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Abstract

This paper is centered on the random graph generated by a Doeblin-type coupling of
discrete time processes on a countable state space whereby when two paths meet,
they merge. This random graph is studied through a novel subgraph, called a bridge
graph, generated by paths started in a fixed state at any time. The bridge graph is
made into a unimodular network by marking it and selecting a root in a specified
fashion. The unimodularity of this network is leveraged to discern global properties of
the larger Doeblin graph. Bi-recurrence, i.e., recurrence both forwards and backwards
in time, is introduced and shown to be a key property in uniquely distinguishing paths
in the Doeblin graph, and also a decisive property for Markov chains indexed by Z.
Properties related to simulating the bridge graph are also studied.
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1. Introduction

The first incarnation of the Propp and Wilson [25] coupling from the past (CFTP)
algorithm was designed to build a perfect sample from the stationary distribution π of
an irreducible, aperiodic, and positive recurrent Markov chain on a finite state space S.
It uses a Doeblin-type coupling of a family of copies of the Markov chain started in all
possible states at all possible times, whereby when two chains meet, they merge. This
coupling is represented with a random directed graph on Z×S depicting the trajectories
of these Markov chains. Below, this random graph will be referred to as the Doeblin
graph of the chain.

Prior to this research, the study of this random graph has been mostly a by-product
of research on perfect simulation. In 1992–1993, Borovkov and Foss [6, 4] laid out
the framework of stochastically recursive sequences (SRS), of which Markov chains
are a special case, and they proved the main results on the existence of a stationary
version of an SRS to which non-stationary versions converge in a certain sense. The
CFTP algorithm itself was introduced by Propp and Wilson in 1996 in [25] for obtaining
samples from the stationary distribution of a Markov chain. The CFTP algorithm can be
seen as a specialization of the general ideas of [6] for SRS to the Markov case aiming at
perfect simulation. Foss and Tweedie [10] then gave a necessary and sufficient condition
for the CFTP algorithm to converge a.s. From 1996 to 2000, many papers [8, 24, 23, 26,
13, 11, 12, 21, 15, 27, 19] investigated how to improve CFTP implementations or how to
apply CFTP or a CFTP-inspired algorithm to obtain a perfect sample from a particular
Markov chain’s stationary distribution. Of particular importance is Wilson’s read-once
CFTP algorithm [27], which allows CFTP to be done by only simulating forwards in
time. A review of perfect simulation in stochastic geometry up to that point is provided
in [22]. Since then, [14, 7] showed that (possibly impractical) generalizations of the
CFTP algorithm can be applied under weaker conditions, and [9] gives a CFTP-like
algorithm that applies even in the non-Markovian setting.

In this paper, focus is shifted away from finding an individual sample from the
stationary distribution of a Markov chain, and instead properties of the Doeblin graph as
a whole are studied. The SRS framework will be used, but, because the Markov case is a
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fundamental special case, most sections will spell out what can be said in the Markov
case. The main tool of study is the theory of unimodular random (rooted) networks in
the sense of Aldous and Lyons [1]. Unimodular networks are rooted networks where,
heuristically, the root is picked uniformly at random. In order to generalize this concept
for infinite networks, instead of picking the root uniformly at random, the network is
required to satisfy a mass transport principle. The primary new object of study is the
subgraph of bridges between a fixed recurrent state, which is referred to as the bridge
graph and is roughly inspired by the population process in [3]. The subgraph is defined
by looking at processes started at any time from this fixed state. General setup and
definitions of the Doeblin graph and the bridge graph are given in Section 2. Random
networks and how to view subgraphs like the bridge graph as random networks are
handled in Section 3. The main theorem is then proved in Section 4.

Section 4.1 proves the main theorem, identifying the unimodular structure in the
bridge graph. Section 4.2 studies properties of the bridge graph that are inherited due
to its I/F component structure as a unimodular network. Here I/F refers to the class
of a component in the sense of the foil classification theorem in unimodular networks
in [2], which is reviewed in Section 3. The most interesting case is when S is infinite
and the Doeblin graph is connected. In this case (see Corollary 4.7), although there
may be infinitely many bi-infinite paths in the Doeblin graph, there exists a unique
bi-recurrent path, a bi-infinite path that visits every state infinitely often in the past,
as well as in the future. This unique path also has the property that the states in S that
the path traverses form a stationary version of the original Markov chain (or SRS), and
hence give samples from its stationary distribution. Indeed, the original CFTP algorithm
ultimately computes the time zero point on the bi-recurrent path. By embedding Markov
chains inside Doeblin graphs, bi-recurrence is also shown to be a decisive property for
Markov chains indexed by Z. Theorem 4.10 shows that if a Markov chain (Xt)t∈Z has an
irreducible, aperiodic, and positive recurrent transition matrix, then (Xt)t∈Z is stationary
if and only if it is bi-recurrent for any (and hence every) state. The I/F structure of a
component leads to further useful qualitative properties discussed in Section 4.2.2. In
reversed time, the bridge tree can be seen as a multi-type branching-like process where
the types are the elements of S, and for which there is at most one child of each type
per generation. The nodes in this branching process are either mortal (i.e., with finitely
many descendants) or immortal (resp. infinitely many). The mortal descendants of the
nodes on the bi-infinite path form a stationary sequence of finite trees. Mean values in
these trees are linked to coupling times by mass-transport relations. Finally, Section 4.3
gives results that are relevant to simulating the bridge graph, such as approximating the
bridge graph by finite networks, and viewing the process of vertical slices of the bridge
graph as a Markov chain in its own right. The final section gives several bibliographical
comments, which make connections of the present research to other works.

2. The Doeblin graph

2.1. Definition

In this section, the Doeblin graph is constructed. Fix a probability space (Ω,F ,P),
a countable state space S, and a complete separable metric space Ξ for the remainder
of the document. The first ingredient needed is a pathwise transition generator, a
function hgen : S × Ξ→ S that will be used for determining transitions between states of
S. Such an hgen, combined with a driving sequence (ξt)t∈N, is used to give a pathwise
representation of a stochastic process (Xt)t∈N satisfying

Xt+1 := hgen(Xt, ξt), t > 0. (2.1)
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Equation (2.1) is the defining property of a stochastically recursive sequence (SRS)
in the sense of Borovkov and Foss [6]. If the driving sequence is taken to be i.i.d.
and independent of X0, then (Xt)t∈N is a (discrete time) Markov chain with transition
matrix P = (px,y)x,y∈S determined by px,y := P(hgen(x, ξ0) = y) for each x, y ∈ S. It
is a classical result that, when Ξ := [0, 1], all possible transition matrices P can be
achieved by choosing hgen and the distribution of ξ0 accordingly (c.f. Chapter 17 in [5]).
Many processes in this paper will be indexed by Z or an interval of Z instead of just N.
The pathwise transition generator hgen and a stationary and ergodic bi-infinite driving
sequence ξ := (ξt)t∈Z, are fixed for the remainder of the document. The notation for the
transition matrix P = (px,y)x,y∈S is also fixed for the remainder of the document, even
when ξ is not assumed to be i.i.d.

The space Z×S should be thought of as time and space coordinates, with (t, x) ∈ Z×S
being in state x at time t. The vertices and edges of a graph Γ will be written V (Γ) and
E(Γ), and if V (Γ) ⊆ Z×S, the vertices of Γ sitting at a particular time t or in a particular
state x will be denoted, respectively, as

Vt(Γ) := {(s, y) ∈ V (Γ) : s = t} , V x(Γ) := {(s, y) ∈ V (Γ) : y = x} . (2.2)

Note that Vt(Γ) and V x(Γ) are subsets Z × S, i.e. their elements have both a time
component and a space component. If instead just states (elements of S) or just times
(elements of Z) are desired, then the following are used instead

Γt := {x ∈ S : (t, x) ∈ Vt(Γ)} , Γx := {t ∈ Z : (t, x) ∈ V x(Γ)} . (2.3)

Then the Doeblin graph G = G(hgen, ξ) is constructed as follows. It has vertices
V (G) := Z× S. The edges of G are determined by the follow map f+ : V (G)→ V (G),
which is a random map giving directions of where each vertex should move to in the
next time step. It is defined by

f+(t, x) := (t+ 1, hgen(x, ξt)), (t, x) ∈ Z× S. (2.4)

That is, let the edges of G be drawn from each (t, x) ∈ Z × S to f+(t, x). By saying a
function f : A → B is a random map, it is meant that f : A × Ω → B is measurable
and the second argument will be omitted. Iterates of f+ are denoted by fn+ for n > 0.
Thinking of each vertex in G as an individual, one may also interpret the follow map as
mapping each vertex to its parent vertex.

2.2. Modeling

When dealing with paths in G, it will often be convenient to ignore the time coordinate
and focus only on the space coordinate. If (Xt)t∈I is a stochastic process defined on Ω

which takes values in S and is such that (t,Xt)t∈I is a.s. a path in G over some fixed
time interval I ⊆ Z, then (Xt)t∈I is called the state path (in G) corresponding to the
path (t,Xt)t∈I . That is, there are two ways of looking at every route through G: as a
path (t,Xt)t∈I ⊆ V (G), or as a state path (Xt)t∈I ⊆ S.

Lemma 2.1. Let I 6= ∅ be an interval in Z. Suppose that (Xt)t∈I is a stochastic process
taking values in S a.s. satisfying the recurrence relation Xt+1 = hgen(Xt, ξt) for each
inf I 6 t < sup I, where hgen and (ξt)t∈I are the same as are used to define G. Then
(Xt)t∈I is a state path in G.

Proof. One must check that (t,Xt)t∈I is a.s. a path in G. Fix t ∈ I. Since V (G) = Z× S,
(t,Xt) is certainly a vertex of G. If t + 1 ∈ I as well, one must check the edge e from
(t,Xt) to (t+ 1, Xt+1) is a.s. an edge in G. The edges of G are defined to be from each
(t, x) ∈ Z× S to (t+ 1, hgen(x, ξt)), so the relation Xt+1 = hgen(Xt, ξt) holding a.s. implies
the edge e is a.s. an edge of G.
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Figure 1: An example of a Doeblin graph with the path corresponding to the state path
F (t,x) distinguished. All edges are directed from left to right.

In particular, Lemma 2.1 says that any SRS whose driving sequence is defined for all
times in Z can be seen as living inside a Doeblin graph, namely the one generated by its
driving sequence and choosing hgen to be the same as in the definition of the SRS.

State paths started at a deterministic vertex will also be used heavily. For the

remainder of the document, let F (t,x) :=
(
F

(t,x)
s

)
s>t

be the state path in G started at

time t in state x, i.e., F (t,x) is a re-indexing of the states traversed by f+ defined by

(s, F (t,x)
s ) = fs−t+ (t, x), (t, x) ∈ Z× S, s > t. (2.5)

One has that F (t,x) is a version of the SRS or Markov chain started in state x with initial
condition given at time t. Generally speaking, throughout the paper, a parenthesized
superscript, as in F (t,x), refers to a starting location. For every x ∈ S, the distribution of(
F

(t,x)
s+t

)
s>0

does not depend on t because ξ is stationary. An example of a Doeblin graph

and path of F (t,x) are drawn in Figure 1.
It has already been noted (see [5]) that a Markov chain (Xt)t∈N with any given

desired transition matrix can be constructed as an SRS with i.i.d. driving sequence. The
following is an analogous result saying that any Markov chain (Xt)t∈Z may be realized
as a state path in a Doeblin graph with i.i.d. driving sequence. Note here that the time
index set is all of Z, not just N.

Theorem 2.2. Suppose that (Xt)t∈Z is a Markov chain with transition matrix P on some
probability space, where P is the same as was defined for the Doeblin graph G. Also
suppose the driving sequence ξ is i.i.d. Then there is a probability space (Ω′,F ′,P′) and
(X ′t)t∈Z ∼ (Xt)t∈Z on Ω′ such that (X ′t)t∈Z is state path in G′, where G′ is the Doeblin
graph generated by some i.i.d. driving sequence ξ′ = (ξ′t)t∈Z ∼ ξ in Ω′ with pathwise
transition generator hgen. Moreover, for each t ∈ Z, X ′t is independent of (ξ′s)s>t.

Proof (sketch). Consider a probability space housing independent copies of (Xt)t∈Z and
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G. Then consider for each t ∈ Z the state path in G started at Xt. The distributions of
these state paths determine a consistent set of finite dimensional distributions for the
desired pair of processes ((X ′t)t∈Z , (ξ

′
t)t∈Z). By the Kolmogorov extension theorem, the

result follows. The full proof of Theorem 2.2 is given in the appendix.

2.3. Basic properties

Plainly, G is acyclic as an undirected graph because all outgoing edges point forward
one unit in time and each vertex has only one outgoing edge. When G is a.s. connected,
it is called a Doeblin Eternal Family Tree or a Doeblin EFT for short. More generally,
G may have up to countably many components and is referred to as a Doeblin Eternal
Family Forest or Doeblin EFF. The EFT and EFF terminology is inspired by [2] and
the word eternal refers to the fact that every vertex of G has a unique outgoing edge.
That is, there is no individual that is an ancestor of all other individuals. An EFF is a
more general object than an EFT, i.e. an EFF may also be an EFT.

If the driving sequence ξ is i.i.d., so that the state paths F (t,x) for each (t, x) ∈ Z× S
are Markov chains, then say that G is Markovian. If ξ is such that for each t ∈ Z,
(f+(t, x))x∈S is an independent family, then G is said to have vertical independence. If
G is Markovian and has vertical independence, then say that G has fully independent
transitions.

Some later results are only valid for EFTs, so the following result gives an easy case
when G can be shown to be connected.

Proposition 2.3. Suppose G has fully independent transitions, and P is irreducible and
positive recurrent with period d. Then a.s. G has d components. In particular, if P is
irreducible, aperiodic, and positive recurrent, then G is an EFT.

Proof (sketch). The case of a general d is reduced to d = 1 by viewing the chain only
every d steps and with state space restricted to one of the d classes appearing in a cyclic
decomposition of the state space. Consider the state paths in G started at (0, x) and
(0, y) for any two x, y. Strictly before hitting the diagonal, the pair of state paths has the
same distribution as a product chain, i.e. two independent copies of the chain with one
started at x and the other at y. The product chain is irreducible, aperiodic, and positive
recurrent, and therefore a.s. hits the diagonal, showing the state paths started at (0, x)

and (0, y) eventually merge. The full proof of Proposition 2.3 is given in the appendix.

A ξ-measurable subgraph Γ = Γ((ξt)t∈Z) of G is called shift-covariant if, for all
s ∈ Z, Γ((ξt+s)t∈Z) is a.s. the time-translation of Γ by −s. Say a state path (Xt)t∈Z is
shift-covariant if the corresponding path in G is shift-covariant. In other words, if
the driving sequence ξ is translated by some amount s in time, then shift-covariant
objects are also translated in time by the same amount. Let E ∈ F be ξ-measurable, say
1E = g((ξt)t∈Z). Say that E is shift-invariant if g((ξt)t∈Z) = g((ξt+1)t∈Z) a.s. That is,
shift-invariant events are those events whose occurence is unaffected by time translations
of the driving sequence ξ. One has that P(E) ∈ {0, 1} for all shift-invariant events E
due to the ergodicity of ξ. All of the following are shift-invariant and hence happen with
probability zero or one: G is locally finite, G contains no cycles, G is connected, G

has exactly n ∈ N ∪ {∞} components, G contains exactly n ∈ N ∪ {∞} bi-infinite paths.
Generally it will be obvious whether an event is shift-invariant.

When G is a Markovian, one needs to be cautious that not all state paths in G are
Markov chains with transition matrix P .

Example 2.4. Let S := Z and suppose G has fully independent transitions with px,x−1 =

px,x = px,x+1 = 1
3 for all x ∈ S. Choose X0 to be the smallest element of Z (in some
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well-ordering of Z) such that F (0,X0)
1 = F

(0,X0)
2 . In this case, a.s. X1 = X2, so (Xt)t∈N is

not even Markovian.

The problem with the path in the previous example is that it looks into the future.
Namely, the value of X0 depends on information at time 1 and time 2. To exclude state
paths like those in Example 2.4, the notion of properness is introduced. For a nonempty
interval I of Z, if for each t ∈ I, Xt is independent of (ξs)s>t, then (Xt)t∈I is called
a proper state path. In the Markovian case, if I has a minimum element t0, then to
show that a state path (Xt)t∈I is proper it is sufficient that Xt0 is independent of (ξs)s>t0
because for any s ∈ N, Xt0+s is measurable with respect to the σ-algebra generated by
Xt0 and ξt0 , . . . , ξt0+s−1. Unlike general state paths in G, proper state paths inherit a
Markov transition structure.

Lemma 2.5. Suppose G is Markovian. If (Xt)t∈I is a proper state path in G over a
nonempty interval I ⊆ Z, then (Xt)t∈I is a Markov chain with transition matrix P .

Proof. Fix t < sup I. Let E := {Xt = xt, . . . , Xt−k = xt−k} be given with k ∈ N such that
t− k > inf I, and xt, . . . , xt−k ∈ S. Note that whether E occurs is a function of Xt−k and
ξt−k, . . . , ξt−1, so the fact that Xt−k is independent of (ξs)s>t−k and the fact that ξ is i.i.d.
imply that E is independent of (ξs)s>t. Then for any x ∈ S,

E[1{Xt+1=x}1E ] = E[1{h(xt,ξt)=x}1E ]

= P(h(xt, ξt) = x)P(E)

= pxt,xP(E)

= E[pXt,x1E ].

Since S is countable, sets of the form {Xt = xt, . . . , Xt−k = xt−k} as above generate the
product σ-algebra σ(Xs : s ∈ I, s 6 t). It follows that for all x ∈ S,

P(Xt+1 = x | (Xs)s∈I,s6t) = pXt,x.

Thus (Xs)s∈I is a Markov chain with transition matrix P .

2.4. Connections with CFTP

Consider the following structural result that will be expanded upon in Section 4.2.1.
It is a special case of Proposition 4.6 and Corollary 4.7, which will be proved later.

Proposition 2.6. Suppose G is Markovian, and that P is irreducible, aperiodic, and
positive recurrent. Then a.s. in every component of G there exists a unique bi-infinite
path that visits every state in S infinitely often in the past. All other bi-infinite paths in
G do not visit any state infinitely often in the past. If G is an EFT, then with βt denoting
the state at time t of the unique bi-infinite path visiting every state infinitely often in the
past, one has that (βt)t∈Z is a stationary Markov chain with transition matrix P , so that
βt ∼ π for all t ∈ Z, where π is the invariant distribution for P .

The main result of the original Propp and Wilson paper can be translated into the
language of Doeblin EFFs and summarized as follows. The reader is encouraged to
ponder what it says about the structure of G, and in doing so one sees that is has much
the same spirit as Proposition 2.6.

Proposition 2.7 (Perfect Sampling [25]). If S is finite and G is Markovian and an EFT
(which, since S is finite, necessitates that P is irreducible and aperiodic), then there is
an a.s. finite time τ such that all paths in G started at any time t 6 −τ have merged by
time 0, all reaching a common vertex (0, β0). Moreover, β0 ∼ π, where π is the stationary
distribution of P , and there is an algorithm A that a.s. terminates in finite time returning
β0.
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Remark 2.8. In fact, the β0 appearing in Proposition 2.7 and the β0 appearing in
Proposition 2.6 are the same. That is, the perfect sampling algorithm A is ultimately
computing the point in G on the unique bi-infinite path and returning its state. This can
be seen by the fact that, since all paths started at time −τ reach the common vertex
(0, β0), any bi-infinite path in G must also pass through (0, β0). However, what is notably
absent in Proposition 2.6 is any mention of an algorithm to compute β0. Whether such
an algorithm exists in general is not studied in the present research.

2.5. Bridge graphs

The primary tool used in this document will be the theory of unimodular networks in
the sense of [1]. Local finiteness is essential in the theory of unimodular networks, but
the Doeblin graph G may not be locally finite, as the following result shows.

Proposition 2.9. If
∑
x∈S px,y < ∞ for all y ∈ S, then G is a.s. locally finite. If G has

fully independent transitions and for some y ∈ S,
∑
x∈S px,y = ∞, then G is a.s. not

locally finite.

Proof. Both statements follow from the Borel-Cantelli lemmas. That is, for any fixed
(t, y) ∈ Z× S, if

∑
x∈S px,y <∞, then a.s. one has that only finitely many of the events

{f+(t− 1, x) = (t, y)}x∈S occur, showing (t, y) has finite in-degree, and hence finite de-
gree, in G. On the other hand, if G has fully independent transitions and for some
fixed (t, y) ∈ Z × S one has

∑
x∈S px,y = ∞, then a.s. infinitely many of the events

{f+(t− 1, x) = (t, y)}x∈S occur, so that (t, y) has infinite degree.

The remedy taken here is to instead concentrate on particular subgraphs of G. In
this section, subgraphs are introduced that are locally finite under a positive recurrence
assumption and turn out to have nice properties when considered as random networks.

For each (t, x) ∈ Z× S, and each y ∈ S, let

τ (t,x)(y) := inf
{
s > t : F (t,x)

s = y
}
, σ(t,x)(y) := τ (t,x)(y)− t (2.6)

be, respectively, the return time and time until return of F (t,x) to y. The word return
is used even when y 6= x, in which case it may be that F (t,x) is not part of a state path
that has visited y before time t. Note that the distribution of σ(t,x)(y) does not depend
on t because ξ is stationary. Call a state x ∈ S positive recurrent if E[σ(0,x)(x)] <∞ or
recurrent if σ(0,x)(x) <∞ a.s. In the Markovian case these are the usual definitions. If
a state x ∈ S is recurrent, then indeed for every t ∈ Z, F (t,x) visits x infinitely often.

For each fixed x ∈ S, consider the subgraph B(x) of G of all paths starting from state
x at any time. That is, B(x) is the subgraph of G with

V (B(x)) :=
⋃
t∈Z

{
(s, F (t,x)

s ) : s > t
}

=
⋃
t∈Z

{
fn+(t, x) : n > 0

}
. (2.7)

Call B(x) the bridge graph for state x and refer to it as either a bridge EFF or bridge
EFT depending on whether it is a forest or a tree. Note that one of these possibilities
happens with probability 1 because the number of components in B(x) is shift-invariant.

Assumption 2.10. For the remainder of the document, assume there exists a positive
recurrent state x∗ ∈ S, which is fixed, and the notation B := B(x∗) refers to the bridge
graph for state x∗.

An example bridge graph appears in Figure 2. Equivalently, B can be described in
terms of descendants of vertices, viewing directed edges in G as pointing from a vertex
to its parent. For each (t, y) ∈ Z× S, define the descendants of (t, y) in G to be

D(t,y) :=
{

(s, x) ∈ Z× S : F
(s,x)
t = y

}
. (2.8)
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Figure 2: An example bridge graph, in this case for state x∗ = 0, sitting inside the
Doeblin graph.

Then B is also the subgraph of G with

V (B) =
{

(t, y) ∈ Z× S : ∃s, (s, x∗) ∈ D(t,y)
}
.

That is, B is the subgraph of G generated by vertices that have some descendant in
state x∗. In particular, recalling (2.3),

y ∈ Bt ⇐⇒ ∃s, x∗ ∈ D(t,y)
s , (t, y) ∈ Z× S. (2.9)

Lemma 2.11 shows that if G is a.s. connected, then B is too.

Lemma 2.11. If u, v ∈ V (B) are in the same component of G, then they are in the same
component of B. In particular, if G is an EFT, then B is an EFT.

Proof. Consider times s, t ∈ Z. Suppose (s, x∗) and (t, x∗) are in the same component of
G. Then F (s,x∗) and F (t,x∗) meet at some point. But, by definition, the paths of F (s,x∗)

and F (t,x∗) are included in B. Hence (s, x∗) and (t, x∗) are in the same component of
B. Now if u, v ∈ V (B) are in the same component of G, u is in the same component in
G as some (s, x∗) and v is in the same component of G as some (t, x∗), and (s, x∗) and
(t, x∗) are in the same component of B by the previous part. Hence u, v are in the same
component of B.

The condition that B is an EFT is equivalent to strong coupling convergence (defined
and studied in [6, 4, 9]) of F (0,x∗) to a stationary version of the SRS. However, simple
conditions for B to be an EFT are not known outside of the Markovian case, where
Proposition 2.3 showed that if P is irreducible, aperiodic, and positive recurrent, then G

is an EFT. Another (not neccessarily easy to check) condition for B to be an EFT will be
given in Corollary 4.8.
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The main tool used in this paper is unimodularity of random networks. The first form
of unimodularity used is stationarity, i.e., unimodularity of the deterministic network
Z rooted at 0 with neighboring integers connected. Unimodularity of Z gives a way to
reorganize proofs based on stationarity in terms of transporting mass between times.
Recall that a (measurable) group action θ : Z× Ω→ Ω of Z on Ω is called P-invariant if
P(θt ∈ ·) = P for all t ∈ Z. The shift operator on ΞZ is an example of such an action.

Lemma 2.12 (Mass Transport Principle for Z). Suppose w : Z × Z → R>0 is a random
map. Also suppose θ : Z× Ω → Ω is a P-invariant Z-action on Ω, and that the two are
compatible in the sense that w(s, t) ◦ θr = w(s+ r, t+ r) almost surely for each s, t, r ∈ Z.
Then with w+ :=

∑
t∈Z w(0, t) and w− :=

∑
s∈Z w(s, 0), one has

E[w+] = E[w−]. (2.10)

Proof. One calculates

E[w+] =
∑
t∈Z

E[w(0, t)] =
∑
t∈Z

E[w(0, t) ◦ θ−t] =
∑
t∈Z

E[w(−t, 0)] = E[w−]

as desired.

The mass transport principle for Z immediately gives the following. Note that, in the
following and throughout the rest of the document, # denotes the size of a set.

Proposition 2.13. For all t ∈ Z, E[#Bt] 6 E[σ(0,x∗)(x∗)]. In particular, B is a.s. locally
finite, even if G itself is not.

Proof. Without loss of generality, Ω is the canonical space ΞZ, with the driving se-
quence (ξt)t∈Z being coordinate maps. Then θ : Z × Ω → Ω defined by θs((ξt)t∈Z) :=

(ξs+t)t∈Z is a P-invariant measurable Z-action on Ω. Choose the mass transport
w(s, t) := 1{σ(s,x∗)(x∗)>t−s>0}. The fact that one has σ(s,x∗)(x∗) ◦ θr = σ(s+r,x∗)(x∗)

for all s, t, r ∈ Z implies w is compatible with θ. Then w+ = σ(0,x∗)(x∗) − 1, and
w− = #

{
s < 0 : σ(s,x∗)(x∗) > |s|

}
> #B0 − 1, where this inequality follows from the fact

that for every y ∈ B0 \ {x∗}, there is s < 0 such that σ(s,x∗)(x∗) > |s| and F
(s,x∗)
0 = y.

Thus the mass transport principle for Z gives E[σ(0,x∗)(x∗)−1] > E[#B0−1], from which
the result follows.

The proof style of Proposition 2.13 may be repeated in many different ways and the
boilerplate setup of the proof can be mostly omitted once one understands the flow of
the proof. The shortened version of the proof of Proposition 2.13 is given to exemplify
how much can be omitted without losing the main idea.

Proof (shortened). Let the mass transport w(s, t) send mass 1 from s to all times t

strictly after s and strictly before F (s,x∗) returns to x∗. Then w+ = σ(0,x∗)(x∗) − 1 and
w− = #

{
s < 0 : σ(s,x∗)(x∗) > |s|

}
> #B0 − 1, where this inequality follows from the fact

that for every y ∈ B0 \ {x∗}, there is s < 0 such that σ(s,x∗)(x∗) > |s| and F (s,x∗)
0 = y. The

mass transport principle finishes the claim.

One now sees the versatility of using even the simplest form of unimodularity. A list of
mass transports and the results they give, all by following the same proof style, appears
in Appendix A.2 in the appendix. Some of the mass transports give new results, and
others recover well-known results, such as fact that π(y)/π(x∗) is the expected number
of visits of a Markov chain started at x∗ to y before returning to x∗, and 1/π(x∗) is the
expected return time of a Markov chain started at x∗ to return to x∗, where π is the
invariant distribution for the Markov chain. The next section reviews the more general
theory of random networks and unimodularity, then shows how to embed subgraphs of
G as random networks, so that eventually one may find a unimodular structure inside G.
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3. Random networks

3.1. Definition and basic properties

See [1, 16] for a more thorough review of random networks than what is pro-
vided here. A network is a graph Γ = (V (Γ), E(Γ)) equipped with a complete sep-
arable metric space (ΞΓ, dΞΓ

) called the mark space and two maps from V (Γ) and
{(v, e) : v ∈ V (Γ), e ∈ E(Γ), v ∼ e} to ΞΓ, where ∼ is used for adjacency of vertices or
edges. The image of v (resp. (v, e)) in ΞΓ is called its mark, which is extra information
associated to the vertex (resp. edge). The mark of (v, e) may also be thought of as the
mark of e considering it to be a directed edge with initial vertex v. The graph distance
between v and w is denoted dΓ(v, w). Unless explicitly mentioned otherwise, networks
are assumed to be nonempty, locally finite, and connected.

An isomorphism between two networks with the same mark space is a graph
isomorphism that also preserves the marks. A rooted network is a pair (Γ, o) in which
Γ is a network and o is a distinguished vertex of Γ called the root. An isomorphism
of rooted networks is a network isomorphism that takes the root of one network to
the root of the other. Similar definitions apply to doubly rooted networks (Γ, o, v). For
convenience, from now on consider only networks with mark space (Ξuniv, dΞuniv), where
Ξuniv is some fixed uncountable complete separable metric space, such as NN or the
Hilbert cube, since all possible mark spaces are homeomorphic to a subset of such a
Ξuniv. Let G denote the set of isomorphism classes of nonempty, locally finite, connected
networks, and let G∗ (resp. G∗∗) be the set of isomorphism classes of singly (resp. doubly)
rooted networks of the same kind. The isomorphism class of a network Γ (resp. (Γ, o), or
(Γ, o, v)) is denoted by [Γ] (resp. [Γ, o] or [Γ, o, v]).

The sets G∗ and G∗∗ are equipped with natural metrics making them complete separa-
ble metric spaces (cf. [1]). The distance dG∗([Γ1, o1], [Γ2, o2]) between the isomorphism
classes of (Γ1, o1) and (Γ2, o2) is 1/(1 + α), where α is the supremum of those r > 0 such
that there is a rooted isomorphism of the balls of graph-distance brc around the roots of
Γ1,Γ2 such that each pair of corresponding marks has distance less than 1/r. The dis-
tance on G∗∗ is defined similarly and the projections [Γ, o, v] 7→ [Γ, o] and [Γ, o, v] 7→ [Γ, v]

are continuous.
A random (rooted) network is a random element in G∗ equipped with its Borel

σ-algebra B(G∗). A random network [Γ,o] is called unimodular if for all measurable
g : G∗∗ → R>0, the following mass transport principle is satisfied:

E
∑

v∈V (Γ)

g[Γ,o, v] = E
∑

v∈V (Γ)

g[Γ, v,o]. (3.1)

Heuristically, the root of a unimodular network is picked uniformly at random from its
vertices. However, since there is no uniform distribution on an infinite set of vertices, the
mass transport principle (3.1) is used in lieu of requiring the root to be picked uniformly
at random. One should take care to note that the sums in the previous equation depend
only on the isomorphism class [Γ,o] and not which representative is used.

Next, the notions of covariant vertex-shifts, foils, connected components, and the
cardinality classification of components of a unimodular network are reviewed. See [2]
for a reference on these concepts. A (covariant) vertex-shift is a map Φ which as-
sociates to each network Γ a function ΦΓ : V (Γ) → V (Γ) such that Φ commutes with
network isomorphisms and the function [Γ, o, v]→ 1{ΦΓ(o)=v} is measurable on G∗∗. For a
vertex-shift Φ, define two equivalence relations on each network Γ by saying u, v ∈ V (Γ)

are in the same Φ-foil if ΦnΓ(u) = ΦnΓ(v) for some n ∈ N, or in the same Φ-component if
ΦnΓ(u) = ΦmΓ (v) for some n,m ∈ N. Two vertices are in the same Φ-component if their
forward orbits under Φ intersect, whereas they are in the same Φ-foil if, after some finite
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number of applications of Φ, the vertices meet. The Φ-graph of Γ is the graph drawn on
Γ with vertices V (Γ) and edges from each v ∈ V (Γ) to ΦΓ(v). The following is a special
case of the classification theorem appearing in [2].

Theorem 3.1 (Foil Classification in Unimodular Networks [2]). Let [Γ,o] be a unimodular
network and Φ a vertex-shift. Almost surely, every vertex has finite degree in the Φ-graph
of Γ. In addition, each component C of the Φ-graph of Γ falls in one of the following
three classes:

(i) Class F/F: C and all its foils are finite, and there is a unique cycle in C.

(ii) Class I/F: C is infinite but all its foils are finite, there are no cycles in C, and there
is a unique bi-infinite path in C.

(iii) Class I/I: C is infinite and all its foils are infinite, and there are no cycles or
bi-infinite paths in C.

The last tool needed from [2] is the so-called no infinite/finite inclusion lemma, which
is used heavily in the proof of Theorem 3.1. To state it, the following definitions are
needed. A covariant subset (of the set of vertices) is a map C which associates to
each network Γ a set CΓ ⊆ V (Γ) such that C commutes with network isomorphisms, and
such that [Γ, o] 7→ 1{o∈CΓ} is measurable. A covariant (vertex) partition is a map Π

which associates to all networks Γ a partition ΠΓ of V (Γ) such that Π commutes with
network isomorphisms, and such that the (well-defined) subset {[G, o, v] : v ∈ ΠG(o)} ⊆
G∗∗ is measurable, where ΠΓ(o) denotes the partition element in ΠΓ containing o. Then
one has the following.

Lemma 3.2 (No Infinite/Finite Inclusion [2]). Let [Γ,o] be a unimodular network, Π a
covariant partition, and C a covariant subset. Almost surely, there is no infinite element
E of ΠΓ such that E ∩ CG is finite and nonempty.

3.2. Embedding subgraphs of the Doeblin graph as random networks

In order to view a subgraph of G as a random network, one must ensure the subgraph
is nonempty, locally finite, connected, and a root o has been suitably chosen. Since the
vertices of G come from the fixed countable space Z× S, the following setup will help to
verify all the technicalities.

Let V := Z× S. Suppose that

Γ : Ω→ {0, 1}V × ΞV × {0, 1}V×V × ΞV×V =: (fV , ξV , fE , ξE) (3.2)

is measurable (where the codomain is given its product topology and corresponding
Borel σ-algebra). Then Γ(ω) can be considered for each ω ∈ Ω as a (possibly empty,
possibly not locally finite, possibly disconnected) network in the following way. For each
u, v ∈ V , interpret

(i) fV (v) as the indicator that v ∈ V (Γ),

(ii) fE(u, v) as the indicator that the edge {u, v} ∈ E(Γ),

(iii) ξV (u) as the mark of u, and

(iv) ξE(u, v) as the mark of the vertex-edge pair (u, {u, v}).
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That is, use items (i) to (iv) to define V (Γ), E(Γ), and the marks of vertices and edges in
Γ. Note that fE must be symmetric because edges are not directed, but ξE may not be,
since each edge is associated with two marks, one per vertex. If one wants to consider
directed edges, one instead uses undirected edges and uses the marks on edges to
specify which direction the edge should point. The definition of ξV (u) when u /∈ V (Γ)

is irrelevant, and similarly for the definition of fE(u, v) and ξE(u, v) if either of u or v
is not in V (Γ). All statements about the network defined by Γ are then translated into
statements about the maps (fV , ξV , fE , ξE). For instance,

{Γ is not empty} =

{∑
v∈V

fV (v) > 0

}
.

This is exactly the kind of construction used to define the Doeblin graph G. In the case
of G,

(i) fV = 1 on Z× S,

(ii) fE ((t, x), (t+ 1, h(x, ξt))) = fE ((t+ 1, h(x, ξt)), (t, x)) = 1 for all (t, x) ∈ Z × S and
fE = 0 otherwise,

(iii) ξV (t, x) = ξt for all (t, x) ∈ Z× S, and

(iv) ξE ((t, x), (t+ 1, h(x, ξt,x))) = 1 for all t ∈ Z, x ∈ S to indicate the edge is directed
forwards in time.

This construction also works for the bridge graph B as well. When a Γ has been
constructed as in this section, one can see Γ as a random network after any measurable
choice of root, given that it is nonempty and locally finite.

Lemma 3.3. Suppose Γ = (fV , ξV , fE , ξE) is as above and a.s. Γ is nonempty, locally
finite, and connected. Then for any measurable choice of root o ∈ V (Γ), [Γ,o] is a
random network.

Proof (sketch). Write the event that [Γ,o] is within ε > 0 of some fixed network [Γ, o] as a
countable union over rooted isomorphic copies (Γ′, o′) of (Γ, o) with vertices in V of the
event that o = o′, the neighborhood of radius d 1

ε e around o is exactly Γ′, and the marks
ξV (u) for u ∈ V (Γ′) and ξE(v, w) for {v, w} ∈ E(Γ′) are within ε of the corresponding
vertex and edge marks of (Γ′, o′). Each of these conditions individually are written in
terms of events using the maps fV , ξV , fE , ξE , showing the desired measurability of
ω 7→ [Γ(ω),o(ω)]. The full proof of Lemma 3.3 given in the appendix.

Thus indeed G may be seen as a random network when rooted and marked, assuming
it is locally finite and connected. But the question remains whether this may be done in
such a way as to make G unimodular. The first approach one might take is to investigate
whether G, rooted at (0, X0) for some (random) choice of X0 ∈ S, is unimodular. Two
natural choices, at least in the standard CFTP setup, are to take X0 to be the output of
the CFTP algorithm, or to take X0 to be independent of G. For simplicity, the standard
CFTP setup refers to the case where G has fully independent transitions, S is finite, and
the CFTP algorithm succeeds a.s. The following proposition determines when G can be
unimodular under the previous choices of X0.

Proposition 3.4. Suppose G is an EFT, that G has each (t, x) ∈ V (G) marked by (x, ξt),
and that X0 is a random choice in S. Then

• if [G, (0, X0)] is unimodular, then S is finite and X0 is uniformly distributed on S,
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• if X0 is independent of G and uniformly distributed on a finite S, then [G, (0, X0)]

is unimodular, and

• if X0 is the output of the CFTP algorithm in the standard CFTP setup, then
[G, (0, X0)] is unimodular if and only if S has a single element.

Proof (sketch). The first point follows by constructing for each x, y ∈ S a mass transport
that, when applied to G, sends mass 1 within vertical slices of G from the vertex in state
x to the vertex in state y. Unimodularity then gives P(X0 = x) = P(X0 = y). The second
point follows from the definition of unimodularity. The third point follows by noting that
the output of the CFTP algorithm has at least one child, but unimodularity implies that it
must have one on average, so a.s. it has one child. A nonempty tree where every vertex
has one incoming and one outgoing edge is isomorphic to Z, so S can only have one
state. The full proof of Proposition 3.4 is given in the appendix.

While choosing X0 uniformly distributed on S and independent of G works when S
is finite, unimodularity of the whole G is doomed in the general case, as there is no
uniform distribution on an infinite S. This is the reason for introducing the bridge graph
B, which is locally finite. However, the bridge graph may still not be connected, so a
spine is added to it to make it connected.

Corollary 3.5. Let B be B with spine added, i.e. with edges from each (t, x∗) to
(t+ 1, x∗) for all t ∈ Z added. Then for any measurable marks and any measurable choice
of root o ∈ V (B), [B,o] is a random network.

Proof. One has that (0, x∗) ∈ V (B), so B is nonempty. Also B is locally finite by Proposi-
tion 2.13 and the fact that adding the spine has increased the degree of each vertex by
at most two. Finally, since each v ∈ V (B) is connected to some (t, x∗), and the spine in
B connects all such vertices, B is connected. Lemma 3.3 finishes the claim.

Everything is in place to see the unimodular structure hidden in G, which is handled
in the next section.

4. Unimodularizability and its consequences

4.1. Unimodularizability of the bridge graph

The following result identifies the unimodular structure inside G. For the rest of the
document, each (t, y) ∈ V (B) is marked by (y, ξt) whenever considered as a vertex in a
rooted network.

Theorem 4.1. Any random network with distribution

P�(A) :=
1

E[#B0]
E

 ∑
w∈V0(B)

1{[B,w]∈A}

 , A ∈ B(G∗), (4.1)

is unimodular. The spine need not be added and B may also be used instead of B if B is
already connected.

One may interpret the distribution P� as a size-biased version of the network obtained
by starting with B and selecting the root uniformly from B0.

Proof. By Corollary 3.5, B with marks as specified and any choice of root is a random
network. Therefore, all the quantities in the following calculation are measurable. Let
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g : G∗∗ → R>0 be given. One has∫
G∗

∑
v∈V (Γ)

g[Γ, o, v] P�(d[Γ, o])

=
1

E[#B0]
E
∑
y∈B0

∑
v∈V (B)

g[B, (0, y), v]

=
1

E[#B0]

∑
y,y′∈S,t∈Z

E
[
1{(0,y),(t,y′)∈V (B)}g[B, (0, y), (t, y′)]

]
.

Stationarity on Z implies the right hand side is equal to

1

E[#B0]

∑
y,y′∈S,t∈Z

E
[
1{(−t,y),(0,y′)∈V (B)}g[B, (−t, y), (0, y′)]

]
=

1

E[#B0]

∑
y,y′∈S,t∈Z

E
[
1{(t,y),(0,y′)∈V (B)}g[B, (t, y), (0, y′)]

]
=

1

E[#B0]
E
∑
y′∈B0

∑
v∈V (B)

g[B, v, (0, y′)]

=

∫
G∗

∑
v∈V (Γ)

g[Γ, v, o] P�(d[Γ, o]).

Thus P� is the distribution of a unimodular network.

The view of P� as a size-biased version of a network is formalized in the following.

Proposition 4.2. Let o be, conditionally on V0(B), uniformly distributed on V0(B) and
independent of B. Then under the size-biased measure P̂(E) := 1

E[#B0]E[#B01E ] for

each E ∈ F , the random network [B,o] has the distribution P�.

Proof. In what follows, V ranges over the sets for which P(V0(B) = V ) > 0, of which
there are at most countably many because B0 is a.s. a finite subset of the countable S.
For any A ∈ B(G∗) and with C := E[#B0],

P̂([B,o] ∈ A)

=
1

C
E[#B01{[B,o]∈A}]

=
1

C

∑
V

|V |P(V0(B) = V )P([B,o] ∈ A | V0(B) = V )

=
1

C

∑
V

∑
v∈V
|V |P(V0(B) = V )P(o = v, [B, v] ∈ A | V0(B) = V )

which, by the conditional independence of o and B, is

=
1

C

∑
V

∑
v∈V
|V |P(V0(B) = V )

1

|V |
P([B, v] ∈ A | V0(B) = V )

=
1

C
E

[∑
V

∑
v∈V

1{[B,v]∈A,V0(B)=V }

]
= P�(A)

as claimed.
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4.2. I/F component properties

For any measurable event A ⊆ G∗ in the σ-algebra of root-invariant events, i.e.,
such that if [Γ, o] ∈ A then [Γ, v] ∈ A for all v ∈ V (Γ), one has

P�(A) =
1

E[#B0]
E

 ∑
w∈V0(B)

1{[B,w]∈A}

 =
1

E[#B0]
E
[
#B01{[B,(0,x∗)]∈A}

]
.

This immediately gives the following.

Lemma 4.3. One has that P� and P([B, (0, x∗)] ∈ ·) have the same root-invariant sets of
measure 0 or 1.

Next, a vertex-shift that is designed to follow the arrows in B is defined. It plays the
same role as f+ but is defined for all networks. From now on, let Φ denote the follow
vertex-shift defined on any network Γ for each u ∈ V (Γ) by ΦΓ(u) := v if either:

(i) there is a unique outgoing edge from u and this edge terminates at v, or

(ii) u is in state x∗ and there is a unique outgoing edge from u that does not terminate
at a vertex in state x∗, and this edge terminates at v.

If neither of the two conditions above is met for any v ∈ V (Γ), define ΦΓ(u) := u for
concreteness. Here a vertex is considered to be in a state y ∈ S when the first component
of its mark is y (recall that a vertex (t, y) ∈ V (B) is marked by (y, ξt)). The second clause
in the definition of Φ is there because of the presence of the spine in B, so that if the root
is in state x∗ the vertex-shift will choose to follow the arrow in B instead of following
the arrow to the next element of the spine, unless the two coincide. By construction,
ΦB(t, x) = f+(t, x) for all (t, x) ∈ V (B).

The event that all Φ-components of a network are of class I/F is root-invariant, and
moreover it has P([B, (0, x∗)] ∈ ·)-probability one because the Φ-graph of B is B itself,
the Φ-components of B are the components of B, and the Φ-foils of B are subsets of
the sets (Vt(B))t∈Z, which are finite. Hence P� is concentrated on the set of networks
having only Φ-components of I/F class. It follows that any a.s. root-invariant properties
that follow from P� being unimodular and having I/F components automatically apply
to P([B, (0, x∗)] ∈ ·) as well. Such properties will be referred to as I/F component
properties and are explored in Sections 4.2.1 and 4.2.2.

4.2.1. Bi-recurrent paths

This section studies bi-infinite paths in G and identifies special bi-infinite paths that have
a certain recurrence property backwards in time. Firstly, it is possible to have multiple
bi-infinite paths in G because G is disconnected.

Example 4.4. Consider the case where S := {1, 2} and hgen and (ξt)t∈Z are chosen so
that the transition (t, 1)→ (t+ 1, 2) occurs if and only if (t, 2)→ (t+ 1, 1) occurs. In this
case G has two components a.s. Each component is itself a bi-infinite path.

Moreover, even when G is connected, it it still possible to have multiple bi-infinite
paths in G.

Example 4.5. Consider the case of S := N with fully independent transitions. Let the
transition matrix P be determined as follows. In state 0, transition to a Geom(1/2)

random variable, and from any other n 6= 0, deterministically transition from n to n− 1.
In this case, from every vertex (s, x) ∈ Z×S, there is a bi-infinite path (t,Xt)t∈Z in G for
which Xs−k = k + x for all k > 0. Thus there are infinitely many bi-infinite paths, despite
the fact that in this case G is an EFT, which follows from Proposition 2.3.
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In Example 4.5, even though G is connected, G has infinitely many bi-infinite paths.
However, amongst the bi-infinite paths, there is one special bi-infinite path. The special
path is the unique bi-infinite path that visits every state infinitely often in the past. It
turns out that this is the correct kind of path to look for in general. A bi-infinite sequence
(xt)t∈Z in S is called bi-recurrent for state x if {t ∈ Z : xt = x} is unbounded above
and below. If (xt)t∈Z is bi-recurrent for every x ∈ S, it is simply called bi-recurrent.
A state path (Xt)t∈I in G is called bi-reccurent (for state x) if a.s. its trajectory is
bi-recurrent (for state x). Recall that Φ denotes the follow vertex-shift. The existence of
bi-infinite paths in Φ-components of a network is an I/F property, and hence one has the
following.

Proposition 4.6. It holds that B has a unique bi-infinite path in each component a.s.
The corresponding state paths are bi-recurrent for x∗ and these are the only state paths
in all of G that are bi-recurrent for x∗. Moreover, for each y ∈ S, these state paths either
a.s. never visit y, or are bi-recurrent for y.

Proof. By Theorem 3.1, P�-a.e. network has a unique bi-infinite path in each Φ-
component, where Φ is the follow vertex-shift. But having a unique bi-infinite path
in each Φ-component is a root-invariant event, and hence P-a.s. B has a unique bi-
infinite path in each Φ-component. Since the Φ-components of B are the components of
B, P-a.s. every component of B contains a unique bi-infinite path.

Let Π be the covariant partition of Φ-components. Define the covariant subset C on a
network Γ by letting CΓ be the subset of vertices of Γ that are either the first or last visit
to a given state y ∈ S, if they exist, on the unique bi-infinite path in their Φ-component of
Γ, if such a path exists. The no infinite/finite inclusion lemma, Lemma 3.2, implies that
P� is concentrated on the set of networks Γ with no first or last visit to y on the unique
bi-infinite paths in each Φ-component of Γ. This property is root-invariant and hence
a.s. the state paths corresponding to the unique bi-infinite paths in each component of
B either do not visit state y or are bi-recurrent for y. Taking a countable union over
y ∈ S shows this property holds simultaneously for all y ∈ S. Since the unique bi-infinite
path in each component of B at least hits x∗, one may at least conclude the paths are
bi-recurrent for x∗. Finally, there cannot be any other bi-recurrent state paths for x∗ in
G because, by definition, a bi-recurrent state path in G will lie in B since it visits x∗ at
arbitrarily large negative times.

The next result applies Proposition 4.6 to the nicest case, where G is a tree.

Corollary 4.7. Suppose that G is an EFT. Then G contains a unique (up to measure
zero modifications) state path (βt)t∈Z that is bi-recurrent for x∗. Moreover, (βt)t∈Z is
shift-covariant, stationary, and for each t ∈ Z one has that βt is measurable with respect
to σ(ξs : s < t). Additionally, (βt)t∈Z is bi-recurrent for every x ∈ S that is positive
recurrent.

Proof. Proposition 4.6 shows that a.s. there is a unique bi-infinite path in each component
of B, and the corresponding state paths are bi-recurrent for x∗. Since G a.s. has only one
component, B does too. The second part of Proposition 4.6 then implies the bi-recurrent
state path for x∗ in B is the only bi-recurrent state path for x∗ in G. One would like to
define (βt)t∈Z to be the unique bi-recurrent state path for x∗ in G. However, in that case,
(βt)t∈Z would only be defined a.s. For concreteness, define βt for each t ∈ Z by letting

βt := lims→−∞ F
(s,x∗)
t on the event that the limit exists, and βt := x∗ otherwise. On the

a.s. event E that B is connected, #Bt <∞ for all t ∈ Z, and there is a unique bi-infinite
path in B, one has that (t, βt)t∈Z coincides with the unique bi-infinite path in B. This is

because if, for some t ∈ Z, lims→−∞ F
(s,x∗)
t does not exist, then either #Bt =∞, or there
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exist two states x, y ∈ S such that (t, x) and (t, y) have (necessarily disjoint) locally finite
infinite trees of descendants in B. The former case is forbidden on E, and, in the latter
case, König’s infinity lemma [17] would imply the existence of two distinct bi-infinite
paths in B, which is also forbidden on E. Thus lims→−∞ F

(s,x∗)
t exists for all t ∈ Z on the

event E, and, on this event, the unique bi-infinite path in B must therefore be (t, βt)t∈Z.
The shift-covariance and hence stationarity of (βt)t∈Z follows from its definition in terms
of F (s,x∗) for each s ∈ Z. For each t ∈ Z, measurability of βt with respect to σ(ξs : s < t)

also follows from its definition, since each F (r,x∗)
t with r 6 t is σ(ξs : s < t)-measurable.

Now let (Yt)t∈Z be the unique bi-recurrent state path for some other y ∈ S that is
positive recurrent. Since G is a.s. connected, (βt)t∈Z and (Yt)t∈Z eventually merge, a.s.
However, stationarity forbids that there is a first time such that βt = Yt, so it must be
that βt = Yt for all t ∈ Z. Thus (βt)t∈Z is bi-recurrent for every y ∈ S that is positive
recurrent.

Corollary 4.7 shows that, like in the standard CFTP setup, there is a β0 living at time
0 in G that is a perfect sample from the stationary distribution of the Markov chain or
SRS. However, unlike in the standard CFTP setup, it is not known whether there is an
algorithm that can find β0 in finite time.

Another consequence of the existence of bi-recurrent paths in B is that one can
bound the number of components of B.

Corollary 4.8. The a.s. constant number n of components of B is no larger than
min {k : P(#B0 = k) > 0} < ∞. In particular, B has finitely many connected compo-
nents, even if G has infinitely many components, and if P(#B0 = 1) > 0, then B is an
EFT.

Proof. The number of components of B is shift-invariant and hence a.s. constant. Each
component of B contains a bi-recurrent path by Proposition 4.6. Each bi-recurrent path
intersects V0(B) in a different element since they are in different components of B. It
follows that n 6 #B0 a.s. If P(#B0 = k) > 0 for some k, then it follows that n 6 k.

The deterministic cycle on n states shows that the bound in Corollary 4.8 can be
achieved for each n. In general, any bi-infinite stationary process on S (or any countable
set) must be bi-recurrent.

Proposition 4.9. Suppose that (Xt)t∈Z is a stationary process taking values in S. Then
a.s. (Xt)t∈Z is bi-recurrent for every x ∈ {Xt}t∈Z.

Proof. For each x ∈ S, stationarity forbids that there is a first or last visit of (Xt)t∈Z to x
since such an occurrence would have to be equally likely to happen at all times t ∈ Z.
Thus, a.s. either x /∈ {Xt}t∈Z or {t ∈ Z : Xt = x} must be unbounded both above and
below. The countability of S finishes the claim.

The remainder of the section specializes to the Markovian setting again. In the
Markovian setting, bi-recurrence is actually equivalent to stationarity in the irreducible,
aperiodic, positive recurrent case.

Theorem 4.10. Suppose that P is irreducible, aperiodic, and positive recurrent, and
that (Xt)t∈Z is a Markov chain with transition matrix P . Then (Xt)t∈Z is stationary if
and only if it is bi-recurrent for any (and hence every) state.

Proof. By Theorem 2.2, it is possible to assume without loss of generality that (Xt)t∈Z is
a state path in the Doeblin graph G with fully independent transitions. By Proposition 2.3,
G is an EFT and therefore Corollary 4.7 implies that G contains a bi-recurrent state
path (βt)t∈Z that is, for all y ∈ S, the a.s. unique bi-recurrent state path for state y in G.
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Figure 3: The Doeblin graph from Example 4.5 with the bi-recurrent path and a spurious
path distinguished.

Moreover, βt ∼ π for all t ∈ Z, where π is the stationary distribution for P . If (Xt)t∈Z is
bi-recurrent for some y ∈ S, then, by uniqueness, Xt = βt for all t ∈ Z, a.s. In particular,
(Xt)t∈Z is stationary. The converse follows from Proposition 4.9 and irreducibility.

A bi-infinite path in G whose state path is not bi-recurrent for any state x ∈ S will
be called spurious. Observe the difference between spurious bi-infinite paths and the
unique bi-recurrent path in Figure 3. Viewed in reverse time, a spurious path must
run off to ∞ in the sense that for every finite set F ⊆ S, the reversed path eventually
leaves F forever. It is possible for G to contain spurious bi-infinite paths, as was seen
in Example 4.5.

Say that Pn converges uniformly (to π as n → ∞) if P is irreducible, aperiodic,
and positive recurrent with stationary distribution π, and supx∈S ‖Pn(x, ·)− π‖ → 0

as n → ∞. For example, this is automatic if P is irreducible, aperiodic, and S is
finite. Some authors call P uniformly ergodic, but the term ergodic is not used here
to avoid a terminology collision with ergodic theory. Uniform convergence to π is also
equivalent (cf. [20] Theorem 16.0.2 (v)) to the statement that there is m such that
Pm(x, ·) > ϕ(·) for all x ∈ S, for a measure ϕ which is not the zero measure. It is
also equivalent (cf. [10] Theorem 4.2) to the fact that the CFTP algorithm succeeds
in the case of fully independent transitions, i.e. the backwards vertical coupling time

inf
{
t > 0 : F

(−t,x)
0 = F

(−t,y)
0 ,∀x, y ∈ S

}
is a.s. finite.

Together, the following two results say that when a Markov chain that mixes uniformly
is started in the infinite past, it has converged to its stationary distribution by any finite
time.

Proposition 4.11. Suppose Pn converges uniformly to π as n → ∞ and G has fully
independent transitions. Then G contains no spurious bi-infinite paths.

Proof. For every s < t let Cs,t be the event that F (s,x)
t = F

(s,y)
t for all x, y ∈ S. That is,
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Cs,t is the event that starting at time s, all paths in G collapse to a single state by time
t. Note that P(Cs,t) depends only on t − s. Since G has fully independent transitions
and Pn converges to π uniformly as n → ∞, by e.g. Theorem 5.2 in [10], there exists
some k ∈ N such that P(Cs,t) > 0 when t− s > k. Consider En := C−k(n+1),−kn for each
n ∈ N. One has P(En) = P(E0) > 0 for all n and the En are independent. It follows that
a.s. infinitely many of them occur. On an ω for which infinitely many En occur, there is at
most one bi-infinite path in G, and thus any bi-infinite path in G must coincide with the
unique bi-recurrent path guaranteed to exist by Corollary 4.7.

It is a classical result that it is possible to find a bi-infinite stationary version (Xt)t∈Z
of a Markov chain that has a stationary distribution. The following shows that, in the
case of uniform convergence to π, this is the only way to extend a Markov chain to have
time index set all of Z. That is, if (Xt)t∈Z is a Markov chain that conveges uniformly to
its stationary distribution, then it must be that Xt ∼ π for all t ∈ Z.

Proposition 4.12. Suppose Pn converges uniformly to π as n→∞. Then every Markov
chain (Xt)t∈Z with transition matrix P is stationary and bi-recurrent. The subtle assump-
tion here is that the time index set is all of Z.

Proof. By Theorem 2.2, one may assume (Xt)t∈Z is a state path in G with fully inde-
pendent transitions, which is then an EFT by Proposition 2.3. Since Pn converges
uniformly to π as n→∞, G contains no spurious bi-infinite paths by Proposition 4.11,
and hence (Xt)t∈Z must be the bi-recurrent state path. Theorem 4.10 then implies
(Xt)t∈Z is stationary.

Proposition 4.12 may fail for an irreducible, aperiodic, and positive recurrent P if
P does not converge uniformly to its stationary distribution. Indeed, it was already
shown, e.g., in Example 4.5, that it is possible for G to admit spurious bi-infinite paths.
If (Xt)t∈Z is a proper state path in G that corresponds to a spurious bi-infinite path, then
(Xt)t∈Z is a Markov chain with transition matrix P , but it is not stationary since it is not
bi-recurrent. Recall that B(x) denotes the bridge graph in G using x as the base point
instead of x∗.

Proposition 4.13. Suppose P is irreducible, aperiodic, and positive recurrent, and that
G has fully independent transitions. If

(i) S is infinite,

(ii) G is locally finite, and

(iii) G contains no spurious bi-infinite paths,

then ⋂
x∈S

V (B(x)) = {(t, βt) : t ∈ Z} , (4.2)

where (βt)t∈Z is the unique bi-recurrent state path in G. That is, the bi-recurrent path
in G is the only thing common to all of the bridge EFTs. Alternatively, if S is finite and
has at least 2 states, then a.s.⋂

x∈S
V (B(x)) ) {(t, βt) : t ∈ Z} . (4.3)

Proof. For each x ∈ S, the bi-recurrent path is in B(x) because it is bi-recurrent for x.
Suppose S is infinite, G is locally finite, and that G contains no spurious bi-infinite paths.
Consider a vertex v ∈ V (G) not on the bi-recurrent path. The tree of all descendants

EJP 24 (2019), paper 120.
Page 20/36

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP375
http://www.imstat.org/ejp/


Doeblin trees

of v in G must be finite, else König’s infinity lemma [17] would give a bi-infinite path in
G that is distinct from the unique bi-recurrent path since v is not on the bi-recurrent
path. Since G contains no spurious bi-infinite paths, this is impossible. Since the tree
of descendants of v is finite but S is infinite, there is some state x ∈ S such that v
has no descendant in state x. In particular, v /∈ V (B(x)), showing that nothing off the
bi-recurrent path can be common to all the bridge EFTs.

Next suppose that 2 6 #S < ∞. It suffices to give a finite deterministic graph Γ

that is a subgraph of G with positive probability such that when some time-translate
of Γ is a subgraph of G,

⋂
x∈S V (B(x)) contains a vertex not on the unique bi-infinite

path in G. Firstly, since S is finite, choose a tree T on Z× S that occurs with positive
probability and is an example witnesses of the a.s. finiteness of the backwards vertical

coupling time inf
{
t > 0 : F

(−t,x)
0 = F

(−t,y)
0 ,∀x, y ∈ S

}
. Suppose T is rooted at (0, x0). In

particular, V (T ) ⊆ (−∞, 0]× S. By irreducibility of P and the fact that #S > 2, choose
L = (x0, x1, . . . , xn) a finite path in S using only positive probability transitions from x0

back to x0 = xn that passes through all states of S and has the property that xi 6= xi+1

for any i. Note that

L0 := {(t, xt) : t = 0, . . . , n} , L1 := {(t+ 1, xt) : t = 0, . . . , n} (4.4)

do not intersect. Moreover, L0 and T intersect only at the vertex (0, x0), and L1 and T
do not intersect. Let Γ be the union of T , L0, and L1. The edges of T , L0, and L1 all
occur with positive probability in G, and none of them have the same initial vertex, so
that in fact they are comprised of independent edges in G. Since Γ has only a finite
number of edges, it follows that Γ ⊆ G occurs with positive probability. Moreover, when
Γ ⊆ G occurs, the vertex (n, xn−1) ∈ V (B(x)) for all x ∈ S, but it is not on the bi-infinite
path. This is because, by construction, (0, x0) is on the bi-infinite path in G and therefore
L0 makes up a segment of the bi-infinite path in G. But, L1 includes a representative
for every state, so for every x ∈ S there is an s ∈ Z such that x ∈ D(n,xn−1)

s . Finally,
V (L0) ∩ V (L1) = ∅ so (n, xn−1) is not on the bi-infinite path in G.

4.2.2. Other I/F component properties

The existence and uniqueness of a bi-infinite path in each Φ-component of a network
is one I/F property that was studied at length in Section 4.2.1, which centered around
bi-recurrent paths in B. However, there are many other potential things to say about B

following from its I/F structure. A few of them are discussed in this brief section.
The first is the general structure of a network with only I/F components. Each

component of B contains a unique bi-infinite path. Points on a bi-infinite path are
sometimes referred to as immortals due to the fact that they do not disappear after an
infinite number of applications of the follow vertex-shift Φ. A component evaporates
if each point disappears after a finite number (depending on the point) of applications
of Φ. Thus, in the case of B, none of the components evaporate. Mortals are those
points in V (B) that do disappear after a finite number of applications of Φ, i.e. those that
have only finitely many descendants. Each component of B contains a bi-infinite path of
immortals, and each immortal has exactly one child who is immortal. Thus the immortals
within a component are ordered like Z in a shift-covariant way. Hanging off of each
immortal is then a (possibly empty) tree of mortals, the descendants of the immortal who
are not themselves immortal and whose closest immortal ancestor is the given immortal.
With this viewpoint, each component of B can be seen as a shift-covariant bi-infinite
sequence of finite rooted trees, where each immortal is the root of its tree. If there is
only one component of B, then it has already been noted that there is a unique bi-infinite
path in B whose state path (βt)t∈Z is stationary. However, more can be said in this case.
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If there is only one component of B, then in fact the whole sequence ([Qt, (t, βt)])t∈Z is
stationary, where Qt is the tree hanging from the immortal (t, βt). It is important here
that the isomorphism class of Qt is used and each vertex (t, y) ∈ V (B) is marked with
(y, ξt), otherwise the sequence would not be stationary due to the strictly increasing time
coordinate. This view of B as a joining of trees gives an alternative way of looking at
B compared to the view of B as a union of bridges between x∗ at different times. Yet
another viewpoint is that of B as a sequence of vertical slices. This idea has already been
explored slightly in that the way the root was chosen in the definition of the unimodular
measure P� is by choosing a root from one of these vertical slices. The view of B as
a sequence of vertical slices is explored more in Section 4.3.1 and is the main topic of
Section 4.3.2.

Additionally, the list of mass transports given in the appendix gives some integrability
results relating these three viewpoints. In particular, in each way of viewing B there is a
natural way to split B into pieces. In the view of B as a joining of a sequence of trees of
mortals hanging off an immortal, the vertices are partitioned by which tree they are in.
In the view of B as a sequence of vertical slices, the vertices are partitioned by which
slice they are in. In the view of B as paths started from state x∗, vertices are partitioned
by the time they first return to x∗. In fact, the mass transport arguments given in the
appendix show that the mean number of vertices in a partition element is the same for
all three viewpoints. See the list of mass transports in the appendix for a more detailed
description of these results and other finer-grained results.

4.3. Applications to simulating the bridge graph

4.3.1. Local weak convergence to the bridge graph

It was shown in Proposition 4.2 that the measure P� may be thought of as an appropri-
ately size-biased version of a network with the root picked uniformly at random from
individuals at time 0. A common reason for size-biasing to show up is when picking
uniformly at random across a population and asking the size of the group an individual is
in. Picking uniformly at random is what unimodularity models, so one might expect that
a unimodular network can be approximated by picking the root uniformly at random from
a very large but finite sub-network. At present, whether all unimodular networks can be
approximated in this way is an open problem [1]. In the case of the unimodular bridge
EFF, it will be shown directly that indeed it can be approximated by finite sub-networks
with a root picked uniformly at random.

In this section, different ways of approximating the unimodular version of B by
finite subgraphs are considered. Recall that B denotes B with spine added, i.e. B

with edges connecting each (t, x∗) to (t + 1, x∗). For a finite interval I ⊆ Z define
VI(B) := ∪t∈IVt(B) and let B∩I denote the subgraph of B induced by VI(B). Also define

V ′I (B) := ∪t∈I
{

(s, F
(t,x∗)
s ) : t 6 s 6 sup I

}
to be the vertices of B obtained by simulating

paths starting from x∗ within the time window I, and let BuI denote the graph it induces
in B. Two ways of approximating B are then as follows:

(i) Restrict to [−n, 0] and pick a uniform root in V[−n,0](B).

(ii) Simulate paths starting from x∗ in the window [−n, n], which gives the vertices of
B u [−n, n] ⊆ B, then pick a uniform root in V ′[0,n](B).

After choosing a large viewing window I, a vertex picked at random will not likely be
near the edge of this window, so the effects of throwing away all but this finite window
can be controlled. However, the first method involves perfect knowledge of some finite
window of B. Practically speaking, when S is infinite, one does not have a way to be
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sure that one has computed all of B in a finite window, as the only tool available is to
simulate sample paths starting from different locations. This is the motivation for the
second method of picking a root. For, even if the edge effects caused by only viewing
simulations of paths in B from −n to n cannot be controlled, the edge effects from 0

to n can be controlled using the information from simulating from −n to n. It will be
shown shortly that both of these methods enjoy convergence in the local weak sense to
the measure P�.

Lemma 4.14. For any strictly increasing sequence of finite intervals (In)n∈N in Z, and
any function g ∈ L1(P�), one has

1

#InE[#B0]

∑
v∈VIn (B)

g[B, v]→ E�[g] (4.5)

and

1

#VIn(B)

∑
v∈VIn (B)

g[B, v]→ E�[g], (4.6)

where both convergences happen P-a.s. as n→∞. In particular

#VIn(B)

E[#VIn(B)]
=

#VIn(B)

#InE[#B0]
→ 1. (4.7)

Proof. Assume without loss that Ω = ΞZ is the canonical space and (θt)t∈Z is the family of
shift operators defined by θt((ξs)s∈Z) = (ξt+s)s∈Z. Both statements follow from rewriting∑

v∈VIn (B)

g[B, v] =
∑
t∈In

(∑
x∈Bt

g[B, (t, x)]

)
=
∑
t∈In

g0 ◦ θt,

where g0 :=
∑
x∈B0

g[B, (0, x)]. The pointwise ergodic theorem for amenable groups
(cf. [18]) then proves the claim.

Proposition 4.15. Fix any strictly increasing sequence of finite intervals (In)n∈N in Z,
and for each n ∈ N, let on be, conditionally on VIn(B), uniformly distributed on VIn(B)

and independent of B ∩ In (including its marks). Then for all bounded measurable
g : G∗ → R>0 depending only on vertices at some bounded distance to the root, one has

1

#VIn(B)

∑
v∈VIn (B)

g[B ∩ In, v]→ E�[g], P-a.s. (4.8)

as n→∞. In particular,

P([B ∩ In,on] ∈ ·)→ P�, n→∞ (4.9)

in the sense of local weak convergence.

Proof. Fix N ∈ N and let g : G∗ → R>0 measurable, bounded, and such that g depends
only on vertices at graph distance at most N from the root. One has

E[g[B ∩ In,on]]

= E[E[g[B ∩ In,on] | VIn(B)]]

= E

 1

#VIn(B)

∑
v∈VIn (B)

g[B ∩ In, v]


= E

(E[#VIn(B)]

#VIn(B)

) 1

E[#VIn(B)]

∑
v∈VIn (B)

g[B ∩ In, v]

 .
EJP 24 (2019), paper 120.

Page 23/36
http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP375
http://www.imstat.org/ejp/


Doeblin trees

Call the two parenthesized expressions in the previous expectation an and bn respectively,
then it will be shown that anbn → E�[g] a.s., from which it also follows that E[anbn]→
E�[g] by dominated convergence. This will prove the claims. By stationarity and linearity
of expectation, for each n ∈ N,

E�[g] =
1

E[#B0]
E

[∑
v∈B0

g[B, v]

]
= E

 1

E[#VIn(B)]

∑
v∈VIn (B)

g[B, v]

 .
Call the inside of the last expectation cn. Letting [Γ, o]N denote the neighborhood of size
N around o in a network Γ, for all n > N

|bn − cn|

6
1

#InE[#B0]

∑
v∈VIn (B)

∣∣g[B ∩ In, v]− g[B, v]
∣∣

6
2‖g‖∞

#InE[#B0]
#
{
v ∈ VIn(B) : [B ∩ In, v]N 6= [B, v]N

}
6

2‖g‖∞
#InE[#B0]

(
min In+N∑
k=min In

#Bk +

max In∑
k=max In−N

#Bk

)

6
2‖g‖∞

#InE[#B0]

(∑
k∈In

#Bk −
max In−N∑
k=min In+N

#Bk

)
→ 2‖g‖∞ − 2‖g‖∞
= 0

as n → ∞, P-a.s., by Lemma 4.14. But also cn → E�[g] and an → 1, P-a.s., also by
Lemma 4.14. Hence anbn → E�[g], P-a.s., as claimed.

Proposition 4.16. Let (In)n∈N = ([−an, bn])n∈N be any increasing sequence of finite
intervals in Z containing 0 with an →∞ and bn strictly increasing. For each n ∈ N, let
o′n be, conditionally on V ′In(B), uniformly distributed on V ′[0,bn](B) and independent of

B u In (including its marks). Then for all bounded measurable g : G∗ → R>0 depending
only on vertices at some bounded distance to the root, one has

1

#(V ′In(B) ∩ [0, bn])

∑
v∈V ′In (B)∩[0,bn]

g[B u In, v]→ E�[g], P-a.s. (4.10)

In particular,

P([B u In,o′n] ∈ ·)→ P�, n→∞ (4.11)

in the sense of local weak convergence.

Proof. Fix N ∈ N and let g : G∗ → R>0 measurable, bounded, and such that g depends
only on vertices at graph distance at most N from the root. The finiteness of B0 implies
that one has that [B u In, v]N = [B ∩ In, v]N = [B, v]N eventually as n → ∞ for all
v ∈ V0(B), and hence for all v ∈ VIn(B) ∩ [0, bn −N ] eventually as n → ∞ as well. For
the same reason V ′In(B) ∩ [0, bn] = V[0,bn](B) eventually as n→∞ as well. It follows that
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eventually

1

#(V ′In(B) ∩ [0, bn])

∑
v∈V ′In (B)∩[0,bn]

g[B u In, v]

=
1

#V[0,bn](B)

∑
v∈V[0,bn](B)

g[B ∩ In, v]

+
1

#V[0,bn](B)

∑
v∈V[bn−N+1,bn](B)

(g[B u In, v]− g[B ∩ In, v]).

Of the last two terms, 1
#V[0,bn](B)

∑
v∈V[0,bn](B) g[B∩ In, v]→ E�[g] by Proposition 4.15, so

it suffices to show that the last term goes to 0. Indeed,∣∣∣∣∣∣ 1

#V[0,bn](B)

∑
v∈V[bn−N+1,bn](B)

(g[B u In, v]− g[B ∩ In, v])

∣∣∣∣∣∣
6

2‖g‖∞#V[bn−N+1,bn](B)

#V[0,bn](B)

=
2‖g‖∞(#V[0,bn](B)−#V[0,bn−N ](B))

#V[0,bn](B)

→ 2‖g‖∞(1− 1)

= 0

as desired.

4.3.2. Renewal structure of the bridge graph

In this section, the driving sequence ξ is assumed to be i.i.d., i.e. G is Markovian.
One may ask whether the bridge graph B admits any kind of renewal structure. Is it
possible that Bt contains only one state? This is not necessarily possible. Indeed, if
px,x = 0, then Bt contains at least two states for every t ∈ Z. It is true, though, that
Bt is infinitely often equal to any set that it has positive probability of being equal to.
Let SB denote the possible configurations of B0, i.e. SB := {E ⊆ S : P(B0 = E) > 0}.
By Proposition 2.13, SB consists only of finite subsets of S and is therefore countable.

Lemma 4.17. For any subset E ∈ SB, the set of t for which Bt = E forms a simple
stationary point process ΨE on Z with P(ΨE(Z) =∞) = 1 and intensity λE = P(B0 = E).
In particular, (Bt)t∈Z is bi-recurrent for each E ∈ SB.

Proof. For E ∈ SB, the event that there is a t such that Bt = E is shift-invariant and
has positive probability. Therefore it happens almost surely. The set of such t is shift-
covariant and therefore determines a simple stationary point process ΨE . The previous
line implies that ΨE contains at least one point, and therefore infinitely many a.s. One
calculates λE = E[ΨE({0})] = E[1{B0=E}], completing the proof.

Moreover, ruling out obvious hurdles to Bt being a singleton is sufficient.

Lemma 4.18. Suppose G is an EFT and has fully independent transitions. Assume that
px∗,x∗ > 0. Then {x∗} ∈ SB.

Proof. By Proposition 2.13, #Bt is a.s. finite for each t ∈ Z, and thus it is possible to
choose x1, . . . , xn ∈ S such that P(B0 = {x1, . . . , xn}) > 0. Since G is an EFT, choose a
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tree T ⊆ Z × S with leaves (0, x1), . . . , (0, xn) and root (t, x∗) for some t > 0 such that
P(T ⊆ G) > 0. With [t] := {0, . . . , t}, let I := {s ∈ [t] : x∗ /∈ Ts}. Then

P(Bt = {x∗}) > P(B0 = {x1, . . . , xn} , T ⊆ G, F
(s,x∗)
s+1 = x∗,∀s ∈ I)

> P(B0 = {x1, . . . , xn})P(T ⊆ G)P(F
(s,x∗)
s+1 = x∗,∀s ∈ I)

= P(B0 = {x1, . . . , xn})P(T ⊆ G)(px,x)
#I

> 0.

To justify the use of independence in the previous, note that B0 is (ξs)s<0-measurable,

whereas the events {T ⊆ G} and
{
F

(s,x∗)
s+1 = x∗,∀s ∈ I

}
are (ξs)s>0-measurable, so the

first is independent of the second two. Then the second is independent of the third
because, by construction, they involve disjoint sets of edges in G.

Now it is possible to see the renewal structure in B. Namely, (Bt)t∈Z is itself an
irreducible, aperiodic, and positive recurrent Markov chain under certain conditions.

Proposition 4.19. One has that (Bt)t∈Z is a Markov chain on SB. Additionally, (Bt)t∈Z
is stationary and bi-recurrent for every E ∈ SB. Its transition matrix PB is irreducible
and positive recurrent. If G is an EFT with fully independent transitions and px∗,x∗ > 0,
then {x∗} ∈ SB and PB({x∗} , {x∗}) > 0 so PB is aperiodic as well.

Proof. By Proposition 2.13, #Bt is a.s. finite for each t ∈ Z. Moreover, Bt+1 = {x∗} ∪{
F

(t,y)
t+1 : y ∈ Bt

}
, so indeed (Bt)t∈Z is a Markov chain on the finite subsets of S since,

for each t ∈ Z, Bt+1 is a function of Bt and ξt. Here the running assumption that ξ is
i.i.d. is used. By Lemma 4.17, (Bt)t∈Z is bi-recurrent for every state E ⊆ S such that
P(B0 = E) > 0. In particular, the chain must be irreducible on SB, else a return to
some state E1 could not occur after a return to another state E2 for some E1, E2 that
do not communicate. Since (Bt)t∈Z is shift-covariant it is stationary. The existence of
a positive stationary distribution (the law of B0) for the irreducible PB implies PB is
positive recurrent. If G is an EFT with fully independent transitions, then Lemma 4.18
shows that {x∗} ∈ SB. Then px∗,x∗ > 0 implies PB({x∗} , {x∗}) > 0 as well, so PB is also
aperiodic in that case.

It is possible that the SB is strictly smaller than the set of all finite subsets of S
containing x∗.

Example 4.20. Consider S := {0, 1, 2} and x∗ := 0 with p0,0 = p0,1 = p0,2 = 1
3 and

p1,0 = p2,0 = 1. That is, from 0 make a uniform choice of where to jump, and from 1

and 2 deterministically return to 0. Fix t ∈ Z. In this case, if 1 ∈ Bt, it must be that
F

(t−1,0)
t = 1. Similarly, if 2 ∈ Bt, it must be that F (t−1,0)

t = 2. Thus it cannot be that both
1, 2 ∈ Bt, and hence {0, 1, 2} /∈ SB.

However, if every state has a chance to be lazy, then SB does turn out to be the set of
all finite subsets of S containing x.

Proposition 4.21. Suppose G has fully independent transitions, P is irreducible, and
py,y > 0 for all y ∈ S. Then (Bt)t∈Z is an irreducible, aperiodic, positive recurrent, and
stationary Markov chain on the set of all finite subsets of S containing x∗.

Proof. The assumptions imply that, in fact, P is irreducible, aperiodic, and positive
recurrent (since x∗ is always assumed positive recurrent), so Proposition 4.19 implies
that the only item left to show is that SB contains all finite subsets of S containing x∗.
Let a finite set E containing x∗ be given. Call (y1, . . . , yn) with each yi ∈ S a possible
path if

∏n−1
i=1 pyi,yi+1

> 0. For the rest of the proof, all paths considered are possible
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Figure 4: The graph Γ from the proof of Proposition 4.21 when S = Z/15Z, x∗ = 0, and
E = {0, 2, 5, 8, 12}, where the Markov dynamics are the lazy version of the deterministic
cycle x 7→ x + 1 on S. The graph Γ is constructed so that, as shown in the figure, if
B0 = {0} and Γ ⊆ G, then B27 = {0, 2, 5, 8, 12}.

paths. One would like to simply draw a path from x∗ to each y ∈ S where after a path
reaches its destination it becomes constant while it waits for the other paths to finish.
This approach is slightly flawed because it may be that, for instance, every path from x∗

to z passes through y. In this case, one must draw the path from x∗ to y before the path
from x∗ to z, otherwise the resulting graph would have a vertex with multiple outgoing
edges, which is an impossibility in G. However, the approach will work as long as it is
possible to draw the paths in an order such that no interference occurs.

Define a partial order ≺0 on E by saying y ≺0 z if all paths from x∗ to z pass through
y with the convention that the trivial path (x∗) does not pass through x∗ (to prohibit
x∗ ≺0 x

∗). Since E is finite, there is a ≺0-maximal element x0 ∈ E. That is, for all y ∈ E
there is a path from x∗ to y that does not hit x0. Choose a path L0 from x∗ to x0. With
≺n, x0, . . . , xn, and L0, . . . , Ln defined, as long as E \ {x0, . . . , xn} 6= ∅, recursively define
≺n+1, xn+1, and Ln+1 as follows. By construction, for all y ∈ E \ {x0, . . . , xn}, there is a
path from x∗ to y that avoids x0, . . . , xn. Define ≺n+1 on E \ {x0, . . . , xn} by saying y ≺ z
if all paths from x∗ to z avoiding x0, . . . , xn pass through y. Then it is possible to choose
a ≺n+1-maximal element xn+1, i.e. for all y ∈ E \ {x0, . . . , xn+1}, there is a path from x∗

to y that does not pass through any of x0, . . . , xn+1. Also choose Ln+1 a path from x∗ to
xn+1 avoiding x0, . . . , xn. Necessarily the recursion terminates when n = #E − 1. It is
now possible to construct a graph Γ ⊆ Z× S with P(B0 = {x∗} ,Γ ⊆ G) > 0 and when
Γ ⊆ G and B0 = {x∗}, one has Bt = E for some t. Let ti be the sum of the lengths of the
paths L0, . . . , Li−1 for each 0 6 i 6 #E, with t0 := 0. Let Γ be the graph that for each i
has:

(i) a path from (ti, x) to (ti+1, xi) with state path Li from time ti to ti+1,

(ii) a path started at (ti+1, xi) that stays constant at xi until time t#E , and
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(iii) a (possibly trivial) path started at (ti + 1, x) that stays constant at x∗ until time ti+1.

Note that, by construction, Γ is a finite graph that is the union of edges that occur with
positive probability. Moreover, the connected components of Γ are formed from points
items (i) and (ii) for some i and item (iii) from i− 1. Whenever Γ ⊆ G and B0 = {x∗}, one
has Bt#E = E. This occurs with positive probability since py,y > 0 for all y ∈ S.

Proposition 4.22. Suppose G has fully independent transitions. Extend the definition
of PB to

PB(E,E′) := P
(
{x∗} ∪

{
F

(0,y)
1 : y ∈ E

}
= E′

)
, (4.12)

for all finite E,E′ ⊆ S containing x∗. Then PB satisfies the following recurrence: for
E = {x∗, x1, . . . , xn} and E′ = {x∗, y1, . . . , ym},

PB(E,E′) =

(
pxn,x∗ +

m∑
i=1

pxn,yi

)
PB(E \ {xn} , E′)

+

m∑
i=1

pxn,yiPB(E \ {xn} , E′ \ {yi}), (4.13)

with recursive depth at most n and base cases
PB(E,E′) = 0, #E′ > #E + 1

PB({x∗} , {x∗, y}) = px∗,y, y ∈ S
PB(E, {x∗}) =

∏
y∈E py,x∗ .

(4.14)

Proof. First one justifies the extension of the definition of PB by noting that for E,E′ ∈
SB one has

PB(E,E′) = P(B1 = E′ | B0 = E)

= P({x∗} ∪
{
F

(0,y)
1 : y ∈ B0

}
= E′ | B0 = E)

= P({x∗} ∪
{
F

(0,y)
1 : y ∈ E

}
= E′ | B0 = E)

= P({x∗} ∪
{
F

(0,y)
1 : y ∈ E

}
= E′),

where the last equality follows from the fact that B0 is measurable with respect to (ξt)t<0,

whereas F (0,y)
1 is ξ0-measurable for each y ∈ S. The base cases for PB are immediate

from the definition of PB and the independence structure. To see the recurrence, suppose
E = {x∗, x1, . . . , xn} and E′ = {x∗, y1, . . . , ym} as above. Split PB(E,E′) depending on the

value of F (0,xn)
1 = x∗ or F (0,xn)

1 = yi, and on whether {x∗} ∪
{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′

still or {x∗} ∪
{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′ \ {yi},

PB(E,E′) = P
(
F

(0,xn)
1 = x∗, {x∗} ∪

{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′

)
+

m∑
i=1

P
(
F

(0,xn)
1 = yi, {x∗} ∪

{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′

)
+

m∑
i=1

P
(
F

(0,xn)
1 = yi, {x∗} ∪

{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′ \ {yi}

)
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which, since G has fully independent transitions, equals

pxn,x∗P
(
{x∗} ∪

{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′

)
+

m∑
i=1

pxn,yiP
(
{x∗} ∪

{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′

)
+

m∑
i=1

pxn,yiP
(
{x∗} ∪

{
F

(0,y)
1 : y ∈ E \ {xn}

}
= E′ \ {yi}

)
which simplifies to(

pxn,x∗ +

m∑
i=1

pxn,yi

)
PB(E \ {xn} , E′) +

m∑
i=1

pxn,yiPB(E \ {xn} , E′ \ {yi}),

showing the recurrence holds.
Finally, the recursive depth needed to fully compute PB(E,E′) is at most n because

each application of the recurrence removes an element from E.

Example 4.23. By implementing the recurrence of Proposition 4.22 in, e.g. Python,
one may compute PB explicitly. Then, given values for the px,y, one may compute the
staitonary distribution πB of PB. For example, with S := {0, 1, 2} and x∗ := 0, and
px,y = 1

3 for all x, y ∈ S, one has

πB =
[
πB({0}) πB({0, 1}) πB({0, 2}) πB({0, 1, 2})

]
=
[

17
143

45
143

45
143

36
143

]
.

It is an open question whether, in the fully independent transitions case, there is a
general closed form expression for PB in terms of P or for the stationary distribution πB

of PB in terms of P and π.

5. Bibliographical comments

While this work may be the first time the Doeblin graph G has been explicitly defined
and studied in its own right, it is without doubt that most, if not all, who have worked on
CFTP-related research have had this picture in mind. Rather, the novelty here lies in the
consideration of the bridge graph B. While, to the best of the authors’ knowledge, the
bridge graph B has not previously been defined or studied, it is not without ties to other
objects that have been previously studied.

The first occurrence of some form of the bridge graph appears in [6], where Borovkov
and Foss consider a family of stochastically recursive sequences started at times
0,−1,−2, . . . , all with the same initial condition, and they proved the existence (un-
der suitable conditions) of a stationary version of the SRS. They defined three notions
of coupling convergence and studied when coupling convergence to the stationary SRS
occurs. Their notion of strong coupling convergence to the stationary SRS is akin to
the condition that B is an EFT. That is, it is the condition that all paths in B eventually
merge. It is conceivable that, in the EFT case, one could derive the existence of the
bi-infinite path in B from the work in [6], though it is not clear whether Borovkov and
Foss had this in mind, and they did not make any mention of the key bi-recurrence
property used in the current paper to distinguish this bi-infinite path from the potential
others in G.

Another occurrence of a similar object to the bridge graph may be found in [3] in the
very special case of integer-valued renewal processes. The dynamics there are slightly
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different, where instead of specifying a whole process started from each time, one marks
each time with the time of death of an individual who is born at that time. This is akin
to marking each t ∈ Z by the return time τ (t,x∗)(x∗) of F (t,x∗) to x∗, though in [3] these
times of death are assumed to be i.i.d., whereas in the present work they have intricate
dependence due to the Doeblin-type coupling. The population process defined in [3]
is then similar in nature to the sequence of cardinalities of (Bt)t∈Z as considered in
Section 4.3.2. It is proved in [3] that, under natural conditions, the population process
is a stationary regenerative process with independent cycles. In the present work, the
process (Bt)t∈Z was shown in Proposition 4.19 to be an irreducible, aperiodic, and
positive recurrent Markov chain under suitable conditions, which therefore also admits
an i.i.d. cycle decomposition. The analysis of this special case and, in particular, the
identification of the I/F structure of the components has been kept in mind throughout
the development of the theory of Doeblin EFFs.

A. Appendix

A.1. Postponed proofs

Proofs that were only sketched in the main text are collected in full detail here.

Proof of Theorem 2.2. For each t ∈ Z, let µt be the distribution of Xt. It is enough to
show the existence of (Ω′,F ′,P′) on which there is a process X ′ := (X ′t)t∈Z and some
i.i.d. ξ′ := (ξ′t)t∈Z such that

(i) X ′t ∼ µt for all t ∈ Z,

(ii) ξ′t ∼ ξt for all t ∈ Z,

(iii) X ′t is independent of (ξ′s)s>t for all t ∈ Z, and

(iv) X ′t+1 = hgen(Xt, ξ
′
t) for all t ∈ Z.

Items (i) to (iv) and Lemma 2.1 will imply the result. Note that items (i) to (iv) are
sufficient to characterize the joint finite dimensional distributions of (X ′t)t∈Z and (ξ′t)t∈Z.
To see this fix t0 6 t1. The joint distribution of (X ′t)t06t6t1 and (ξ′t)t06t6t1 is determined
because, conditional on (ξ′t)t06t6t1 , X ′t0 is still distributed as µt0 by items (i) and (iii),
and, conditional on both X ′t0 and (ξ′t)t06t6t1 , one has that (X ′t)t06t6t1 is deterministic by
item (iv). Thus it suffices to show that (X ′t)t∈Z and (ξ′t)t∈Z satisfying items (i) to (iv) exist.
Also note that items (i) to (iv) with t0 6 t 6 t1 are sufficient for determining the joint
distribution of (X ′s)t06s6t1 and (ξ′s)t06s6t1 .

The proof will proceed by the Kolmogorov extension theorem. Suppose, by extending
(Ω,F ,P) if necessary, that (Xt)t∈Z and ξ are defined on the same space and are indepen-
dent of each other. Consider for each t ∈ Z, the state path F (t,Xt) in G started at (t,Xt).
Then for all s, t ∈ Z with s 6 t and all x ∈ S,

P(F
(s,Xs)
t = x) =

∑
y∈S

P(Xs = y, F
(s,Xs)
t = x)

=
∑
y∈S

µs(y)P t−s(y, x)

= µsP
t−s(x),

where in the previous line P is treated as a transition kernel with powers P k (k =

0, 1, 2, . . .). Since (Xt)t∈Z exists and is a Markov chain with transition matrix P , one has

µsP
t−s = µrP

s−rP t−s = µrP
t−r = µt (A.1)
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for all r 6 s 6 t. Moreover, for all s 6 t, F (s,Xs)
t is σ(Xs, (ξt′)s6t′<t)-measurable, hence it

is independent of (ξt′)t′>t. Now fix s0, t0, t1 ∈ Z with s0 6 t0 6 t1 and consider the joint

distribution of
(
F

(s0,Xs0 )
t

)
t06t6t1

and (ξt)t06t6t1 . One has F (s0,Xs0 ) and ξ satisfy

(i’) F
(s0,Xs0 )
t ∼ µt for all t0 6 t 6 t1,

(ii’) ξ ∼ ξ,

(iii’) F
(s0,Xs0 )
t is independent of (ξt′)t′>t for all t0 6 t 6 t1, and

(iv’) F
(s0,Xs0 )
t+1 = hgen(F

(s0,Xs0 )
t , ξt) for all t0 6 t.

As mentioned before, items (i’) to (iv’) are sufficient to determine the joint distribution

of
(
F

(s0,Xs0 )
t

)
t06t6t1

and (ξt)t06t6t1 , so the joint distribution of
(
F

(s0,Xs0 )
t

)
t06t6t1

and

(ξt)t06t6t1 does not depend on s0 as long as s0 6 t0. Thus a consistent set of finite
dimensional distributions is determined by taking s0, t0 → −∞ and t1 → ∞ while
maintaining s0 6 t0 6 t1. It follows by the Kolmogorov extension theorem that there is a
space (Ω′,F ′,P′) and processes X ′ = (X ′t)t∈Z and ξ′ = (ξ′t)t∈Z satisfying items (i) to (iv),
completing the proof.

Call P strongly recurrent if all its recurrent classes are positive recurrent and call
P recurrent-attracting if any Markov chain with transition matrix P eventually enters
a recurrent state. These conditions are both automatic if P is irreducible and positive
recurrent.

Proposition A.1 (Subsumes Proposition 2.3). Let S = T ∪
⋃(

Ri
)

06i<N
decompose S into

its transient states and N ∈ N ∪ {∞} recurrent communication classes for P . Assume
that P is strongly recurrent and recurrent-attracting. Let d(i) be the period of Ri, and let
Ri = Ci0 ∪ · · · ∪ Cid(i)−1 be a cyclic decomposition. If G has fully independent transitions,

then the components
(
Cij
)

06i<N,06j<d(i)
of G are in bijection with

(
Cij
)

06i<N,06j<d(i)
, and

for x ∈ Cij , (t, x) ∈ V (Cij′) if and only if j − t = j′ (mod d(i)), and for x ∈ T , (t, x) ∈ V (Cij)
where (t′, y) ∈ V (Cij) is any vertex on the path of (t, x) for which y is recurrent. That is,
Cij is the set of all vertices of all paths in G that pass through an element of Cij at any
time t = 0 (mod d(i)).

Proof. Fix i, j, t and let x, y ∈ Cij . Then P d(i) restricted to Cij is irreducible, aperiodic,

and positive recurrent. Thus the product chain P d(i) ⊗ P d(i) restricted to Cij × Cij is

too. Strictly before the hitting time to the diagonal,
(
F

(t,x)
t+sd(i), F

(t,y)
t+sd(i)

)
s>0

is distributed

the same as the product chain P d(i) ⊗ P d(i) on Cij × Cij , and thus the hitting time to the
diagonal is a.s. finite because the product chain is irreducible, aperiodic, and positive
recurrent. It follows that (t, x) and of (t, y) are in the same component of G. If x ∈ Cij
and y ∈ Ci′j′ with i′ 6= i, then F (t,x) and F (t,y) cannot merge because the states of F (t,x)

are contained in Ri and the states of F (t,y) is contained in Ri
′
. If x ∈ Cij and y ∈ Cij′

with j′ 6= j (mod d(i)), then F (t,x) and F (t,y) cannot merge because F
(t,x)
t+s ∈ Cij+s but

F
(t,y)
t+s ∈ Cij′+s with indices taken modulo d(i) as necessary. Thus, the set of y ∈ S \T such

that F (t,x) eventually merges with F (t,y) is precisely Cij . If x ∈ Cij , y ∈ Ci
′

j′ and t 6 t′, then

F
(t,x)
t′ ∈ Cij+(t′−t), so it follows that F (t,x) and F (t′,y) eventually merge if and only if i′ = i

and j + (t′ − t) = j′ (mod d(i)), or equivalently j′ − t′ = j − t (mod d(i)). It follows that
for any x, y ∈ S \ T and any t, t′ ∈ Z, the two vertices (t, x), (t′, y) ∈ V (G) are in the same
component of G if and only if there are i, j, j′ such that x ∈ Cij , y ∈ Cij′ and j′ − t′ = j − t
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(mod d(i)). If x ∈ Cij , then F
(t,x)
s ∈ Cij−t+s for all s > t. Thus F (t,x)

s ∈ Cij−t for all s = 0

(mod d(i)) with s > t. Call Cij−t the time-zero class of (t, x). Then for x ∈ Cij , y ∈ Cij′
and t, t′ ∈ Z, the condition that j′ − t′ = j − t (mod d(i)) is equivalent to the fact that
(t, x) and (t, y) have the same time-zero class. Thus the components of G are exactly
the equivalence classes of vertices in the same time-zero class, except possibly ignoring
(t, x) for transient x. By the assumption that P is recurrent-attracting, if x ∈ T , then
F (t,x) eventually hits some recurrent class and so does not form a new component of
G, and the path F (t,x) is in the component of the first (and every) (t′, y) it hits with y

recurrent.

Proof of Lemma 3.3. Fix k ∈ N. For every v ∈ V = Z × S, the event that v ∈ V (Γ)

and dΓ(o, v) 6 k is measurable. Indeed, there are at most countably many paths
(v0, v1, v2, . . . , vn) in V with n 6 k, and the desired event is the union over all such paths
of any length n 6 k ending at v of the event

{o = v0} ∩
n⋂
i=1

({fV (vi) = 1} ∩ {fE(vi−1, vi) = 1}) .

From here one sees that event that the r-neighborhood around o is exactly some fixed
finite graph Γ is measurable. Indeed,

{NΓ(o, r) = Γ} =
⋂
v∈V
{(fV (v) = 1 and dΓ(o, v) 6 r) ⇐⇒ v ∈ V (Γ)} .

Enhancing Γ with marks ξu, ξv,w for each u ∈ V (Γ) and all {v, w} ∈ E(Γ), for any ε > 0

and o ∈ V (Γ), one sees that the event

Dr,ε(Γ, o) :={o = o,

NΓ(o, r) = Γ,

∀u ∈ V (Γ), dΞuniv(ξV (u), ξu) < ε,

∀ {v, w} ∈ E(Γ), dΞuniv
(ξE(v, w), ξv,w) < ε}

is measurable. Since V is countable and Γ is a finite graph, there are at most countably
many rooted isomorphic copies of (Γ, o) that can be made with vertices in V . It follows
that the event {dG∗([Γ,o], [Γ, o]) < ε} is a countable union of the events Dd 1

ε e,ε
(ρ(Γ, o))

with ρ ranging over the countable collection of such rooted isomorphisms of (Γ, o). Hence
ω 7→ [Γ(ω),o(ω)] is measurable.

Proof of Proposition 3.4. First suppose that X0 is independent of G and uniformly dis-
tributed on a finite S. Let N be the cardinality of S. Let g : G∗∗ → R>0 supported on
directed neighbors be given. Then

E
∑

v∈V (G)

g[G, (0, X0), v] =
1

N

∑
x∈S

E
∑
y∈S

g[G, (0, x), (1, y)]

=
1

N

∑
x,y∈S

E[g[G, (0, x), (1, y)]]

=
1

N

∑
x,y∈S

E[g[G, (−1, x), (0, y)]]

=
1

N

∑
y∈S

E
∑
x∈S

g[G, (−1, x), (0, y)]

= E
∑

v∈V (G)

g[G, v, (0, X0)],
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where in the third equality time-homogeneity of G is used. It follows that in this case G

is unimodular.
Next suppose [G, (0, X0)] is unimodular. Let η be a vertex-shift that follows the arrows

in G. For example, define for each network Γ and u ∈ V (Γ) the vertex-shift by ηΓ(u) := v

if there is a unique outgoing edge from u and this edge terminates at v, or ηΓ(u) := u

if this condition is not met for any v. Since G is connected, its η-foils are (Gt)t∈Z. Let
the mark of a vertex v be denoted (s(v), ξ(v)), and let v ∼ w denote that v and w are
in the same η-foil. Fix x, y ∈ S and let g[G, v, w] := 1{s(v)=x,s(w)=y,v∼w}. Then the mass
transport principle implies

P(X0 = x) = E
∑

v∈V (G)

g[G, (0, X0), v] = E
∑

v∈V (G)

g[G, v, (0, X0)] = P(X0 = y),

so X0 is uniformly distributed on S.
Next let X0 be the output of the CFTP algorithm in the standard CFTP setup. Suppose

[G, (0, X0)] is unimodular. Since (0, X0) has one outgoing edge in G, unimodularity
implies that on average it has one incoming edge. But, being the output of the CFTP
algorithm, (0, X0) a.s. has at least one incoming edge. Hence (0, X0) a.s. has exactly one
incoming edge. By unimodularity, it follows that a.s. every vertex in G has exactly one
incoming edge. Since G is a tree, this is only possibly if S has a single element. If S has
only a single element unimodularity is immediate.

A.2. List of mass transports

As mentioned in Section 2.5, the proof style of Proposition 2.13 can be used to
prove many equalities and inequalities in mean. A list is provided giving mass transports,
followed by the results they give after applying the boilerplate proof style with these mass
transports. Drawing a picture for each transport helps significantly in computing w+

and w− for the given transports. In all of the following, β is the union of all bi-recurrent
paths in B.

(i) Send mass 1 from each s to all times t strictly after s and strictly before F (s,x∗)

returns to x∗.

• E[#B0] 6 E[σ(0,x∗)(x∗)], where σ(0,x∗)(x∗) is the time until return of F (0,x∗) to x∗.

(ii) Fix y ∈ S. For each s, if y ∈ Bs, send mass 1 to the first time t > s that F (s,y) hits
x∗.

• P(y ∈ B0) = E[#R(0)y], where R(0) ⊆ B is the subgraph of vertices that first
return to x∗ at time 0, i.e., the (possibly empty) subgraph of B of all (t, y) ∈ V (B)

such that τ (t,y)(x∗) = 0, where τ (t,y)(x∗) is the return time of F (t,y) to x∗.

• Summing over y ∈ S, one finds E[#V (R(0))] = E[#B0].

(iii) Send mass 1 from each s to the first time t > s that F (s,x∗)
t = F

(s′,x∗)
t for some

s′ > t.

• E[C(0)] = 1, where C(0) is the total number of paths F (s,x∗) that merge with a
younger F (s′,x∗) (i.e. with s′ > s) for the first time at time 0.

• P(#B1 6 #B0 − k) 6 P(C(1) > k + 1) 6 1
k+1 for all k ∈ N.

(iv) Fix y ∈ S. For each s, send mass 1 to each time t that F (s,x∗)
t = y and t is strictly

before F (s,x∗) merges with the unique bi-recurrent path in its component of B.
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• E[N
(0,x∗)
0 (y;β)] = E[1{y∈B0\β0}#V

x∗(D(0,y) ∩ V (B))], where N
(0,x∗)
0 (y;β) denotes

the number of visits (potentially 0) of F (0,x∗) to y strictly before merging with β.

• Summing over y ∈ S, E[σ
(0,x∗)
0 (β)] = E[#V x

∗
(DV0(B)\V0(β)∩V (B))], where σ(0,x∗)

0 (β)

is the number of steps (potentially 0) before F (0,x∗) merges with β, and DV0(B)\V0(β)

is the set of all descendants of all v ∈ V0(B) \ V0(β).

(v) Fix y ∈ S. For each s, if y ∈ Bs send mass 1 to the first time t that F (s,y) is on the
bi-recurrent path in its component of B.

• P(y ∈ B0) = E[#V y(DV0(β),M ∩ V (B))], where DV0(β),M denotes the union of V0(β)

with their mortal descendants, i.e. those descendants with only finitely many
descendants and whose first ancestor in β is at time 0.

• Summing over y ∈ S, one finds E[#B0] = E[#(DV0(β),M ∩ V (B))].

(vi) Fix y ∈ S and suppose G is an EFT and (βt)t∈Z is the bi-recurrent path in G. For
each t, if βt = y send mass 1 backwards to the most recent time s < t such that
βs = x∗.

• E[N (0,x∗)(y;x∗)1β0=x∗ ] = P(β0 = y), where N (0,x∗)(y;x∗) denotes the number of
visits of F (0,x∗) to y before returning to x∗, including the initial visit if y = x∗.

• Summing over y ∈ S, one finds E[σ(0,x∗)(x∗)1{β0=x∗}] = 1.

• If G is also Markovian, then the previous points reduce to the classical cycle
formulas, E[N (0,x∗)(y;x∗)]π(x∗) = π(y) and E[σ(0,x∗)(x∗)]π(x) = 1, where π is the
stationary distribution of the Markov chain.

Instead of using the unimodularity of Z and specifying a mass transport w = w(s, t)

for s, t ∈ Z, one may also use the unimodular version of B (that is, the random network
with distribution P�) and specify a mass transport w = w[Γ, u, v] for all networks Γ and
all u, v ∈ V (Γ). Some mass transports are much easier to write in this way. For example,
the mass transport in item (iii) above also follows from the mass transport w[Γ, u, v] = 1

if v is the unique out-neighbor of u in Γ. However, strictly speaking, there are no results
using a mass transport on B that could not also be proved with a mass transport on Z.
Indeed, if w is a mass transport defined for all networks Γ, then with [B,�] denoting the
identity map under P�,

E�

 ∑
v∈V (B)

w[B,�, v]

 = E�

 ∑
v∈V (B)

w[B, v,�]


may be rewritten as

1

E[#B0]
E

[∑
t∈Z

ŵ(0, t)

]
=

1

E[#B0]
E

[∑
t∈Z

ŵ(t, 0)

]

where

ŵ(s, t) :=
∑

u∈Vs(B)

∑
v∈Vt(B)

w[B, u, v], s, t ∈ Z

is a mass transport on Z. That being said, the reader is encouraged the ponder the
sequence of mass transports on Z that would be required to prove a result like the
classification theorem, Theorem 3.1, for the network [B,�] directly. It seems more
elegant to call upon the machinery of unimodular networks when convenient instead.
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