > 1}. For any f ∈ C3([− 1

ε ,−ε
′]), up to

passing to a subsequence, we have, as N →∞:∫ T

0

Af
(
H̃N (t ∧ τN− 1

ε ,−ε′
),Θ(t ∧ τN− 1

ε ,−ε′
)
)

dt
weakly−−−−→

∫ T

0

Āf
(
H̃− 1

ε ,−ε′
(t)
)

dt

where
Āf(h) := āH(h)fH(h) + āHH(h)fHH(h)

and āH , āHH are defined as in (4.10) and (4.11).

Proof. We first observe that by the regularity of aH and aHH on [− 1
ε ,−ε

′] × R/2πZ it
follows that, for any f ∈ C3([− 1

ε ,−ε
′]), the function Af : [− 1

ε ,−ε
′] × R/2πZ → R is
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Lipschitz in both variables. By Proposition 4.9 and Lemma 4.10 hypothesis i) of Theorem
4.7 is satisfied.

From (4.5) and the fact that F ≥ c(ε, ε′) > 0 (see the proof of Proposition 4.1 in
subsection 4.2) we immediately observe that hypothesis ii) holds too. To show hypothesis
iii) we find a uniform bound for the martingale term in the relation:

Θ̃N (s ∧ τN− 1
ε ,−ε′

)− Θ̃N (t ∧ τN− 1
ε ,−ε′

) =

∫ s∧τN
− 1
ε
,−ε′

t∧τN
− 1
ε
,−ε′

K̃ε,ε
′

N py

(
H̃N (u), Θ̃N (u)

)
du

+MN (s ∧ τN− 1
ε ,−ε′

)−MN (t ∧ τN− 1
ε ,−ε′

)

where t, s ∈ [0, T ] and py denotes the projection on the second coordinate.
From (4.30) we write

dΘ̃N (s) =

∫ ∞
0

∑
k=1,2

Nk∑
j=1

(
∆j,kΘ̃

N
)
(s−)1(0,λ̃Ni,k(s−)](u)N j,k(ds,du)

where
(
∆j,kΘ̃

N
)
(s−) denotes the jump amplitude of Θ̃N corresponding to a jump of the

component σNi,k at time s. If we write it explicitly using the change of variables (4.4) we

immediately obtain that |∆j,kΘ̃
N | ≤ C 1

N + o( 1
N2 ) for a suitable constant C > 0. By the

same argument used to obtain (4.28) in the proof of Lemma 4.10 we get, for all stopping
time τ :

E

[
sup

s∈[τ,τ+ζ/N ]

∣∣∣MN (s ∧ τN− 1
ε ,−ε′

)−MN (t ∧ τN− 1
ε ,−ε′

)
∣∣∣] ≤ Cζ√

N
.

Proof of Proposition 4.8 Before giving the proof we state a useful result. Let L be
a linear operator defined for bounded measurable functions on a metric space E, let
U be an open subset of E and let X be a càdlàg process. We recall that the process
X(· ∧ τ), where τ is the exit time from U of the process X, is said to be a solution of the
(L,U)-stopped martingale problem if

f
(
X(t ∧ τ)

)
− f

(
X(0)

)
−
∫ t∧τ

0

Lf
(
X(s)

)
ds (4.30)

is a martingale for all f ∈ dom(L).

Theorem 4.12. ([12], Ch. 4 Thm 6.1) Let (E, d) be a Polish space and let L be a linear
operator L : Cb(E) → B(E). If the D([0, T ], E) martingale problem for L is well-posed,
then for any open set U ⊂ E there exists a unique solution of the stopped martingale
problem (L,U).

We will show that (4.30) holds for X = H̃− 1
ε ,−ε

and L = Ā with f in a subset of dom(Ā)

which is not a measure determining class for D
(
[0, T ]; [− 1

ε ,−ε
′]
)
. This motivates the

restriction to the interval (− 1
ε + δ.− ε′ − δ) in the statement of Proposition 4.8.

Proof of Proposition 4.8. Weak convergence of
{
H̃(· ∧ τN− 1

ε ,−ε′
);N ≥ 1

}
to H̃− 1

ε ,−ε′
fol-

lows immediately from Proposition 4.9. Notice that sups∈[0,T∧τN
− 1
ε
,−ε′

] |H̃N (s)−H̃N (s−)|≤
C
N for a suitable constant C, then (see [12] Ch. 3, Thm 10.2) the limit process H̃− 1

ε ,−ε′
is

continuous.
In the setting of the proof of Proposition 4.3 we consider a suitable probability space

where the above convergence is almost sure. In such space we have also, up to passing
to a subsequence,∫ t

s

Af
(
H̃N (u ∧ τN− 1

ε ,−ε′
), Θ̃N (u ∧ τN− 1

ε ,−ε′
)
)

du
a.s.−−→

∫ t

s

Āf
(
H̃− 1

ε ,−ε′
(u)
)

du. (4.31)
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Now for any f ∈ C3
c

(
(− 1

ε ,−ε
′)
)

the process defined by

Zf− 1
ε ,−ε′

(t) := f
(
H̃− 1

ε ,−ε′
(t)
)
− f

(
H̃− 1

ε ,−ε′
(0)
)
−
∫ t

0

Āf
(
H̃− 1

ε ,−ε′
(s)
)

ds

is a martingale. Indeed consider the martingale

MN,f (t) := f
(
H̃N (t ∧ τN− 1

ε ,−ε′
)
)
− f

(
H̃N (0)

)
−
∫ t∧τN

− 1
ε
,−ε′

0

K̃ε,ε
′

N f
(
H̃N (s), Θ̃N (s)

)
ds

and the process

ZN,f (t) := f
(
H̃N (t ∧ τN− 1

ε ,−ε′
)
)
− f

(
H̃N (0)

)
−
∫ t∧τN

− 1
ε
,−ε′

0

Aε,ε
′
f
(
H̃N (s), Θ̃N (s)

)
ds

with Aε,ε′ := 1(− 1
ε ,−ε′)

A (see formula (4.29)). Observing that K̃ε,ε
′

N f(h, θ) = Aε,ε′f(h, θ) +

o(1), we have ∀ m ≥ 1, ∀ g1, . . . , gm continuous and bounded functions on [− 1
ε ,−ε

′] and
0 ≤ t1 ≤ . . . ≤ tm ≤ s ≤ t ≤ T ,

E
[(
ZN,f (t)−ZN,f (s)

)
g1

(
H̃N (t1 ∧ τN− 1

ε ,−ε′
)
)
· . . . · gm

(
H̃N (tm ∧ τN− 1

ε ,−ε′
)
)]

= o(1).

Let us write it explicitly

E
[(
f
(
H̃N (t ∧ τN− 1

ε ,−ε′
)
)
− f

(
H̃N (s ∧ τN− 1

ε ,−ε′
)
))

g1

(
H̃N (t1 ∧ τN− 1

ε ,−ε′
)
)
· . . . ·

gm

(
H̃N (tm ∧ τN− 1

ε ,−ε′
)
)]

+

E

[(
−
∫ t∧τN

− 1
ε
,−ε′

s∧τN
− 1
ε
,−ε′

Aε,ε
′
f
(
H̃N (u), Θ̃N (u)

)
du

)
g1

(
H̃N (t1 ∧ τN− 1

ε ,−ε′
)
)
· . . . ·

gm

(
H̃N (tm ∧ τN− 1

ε ,−ε′
)
)]

= o(1). (4.32)

Note that all the terms in the expectations above are uniformly bounded with respect
to N . Consider the second term of (4.32) and observe that:∫ t∧τN

− 1
ε
,−ε′

s∧τN
− 1
ε
,−ε′

Aε,ε
′
f
(
H̃N (u), Θ̃N (u)

)
du =

∫ t

s

Aε,ε
′
f
(
H̃N (u ∧ τN− 1

ε ,−ε′
), Θ̃N (u ∧ τN− 1

ε ,−ε′
)
)

du =∫ t

s

Af
(
H̃N (u ∧ τN− 1

ε ,−ε′
), Θ̃N (u ∧ τN− 1

ε ,−ε′
)
)

du

where the last equality comes from the fact that f has compact support. Therefore, the
conclusion follows from (4.32) using (4.31) and dominated convergence theorem.

Now we observe that the process H̃− 1
ε ,−ε′

(· ∧ τ̃− 1
ε+δ,−ε′−δ) is a solution of the

(
Ā, U

)
-

stopped martingale problem with U = (− 1
ε + δ,−ε′ − δ). Indeed for each given g in

C3
0

(
[− 1

ε + δ,−ε′ − δ]
)

(which is measure determining for D
(
[0, T ]; [− 1

ε + δ,−ε′ − δ]
)
) there

exists a function f ∈ C3
c

(
(− 1

ε ,−ε
′)
)

such that g(x) = f(x) for all x ∈ (− 1
ε + δ,−ε′ − δ) and

so

Zf1
ε ,−ε′

(t ∧ τ̃− 1
ε+δ,−ε′−δ) = g

(
H̃− 1

ε ,−ε′
(t ∧ τ̃− 1

ε+δ,−ε′−δ)
)
− g
(
H̃− 1

ε ,−ε′
(0)
)

−
∫ t∧τ̃− 1

ε
+δ,−ε′−δ

0

Āg
(
H̃− 1

ε ,−ε′
(s)
)
ds
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is a martingale. Moreover, by Proposition 4.5 the martingale problem for Ā is well-
posed and has solution H; then, by Theorem 4.12, H̃− 1

ε ,−ε′
(· ∧ τ̃− 1

ε+δ,−ε′−δ) and H(· ∧
τ− 1

ε+δ,−ε′−δ) have the same distribution.

We are ready to prove Theorem 4.2.

Proof of Theorem 4.2 We have to show that, for every ε > 0, H̃N (· ∧ τε) converges to
H(· ∧ τε) as N → ∞. First of all observe that the weak limit H̃− 1

ε ,−ε′
of the sequence

{H̃N (· ∧ τN− 1
ε ,−ε′

);N > 1} is continuous a.s., hence convergence also holds endowing

the space D([0, T ],R) with the uniform topology (see [23]). Let f ∈ Cb(D([0, T ],R) and
consider

Sε =
∣∣∣E [f (H̃N (· ∧ τN− 1

ε ,0
)
)]
− E

[
f
(
H(· ∧ τ− 1

ε ,0
)
)]∣∣∣ .

For any N > 1 and δ, ε′ > 0 we write

Sε ≤
∣∣∣E [f (H̃N (· ∧ τN− 1

ε ,0
)
)]
− E

[
f
(
H̃N (· ∧ τN− 1

ε ,−ε′
)
)]∣∣∣

+
∣∣∣E [f (H̃N (· ∧ τN− 1

ε ,−ε′
)
)]
− E

[
f
(
H̃− 1

ε ,−ε′
)]∣∣∣

+
∣∣∣E [f (H̃− 1

ε ,−ε′
)]
− E

[
f
(
H̃− 1

ε ,−ε′
(· ∧ τ̃− 1

ε+δ,−ε′−δ)
)]∣∣∣ (4.33)

+
∣∣∣E [f (H̃− 1

ε ,−ε′
(· ∧ τ̃− 1

ε+δ,−ε′−δ)
)]
− E

[
f
(
H(· ∧ τ− 1

ε+δ,−ε′−δ)
)]∣∣∣

+
∣∣∣E [f (H(· ∧ τ− 1

ε+δ,−ε′−δ)
)]
− E

[
f
(
H(· ∧ τ− 1

ε−δ,0
)
)]∣∣∣

+
∣∣∣E [f (H(· ∧ τ− 1

ε−δ,0
)
)]
− E

[
f
(
H(· ∧ τ− 1

ε ,0
)
)]∣∣∣ .

We first estimate the quantities related to the macroscopic process. By Proposition 4.8∣∣∣E [f (H̃− 1
ε ,−ε′

(· ∧ τ̃− 1
ε+δ,−ε′−δ)

)]
− E

[
f
(
H(· ∧ τ− 1

ε+δ,−ε′−δ)
)]∣∣∣ = 0.

Now, let us fix γ > 0. The processes H and H̃− 1
ε ,−ε′

are continuous and, as δ → 0,
we have τ̃− 1

ε+δ,−ε′−δ −→ τ̃− 1
ε ,−ε′

and τ− 1
ε−δ,0

−→ τ− 1
ε ,0

. Then, we can choose δ small
enough such that∣∣∣E [f (H̃− 1

ε ,−ε′
)]
− E

[
f
(
H̃− 1

ε ,−ε′
(· ∧ τ̃− 1

ε+δ,−ε′−δ)
)]∣∣∣ < γ,∣∣∣E [f (H(· ∧ τ− 1

ε−δ,0
)
)]
− E

[
f
(
H(· ∧ τ− 1

ε ,0
)
)]∣∣∣ < γ.

Define the exit times of H from the left and right boundaries of the domain as

l− 1
ε+δ,−ε′−δ := inf

{
t ∈ [0, T ] : H(t) ≤ − 1

ε + δ, H(s) ∈
(
− 1
ε + δ,−ε′ − δ

)
∀ s < t

}
; (4.34)

r− 1
ε+δ,−ε′−δ := inf

{
t ∈ [0, T ] : H(t) ≥ −ε′ − δ, H(s) ∈

(
− 1
ε + δ,−ε′ − δ

)
∀ s < t

}
.(4.35)

By Proposition 4.5, we can choose −ε′ small enough such that:∣∣∣E [f (H(· ∧ τ− 1
ε+δ,−ε′−δ)

)]
− E

[
f
(
H(· ∧ τ− 1

ε−δ,0
)
)]∣∣∣ ≤

‖f‖∞P
(
r− 1

ε+δ,−ε′−δ < l− 1
ε+δ,−ε′−δ)

)
< γ.

We are left to estimate the first two terms of inequality (4.33). Let rN− 1
ε+δ,−ε′−δ and

lN− 1
ε+δ,−ε′−δ be as in (4.34) and (4.35) with H̃N in place of H. Analogously, we define
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l̃− 1
ε−δ/2,−ε′−δ

and r̃− 1
ε−δ/2,−ε′−δ

taking H̃− 1
ε−δ,−ε′

in place of H. For the first term we
have∣∣∣E [f (H̃N (· ∧ τN− 1

ε ,0
)
)]
− E

[
f
(
H̃N (· ∧ τN− 1

ε ,−ε′
)
)]∣∣∣ ≤ ‖f‖∞P (rN− 1

ε ,−ε′
< lN− 1

ε ,−ε′
)
)

≤ ‖f‖∞P
(
rN− 1

ε ,−ε′−δ
< lN− 1

ε ,−ε′−δ
)
)
≤ ‖f‖∞P

(
rN− 1

ε−δ/4,−ε′−δ
< lN− 1

ε−
δ
4 ,−ε′−δ

)
)
.

Consider the closed set

Rδ, δ4
:= {x ∈ D ([0, T ],R) : ∃t̄ ∈ [0, T ] s.t. x(t̄) ≥ −ε′ − δ

and − 1
ε + δ

4 ≤ x(s) < −ε′ − δ, ∀s < t̄
}

and observe that

P
(
rN− 1

ε−δ/4,−ε′−δ
< lN− 1

ε−δ/4,−ε′−δ
)
)
≤ P

(
H̃N (· ∧ τN− 1

ε−δ,−ε′
) ∈ Rδ, δ4

)
;

then by Portmanteau Theorem it follows

lim sup
N

P
(
H̃N (· ∧ τN− 1

ε−δ,−ε′
) ∈ Rδ, δ4

)
≤ P

(
H̃− 1

ε−δ,−ε′
∈ Rδ, δ4

)
.

Since the processes H̃− 1
ε+δ,−ε′(· ∧ τ̃− 1

ε+δ/2,−ε′+δ) and H(· ∧ τ− 1
ε+δ/2,−ε′+δ) have the same

distribution, we obtain

P
(
H̃− 1

ε−δ,−ε′
∈ Rδ, δ4

)
≤ P

(
r̃− 1

ε−δ/2,−ε′+δ
< l̃− 1

ε−δ/2,−ε′+δ

)
= P

(
r− 1

ε−δ/2,−ε′+δ
< l− 1

ε−δ/2,−ε′+δ

)
.

Using again Proposition 4.5, we can choose −ε′ small enough and N big enough such
that ∣∣∣E [f (H̃N (· ∧ τN− 1

ε ,0
)
)]
− E

[
f
(
H̃N (· ∧ τN− 1

ε ,−ε′
)
)]∣∣∣ < γ.

Finally, for the second term of (4.33), by the convergence of H̃N (· ∧ τN− 1
ε ,−ε′

) to H̃− 1
ε ,−ε′

,

we can take N big enough such that∣∣∣E [f (H̃N (· ∧ τN− 1
ε ,−ε′

)
)]
− E

[
f
(
H̃− 1

ε ,−ε′
)]∣∣∣ < γ

and the proof is complete.
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