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Asymptotic expansion of Skorohod integrals*
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Abstract

Asymptotic expansion of the distribution of a perturbation Zn of a Skorohod integral
jointly with a reference variable Xn is derived. We introduce a second-order interpola-
tion formula in frequency domain to expand a characteristic functional and combine it
with the scheme developed in the martingale expansion. The second-order interpola-
tion and Fourier inversion give asymptotic expansion of the expectation E[f(Zn, Xn)]

for differentiable functions f and also measurable functions f . In the latter case, the
interpolation method connects the two non-degeneracies of variables for finite n and
∞. Random symbols are used for expressing the asymptotic expansion formula. Quasi
tangent, quasi torsion and modified quasi torsion are introduced in this paper. We
identify these random symbols for a certain quadratic form of a fractional Brownian
motion and for a quadratic from of a fractional Brownian motion with random weights.
For a quadratic form of a Brownian motion with random weights, we observe that our
formula reproduces the formula originally obtained by the martingale expansion.
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1 Introduction

Asymptotic expansion of distributions is one of the fundamentals of theoretical statis-
tics. Its applications spread over higher order approximation of probability distributions,
theory of higher order asymptotic efficiency of estimators, prediction, information crite-
ria for model selection, saddle point approximation, bootstrap and resampling methods,
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Asymptotic expansion of Skorohod integrals

information geometry and so on. Bhattacharya and Rao [1] give an excellent exposition
of the probabilistic aspects of asymptotic expansion for independent variables, while
we omit a huge amount of literature on statistical applications of asymptotic expansion
methods. Asymptotic expansion has a long history even for dependent models. A cele-
brated paper Götze and Hipp [5] is a compilation of the studies of asymptotic expansion
for Markovian or nearly Markovian chains with mixing property. It was followed by Götze
and Hipp [6], that applied their result to time series models more explicitly.

For functionals in stochastic analysis, there are two ways: martingale approach
and mixing approach. Yoshida [27, 28] gave asymptotic expansions for martingales
with the Malliavin calculus on Wiener/Wiener-Poisson space and applied them to an
ergodic diffusion, a volatility estimation over a finite time interval in central limit case,
and a stochastic regression model with an explanatory process having long memory.
Regularity of the distribution is critical to validate an asymptotic expansion. Thus,
naturally the Malliavin calculus was used there to ensure a decay rate of characteristic
type functionals. In connection, though the regularity problem does not occur there,
Mykland [12] is a pioneering work on expansion of moments for a smooth function of a
martingale. The mixing approach is more efficient if a sufficiently fast mixing property is
available. Kusuoka and Yoshida [10] and Yoshida [29] developed asymptotic expansions
for ε-Markov processes possessing a mixing property. The Malliavin calculus was used
to estimate certain conditional characteristic functionals defined locally in time with the
assistance of support theorems. See e.g. Yoshida [32] for an overview and references
therein.

In the last three decades, along with the developments in statistics for high frequency
data, stable limit theorems have attracted a lot of attention. Estimation of volatility from
high frequency data under finite time horizon typically becomes non-ergodic statistics.
Then, the asymptotic expansion of functionals of increments of stochastic processes is
once again an issue after recent tremendous progresses in limit theorems in this area.
Even though big data is available, the problem of microstructure noise motivates the
use of asymptotic expansion. For example, Yoshida [31] extended [27] to martingales
with mixed Gaussian limit [an updated version is arXiv:1210.3680 (2012)], Podolskij
and Yoshida [25] derived a distributional asymptotic expansion of the p-variation of a
diffusion process and Podolskij, Veliyev and Yoshida [24] gave an Edgeworth expansion
for the pre-averaging estimator for a diffusion process sampled under microstructure
noise.

Beyond semimartingales theory, special attention has been focused in recent years on
limit theorems for objects in the Malliavin calculus. Nualart and Peccati [20] established
the fourth moment theorem and characterized the central limit theorem for a sequence
of multiple stochastic integrals of a fixed order. Nualart and Oriz-Latorre [19] extended
the result in Nualart and Peccati [20]. Peccati and Tudor [22] presented necessary and
sufficient conditions for the central limit theorem for vectors of multiple stochastic inte-
grals and showed that componentwise convergence implies joint convergence. Nourdin,
Nualart and Peccati [14] introduced an interpolation technique and proved quantitative
stable limit theorems where the limit distribution is a mixture of Gaussian distributions.
Power variation, stable convergence and Berry-Esseen type inequality are also in the
scope of this trend.

Nourdin and Peccati [16] showed the asymptotic behavior of a weighted power
variation processes associated with the so-called iterated Brownian motion. Corcuera,
Nualart and Woerner [3] gave a mixture type central limit theorem for the power variation
of a stochastic integral with respect to a fractional Brownian motion. Nourdin, Nualart
and Tudor [15] derived central and non-central limit theorems for certain weighted power
variations of the fractional Brownian motion. Nourdin [13] showed various asymptotic
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behavior of weighted quadratic and cubic variations of a fractional Brownian motion
having a small Hurst index.

By connecting a martingale approach and deforming a nesting condition, Peccati
and Taqqu [21] showed stable convergence of multiple Wiener-Itô integrals. Nourdin
and Nualart [15] proved a central limit theorem for a sequence of multiple Skorohod
integrals and applied it to renormalized weighted Hermite variations of the fractional
Brownian motion. Related to stable convergence are Harnett and Nualart [7, 8] on weak
convergence of the Stratonovich integral with respect to a class of Gaussian processes.

Based on Stein’s method, among many others, Nourdin and Peccati [17] presented a
Berry-Esseen bound for multiple Wiener-Itô integrals, and Edan and Víquez [4] obtained
central limit theorems with Wiener-Poisson space. Kusuoka and Tudor [11] proposed
Stein’s method for invariant measures of diffusions. An advantage of Stein’s method is
that it provides fairly explicit error bounds of approximation. The interpolation method
recently introduced by Nourdin, Nualart and Peccati [14] keeps this merit.

After observing these developments, the aim of this paper is to derive asymptotic
expansions for Skorohod integrals by means of the Malliavin calculus. It is worth
recalling the terminology in the martingale expansion of [31] though our discussion
will be apart from the martingale theory. For a sequence of continuous martingales
Mn = {Mn

t , t ∈ [0, 1]}, denote by Cn = 〈Mn〉 the quadratic variation of Mn. When
Cn := Cn1 →p C∞ as n → ∞, stable convergence of Mn := Mn

1 to a mixed normal limit
M∞ ∼ N(0, C∞) usually takes place even if C∞ is random. More precisely an evaluation
of the gap Cn − C∞ is necessary to go up to an asymptotic expansion. The variable
◦
Cn= r−1

n (Cn − C∞) is called tangent, where rn is a positive number tending to zero

as n → ∞. The effect of
◦
Cn appears in the first order asymptotic expansion, and it

gives everything in the classical case of constant C∞. On the other hand, if C∞ is
random, as it is the case of non-ergodic statistics, then the exponential local martingale
ent (z) = exp

(
izMn + 2−1z2Cnt

)
is no longer a local martingale under the transformed

measure exp
(
− 2−1z2C∞

)
dP/E[exp

(
− 2−1z2C∞

)
]. This effect remains in the asymptotic

expansion, called the torsion the exponential martingale suffers from. Two random
symbols σ and σ are defined for tangent and torsion, respectively, and the asymptotic
expansion formula is given in terms of the Gaussian density φ(z; 0, C∞) with variance
C∞ and the adjoint operation of σ and σ. In this article, we will make an expansion
formula for the Skorohod integral Mn = δ(un) of un in a similar way through certain
random symbols. However, since we do not have any self-evident martingale structure,
we introduce new random symbols called quasi tangent, quasi torsion and modified quasi
torsion defined only by Malliavin derivatives of functionals.

We will take a Fourier analytic approach. It is because the asymptotic expansion
formula we will obtain is a perturbation of a Gaussian density and the actions of random
symbols are simply expressed, as it was the case in classical theory. Moreover, if we
extend such a result, the limit is possibly related to infinitely divisible distributions even
if their mixture appears, and then formulation by random symbols seems natural from an
operational point of view. We use an interpolation method in the frequency domain and
expand the characteristic function of the interpolation. The second-order interpolation
is provided to relate the distribution of Mn with the random symbols that determine the
expansion formula.

In this paper, we combine the interpolation method and the scheme originating
from martingale expansion. Non-degeneracy of distributions plays an essential role to
validate the asymptotic expansion of the expectation E[f(Mn)] for measurable functions
f . For that, it is necessary to connect the two non-degeneracies of Mn and M∞. The
interpolation method serves as a homotopy between the two random functions, just as
the interpolation along the real time t was used in the martingale expansion [31]. We
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require only a local non-degeneracy of Mn, not the full non-degeneracy. There is a big
difference between them. For the latter, we need large deviation estimates and that plot
often fails in practice. In parametric estimation, we quite often meet a situation where
the estimator is not defined on the whole Ω but defined locally as a smooth functional.
Then localization is inevitable.

Finally, related to this article, we mention a recent work by Tudor and Yoshida [26]
on asymptotic expansion of multiple stochastic integrals.

The organization of this paper is as follows. We will work with the variable Zn defined
in Section 2 as a perturbation of a Skorohod integral Mn = δ(un) since such a stochastic
expansion appears when statistical estimators are considered. A reference variable Xn

is also considered. This formulation is natural because Studentization is common in
non-ergodic statistics, and also because the principal part of the normalized estimator is
often expressed as the ratio of a Skorohod integral and Fisher information. Section 2
introduces the interpolation method and an expansion of a characteristic type functional
along the interpolation, as well as notion of quasi tangent, quasi tosion and modified
quasi torsion. Section 3 gives asymptotic expansion of E[f(Zn, Xn)] for differentiable
functions f . We compute the random symbols for a functional of a fractional Brownian
motion in Section 4. Since the Skorohod integral generalizes the Itô integral, our formula
should reproduce the same formula as that of [31] if applied to the quadratic form of a
Brownian motion with random weights. We will see this in Section 5 but the derivation
is more complicated than the direct use of the martingale expansion for the double Itô
integrals. In Section 6, the random symbols are computed for a quadratic form of a
fractional Brownian motion with random weights. Finally, Section 7 validates asymptotic
expansions of E[f(Zn, Xn)] for measurable functions f . As mentioned above, we carry
out this task by using two non-degeneracies of the Malliavin covariances, with the help
of the interpolation.

2 Second-order interpolation formula in frequency domain

2.1 Perturbation of a Skorohod integral

Given a probability space (Ω,F , P ), we consider an isonormal Gaussian process
W = {W(h), h ∈ H} on a real separable Hilbert space H. For any Hilbert space E, any
real number p ≥ 1 and any integer k ≥ 1, we denote by Dk,p(E) the Sobolev space of
E-valued random variables which are k times differentiable in the sense of Malliavin
calculus and the derivatives up to order k have finite moments of order p. We denote by
D the derivative operator in the framework of Malliavin calculus. Its adjoint, denoted
by δ, is called the divergence or the Skorokod integral. We refer to Nualart [18] for a
detailed account on Malliavin calculus. We simply write Ds,p for Ds,p(R). Moreover we
write Ds,∞(E) = ∩p≥1D

s,p(E).
For n ∈ N, suppose that un ∈ D1,p(H ⊗ Rd) for some p ≥ 2, i.e., un = (uin)di=1 with

each uin ∈ D1,p(H), i = 1, . . . , d. Let Mn = δ(un), where δ(un) = (δ(uin))di=1. Consider
random vectors Wn (n ∈ N = N ∪ {∞}) and Nn : Ω → Rd (n ∈ N). For a sequence of
positive numbers (rn)n∈N tending to 0 as n→∞, we will consider a perturbation Zn of
Mn given by

Zn = Mn +Wn + rnNn.

Let G∞ : Ω → Rd ⊗+ R
d be a random matrix, where Rd ⊗+ R

d is the set of d × d
nonnegative symmetric matrices. The random matrix G∞ will be the asymptotic random
variance matrix of Zn.

A reference variable is denoted by Xn : Ω→ Rd1 , n ∈ N. Such a reference variable
appears in various situations. For example, in the context of estimation of a parameter
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θ in the diffusion coefficient of a stochastic differential equation, a quasi maximum
likelihood estimator θ̂n is used. Then the principal part of θ̂n − θ is usually Γ−1

n ∆n for
the score function ∆n = ∂θ`n(θ) and the observed information Γn = −∂2

θ`n(θ). In this
situation, naturally, Zn = ∆n and Xn = Γn. The principal part of the Studentized variable
Γ

1/2
n

(
θ̂n − θ

)
is also a function of Zn and Xn. We may unify the writing by choosing Zn

and Xn in this way though it is also possible to replace each principal part by a Skorohod
integral of a different integrand. In this paper, we are interested in a higher-order
approximation of the joint distribution of (Zn, Xn).

For a tensor T = (Ti1,...,ik)i1,...,ik , we write

T [u1, . . . , uk] = T [u1 ⊗ · · · ⊗ uk] =
∑

i1,...,ik

Ti1,...,iku
i1
1 · · ·u

ik
k

for u1 = (ui11 )i1 , . . . , uk = (uikk )ik . Brackets [ ] stand for multilinear mappings. We simply
denote u⊗r = u⊗ · · · ⊗ u (r times).

2.2 Interpolation and expansion

We will consider the situation where Xn →p X∞ and Wn →p W∞ as n→∞. Then it
is natural to consider an interpolation between Xn and X∞, and between Wn and W∞.
Define Wn(θ) and Xn(θ) by Wn(θ) = θWn + (1 − θ)W∞ and Xn(θ) = θXn + (1 − θ)X∞,

respectively, for θ ∈ [0, 1]. Moreover, the tangent variables are defined by
◦
Wn= r−1

n (Wn−
W∞) and

◦
Xn= r−1

n (Xn −X∞). We will construct an interpolation like that of Nourdin,
Nualart and Peccati [14] but in the frequency domain. Define λn(θ; z, x) by

λn(θ; z, x) = θMn[iz] + 2−1(1− θ2)G∞[(iz)⊗2] +Wn(θ)[iz] + θrnNn[iz] +Xn(θ)[ix]

(2.1)

for θ ∈ [0, 1], z ∈ Rd and x ∈ Rd1 . In particular,

λn(0; z, x) = 2−1G∞[(iz)⊗2] +W∞[iz] +X∞[ix] =: λ∞(0; z, x),

λn(1; z, x) = Zn[iz] +Xn[ix]

and ∣∣eλn(θ;z,x)
∣∣ ≤ 1.

Let ď = d + d1.
To discuss the joint distribution of (Zn, Xn), it is natural to consider the characteristic

function E
[

exp
(
λn(1; z, x))

]
of (Zn, Xn), though a truncated version will be treated later.

Under the conditions specified later, Mn converges in distribution to the mixed normal
distribution Nd(0, G∞) with the covariance matrix G∞ and (Mn,Wn, Xn) converges
in distribution, as well as (Wn, Xn) →p (W∞, X∞). Thus E

[
exp

(
λn(1; z, x))

]
should

converge to E
[

exp
(
λ∞(0; z, x))

]
.

Remark 2.1. More generally, for γi ∈ C1([0, 1]; [0, 1]) such that γi(0) = 0 and γi(1) = 1

(i = 0, 1, 2, 3), we can consider an interpolation

λn(θ; z, x) = γ0(θ)Mn[iz] + 2−1(1− γ0(θ)2)G∞[(iz)⊗2]

+Wn(γ1(θ))[iz] + γ2(θ) rnNn[iz] +Xn(γ3(θ))[ix]

for θ ∈ [0, 1]. However, it turns out that the derived formula does not depend on a choice
of γi. So we will take the identity function for γi, i.e., (2.1) as λn(θ; z, x).
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Remark 2.2. We could start with the decomposition

Zn = Mn +W∞ + rnÑn

of Zn, by taking Ñn =
◦
Wn +Nn. This decomposition would be expected to slightly simplify

the presentation but the complexity would be the same because, as a matter of fact,
◦
Wn

and Nn will always be treated as a set like in Ǧ(1)
n and Ĝ(1)

n defined below.

Consider a sequence ψn ∈ D1,p1(R), and for a while we suppose that un ∈ D2,p(H⊗Rd),
G∞ ∈ D1,p(Rd⊗+R

d), Wn,W∞, Nn ∈ D1,p(Rd) and Xn, X∞ ∈ D1,p(Rd1) with 2p−1+p−1
1 ≤

1. We abuse the notation D1,p(Rd ⊗+ R
d) though Rd ⊗+ R

d is not a Hilbert space. In
the special case ψn ≡ 1, we let p1 = ∞. The functional ψn has two roles. It will serve
as a generic variable when we express the θ-derivative of ϕn by ϕn itself. Moreover,
it will denote a truncation functional that ensures local non-degeneracy of (Zn, Xn) in
Malliavin’s sense.

We write

ϕn(θ;ψn) = ϕn(θ, z, x;ψn) = E
[
eλn(θ;z,x)ψn

]
.

The random matrix Gn (d× d) is defined by

Gn[iz1, iz2] = 〈DMn[iz1], un[iz2]〉H (z1, z2 ∈ Rd).

Remark 2.3. The variable Gn is different from Cn = 〈Mn〉T in the martingale expansion
since, in general,

〈DMn, un〉H 6= 〈un, un〉H.

That is,
◦
Gn= r−1

n (Gn−G∞) is not necessarily the tangent variable
◦
Cn, and the sequences

◦
Gn and

◦
Cn have different limits, in general. However, the limit G∞ of Gn may coincide

with the limit C∞ of Cn. In short, we may have G∞ = C∞, however, in general,
◦
G∞ 6=

◦
C∞.

In particular,
◦
Gn may converge to 0.

The random tensor

qTan[iz1, iz2] = r−1
n

(〈
DMn[iz1], un[iz2]

〉
H
−G∞[iz1, iz2]

)
for (iz1, iz2) ∈ (iRd)2 is called the quasi tangent (q-tangent), and the random tensor

qTor[iz1, iz2, iz3] = r−1
n

〈
D
〈
DMn[iz1], un[iz2]

〉
H
, un[iz3]

〉
H

for (iz1, iz2, iz3) ∈ (iRd)3 when un ∈ D3,p(H ⊗ Rd), is called the quasi torsion (q-
torsion). Moreover, we call the random tensor

mqTor[iz1, iz2, iz3] = r−1
n

〈
DG∞[iz1, iz2], un[iz3]

〉
H

for (iz1, iz2, iz3) ∈ (iRd)3 the modified quasi torsion (modified q-torsion). Then〈
D qTan[(iz)⊗2], un[iz]

〉
H

= qTor[(iz)⊗3]− mqTor[(iz)⊗3].

Let

Ψ(z, x) = exp

(
2−1G∞[(iz)⊗2] +W∞[iz] +X∞[ix]

)
≡ eλ∞(0;z,x). (2.2)

EJP 24 (2019), paper 119.
Page 6/64

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP310
http://www.imstat.org/ejp/


Asymptotic expansion of Skorohod integrals

Then

E
[

exp
(
Zn[iz] +Xn[ix]

)
ψn
]
− E[Ψ(z, x)ψn] = ϕn(1;ψn)− ϕn(0;ψn)

=

∫ 1

0

∂θϕn(θ;ψn)dθ.

The derivative of ϕn(θ;ψn) is computed as follows

∂θϕn(θ;ψn) = E

[
eλn(θ;z,x)

{
δ(un[iz])− θG∞[(iz)⊗2]

+rn
◦
Wn [iz] + rnNn[iz] + rn

◦
Xn [ix]

}
ψn

]
= E

[
eλn(θ;z,x)

{
δ(un[iz])− θG∞[(iz)⊗2] + Ǧ(1)

n (z, x)

}
ψn

]
,

where

Ǧ(1)
n (z, x) = rn

◦
Wn [iz] + rnNn[iz] + rn

◦
Xn [ix].

Applying the duality relationship between the Skorohod integral δ and the derivative
operator D (we also call this duality relationship integration by parts (IBP) formula),
yields

∂θϕn(θ;ψn) = E

[
eλn(θ;z,x)

{
θ〈DMn[iz], un[iz]〉H + 2−1(1− θ2)〈DG∞[(iz)⊗2], un[iz]〉H

+〈DWn(θ)[iz], un[iz]〉H + θrn〈DNn[iz], un[iz]〉H

+〈DXn(θ)[ix], un[iz]〉H
}
ψn

]
+E
[
eλn(θ;z,x)〈Dψn, un[iz]〉H

]
+E

[
eλn(θ;z,x)

{
−θG∞[(iz)⊗2] + Ǧ(1)

n (z, x)
}
ψn

]
.

This expression can be written as

∂θϕn(θ;ψn) = E
[
eλn(θ;z,x)〈Dψn, un[iz]〉H

]
+θE

[
eλn(θ;z,x)

(
〈DMn[iz], un[iz]〉H −G∞[(iz)⊗2]

)
ψn

]
+2−1(1− θ2)E

[
eλn(θ;z,x)〈DG∞[(iz)⊗2], un[iz]〉Hψn

]
+E
[
eλn(θ;z,x)G(1)

n (θ; z, x)ψn
]

= ϕn
(
θ; 〈Dψn, un[iz]〉H

)
+θϕn

(
θ;
(
〈DMn[iz], un[iz]〉H −G∞[(iz)⊗2]

)
ψn

)
+2−1(1− θ2)ϕn

(
θ; 〈DG∞[(iz)⊗2], un[iz]〉Hψn

)
+ϕn

(
θ;G(1)

n (θ; z, x)ψn
)
,

where

G(1)
n (θ; z, x) = Ĝ(1)

n (θ; z, x) + Ǧ(1)
n (z, x) (2.3)
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with

Ĝ(1)
n (θ; z, x) = 〈DW∞[iz], un[iz]〉H + 〈DX∞[ix], un[iz]〉H

+θrn〈D
◦
Wn [iz], un[iz]〉H + θrn〈DNn[iz], un[iz]〉H

+θrn〈D
◦
Xn [ix], un[iz]〉H.

Let

G(2)
n (z) = 〈DMn[iz], un[iz]〉H −G∞[(iz)⊗2] = rn qTan[(iz)⊗2] (2.4)

and

G(3)
n (z) = 〈DG∞[(iz)⊗2], un[iz]〉H = rn mqTor[(iz)⊗3]. (2.5)

Thus, we obtained the following lemma.

Lemma 2.4. Suppose that un ∈ D2,p(H ⊗ Rd), G∞ ∈ D1,p(Rd ⊗+ R
d), Wn,W∞, Nn ∈

D1,p(Rd), Xn, X∞ ∈ D1,p(Rd1) and ψn ∈ D1,p1(R), 2p−1 + p−1
1 ≤ 1. Then

∂θϕn(θ;ψn) = ϕn
(
θ; 〈Dψn, un[iz]〉H

)
+ θϕn

(
θ;G(2)

n (z)ψn
)

+2−1(1− θ2)ϕn
(
θ;G(3)

n (z)ψn
)

+ ϕn
(
θ;G(1)

n (θ; z, x)ψn
)
. (2.6)

In order to establish a second-order interpolation formula we need to further expand
the last three summands in the right-hand side of (2.6). To do this, we will denote
by Gn any one of the terms G(1)

n (θ; z, x), G(2)
n (z) and G(3)(z). Suppose, in addition, that

G
(1)
n (θ; z, x)ψn, G(2)

n (z)ψn, G(3)(z)ψn, 〈D(G
(1)
n (θ; z, x)ψn), un[iz]〉H,

〈D(G
(2)
n (θ; z)ψn), un[iz]〉H and 〈D(G

(3)
n (θ; z)ψn), un[iz]〉H are in D1,p2(R) with p2 = (3p−1 +

p−1
1 )−1 with p such that 5p−1 + p−1

1 ≤ 1. Then, by Lemma 2.4, we have

ϕn
(
θ;Gnψn

)
− ϕn

(
0;Gnψn

)
=

∫ θ

0

∂θ1ϕn
(
θ1;Gnψn

)
dθ1

=

∫ θ

0

{
ϕn
(
θ1; 〈D(Gnψn), un[iz]〉H

)
+ θ1ϕn

(
θ1;G(2)

n (z)Gnψn
)

+2−1(1− θ2
1)ϕn

(
θ1;G(3)

n (z)Gnψn
)

+ ϕn
(
θ1;G(1)

n (θ1; z, x)Gnψn
)}
dθ1

=

∫ θ

0

ϕn
(
θ1; 〈D(Gnψn), un[iz]〉H

)
dθ1 +R(1)

n (θ; z, x,Gn),

where

R(1)
n (θ; z, x,Gn) =

∫ θ

0

{
θ1ϕn

(
θ1;G(2)

n (z)Gnψn
)

+ 2−1(1− θ2
1)ϕn

(
θ1;G(3)

n (z)Gnψn
)

+ϕn
(
θ1;G(1)

n (θ1; z, x)Gnψn
)}
dθ1.

Therefore, once again by Lemma 2.4, we obtain

ϕn
(
θ;Gnψn

)
− ϕn

(
0;Gnψn

)
= θϕn

(
0; 〈D(Gnψn), un[iz]〉H

)
+R(2)

n (θ; z, x,Gn), (2.7)
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where

R(2)
n (θ; z, x,Gn) =

∫ θ

0

∫ θ1

0

∂θ2ϕn
(
θ2; 〈D(Gnψn), un[iz]〉H

)
dθ2dθ1 +R(1)

n (θ; z, x,Gn)

=

∫ θ

0

∫ θ1

0

{
ϕn
(
θ2; 〈D

(
〈D(Gnψn), un[iz]〉H

)
, un[iz]〉H

)
+θ2ϕn

(
θ2;G(2)

n (z)〈D(Gnψn), un[iz]〉H
)

+2−1(1− θ2
2)ϕn

(
θ2;G(3)

n (z)〈D(Gnψn), un[iz]〉H
)

+ϕn
(
θ2;G(1)

n (θ2; z, x)〈D(Gnψn), un[iz]〉H
)}
dθ2dθ1 +R(1)

n (θ; z, x,Gn).

By (2.6) and (2.7), we can write

∂θϕn(θ;ψn)

= ϕn
(
θ; 〈Dψn, un[iz]〉H

)
+θ

{
ϕn
(
0;G(2)

n (z)ψn
)

+ θϕn
(
0; 〈D(G(2)

n (z)ψn), un[iz]〉H
)

+R(2)
n (θ; z, x, G(2)

n (z))

}
+2−1(1− θ2)

{
ϕn
(
0;G(3)

n (z)ψn
)

+ θϕn
(
0; 〈D(G(3)

n (z)ψn), un[iz]〉H
)

+R(2)
n (θ; z, x, G(3)

n (z))

}
+

{
ϕn
(
0;G(1)

n (θ; z, x)ψn
)

+ θϕn
(
0; 〈D(G(1)

n (θ; z, x)ψn), un[iz]〉H
)

+R(2)
n (θ; z, x, G(1)

n (θ; z, x))

}
.

Let

R(3)
n (z, x) =

∫ 1

0

{
ϕn
(
θ;
(
1 + Un(θ; z, x)θ2G(2)

n (z)
)
〈Dψn, un[iz]〉H

)
+ θR(2)

n (θ; z, x, G(2)
n (z))

+2−1(1− θ2)R(2)
n (θ; z, x, G(3)

n (z)) +R(2)
n (θ; z, x, G(1)

n (θ; z, x))

+2−1(1− θ2)θϕn
(
0; 〈D(G(3)

n (z)ψn), un[iz]〉H
)

+θϕn
(
0; 〈D(Ĝ(1)

n (θ; z, x)ψn), un[iz]〉H
)}
dθ,

where Un(θ; z, x) = exp{λn(0; z, x) − λn(θ; z, x)}. By definition, |Un(θ; z, x)| ≤ 1. Then,

integrating ∂θϕn(θ;ψn) and using the expression for R(3)
n (z, x) and the decomposition

(2.3), yields∫ 1

0

∂θϕn(θ;ψn)dθ =
1

2
ϕn
(
0;G(2)

n (z)ψn
)

+
1

3
ϕn
(
0; 〈DG(2)

n (z), un[iz]〉Hψn
)

+
1

3
ϕn
(
0;G(3)

n (z)ψn
)

+

∫ 1

0

ϕn
(
0;G(1)

n (θ; z, x)ψn
)
dθ +R(3)

n (z, x)

+

∫ 1

0

θϕn
(
0; 〈D(Ǧ(1)

n (z, x)ψn), un[iz]〉H
)
dθ

=
1

2
ϕn
(
0;G(2)

n (z)ψn
)

+
1

3
ϕn
(
0;
〈
D〈DMn[iz], un[iz]〉H, un[iz]

〉
H
ψn
)

+

∫ 1

0

ϕn
(
0;G(1)

n (θ; z, x)ψn
)
dθ+

1

2
ϕn
(
0; 〈D(Ǧ(1)

n (z, x)ψn), un[iz]〉H
)

+R(3)
n (z, x).
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Consequently,

ϕn(1;ψn)− ϕn(0;ψn) =
1

2
ϕn
(
0;
(
DMn[iz], un[iz]〉H −G∞[(iz)⊗2]

)
ψn
)

+
1

3
ϕn
(
0;
〈
D〈DMn[iz], un[iz]〉H, un[iz]

〉
H
ψn
)

+ϕn

(
0;

∫ 1

0

G(1)
n (θ; z, x)dθψn

)
+

1

2
ϕn
(
0; 〈D(Ǧ(1)

n (z, x)ψn), un[iz]〉H
)

+R(3)
n (z, x).

Using the definition of Ψ(z, x) given in (2.2) and the decomposition of G(1)
n given in (2.3),

we obtain

ϕn(1;ψn)− ϕn(0;ψn) =
1

3
E

[
Ψ(z, x)

〈
D
〈
DMn[iz], un[iz]

〉
H
, un[iz]

〉
H

ψn

]
+

1

2
E

[
Ψ(z, x)

(〈
DMn[iz], un[iz]

〉
H
−G∞[(iz)⊗2]

)
ψn

]
+E

[
Ψ(z, x)

{〈
DW∞[iz], un[iz]

〉
H

+
〈
DX∞[ix], un[iz]

〉
H

+rn
◦
Wn [iz] + rnNn[iz] + rn

◦
Xn [ix]

+rn〈D
◦
Wn [iz], un[iz]〉H + rn〈DNn[iz], un[iz]〉H

+rn〈D
◦
Xn [ix], un[iz]〉H

}
ψn

]
+R(3)

n (z, x) +R(4)
n (z, x),

where

R(4)
n (z, x) =

1

2
ϕn
(
0; Ǧ(1)

n (z, x)〈Dψn, un[iz]〉H
)
.

Suppose that there are random symbols S(3,0), S(2,0)
0 , S(2,0), S(1,1), S(1,0), S(0,1),

S
(2,0)
1 and S

(1,1)
1 , i.e., they are polynomials in (iz, ix) with coefficients in L1(Ω). Let

R(5)
n (z, x) = rnE

[
Ψ(z, x) 3−1qTor[(iz)⊗3]ψn

]
− rnE

[
Ψ(z, x)S(3,0)(iz, ix)

]
,

R(6)
n (z, x) = rnE

[
Ψ(z, x) 2−1qTan[(iz)⊗2]ψn

]
− rnE

[
Ψ(z, x)S

(2,0)
0 (iz, ix)

]
,

R(7)
n (z, x) = E

[
Ψ(z, x)

〈
DW∞[iz], un[iz]

〉
H
ψn

]
− rnE

[
Ψ(z, x)S(2,0)(iz, ix)

]
,

R(8)
n (z, x) = E

[
Ψ(z, x)

〈
DX∞[ix], un[iz]

〉
H
ψn

]
− rnE

[
Ψ(z, x)S(1,1)(iz, ix)

]
,

R(9)
n (z, x) = rnE

[
Ψ(z, x)

{
◦
Wn [iz] +Nn[iz]

}
ψn

]
− rnE

[
Ψ(z, x)S(1,0)(iz, ix)

]
,

R(10)
n (z, x) = rnE

[
Ψ(z, x)

◦
Xn [ix]ψn

]
− rnE

[
Ψ(z, x)S(0,1)(iz, ix)

]
,

R(11)
n (z, x) = rnE

[
Ψ(z, x)

〈
{D

◦
Wn [iz] +DNn[iz]}, un[iz]

〉
H
ψn

]
−rnE

[
Ψ(z, x)S

(2,0)
1 (iz, ix)

]
,

R(12)
n (z, x) = rnE

[
Ψ(z, x)

〈
D
◦
Xn [ix], un[iz]

〉
H
ψn

]
− rnE

[
Ψ(z, x)S

(1,1)
1 (iz, ix)

]
,
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and

Rn(z, x) =

12∑
i=3

R(i)
n (z, x).

Remark 2.5. (i) We expect

E
[
Ψ(z, x) 3−1qTor[(iz)⊗3]ψn

]
− E

[
Ψ(z, x)S(3,0)(iz, ix)

]
→ 0.

However this does not mean that

E
[∣∣3−1qTor[(iz)⊗3]ψn −S(3,0)(iz, ix)

∣∣]→ 0.

In fact, S(3,0) is not necessarily of third order in z, as we will see in this paper. (ii) In
the multi-dimensional case, we can go with qTan defined as the symmetric version of the
present qTan. The results will be essentially the same though we will not describe them.

Define the random symbol S(iz, ix) by

S(iz, ix) = S(3,0)(iz, ix) + S
(2,0)
0 (iz, ix) + S(2,0)(iz, ix)

+S(1,1)(iz, ix) + S(1,0)(iz, ix) + S(0,1)(iz, ix)

+S
(2,0)
1 (iz, ix) + S

(1,1)
1 (iz, ix).

In applications of the asymptotic expansion, we are expecting that the residual terms
R

(5)
n (z, x) and R(6)

n (z, x) are of order o(rn) together with other residual terms. Then the
quasi torsion is approximated by S(3,0) in the sense explained in Remark 2.5. Similarly
the quasi tangent is approximated by S

(2,0)
0 in this sense. The random symbol S(3,0) is

often identified by using the integration-by-parts formula. The modified quasi torsion is
not involved in the random symbol S though related with the quasi torsion and the quasi
tangent.

We will assume the following hypothesis:

[A ] un ∈ D4,p(H ⊗ Rd), G∞ ∈ D3,p(Rd ⊗+ R
d), Wn,W∞, Nn ∈ D3,p(Rd), Xn, X∞ ∈

D3,p(Rd1) and ψn ∈ D2,p1(R) for some p and p1 satisfying 5p−1 + p−1
1 ≤ 1.

From the above argument, we obtain the following second-order interpolation for-
mula.

Proposition 2.6. Under Condition [A],

ϕn(1;ψn) = ϕn(0;ψn) + rnE
[
Ψ(z, x)S(iz, ix)

]
+Rn(z, x). (2.8)

3 Asymptotic expansion for differentiable functions

3.1 Expansion formula for E[f(Zn, Xn)]

Let f ∈ S(Rď), the set of rapidly decreasing smooth functions. Let ς(iz, ix) =∑
k,m ck,m[(iz)⊗k ⊗ (ix)⊗m] (finite sum) be a random symbol with L1 coefficients ck,m.

The factor ψn, if exists, can be included in ς. Let ζ ∼ Nd(0, Id) be a random vector
independent of F , defined on an extended probability space, if necesssary. We denote by
f̂ the Fourier transform of f :

f̂(z, x) =

∫
Rď

f(z, x)e−iz·z−ix·xdzdx.

Then, we can write

(2π)−ď
∫
Rď

f̂(z, x)ϕn(θ; ς(iz, ix))dzdx

= E

[
ς(∂z, ∂x)f

(
θMn +

√
1− θ2G1/2

∞ ζ +Wn(θ) + θrnNn, Xn(θ)

)]
. (3.1)
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In particular, for θ = 0, we obtain

ρ(8)
n (f) := (2π)−ď

∫
Rď

f̂(z, x)R(8)
n (z, x)dzdx

= E
[
ψn
〈
DX∞[∂x], un[∂z]

〉
H
f
(
G1/2
∞ ζ +W∞, X∞

)]
−rnE

[
S(1,1)(∂z, ∂x)f

(
G1/2
∞ ζ +W∞, X∞

)]
(3.2)

and similar formulas for

ρ(i)
n (f) := (2π)−ď

∫
Rď

f̂(z, x)R(i)
n (z, x)dzdx (3.3)

for i = 5, 6, 7, 9, 10, 11 and 12. For i = 3, 4, we define ρ(i)
n by (3.3). Then

12∑
i=3

ρ(i)
n (f) = (2π)−ď

∫
Rď

f̂(z, x)Rn(z, x)dzdx. (3.4)

Let

ρ(2)
n (f) = E[f(Zn, Xn)(1− ψn)]− E[f(G1/2

∞ ζ +W∞, X∞)(1− ψn)] (3.5)

and let

ρ(1)
n (f) =

12∑
i=2

ρ(i)
n (f). (3.6)

Applying the second-order interpolation formula (2.8), we can write

E[f(Zn, Xn)] = E[f(Zn, Xn)(1− ψn)] + E[f(Zn, Xn)ψn]

= E[f(Zn, Xn)(1− ψn)] + (2π)−ď
∫
Rď

f̂(z, x)ϕn(1;ψn)dzdx

= E[f(Zn, Xn)(1− ψn)]

+(2π)−ď
∫
Rď

f̂(z, x)
[
ϕn(0;ψn) + rnE

[
Ψ(z, x)S(iz, ix)

]
+Rn(z, x)

]
dzdx.

Then, using (3.1) and (3.4) leads to

E[f(Zn, Xn)] = E[f(Zn, Xn)(1− ψn)] + E[f
(
G1/2
∞ ζ +W∞, X∞

)
ψn]

+rnE[S(∂z, ∂x)f
(
G1/2
∞ ζ +W∞, X∞

)
] +

12∑
i=3

ρ(i)
n (f).

Finally, taking into account the definitions of ρ(2)
n (f) and ρ(1)

n (f) given in (3.5) and (3.6),
respectively, we get

E[f(Zn, Xn)] = E[f
(
G1/2
∞ ζ +W∞, X∞

)
]

+rnE[S(∂z, ∂x)f
(
G1/2
∞ ζ +W∞, X∞

)
] + ρ(1)

n (f) (3.7)

for f ∈ S(Rď).

Let ζn(θ) =
(
θMn +

√
1− θ2G

1/2
∞ ζ + Wn(θ) + θrnNn, Xn(θ)

)
. In particular, ζn(0) =

(G
1/2
∞ ζ + W∞, X∞) =: ζ∞(0). Let \∂z = i−1∂z and \∂x = i−1∂x. Among the summands in

(3.6), ρ(2)
n (f) is given by (3.5). A precise expression of ρ(3)

n (f) is as follows

ρ(3)
n (f) =

∫ 1

0

{
E
[
〈Dψn, un[∂z]〉H

(
f(ζn(θ)) + θ2G(2)

n (\∂z)f(ζ∞(0))
)]

+θρ(3,1)
n (f ; θ) + 2−1(1− θ2)ρ(3,2)

n (f ; θ)

+ρ(3,3)
n (f ; θ) + 2−1(1− θ2)θE

[
〈D(G(3)

n (\∂z)ψn), un[∂z]〉Hf(ζ∞(0))
]

+θE
[
〈D(Ĝ(1)

n (θ; \∂z, \∂x)ψn), un[∂z]〉Hf(ζ∞(0))
]}
dθ,
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where

ρ(3,1)
n (f ; θ)

=

∫ θ

0

∫ θ1

0

{
E

[〈
D

(〈
D(G(2)

n (\∂z)ψn), un[∂z]
〉
H

)
, un[∂z]

〉
H

f(ζn(θ2))

]
+θ2E

[
G(2)
n (\∂z)

〈
D(G(2)

n (\∂z)ψn), un[∂z]
〉
H
f(ζn(θ2))

]
+2−1(1− θ2

2)E
[
G(3)
n (\∂z)

〈
D(G(2)

n (\∂z)ψn), un[∂z]
〉
H
f(ζn(θ2))

]
+E
[
G(1)
n (θ2; \∂z, \∂x)〈D(G(2)

n (\∂z)ψn), un[∂z]〉Hf(ζn(θ2))
]}
dθ2dθ1

+

∫ θ

0

{
θ1E

[
ψnG

(2)
n (\∂z)G

(2)
n (\∂z)f(ζn(θ1))

]
+2−1(1− θ2

1)E
[
ψnG

(3)
n (\∂z)G

(2)
n (\∂z)f(ζn(θ1))

]
+E
[
ψnG

(1)
n (θ1; \∂z, \∂x)G(2)

n (\∂z)f(ζn(θ1))
]}
dθ1,

ρ(3,2)
n (f ; θ)

=

∫ θ

0

∫ θ1

0

{
E

[〈
D

(〈
D(G(3)

n (\∂z)ψn), un[∂z]
〉
H

)
, un[∂z]

〉
H

f(ζn(θ2))

]
+θ2E

[
G(2)
n (\∂z)

〈
D(G(3)

n (\∂z)ψn), un[∂z]
〉
H
f(ζn(θ2))

]
+2−1(1− θ2

2)E
[
G(3)
n (\∂z)

〈
D(G(3)

n (\∂z)ψn), un[∂z]
〉
H
f(ζn(θ2))

]
+E
[
G(1)
n (θ2; \∂z, \∂x)〈D(G(3)

n (\∂z)ψn), un[∂z]〉Hf(ζn(θ2))
]}
dθ2dθ1

+

∫ θ

0

{
θ1E

[
ψnG

(2)
n (\∂z)G

(3)
n (\∂z)f(ζn(θ1))

]
+2−1(1− θ2

1)E
[
ψnG

(3)
n (\∂z)G

(3)
n (\∂z)f(ζn(θ1))

]
+E
[
ψnG

(1)
n (θ1; \∂z, \∂x)G(3)

n (\∂z)f(ζn(θ1))
]}
dθ1,

and

ρ(3,3)
n (f ; θ)

=

∫ θ

0

∫ θ1

0

{
E

[〈
D

(〈
D(G(1)

n (θ; \∂z, \∂x)ψn), un[∂z]
〉
H

)
, un[∂z]

〉
H

f(ζn(θ2))

]
+θ2E

[
G(2)
n (\∂z)

〈
D(G(1)

n (θ; \∂z, \∂x)ψn), un[∂z]
〉
H
f(ζn(θ2))

]
+2−1(1− θ2

2)E
[
G(3)
n (\∂z)

〈
D(G(1)

n (θ; \∂z, \∂x)ψn), un[∂z]
〉
H
f(ζn(θ2))

]
+E
[
G(1)
n (θ2; \∂z, \∂x)〈D(G(1)

n (θ; \∂z, \∂x)ψn), un[∂z]〉Hf(ζn(θ2))
]}
dθ2dθ1

+

∫ θ

0

{
θ1E

[
ψnG

(2)
n (\∂z)G

(1)
n (θ; \∂z, \∂x)f(ζn(θ1))

]
+2−1(1− θ2

1)E
[
ψnG

(3)
n (\∂z)G

(1)
n (θ; \∂z, \∂x)f(ζn(θ1))

]
+E
[
ψnG

(1)
n (θ; \∂z, \∂x)G(1)

n (θ1; \∂z, \∂x)f(ζn(θ1))
]}
dθ1.
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For i = 4, . . . , 12, a precise expression for ρ(i)
n (f) is given below

ρ(4)
n (f) = rn

{
E
[
2−1

◦
Wn [∂z]〈Dψn, un[∂z]〉Hf(ζ∞(0))

]}
+E
[
2−1Nn[∂z]〈Dψn, un[∂z]〉Hf(ζ∞(0))

]}
+E
[
2−1

◦
Xn [∂x]〈Dψn, un[∂z]〉Hf(ζ∞(0))

]}
,

ρ(5)
n (f) = rn

{
E

[
3−1ψnr

−1
n

〈
D
〈
DMn[∂z], un[∂z]

〉
H
, un[∂z]

〉
H

f(ζ∞(0))

]
−E
[
S(3,0)(∂z, ∂x)f(ζ∞(0))

]}
,

ρ(6)
n (f) = rn

{
E
[
2−1ψnr

−1
n

(〈
DMn[∂z], un[∂z]

〉
H
−G∞[(∂z)

2]
)
f(ζ∞(0))

]
−E
[
S

(2,0)
0 (∂z, ∂x)f(ζ∞(0))

]}
,

ρ(7)
n (f) = rn

{
E
[
ψnr

−1
n

〈
DW∞[iz], un[iz]

〉
H
f(ζ∞(0))

]
− E

[
S(2,0)(∂z, ∂x)f(ζ∞(0))

]}
,

ρ(8)
n (f) = rn

{
E
[
ψnr

−1
n

〈
DX∞[∂x], un[∂z]

〉
H
f(ζ∞(0))

]
− E

[
S(1,1)(∂z, ∂x)f(ζ∞(0))

]}
,

ρ(9)
n (f) = rn

{
E
[
ψn (

◦
Wn [∂z] +Nn[∂z])f(ζ∞(0))

]
− E

[
S(1,0)(∂z, ∂x)f(ζ∞(0))

]}
,

ρ(10)
n (f) = rn

{
E
[
ψn

◦
Xn [∂x]f(ζ∞(0))

]
− E

[
S(0,1)(∂z, ∂x)f(ζ∞(0))

]}
,

ρ(11)
n (f) = rn

{
E
[
ψn
〈
D
◦
Wn [∂z] +DNn[∂z], un[∂z]

〉
H
f(ζ∞(0))

]
−E
[
S

(2,0)
1 (∂z, ∂x)f(ζ∞(0))

]}
,

and

ρ(12)
n (f) = rn

{
E
[
ψn
〈
D
◦
Xn [∂x], un[∂z]

〉
H
f(ζ∞(0))

]
− E

[
S

(1,1)
1 (∂z, ∂x)f(ζ∞(0))

]}
.

Let β = max{7, β0}, where β0 is the degree in (z, x) of the random symbol S.

Theorem 3.1. Suppose that Condition [A ] is satisfied. Then

E[f(Zn, Xn)] = E[f
(
G1/2
∞ ζ +W∞, X∞

)
]

+rnE[S(∂z, ∂x)f
(
G1/2
∞ ζ +W∞, X∞

)
] + ρ(1)

n (f)

for f ∈ Cβb (Rď).
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Asymptotic expansion of Skorohod integrals

Proof. Since S(Rď) 3 f 7→ E[f(Zn, Xn)], E[f
(
G

1/2
∞ ζ + W∞, X∞

)
], E[S(∂z, ∂x)f(G

1/2
∞ ζ +

W∞, X∞)] and ρ(1)
n (f) are expressed as a sum of bounded signed measures applied to

the derivatives of f , Equation (3.7) holds for all f ∈ Cβb (Rď) with the same expression for

ρ
(1)
n (f). [On each bounded ball, take a sequence fk ∈ S(Rď) that converges to f in Cβb .

The differentiability condition can usually be relaxed since not all orders of monomials
appear in S.]

The effect of the quasi torsion appears in S(3,0) and that of the quasi tangent does in
S

(2,0)
0 . The modified quasi torsion does not appear in the random symbol S but in ρ(1)

n (f)

as G(3)
n (z). It is often useful to recognize the modified quasi torsion in computations

since the derivative of the quasi tangent relates it to the quasi torsion.
In order to prove ρ(1)

n (f) = o(rn), for a sequence of random variables An targeting
at A∞, we can apply either stable convergence An →ds A∞, L1-convergence ‖An −
A∞‖1 → 0, or the integration-by-parts formula to evaluate the error terms of the form
E[Anf(ζn(θ))]− E[A∞f(ζn(θ))] whether A∞ = 0 or not. We will present an estimate for

ρ
(1)
n (f) in Section 3.2.

3.2 Estimate of ρ(1)
n (f)

Define the following random symbols

S(3,0)
n (iz) = S(3,0)

n (iz, ix)

=
1

3
r−1
n

〈
D
〈
DMn[iz], un[iz]

〉
H
, un[iz]

〉
H

≡ 1

3
qTor[(iz)⊗3],

S
(2,0)
0,n (iz) = S

(2,0)
0,n (iz, ix) =

1

2
r−1
n G(2)

n (z)

=
1

2
r−1
n

(〈
DMn[iz], un[iz]

〉
H
−G∞[(iz)2]

)
≡ 1

2
qTan[(iz)⊗2],

S(2,0)
n (iz) = S(2,0)

n (iz, ix) = r−1
n

〈
DW∞[iz], un[iz]

〉
H
,

S(1,1)
n (iz, ix) = r−1

n

〈
DX∞[ix], un[iz]

〉
H
,

S(1,0)
n (iz) = S(1,0)

n (iz, ix) =
◦
Wn [iz] +Nn[iz],

S(0,1)
n (ix) = S(0,1)

n (iz, ix) =
◦
Xn [ix],

S
(2,0)
1,n (iz) = S

(2,0)
1,n (iz, ix) =

〈
D
◦
Wn [iz] +DNn[iz], un[iz]

〉
H

,

S
(1,1)
1,n (iz, ix) =

〈
D
◦
Xn [ix], un[iz]

〉
H

.

Remark 3.2. As mentioned in Remark 2.5, the order of the random symbol S(3,0)(iz, ix)

appearing as the limit of the corresponding sequence S
(3,0)
n (iz, ix) does not necessarily

coincide with that of the latter because S(3,0)(iz, ix) is determined by the action of

S
(3,0)
n (iz, ix) to Ψ(z, x) under expectation. It is also the case for other symbols.

For H-valued tensors S = (Si) and T = (Tj), 〈S,T〉H denotes the tensor with compo-
nents (〈Si,Tj〉H)i,j . In the following condition, A and B denote dummy variables.

[B ] (i) un ∈ D4,p(H ⊗ Rd), G∞ ∈ D3,p(Rd ⊗+ R
d), Wn,W∞, Nn ∈ D3,p(Rd), Xn, X∞ ∈

D3,p(Rd1) and ψn ∈ D2,p1(R) for some p and p1 satisfying 5p−1 + p−1
1 ≤ 1.

(ii) The following estimates hold:

‖un‖1,p = O(1) (3.8)
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Asymptotic expansion of Skorohod integrals

∑
k=2,3

‖G(k)
n ‖p/2 = O(rn) (3.9)

‖
〈
DG(2)

n , un
〉
H
‖p/3 = O(rn) (3.10)

‖
〈
DG(3)

n , un
〉
H
‖p/3 = o(rn) (3.11)

∑
k=2,3

∥∥∥∥〈D〈DG(k)
n , un

〉
H
, un

〉
H

∥∥∥∥
p/4

= o(rn) (3.12)

∑
A=W∞[z],X∞[x]

∥∥〈DA, un〉H
∥∥
p

= O(rn) (3.13)

∑
A=W∞,X∞

∥∥∥∥〈D〈DA, un[z]〉H, un[z]

〉
H

∥∥∥∥
p/3

= o(rn) (3.14)

∑
A=W∞,X∞

∥∥∥∥〈D〈D〈DA, un〉H, un
〉
H
, un

〉
H

∥∥∥∥
p/4

= o(rn) (3.15)

‖
◦
Wn ‖3,p + ‖Nn‖3,p + ‖

◦
Xn ‖3,p = O(1) (3.16)

∑
B=

◦
Wn,Nn,

◦
Xn

∥∥∥∥〈D〈DB, un〉H, un
〉
H

∥∥∥∥
p/3

= o(1) (3.17)

∑
B=

◦
Wn,Nn,

◦
Xn

∥∥∥∥〈D〈D〈DB, un〉H, un
〉
H
, un

〉
H

∥∥∥∥
p/4

= o(1) (3.18)

‖1− ψn‖2,p1
= o(rn) (3.19)

(iii) For every z ∈ Rd and x ∈ Rd1 , it holds that

lim
n→∞

E
[
Ψ(z, x)Tn(iz, ix)ψn

]
= E

[
Ψ(z, x)T(iz, ix)

]
for (Tn,T) = (S

(3,0)
n ,S(3,0)), (S

(2,0)
0,n ,S

(2,0)
0 ), (S

(2,0)
n ,S(2,0)), (S

(1,1)
n ,S(1,1)),

(S
(1,0)
n ,S(1,0)), (S

(0,1)
n ,S(0,1)), (S

(2,0)
1,n ,S

(2,0)
1 ) and (S

(1,1)
1,n ,S

(1,1)
1 ).

We say that a family of random symbols {ςλ(iz, ix) =
∑
k,m c

λ
k,m[(iz)⊗k ⊗ (ix)⊗m]; λ ∈

Λ} is uniformly integrable (u.i.) if the degrees of polynomials are bounded and the family
{cλk,m; λ ∈ Λ} of tensor-valued random variables is uniformly integrable for every (k,m).
Recall that β = max{7, β0}, where β0 is the degree in (z, x) of the random symbol S.
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Asymptotic expansion of Skorohod integrals

Theorem 3.3. Suppose that Condition [B] is fulfilled. Then ρ
(1)
n (f) = o(rn) for every

f ∈ Cβb (Rď). Moreover,

sup
f∈B
|ρ(1)
n (f)| = o(rn)

for every bounded set B in Cβ+1
b (Rď).

Proof. The sequence {S(3,0)
n ;n ∈ N}, is u.i. from (3.10) and (3.9) for k = 3. {S(2,0)

0,n ;n ∈
N} is u.i. from (3.9) for k = 2. {S(2,0)

n ;n ∈ N} and {S(1,1)
n ;n ∈ N} are u.i. from

(3.13). {S(1,0)
n ;n ∈ N} and {S(0,1)

n ;n ∈ N} are u.i. from (3.16). {S(2,0)
1,n ;n ∈ N} and

{S(1,1)
1,n ;n ∈ N} are u.i. from (3.8) and (3.16).

We consider first the case of ρ(8)
n (f), given by

ρ(8)
n (f) = rn

{
E
[
ψnS

(1,1)
n (∂z, ∂x)f(ζ∞(0))

]
− E

[
S(1,1)(∂z, ∂x)f(ζ∞(0))

]}
.

By [B] (iii) and the formula (3.2), we obtain

lim
n→∞

E
[
ψnS

(1,1)
n (∂z, ∂x)f(ζ∞(0))

]
= E

[
S(1,1)(∂z, ∂x)f(ζ∞(0))

]
(3.20)

for f ∈ S(Rď). Let χ : Rď → [0, 1] be a smooth function with a compact support. Since for
f ∈ Cβb (Rď), the function χf is uniformly approximated in Cβb (Rď) by some function in

S(Rď), we have

lim
n→∞

∣∣∣∣E[ψnS(1,1)
n (∂z, ∂x)(χf)(ζ∞(0))

]
− E

[
S(1,1)(∂z, ∂x)(χf)(ζ∞(0))

]∣∣∣∣ = 0 (3.21)

for f ∈ Cβb (Rď). Let Bk be a bounded set in Ckb (Rď). Let ε > 0. Due to the uniformly

integrability of the family {S(1,1)
n ;n ∈ N}, we can write

sup
f∈Bβ ,n∈N

∣∣∣∣E[ψnS(1,1)
n (∂z, ∂x)((1− χ)f)(ζ∞(0))

]∣∣∣∣
+ sup
f∈Bβ

∣∣∣∣E[S(1,1)(∂z, ∂x)((1− χ)f)(ζ∞(0))
]∣∣∣∣ < ε (3.22)

if we choose χ satisfying χ = 1 on a sufficiently large compact set. Combining (3.21) and
(3.22), we obtain

lim
n→∞

∣∣∣∣E[ψnS(1,1)
n (∂z, ∂x)f(ζ∞(0))

]
− E

[
S(1,1)(∂z, ∂x)f(ζ∞(0))

]∣∣∣∣ = 0 (3.23)

for f ∈ Cβb (Rď). Moreover, we have

lim
n→∞

sup
f∈Bβ+1

∣∣∣∣E[ψnS(1,1)
n (∂z, ∂x)(χf)(ζ∞(0))

]
− E

[
S(1,1)(∂z, ∂x)(χf)(ζ∞(0))

]∣∣∣∣ = 0,

(3.24)

since the functionals in | | are equi-continuous in f in Cβ(Rď) and Bβ+1 is relatively

compact in Bβ if the domain is restricted to supp(χ). Therefore we showed that ρ(8)
n (f) =

o(rn) for every f ∈ Cβb (Rď), and that supf∈Bβ+1 |ρ(8)
n (f)| = o(rn). Similarly, we obtain the

same estimate for ρ(i)
n (f) for i = 5, . . . , 12.

Moreover, we have supf∈B0 |ρ(2)
n (f)| = o(rn) from (3.19), and supf∈B2 |ρ(4)

n (f)| = o(rn)

from (3.8), (3.16) and (3.19).

EJP 24 (2019), paper 119.
Page 17/64

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP310
http://www.imstat.org/ejp/


Asymptotic expansion of Skorohod integrals

The tensor Ĝ(1)
n (θ, ·, ·) is denoted by Ĝ(1)

n (θ). The estimate ‖Ĝ(1)
n (θ)‖p/2 = O(rn) follows

from (3.13), (3.16) and (3.8), and the estimate ‖Ǧ(1)
n ‖p/2 = O(rn) follows from (3.16).

Therefore

‖G(1)
n (θ)‖p/2 = O(rn). (3.25)

We obtain ∥∥〈DĜ(1)
n (θ), un

〉
H

∥∥
p/3

= o(rn) (3.26)

from (3.14) and (3.17) for every θ (or θ = 0, 1), and∥∥〈DǦ(1)
n , un

〉
H

∥∥
p/2

= O(rn) (3.27)

from (3.16). Moreover, we have∥∥∥∥〈D〈DĜ(1)
n (θ), un

〉
H
, un

〉
H

∥∥∥∥
p/4

= o(rn)

by (3.15) and (3.18), and∥∥∥∥〈D〈DǦ(1)
n , un

〉
H
, un

〉
H

∥∥∥∥
p/3

= o(rn)

by (3.17), so that ∥∥∥∥〈D〈DG(1)
n (θ), un

〉
H
, un

〉
H

∥∥∥∥
p/4

= o(rn) (3.28)

Let us investigate the order of ρ(3)
n (f). Denote by ρ[i] (i = 1, . . . , 24) the 24 linear

functionals of f appearing in the expression of ρ(3)
n (f). Though not explicitly mentioned

in what follows, Condition (3.19) is used every time in estimation of ρ[i] to ensure either
‖ψn‖p1 = O(1), ‖Dψn‖p1 = o(rn) or ‖D2ψn‖p1 = o(rn). The estimate ρ[1] = o(rn) follows
from (3.8) and (3.9) (and (3.19)). The term ρ[2] corresponds to the first term in the

expression of ρ(3,1)
n ; then ρ[2] = o(rn) from (3.12), (3.9), (3.10) and (3.8) with the aid

of the Leibniz rule; ρ[3] = O(r2
n) from (3.9), (3.10) and (3.8); ρ[4] = O(r2

n) from (3.9),
(3.10) and (3.8); ρ[5] = O(r2

n) from (3.25), (3.9), (3.10) and (3.8); ρ[6] = O(r2
n) from (3.9);

ρ[7] = O(r2
n) from (3.9); ρ[8] = O(r2

n) from (3.25) and (3.9); ρ[9] = o(rn) + o(rn)o(rn) +

O(rn)o(rn) = o(rn) from (3.12), (3.11), (3.8) and (3.9); ρ[10] = o(r2
n) + o(r3

n) = o(r2
n)

from (3.11), (3.9) and (3.8); ρ[11] = o(r2
n) + o(r3

n) = o(r2
n) from (3.11), (3.9) and (3.8);

ρ[12] = o(r2
n) + o(r3

n) = o(r2
n) from (3.25), (3.11), (3.9) and (3.8); ρ[13] = O(r2

n) from (3.9);
ρ[14] = O(r2

n) from (3.9); ρ[15] = O(r2
n) from (3.25) and (3.9); ρ[16] = o(rn) +O(rn)o(rn) +

O(rn)o(rn) = o(rn) from (3.28), (3.26), (3.27), (3.25) and (3.8); ρ[17] = O(r2
n) + o(r3

n) =

O(r2
n) from (3.9), (3.26), (3.27), (3.25) and (3.8); ρ[18] = O(r2

n) + o(r3
n) = O(r2

n) from
(3.9), (3.26), (3.27), (3.25) and (3.8); ρ[19] = O(r2

n) + o(r3
n) = O(r2

n) from (3.25), (3.26),
(3.27) and (3.8); ρ[20] = O(r2

n) from (3.9) and (3.25); ρ[21] = O(r2
n) from (3.9) and (3.25);

ρ[22] = O(r2
n) from (3.25); ρ[23] = o(rn) + o(r2

n) = o(rn) from (3.11), (3.9) and (3.8);
ρ[24] = o(rn) + o(r2

n) = o(rn) from (3.26) and (3.8). We remark that some ρ[i]’s involve a
product of five Lp variables besides ψn or its derivative, and that the seventh derivative
of f appears in ρ[11]. These estimates give supf∈B7 |ρ(3)

n (f)| = o(rn). This completes the
proof.

Remark 3.4. Corollary 3.2 of Nourdin, Nualart and Peccati [14] gives stable conver-
gence of the Skorohod integral Mn = δ(un) under the conditions (i) 〈DMn, un〉H → G∞
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in L1, (ii) 〈un, h〉H → 0 in L1 for every h ∈ H, and (iii) 〈DG∞, un〉H → 0 in L1. Theorem
3.3 entails the mixed normal limit theorem for Zn and the joint convergence of (Zn, Xn).
Indeed, (3.9) gives the conditions (i) and (iii). The stable convergence was proved in [14]
by taking X∞ = W(h) for h ∈ H in the present context. Condition (3.13) gives (ii) when
X∞ = W(h).

4 A functional of a fractional Brownian motion

In this section, we shall consider a functional of a fractional Brownian motion (fBm)
with Hurst parameter H ∈ (0, 1) on the time interval [0, 1]. The fBm is a centered
Gaussian process B = {Bt, t ∈ [0, 1]} defined on a probability space (Ω,F , P ) with
covariance function

RH(t, s) = E[BsBt] =
1

2

(
t2H + s2H − |t− s|2H

)
.

The process B is a standard Brownian motion for H = 1
2 . Denote by E the set of step

functions on [0, 1]. Then it is possible to introduce an inner product in E such that〈
1[0,t],1[0,s]

〉
H

= E[BsBt].

Let ‖ · ‖H = 〈·, ·〉1/2H . Hilbert space H is defined as the closure of E with respect to ‖ · ‖H.
It is known that the mapping 1[0,t] 7→ Bt can be extended to a linear isometry between

H and the Gaussian space spanned by B in L2 = L2(Ω,F , P ). We denote this isometry by
φ 7→ B(φ). The process {B(φ), φ ∈ H} is an isonormal Gaussian process. We refer to [18]
for a detailed account on the basic properties of the fBm. Assume again that F is the
σ-field generated by B.

In the case H > 1
2 , the space H contains the linear space |H| of all measurable

functions ϕ : [0, 1]→ R satisfying∫ 1

0

∫ 1

0

|ϕ(s)||ϕ(t)||t− s|2H−2dsdt <∞.

In this case, the inner product 〈ϕ, φ〉H is represented by

〈ϕ, φ〉H = H(2H − 1)

∫ 1

0

∫ 1

0

ϕ(s)φ(t)|t− s|2H−2dsdt (4.1)

for ϕ, φ ∈ |H|. Furthermore, L
1
H ([0, 1]) is continuously embedded into H. The following

lemma provides useful formulas for the inner product in the Hilbert space H.

Lemma 4.1. (i) Let H 6= 1
2 . For any piecewise continuous function ϕ on [0, 1], the inner

product 〈ϕ,1[0,s]〉H is given by

〈ϕ,1[0,s]〉H =

∫ 1

0

ϕ(t)
∂RH
∂t

(t, s)dt

=

∫ 1

0

ϕ(t)H
{
t2H−1 − |t− s|2H−1sign(t− s)

}
dt. (4.2)

(ii) Let H 6= 1
2 . For any piecewise continuous function ϕ on [0, 1] and ψ ∈ C1

b ([0, 1]),

〈ϕ,ψ〉H =

∫ 1

0

ϕ(t)

{
∂RH
∂t

(t, 1)ψ(1)−
∫ 1

0

∂RH
∂t

(t, s)ψ′(s)ds

}
dt

=

∫ 1

0

ϕ(t)H

{
t2H−1ψ(0) + (1− t)2H−1ψ(1)

+

∫ 1

0

|t− s|2H−1sign(t− s)ψ′(s)ds
}
dt. (4.3)
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Asymptotic expansion of Skorohod integrals

(iii) Let 0 < H < 1/2, 0 < a < b < 1. Then for any piecewise continuous function ϕ on
[0, 1], ∣∣〈ϕ,1[a,b]〉H

∣∣ ≤ ‖ϕ‖∞(b− a)2H .

Proof. Approximating ϕ by step functions we can derive (i). For (ii), using (i) we can
write

〈ϕ,ψ〉H =

〈
ϕ,ψ(1)1[0,1] −

∫ 1

0

1[0,s]ψ
′(s)ds

〉
H

= ψ(1)

∫ 1

0

ϕ(t)
∂RH
∂t

(t, 1)dt−
∫ 1

0

∫ 1

0

ϕ(t)
∂RH
∂t

(t, s)ψ′(s)dsdt.

Simple calculus with (i) gives (iii).

In what follows, we shall write

cH =
√
HΓ(2H), H ∈ (0, 1). (4.4)

Notice that c 1
2

= 1√
2

and for H > 1/2, cH =
√
H(2H − 1)Γ(2H − 1).

We will consider the sequence of random variables Zn = δ(un), n ≥ 1, where

un(t) = nHtnBt1[0,1](t).

The following provides the convergence in law of the sequence Zn. For the Brownian
motion case, this result goes back to Peccati and Yor [23]. For H > 1

2 , it was proved by
Peccati and Tudor [21] and a rate of convergence in the total variation distance was
established in [14]. For 1

4 <H < 1
2 , the convergence in law of Zn is a consequence of our

asymptotic expansion proved below. The process un belongs to the domain of δ only if
H > 1

4 . Indeed, if H ≤ 1
4 , the process Bt does not belong to L2(Ω;H) (see Cheridito and

Nualart [2], Proposition 3.2).

Proposition 4.2. The sequence Zn converges stably in law to ζ
√
G∞, where G∞ = c2HB

2
1

and ζ is a N(0, 1) random variable, independent of {Bt, t ∈ [0, 1]}.
In the setting of Section 2, the variables are now Zn = Mn, Wn = W∞ = 0, Xn =

X∞ = 0, ψn = 1 and G∞ = c2HB
2
1 . We are interested in investigating the asymptotic

behavior of the three basic terms: modified quasi torsion, quasi tangent and quasi
torsion. We denote by CH a generic constant depending on H, that may vary in different
lines.

Consider first the case of the modified quasi torsion.
(i) Case H = 1

2 . We have G∞ = 1
2B

2
1 and DtG∞ = B11[0,1](t). Therefore,

G(3)
n = 〈DG∞, un〉H =

√
nB1

∫ 1

0

tnBtdt.

As a consequence, taking rn = n−1/2, we obtain

mqTor =
√
nG(3)

n
Lp→ B2

1 , (4.5)

for all p ≥ 2.

(ii) Case H 6= 1
2 . We have G∞ = c2HB

2
1 , where cH is the constant defined in (4.4) and

DtG∞ = 2c2HB11[0,1](t). Applying (4.2) yields

〈DG∞, un〉H = 2c2Hn
HB1〈tnBt1[0,1](t),1[0,1](t)〉H

= 2c2Hn
HB1

∫ 1

0

Btt
nH
{
t2H−1 + (1− t)2H−1

}
dt.
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Using the decomposition B1Bt = B2
1 +B1(Bt −B1), we can write

〈DG∞, un〉H = 2c2Hn
HB2

1

∫ 1

0

tnH
{
t2H−1 + (1− t)2H−1

}
dt

+2c2Hn
HB1

∫ 1

0

tn(Bt −B1)H
{
t2H−1 + (1− t)2H−1

}
dt

= 2c2HB
2
1H

{
nH−1 + nH

Γ(n+ 1)Γ(2H)

Γ(n+ 1 + 2H)

}
+Rn,

where ‖Rn‖p = O(n−1) + O(n−2H) for all p ≥ 2. As a consequence, we obtain the
following results:
If H > 1

2 we take rn = nH−1 and

mqTor = r−1
n G(3)

n
Lp→ 2H2Γ(2H)B2

1 . (4.6)

If H < 1
2 we take rn = n−H and

mqTor = r−1
n G(3)

n
Lp→ 2H2Γ(2H)2B2

1 . (4.7)

Notice that the limit is discontinuous at H = 1
2 . With these preliminaries, we can

now proceed to deduce the asymptotic expansion for E[f(Zn)] with classification for H.

4.1 Brownian motion case

We will analyze the asymptotic behavior of the quasi tangent and the quasi torsion,
which are the main ingredients in the asymptotic expansions.

4.1.1 Quasi tangent

Let us now establish the asymptotic behavior of the quasi tangent, defined by

qTan =
√
nG(2)

n =
√
n (〈DZn, un〉H −G∞) .

We have, for s ∈ [0, 1],

DsZn =
√
nsnBs +

√
n

∫ 1

s

tndBt.

Therefore,

〈DZn, un〉H = n

∫ 1

0

s2nB2
sds+ n

∫ 1

0

snBs

(∫ 1

s

tndBt

)
ds.

Then,

G(2)
n = 〈DZn, un〉H −

1

2
B2

1

= n

∫ 1

0

s2n(B2
s −B2

1)ds+B2
1

(∫ 1

0

ns2nds− 1

2

)
+n

∫ 1

0

sn(Bs −B1)

(∫ 1

s

tndBt

)
ds+ nB1

∫ 1

0

sn
(∫ 1

s

tndBt

)
ds.

Using the decomposition (B2
s −B2

1) = (Bs −B1)2 − 2B1(B1 −Bs), yields

G(2)
n = n

∫ 1

0

s2n(Bs −B1)2ds− 2nB1

∫ 1

0

s2n(B1 −Bs)ds−
B2

1

4n+ 2

− n
∫ 1

0

sn(B1 −Bs)
(∫ 1

s

tndBt

)
ds+B1

n

n+ 1

∫ 1

0

t2n+1dBt

= Zn,1 + Zn,2 + Zn,3,
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where

Zn,1 = n

∫ 1

0

s2n[(B1 −Bs)2 − (1− s)]ds

−n
∫ 1

0

sn
[
(B1 −Bs)

(∫ 1

s

tndBt

)
− 1− sn+1

n+ 1

]
ds,

Zn,2 = − n2

2(n+ 1)2(2n+ 1)
− B2

1

4n+ 2
,

Zn,3 = − n

(n+ 1)(2n+ 1)
B1

∫ 1

0

t2n+1dBt.

The term Zn,1 belongs to the second Wiener chaos and it can be written as a double
stochastic integral:

Zn,1 =

∫ 1

0

2ns2n

(∫
[s,1]2

dBrdBu

)
ds−

∫ 1

0

nsn

(∫
[s,1]2

(rn + un)dBrdBu

)
ds = I2(fn),

where

fn(r, u) =
n

2n+ 1
min(r, u)2n+1 − n

2(n+ 1)
min(r, u)n+1(rn + un).

It is not difficult to check that n2‖fn‖2H⊗2 converges to a constant as n tends to infinity.
Therefore, ‖Zn,1‖2 = O(n−1). Clearly, we also have ‖Zn,2‖2 = O(n−1). Finally, ‖Zn,3‖2 =

O(n−3/2). Consequently, ‖
√
nG

(2)
n ‖2 = O(n−1/2), and hence the effect of the quasi

tangent disappears in the limit, that is, S(2,0)
0 = 0.

4.1.2 Quasi torsion

Let us first recall the definition of the quasi torsion

qTor =
√
n〈D〈DZn, un〉H, un〉H =

√
n〈DG(2)

n , un〉H +
√
n〈DG∞, un〉H.

Since G
(2)
n is in the second chaos, it follows that

√
n‖‖DG(2)

n ‖H‖2 = O(n−1/2) from√
n‖G(2)

n ‖2 = O(n−1/2) in Section 4.1.1. Therefore, from (4.5) we deduce

√
n〈D〈DZn, un〉H, un〉H

Lp→ B2
1

for all p ≥ 2. Thus we obtain S(3,0) = 3−1B2
1 .

4.1.3 Asymptotic expansion

From the computations in Sections 4.1.1 and 4.1.2, we deduce that conditions (3.8),
(3.9), (3.10), (3.11) and (3.12) are satisfied for all p ≥ 2. Thus, taking ψn = 1, assumption
[B] holds and we can apply Theorems 3.1 and 3.3. In this way, we obtain

E[f(Zn)] = E[f(G1/2
∞ ζ)] +

1√
n
E[S(3,0)(∂3

z )f(G1/2
∞ ζ)] + ρ(1)

n (f)

= E[f(2−1/2|B1|ζ)] +
1

3
√
n
E[B2

1f
(3)(2−1/2|B1|ζ)] + ρ(1)

n (f) (4.8)

for f ∈ C7
b (R), where ζ ∼ N(0, 1) is independent of B1, and ρ(1)

n (f) = o(n−
1
2 ).

4.2 Fractional Brownian motion. Case H > 1
2

Recall that in that case rn = nH−1.
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4.2.1 Quasi tangent

We are going to establish the convergence in law of the tangent and show that it does
not contribute to the asymptotic expansion. We have, for s ∈ [0, 1],

DsZn = nHsnBs + nH
∫ 1

s

tndBt.

Therefore,

〈DZn, un〉H = ‖un‖2H + nH
〈
un,

∫ 1

·
tndBt

〉
H

=: ‖un‖2H + Φn, (4.9)

and the quasi tangent qTan is given by

qTan = n1−HG(2)
n = n1−H (‖un‖2H − c2HB2

1 + Φn
)
.

Let

σ2
H,1 = 2H2(2H − 1)2

∫
[0,1]4

| log y1 − log x1|2H−2| log y2 − log x2|2H−2

×(| log y1|2H + | log y2|2H − | log y1 − log y2|2H)dx1dx2dy1dy2 (4.10)

and

σ2
H,2 = H3(2H − 1)3

∫
[0,1]2

|1− s1|2H−2|1− s2|2H−2ds1ds2

×
∫

[0,1]2
| log x1 − log x2|2H−2dx1dx2.

(4.11)

Proposition 4.3. For the term ‖un‖2H we have

nH(‖un‖2H − c2HB2
1)
L→ σH,1B1ζ (4.12)

where ζ is a N(0, 1)-random variable independent of B. On the other hand,

n1−HΦn
L→ σH,2B1ζ, (4.13)

where ζ is a N(0, 1)-random variable independent of B. As a consequence, taking into
account that H > 1

2 , we obtain

qTan = n1−HG(2)
n
L→ σH,2B1ζ. (4.14)

Proof. We first show (4.12). We can write

‖un‖2H − c2HB2
1 = H(2H − 1)

(
n2H

∫ 1

0

∫ 1

0

tnsnBtBs|t− s|2H−2dsdt− Γ(2H − 1)B2
1

)
= H(2H − 1)n2H

∫ 1

0

∫ 1

0

tnsn[BtBs −B2
1 ]|t− s|2H−2dsdt

+H(2H − 1)

(
n2H

∫ 1

0

∫ 1

0

tnsn|t− s|2H−2dsdt− Γ(2H − 1)

)
B2

1

=: An,1 +An,2B
2
1 .
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The term An,2 is a deterministic term bounded by Cn−1, therefore it does not contribute
to the limit. In order to handle the term An,1 we make the decomposition

BsBt −B2
1 = B1(Bt −B1) + (Bs −B1)(Bt −B1) +B1(Bs −B1).

We claim that the product (Bs −B1)(Bt −B1) does not contribute to the limit of nHAn,1.
In fact,

H(2H − 1)n2H

∫ 1

0

∫ 1

0

sntn|Bs −B1||Bt −B1||t− s|2H−2dsdt = n2H‖sn|Bs −B1|‖2H

≤ CHn2H‖sn|Bs −B1|‖2L1/H = CHn
2H

(∫ 1

0

s
n
H |Bs −B1|

1
H ds

)2H

.

By Minkowski’s inequality, the expectation of this quantity is estimated as follows

CHn
2H

∥∥∥∥∫ 1

0

s
n
H |Bs −B1|

1
H ds

∥∥∥∥2H

L2H(Ω)

≤ CHn2H

(∫ 1

0

s
n
H

∥∥∥|Bs −B1|
1
H

∥∥∥
L2H(Ω)

ds

)2H

≤ CHn
2H

(∫ 1

0

s
n
H (1− s)ds

)2H

≤ C ′Hn−2H .

Therefore, it suffices to consider the term

Ãn,1 = 2B1H(2H − 1)n2H

∫ 1

0

∫ 1

0

tnsn(Bs −B1)|t− s|2H−2dsdt =: B1An,3,

and to show that nHAn,3 converges in law to a Gaussian random variable with mean zero
and variance σ2

H,1 independent of {Bt, t ∈ [0, 1]}. This is a consequence of the following
two facts:

(i) E(n2HA2
n,3)→ σ2

H,1.

(ii) E(nHAn,3Bt)→ 0, for any t ∈ [0, 1].

The proof of (i) is based on the computation of the limit of the following quantity

4H2(2H − 1)2n6H

∫
[0,1]4

sn1 t
n
1 s
n
2 t
n
2

×E[(Bt1 −B1)(Bt2 −B1)]|t1 − s1|2H−2|t2 − s2|2H−2ds1ds2dt1dt2

= 2H2(2H − 1)2n6H

∫
[0,1]4

sn1 t
n
1 s
n
2 t
n
2

×(|1− t1|2H + |1− t2|2H − |t1 − t2|2H)|t1 − s1|2H−2|t2 − s2|2H−2ds1ds2dt1dt2.

This limit can be evaluated using the change of variables sn+1
1 = x1, sn+1

2 = x2, tn+1
1 = y1

and tn+1
2 = y2, which leads to the representation (4.10) of σ2

H,1. The proof of (ii) can be
done in a similar way. This concludes the proof of (4.12).

For (4.13), we can write

Φn = H(2H − 1)n2H

∫ 1

0

∫ 1

0

tnBt

(∫ 1

s

θndBθ

)
|t− s|2H−2dsdt

= H(2H − 1)n2H

∫ 1

0

∫ 1

0

tn(Bt −B1)

(∫ 1

s

θndBθ

)
|t− s|2H−2dsdt

+H(2H − 1)B1n
2H

∫ 1

0

∫ 1

0

tn
(∫ 1

s

θndBθ

)
|t− s|2H−2dsdt

=: Φn,1 + Φn,2. (4.15)
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We first show that Φn,1 does not contribute to the limit:

|Φn,1| = n2H

〈
tn(Bt −B1),

∫ 1

·
θndBθ

〉
H

≤ n2H‖tn(Bt −B1)‖H
∥∥∥∥∫ 1

·
θndBθ

∥∥∥∥
H

≤ CHn
2H‖tn(Bt −B1)‖

L
1
H

∥∥∥∥∫ 1

·
θndBθ

∥∥∥∥
L

1
H

= CHn
2H

[∫ 1

0

t
n
H |Bt −B1|

1
H dt

∫ 1

0

|
∫ 1

s

θndBθ|
1
H ds

]H
.

Then, taking expectation and using Minkowski’s inequality, we get

E[|Φn,1|2] ≤ CHn
4H

∥∥∥∥∫ 1

0

t
n
H |Bt −B1|

1
H dt

∥∥∥∥2H

L4H(Ω)

∥∥∥∥∥
∫ 1

0

∣∣∣∣∫ 1

s

θndBθ

∣∣∣∣
1
H

ds

∥∥∥∥∥
2H

L4H(Ω)

≤ CHn
4H

(∫ 1

0

t
n
H (1− t)dt

)2H
(∫ 1

0

∥∥∥∥∫ 1

s

θndBθ

∥∥∥∥
1
H

L4(Ω)

ds

)2H

≤ CH

(∫ 1

0

‖θn1[s,1]‖
1
H

H ds

)2H

≤ CH

(
‖θn‖

1
H

L
1
H

)2H

≤ CHn
−2H ,

and n1−H‖Φn,1‖2 converges to zero as n tends to infinity. Finally, it suffices to consider
the term

Φn,2 = B1Φ̃n,2,

where

Φ̃n,2 = H(2H − 1)n2H

∫ 1

0

∫ 1

0

tn
(∫ 1

s

θndBθ

)
|t− s|2H−2dsdt. (4.16)

We claim that n1−HΦ̃n,2 converges in law to a Gaussian random variable with zero mean
and variance σ2

H,2 independent of {Bt, t ∈ [0, 1]}. This is a consequence of the following
two facts:

(i) E(n2−2HΦ̃2
n,2)→ σ2

H,2.

(ii) E(n1−HΦ̃n,2Bt)→ 0, for any t ∈ [0, 1].

We first show (i):

E(n2−2HΦ̃2
n,2) = H2(2H − 1)2n2+2H

∫
[0,1]4

tn1 t
n
2E

[(∫ 1

s1

θndBθ

)(∫ 1

s2

θndBθ

)]
×|t1 − s1|2H−2|t2 − s2|2H−2ds1dt1ds2dt2

= H3(2H − 1)3n2+2H

∫
[0,1]4

tn1 t
n
2

∫ 1

s1

∫ 1

s2

θn1 θ
n
2 |θ1 − θ2|2H−2dθ1dθ2

×|t1 − s1|2H−2|t2 − s2|2H−2ds1dt1ds2dt2.

Using the change of variables tn+1
1 = y1, tn+1

2 = y2, θn+1
1 = x1 and θn+1

2 = x2, we can
show that this quantity converges to σ2

H,2 given in (4.11). The proof of (ii) can be done in
a similar way.
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In spite of the preceding proposition, the quasi tangent does not contribute to
the asymptotic expansion derived in the last section. In fact, the convergence (4.14),
together with uniform integrability, gives limn→∞E[Ψ(z) qTan] = 0, that is, S(2,0)

0 = 0.
More strongly, using the duality relationship between the Skorohod integral and the
derivative operator (IBP formula), we can show this fact directly for Φn,2 as follows:

n1−H

∣∣∣∣∣E
[
Ψ(z)n2HB1

∫ 1

0

∫ 1

0

tn
(∫ 1

s

θndBθ

)
|t− s|2H−2dsdt

] ∣∣∣∣∣
= n1+H

∣∣∣∣∣E
[∫ 1

0

∫ 1

0

tn|t− s|2H−2

〈
Dθ

(
B1 exp(−1

2
z2c2HB

2
1)

)
,1[s,1](θ)θ

n

〉
H

dsdt

] ∣∣∣∣∣
≤ CnH−1.

By (4.14), qTan never converges to zero in probability. Thus DqTan potentially has some
effect at the rate n1−H .

4.2.2 Quasi torsion

By (4.9), we have

qTor = n1−H〈D〈DZn, un〉H, un〉H
= n1−H(〈D(‖un‖2H − c2HB2

1

)
, un
〉
H

+ 〈DΦn, un〉H + 〈DG∞, un〉H
)
.

Notice that

‖‖un‖H‖2 ≤ CHn
H‖‖tnBt‖L1/H‖2 ≤ C ′H ,

which implies that ‖‖un‖H‖p is uniformly bounded for any p ≥ 2. On the other hand, the
computations in the previous section imply ‖‖D

(
‖un‖2H − c2HB2

1

)
‖H‖p = O(n−H) for any

p ≥ 2. Therefore, ‖n1−H〈D(‖un‖2H − c2HB2
1

)
, un
〉
H
‖p = O(n1−2H) and this term does not

contribute to the limit.
Consider the term 〈DΦn, un〉H. Using the decomposition (4.15), we can write

〈DΦn, un〉H = 〈DΦn,1, un〉H + 〈DΦn,2, un〉H.

The term 〈DΦn,1, un〉H does not contribute to the limit since Φn,1 is in the second chaos
and ‖n1−HΦn,1‖2 → 0. As for 〈DΦn,2, un〉H, we can write

〈DΦn,2, un〉H = 〈DB1, un〉HΦ̃n,2 +B1〈DΦ̃n,2, un〉H,

where Φ̃n,2 is defined in (4.16). The term 〈DB1, un〉HΦ̃n,2 does not contribute to the limit
at the rate n1−H in Lp, p ≥ 2 due to the computations in the previous section. On the
other hand, for the second term we can write

n1−HB1〈DΦ̃n,2, un〉H = n1+HH(2H − 1)B1

∫ 1

0

∫ 1

0

tn|t− s|2H−2〈un(ξ), θn1[s,1](θ)〉Hdsdt

= n1+2HH2(2H − 1)2B1

×
∫

[0,1]4
tn|t− s|2H−2Bξξ

nθn|ξ − θ|2H−21[s,1](θ)dξdθdsdt

= CnB
2
1 +H2(2H − 1)2∆n,

where

Cn = n1+2HH2(2H − 1)2

∫
[0,1]4

tn|t− s|2H−2ξnθn|ξ − θ|2H−21[s,1](θ)dξdθdsdt,
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and

∆n = n1+2HB1

∫
[0,1]4

tn|t− s|2H−2(Bξ −B1)ξnθn|ξ − θ|2H−21[s,1](θ)dξdθdsdt.

With the change of variables tn+1 = x, θn+1 = y, ξn+1 = z, we obtain

lim
n→∞

Cn = H2(2H − 1)

∫
[0,1]2

| log y − log z|2H−2dydz

= H2(2H − 1)Γ(2H − 1) = c2HH.

On the other hand, it is easy to check that ‖∆n‖p ≤ Cn−1, so this term does not
contribute to the limit. In conclusion, taking into account (4.6), the quasi torsion
qTor = n1−H〈D〈DZn, un〉H, un〉H converges in Lp to 3c2HHB

2
1 for all p ≥ 2. In other

words, S(3,0) = c2HHB
2
1 for H > 1/2, which is discontinuous at H = 1/2. In this way, we

obtain the expansion

E[f(Zn)] = E[f(cH |B1|ζ)] + nH−1E[c2HHB
2
1f

(3)(cH |B1|ζ)] + ρ(1)
n (f), (4.17)

for f ∈ C7
b (R), where ζ ∼ N(0, 1) is independent of B1, Again, from the computations in

Sections 4.2.1 and 4.2.2, we deduce that conditions (3.8), (3.9), (3.10), (3.11) and (3.12)
are satisfied for all p ≥ 2. Thus, taking ψn = 1, assumption [B] holds and by Theorem 3.3
ρ

(1)
n (f) = o(nH−1).

4.3 Fractional Brownian motion. Case 1
4 <H < 1

2

Let cn,H = Γ(2H+1)Γ(n)
Γ(n+2H+1) . We need the following preliminary result.

Lemma 4.4. The norm ‖tn‖2H is given by

‖tn‖2H =
n2 + 2nH

2n+ 2H
cn,H .

Proof. We can write

‖tn‖2H = E

[(∫ 1

0

tndBt

)2
]

= E

[(
B1 −

∫ 1

0

ntn−1Btdt

)2
]

= 1− 2

(
n+H

n+ 2H
− n

2
cn,H

)
+ n2

∫ 1

0

∫ 1

0

tn−1sn−1E(BtBs)dsdt.

We have

n2

∫ 1

0

∫ 1

0

tn−1sn−1E(BtBs)dsdt =
n2

2

∫ 1

0

∫ 1

0

tn−1sn−1(t2H + s2H − |t− s|2H)dsdt

=
n

n+ 2H
− n2

2n+ 2H
cn,H

Therefore

‖tn‖2H =
n2 + 2nH

2n+ 2H
cn,H =

n

2(n+H)

Γ(2H + 1)Γ(n)

Γ(n+ 2H)
.

As a consequence,

lim
n→∞

n2H‖tn‖2H =
1

2
Γ(2H + 1) = c2H ,

where cH is the constant introduced in (4.4).
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4.3.1 Quasi tangent

Recall that rn = n−H and the quasi tangent is defined by

qTan = nHG(2)
n = nH (〈DZn, un〉H −G∞) .

We know that

〈DZn, un〉H = ‖un‖2H + n2H〈tnBt,
∫ 1

t

sndBs〉H. (4.18)

The inner product in the Hilbert space H is more involved than in the case H > 1
2 , and it

is convenient to rewrite the stochastic integral
∫ 1

t
sndBs using integration by parts:∫ 1

t

sndBs = B1 − tnBt − n
∫ 1

t

Bss
n−1ds. (4.19)

Substituting (4.19) into (4.18) yields

〈DZn, un〉H = ‖un‖2H + n2H〈tnBt, B1 − tnBt − n
∫ 1

t

Bss
n−1ds〉H

= n2H〈tnBt, B1 − n
∫ 1

t

Bss
n−1ds〉H

= n2HB1〈tnBt, 1〉H − n2H+1

∫ 1

0

〈tnBt,1[0,s](t)〉Hsn−1Bsds.

PuttingBt = (Bt−B1)+B1 andBtBs = (Bt−B1)(Bs−B1)+B1(Bt−B1)+B1(Bs−B1)+B2
1 ,

we obtain

〈DZn, un〉H = n2HB2
1

(
〈tn, 1〉H − n

∫ 1

0

〈tn,1[0,s](t)〉Hsn−1ds

)
+n2HB1〈tn(Bt −B1), 1〉H

−n2H+1B1

∫ 1

0

〈tn(Bt −B1),1[0,s](t)〉Hsn−1ds

−n2H+1B1

∫ 1

0

〈tn,1[0,s](t)〉Hsn−1(Bs −B1)ds

−n2H+1

∫ 1

0

〈tn(Bt −B1),1[0,s](t)〉Hsn−1(Bs −B1)ds.

Actually, we can combine the second and third terms and last two terms as follows:

〈DZn, un〉H = n2HB2
1

(
〈tn, 1〉H − n

∫ 1

0

〈tn,1[0,s](t)〉Hsn−1ds

)
+n2HB1〈tn(Bt −B1), tn〉H

−n2H+1

∫ 1

0

〈tnBt,1[0,s](t)〉Hsn−1(Bs −B1)ds

=:

3∑
i=1

Ai,n.

The dominant term in the limit will be A1,n, which can be expressed as

A1,n = n2HB2
1

(
〈tn, 1〉H − n

∫ 1

0

〈tn,1[0,s](t)〉Hsn−1ds

)
= n2HB2

1‖tn‖2H,
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and converges to G∞ = HΓ(2H)B2
1 as n tends to infinity by Lemma 4.4. It is not difficult

to check, using formulas (4.2) and (4.3), that the other two terms converge to zero in L2

as n tends to infinity.

We are going to show that the quasi tangent does not contribute to the asymptotic
expansion. From the preceding computations, we deduce

qTan = nHB2
1 [n2H‖tn‖2H − c2H ] +

3∑
i=2

nHAi,n.

We examine each term of this expression as follows:

(i) For the first term, by Lemma 4.4, we have

Ã1,n := nHB2
1 [n2H‖tn‖2H − c2H ] = B2

1n
H 1

2
Γ(2H + 1)

[
n2H+1

(n+H)

Γ(n)

Γ(n+ 2H)
− 1

]
,

which converges to zero.

(ii) For the second term, by Lemma 4.1 (ii), we have

nHA2.n = n3HB1〈tn(Bt −B1), tn〉H

= n3HHB1

∫ 1

0

tn(Bt −B1)(1− t)2H−1dt

+n3HHB1

∫ 1

0

tn(Bt −B1)

∫ 1

0

|t− s|2H−1sign(t− s)nsn−1dsdt. (4.20)

We claim that

lim
n→∞

nHE[Ψ(z)A2.n] = 0. (4.21)

In fact, integrating by parts, the factor Bt −B1 produces a term of the form |t− 1|2H due
to Lemma 4.1 (iii), and then we have∫ 1

0

tn(1− t)4H−1dt . n−4H ,

hence the first term on the right-hand side of (4.20) converges to 0. For two sequences
of numbers an and bn, an . bn means that there exists a positive constant C independent
of n such that an ≤ Cbn for large n ∈ N. For the second term we apply the integration-
by-parts formula to Bt −B1 as well as Lemma 4.1 (iii) and Lemma 4.5 below to obtain
the bound ∫ 1

0

tn(1− t)2H

∫ 1

0

|t− s|2H−1nsn−1dsdt = O(n−4H).

Therefore the second term on the right-hand side of (4.20) converges to 0, which proves
(4.21).

Lemma 4.5. Let α, β, µ ∈ (−1,∞) and ν ∈ [0,∞). Let

B(α, β, µ, ν) = B(µ+ ν + β + 2, α+ 1)B(β + 1, ν + 1) +
1

β + 1
B(µ+ 1, α+ β + 2).

Then
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(i)

∫ 1

0

∫ 1

0

tµ(1− t)α|t− s|βsνdsdt ≤ B(α, β, µ, ν).

(ii) For fixed α and β, it holds that

B(α, β, µ, ν) ∼ Γ(α+ 1)Γ(β + 1)

(µ+ ν)α+1νβ+1
+

Γ(α+ β + 2)

(β + 1)µα+β+2

as µ, ν →∞.

Proof. First,∫ 1

0

tµ(1− t)α
∫ t

0

(t− s)βsνdsdt =

∫ 1

0

tµ+ν+β+1(1− t)αdt
∫ 1

0

(1− v)βvνdv

= B(µ+ ν + β + 2, α+ 1)B(β + 1, ν + 1).

Next,∫ 1

0

tµ(1− t)α
∫ 1

t

(s− t)βsνdsdt =

∫ 1

0

tµ(1− t)α
{

(1−t)β+1

β + 1
−
∫ 1

t

(s− t)β+1

β + 1
νsν−1ds

}
dt

≤ 1

β + 1

∫ 1

0

tµ(1− t)α+β+1dt

=
1

β + 1
B(µ+ 1, α+ β + 2).

Property (i) follows from these inequalities and (ii) is obvious.

(iii) The third term also does not produce contribution. By Lemma 4.1 (i) and Lemma
4.1 (iii) after integration-by-parts in Bs −B1, we estimate nHE[Ψ(z)A3,n] by

Cn3H+1

∫ 1

0

∫ 1

0

tn(t2H−1 + |t− s|2H−1)sn−1(1− s)2Hdsdt

. n3H+1
{
B(2H, 0, n− 1, n+ 2H − 1) +B(2H, 2H − 1, n− 1, n)

}
. nH−1 + n−H .

In this way, we have proved that qTan has no contribution in the limit, that is,
S

(2,0)
0 = 0.

4.3.2 Quasi torsion

The quasi torsion can be written as

qTor = nH〈D〈DZn, un〉H, un〉H = nH(〈DG(2)
n , un〉H + 〈DG∞, un〉H).

Let us show that nH〈DG(2)
n , un〉H does not contribute to the asymptotic expansion. First,∥∥〈DÃ1,n, un〉H

∥∥
p

=
∥∥〈D(B2

1), un〉H
∥∥
p
× o(1) = o(1)

for p ≥ 2. We have, uniformly in s,

∥∥〈DBs, un〉H∥∥p =

∥∥∥∥nH ∫ 1

0

HBtt
n{t2H−1 − |t− s|2H−1sign(t− s)}dt

∥∥∥∥
p

= O(nH−1).

(4.22)
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Therefore by (4.20),
∥∥〈nHDA2,n, un

〉
H

∥∥
p

= O(n4H−2) = o(1). For the term A3,n we can
write for any p ≥ 2, using Lemma 4.1 (i), (4.22) and Lemma 4.5,∥∥nH〈DA3,n, un〉H

∥∥
p
≤ C sup

s∈[0,t]

∥∥〈DBs, un〉H∥∥p
×n3H+1

∫ 1

0

∫ 1

0

tn(t2H−1 + |t− s|2H−1)sn−1dsdt

= O(n4H−2) +O(n2H−1) = o(1).

Thus we have proved that
∥∥nH〈DG(2)

n , un〉H
∥∥
p

= o(1).

Therefore, taking into account (4.7), the quasi torsion qTor converges in Lp to
2HΓ(2H)c2HB

2
1 for all p ≥ 2. In other words, S(3,0) = 2

3HΓ(2H)c2HB
2
1 for H < 1/2.

4.3.3 Asymptotic expansion

In this way, we obtain the expansion

E[f(Zn)] = E
[
f(cH |B1|ζ)

]
+ n−HE

[
2

3
Hc2HΓ(2H)B2

1f
(3)(cH |B1|ζ)

]
+ ρ(1)

n (f),

(4.23)

for f ∈ C3
b (R), where ζ ∼ N(0, 1) is independent of B1, Again, from the computations in

Sections 4.2.1 and 4.2.2, we deduce that conditions (3.8), (3.9), (3.10), (3.11) and (3.12)
are satisfied for all p ≥ 2. Thus, taking ψn = 1, assumption [B] holds and by Theorem 3.3
ρ

(1)
n (f) = o(n−H).

5 Quadratic form of a Brownian motion with predictable weights

In this section, we consider a quadratic form of a Brownian motion with predictable
weights and show that the asymptotic expansion formula for the Skorohod integral
reproduces the results obtained in [31, 30].

5.1 Quadratic form with random weights and H-derivatives

For a one-dimensional standard Brownian motion B = {Bt, t ∈ [0, 1]}, let

Zn =
√
n

n∑
j=1

atj−1

∫ tj

tj−1

∫ t

tj−1

dBsdBt =
√
n

n∑
j=1

2−1atj−1

{
(Btj −Btj−1)2 − n−1

}
,

where tj = j/n, at = a(Bt) and a is an infinitely differentiable function with derivatives
of moderate growth (g has moderate growth if |g(x)| ≤ c exp(c|x|α) for some constant
c > 0 and 0 ≤ α < 2). That is, Zn = δ(un) with

un(t) =
√
n

n∑
j=1

atj−1(Bt −Btj−1)1Ij (t),

where Ij = [tj−1, tj). In this situation Zn = Mn and we have Wn = W∞ = 0, Nn = 0,
Xn = X∞ = 0 and ψ = 1. We make rn = n−1/2.

Let

qj = (Btj −Btj−1)2 − n−1 = 2

∫ tj

tj−1

∫ t

tj−1

dBsdBt.

EJP 24 (2019), paper 119.
Page 31/64

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP310
http://www.imstat.org/ejp/


Asymptotic expansion of Skorohod integrals

We have

〈DZn, un〉H =

∫ 1

0

{√
n

n∑
j=1

2−1Dtatj−1 qj +
√
n

n∑
j=1

atj−1(Btj −Btj−1)1Ij (t)

}

×
√
n

n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt (5.1)

and

Ds〈DZn, un〉H

=

∫ 1

0

{√
n

n∑
j=1

2−1DsDtatj−1
qj +

√
n

n∑
j=1

Dtatj−1
(Btj −Btj−1

)1Ij (s)

+
√
n

n∑
j=1

Dsatj−1
(Btj −Btj−1

)1Ij (t) +
√
n

n∑
j=1

atj−1
1Ij (s)1Ij (t)

}

×
√
n

n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt

+

∫ 1

0

{√
n

n∑
j=1

2−1Dtatj−1 qj +
√
n

n∑
j=1

atj−1(Btj −Btj−1)1Ij (t)

}

×
{√

n

n∑
k=1

Dsatk−1
(Bt −Btk−1

)1Ik(t) +
√
n

n∑
k=1

atk−1
1[tk−1,t)(s)1Ik(t)

}
dt.

(5.2)

It is known that in this example, G∞ = 1
2

∫ 1

0
a2
tdt. Then,

DsG∞ =

∫ 1

0

(Dsat)atdt.

5.2 Quasi torsion

We shall study the asymptotic behavior of the eight terms appearing in the expression
of 〈D〈DZn, un〉H, un〉H corresponding to (5.2).

(i) The first term is

I1 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

DsDtatj−1
qj ×

√
n

n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

We investigate the rate of E[Ψ(z, x)I1]. The factor n1.5 comes from three
√
n. It suffices

to consider the terms for which k ∨ ` < j; otherwise the term vanishes due to DsDtatj−1 .
The number of terms in the sum

∑
j is of order n1. The number of terms in the sum

∑
k.`

for k = ` and k ∨ ` < j is O(n1), and each Bt − Btk−1
(= Bt − Bt`−1

) or its H-derivative
contributes O(n−0.5) in Lp-norm. By the IBP formula for qj we get a factor n−2. So
that the partial sum in E[Ψ(z, x)I1] for k = ` is O(n−1.5) since both ds and dt-integrals
give O(n−1). For the partial sum in E[Ψ(z, x)I1] for k 6= ` is also O(n−1.5), since the
consecutive IBP formulas (i.e., duality) for Bt − Btk−1

and Bs − Bt`−1
gives the rate

O(n−2). Thus, we obtain E[Ψ(z, x)I1] = O(n−1.5), or
√
nE[Ψ(z, x)I1] = O(n−1). This

means
√
nE[Ψ(z, x)I1] is negligible in the expansion. Table 1 summarizes how the orders

of the partial sums were obtained.
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Table 1: E[Ψ(z, x)I1]

n
∑

j(k∨`<j)
∑

k,`(k = `) ds dt IBP(qj) Bt −Btk−1 Bs −Bt`−1 order

1.5 1 1 −1 −1 −2 −0.5 −0.5 −1.5∑
k,`(k 6= `) ds dt IBP(qj) IBP(Bt−Btk−1) IBP(Bs−Bt`−1) order

2 −1 −1 −2 −1 −1 −1.5

(ii) The second term can be written as

I2 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

Dtatj−1
(Btj −Btj−1

)1Ij (s)

×
√
n

n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

Only terms with k < j = ` remain due to the product 1Ik(t)Dtatj−1
1Ij (s)1I`(s). Table 2

shows E[Ψ(z, x)I2] = O(n−0.5), as explained more precisely below.

Table 2: E[Ψ(z, x)I2]

n
∑

j,`(j=`)
∑

k(k<`) ds dt IBP(Bt−Btk−1) (Bs−Bt`−1)(Btj−Btj−1) order

1.5 1 1 −1 −1 −1 −1 −0.5

The contribution of
√
nE[Ψ(z, x)I2] is evaluated as follows. An ≡a Bn meansAn−Bn =

o(1) as n→∞. By Itô’s formula,

(Btj −Btj−1)(Bs −Btj−1)

= (Btj −Bs)(Bs −Btj−1
) + 2

∫ s

tj−1

∫ t

tj−1

dBrdBt + (s− tj−1) (5.3)

for s ∈ Ij . As already mentioned, only the terms with k < j = ` contribute the result.
Applying the IBP formula for the first two terms of the right-hand side of (5.3), we obtain

√
nE[Ψ(z, x)I2] = E

[
Ψ(z, x)

∫ 1

0

∫ 1

0

n2
n∑
j=1

atj−1
Dtatj−1

(Btj −Btj−1
)(Bs −Btj−1

)1Ij (s)

×
∑
k:k<j

atk−1
(Bt −Btk−1

)1Ik(t)dtds

]

≡a E

[
Ψ(z, x)

∫ 1

0

∫ 1

0

n2
n∑
j=1

atj−1Dtatj−1(s− tj−1)1Ij (s)

×
∑
k:k<j

atk−1
(Bt −Btk−1

)1Ik(t)dtds

]
.
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The IBP formula for Bt −Btk−1
= δ(1[tk−1,t]) yields

√
nE[Ψ(z, x)I2] ≡a

∑
j

∑
k:k<j

∫
s∈Ij

∫
t∈Ik

n2(s− tj−1)

×E
[ ∫

r∈[tk−1,t]

Dr

{
Ψ(z, x)(Dtatj−1

)atj−1
atk−1

}
dr

]
dtds

≡a
∫ 1

0

1

2

∫ s

0

1

2
E

[
Dt

{
Ψ(z, x)(Dtas)asat

}]
dtds,

where

Dt

{
Ψ(z, x)(Dtas)asat

}
= lim

r↑t
Dr

{
Ψ(z, x)(Dtas)asat

}
.

Therefore,

√
nE[Ψ(z, x)I2] ≡a 1

4

∫ 1

0

∫ s

0

E

[
(DtΨ(z, x))(Dtas)asat + Ψ(z, x)(DtDtas)asat

+Ψ(z, x)(Dtas)
2at

]
dtds. (5.4)

(iii) The third term is given by

I3 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

Dsatj−1
(Btj −Btj−1

)1Ij (t)

×
√
n

n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

By symmetry, it is easy to see
√
nE[Ψ(z, x)I3] =

√
nE[Ψ(z, x)I2], and hence the limit is

the same as (5.4).

(iv) Consider now the fourth term given by

I4 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

atj−1
1Ij (s)1Ij (t)×

√
n

n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

Table 3 suggests that
√
nE[Ψ(z, x)I4] remains.

Table 3: E[Ψ(z, x)I4]

n
∑
j,k,`(j = k = `) ds dt (Bt −Btk−1

)(Bs −Bt`−1
) order

1.5 1 −1 −1 −1 −0.5

The contribution of this term is given by

√
nE[Ψ(z, x)I4] ≡a E

[
Ψ(z, x)

∫ 1

0

∫ 1

0

n2
n∑
j=1

a3
tj−1

(
(t ∧ s)− tj−1

)
1Ij (s)1Ij (t)dtds

]

≡a 1

3

∫ 1

0

E[Ψ(z, x)a3
t ]dt.
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(v) The fifth term is

I5 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

2−1Dtatj−1
qj ×

√
n

n∑
k=1

Dsatk−1
(Bt −Btk−1

)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

Notice that I5 looks like I1 but they are slightly different from each other. Only the
terms satisfying ` < k < j remain due to Dtatj−1 and Dsatk−1

. According to Table 4, we

Table 4: E[Ψ(z, x)I5]

n
∑

j,k,`(` < k < j) ds dt IBP(qj) IBP(Bt −Btk−1 ) IBP(Bs −Bt`−1 ) order

1.5 3 −1 −1 −2 −1 −1 −1.5

see
√
nE[Ψ(z, x)I5] = O(n−1) and is negligible.

(vi) The sixth term is given by

I5 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

2−1Dtatj−1
qj ×

√
n

n∑
k=1

atk−1
1[tk−1,t](s)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

Thanks to the product 1[tk−1,t](s)1Ik(t)1I`(s)Dtatj−1
, only the terms satisfying k = ` < j

remain. By Table 5 below
√
nE[Ψ(z, x)I6] = O(n−1) and this term is negligible.

Table 5: E[Ψ(z, x)I6]

n
∑
j

∑
k,`(` = k < j) ds dt IBP(qj) IBP(Bs −Bt`−1

) order

1.5 1 1 −1 −1 −2 −1 −1.5

(vii) Consider the seventh term given by

I7 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

atj−1
(Btj −Btj−1

)1Ij (t)

×
√
n

n∑
k=1

Dsatk−1
(Bt −Btk−1

)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

Due to the product 1I`(s)Dsatk−1
1Ij (t)1Ik(t), only the terms satisfying ` < k = j con-

tribute to the sum. Then it turns out that I7 is the same as I2. Therefore
√
nE[Ψ(z, x)I7] =√

nE[Ψ(z, x)I2] and the limit is given by (5.4).
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(viii) Finally, the last term is

I8 =

∫ 1

0

∫ 1

0

√
n

n∑
j=1

atj−1
(Btj −Btj−1

)1Ij (t)×
√
n

n∑
k=1

atk−1
1[tk−1,t](s)1Ik(t)dt

×
√
n

n∑
`=1

at`−1
(Bs −Bt`−1

)1I`(s)ds.

It suffices to consider the case j = k = `. Table 6 says that
√
nE[Ψ(z, x)I8] contributes to

the limit.

Table 6: E[Ψ(z, x)I8]

n
∑
j,k,`(j = k = `) ds dt (Btj −Btj−1)(Bs −Bt`−1

) order

1.5 1 −1 −1 −1 −0.5

More precisely, following a procedure quite similar to that of I4, we obtain

√
nE[Ψ(z, x)I8] ≡a E

[
Ψ(z, x)

∫ 1

0

∫ 1

0

n2
n∑
j=1

a3
tj−1

(
s− tj−1

)
1[tj−1,t](s)1Ij (t)dtds

]

≡a 1

6

∫ 1

0

E
[
Ψ(z, x)a3

t

]
dt.

Now, from (i)-(viii) and

Ψ(z, x) = exp

(
1

4

∫ 1

0

a2
sds(iz)

2

)
,

we obtain

E
[
Ψ(z, x)S(3,0)(iz, ix)

]
= lim

n→∞

√
n

3
E

[
Ψ(z, x)

〈
D
〈
DMn, un

〉
H
, un

〉
H

ψn(iz)3

]
=

1

3

{
3

4

∫ 1

s=0

∫ s

t=0

E

[
(DtΨ(z, x))(Dtas)asat

+Ψ(z, x)(DtDtas)asat + Ψ(z, x)(Dtas)
2at

]
dtds(iz)3

+

(
1

3
+

1

6

)∫ 1

0

E[Ψ(z, x)a3
t ]dt(iz)

3

}
=

1

8
E

[
Ψ(z, x)

∫ 1

0

at

(∫ 1

t

(Dtas)asds

)2

dt

]
(iz)5

+
1

4
E

[
Ψ(z, x)

∫ 1

0

at

∫ 1

t

{
(DtDtas)as + (Dtas)

2
}
dsdt

]
(iz)3

+
1

6
E

[
Ψ(z, x)

∫ 1

0

a3
tdt

]
(iz)3.

It should be remarked that the three terms on the right-hand side of the above equation
correspond to C2, C3 and C1 of [31], pp. 917–918, respectively. We remark that two
random symbols with the same adjoint action are considered equivalent.
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Obviously S(2,0) = S(1,1) = S(1,0) = S(0,1) = 0 in the present situation, and moreover
we will show that S(2,0)

0 = 0 in Section 5.3. Consequently,

S(3,0)(iz, ix) =
1

8

∫ 1

0

at

(∫ 1

t

(Dtas)asds

)2

dt(iz)5

+
1

4

∫ 1

0

at

∫ 1

t

{
(DtDtas)as + (Dtas)

2
}
dsdt(iz)3 +

1

6

∫ 1

0

a3
tdt(iz)

3

and

r−1
n

(
Sn(iz, ix)− 1

)
= S(3,0)(iz, ix).

This random symbol is equivalent to the full random symbol σ(iz, ix) of [31], p. 918 with
a replaced by a/2. For the quadratic form of a Brownian motion, S(3,0) provides both
the adapted random symbol and the anticipative random symbol, in other words, the
quasi torsion includes the tangent as well as the torsion. In this way, we found that the
quasi torsion reproduces the asymptotic expansion of the quadratic form of a Brownian
motion.

5.3 Quasi tangent

For the quasi tangent, we have

〈DZn, un〉H −G∞ =

∫ 1

0

{√
n

n∑
j=1

2−1Dtatj−1qj +
√
n

n∑
j=1

atj−1(Btj −Btj−1)1Ij (t)

}

×
√
n

n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt− 1

2

∫ 1

0

a2
tdt

= G1 + G2 + G3,

where

G1 =

∫ 1

0

n

n∑
j=1

2−1Dtatj−1qj ×
n∑
k=1

atk−1
(Bt −Btk−1

)1Ik(t)dt,

G2 =

∫ 1

0

{
n

n∑
j=1

a2
tj−1

(Bt −Btj−1
)21Ij (t)− 2−1a2

t

}
dt,

and

G3 =

∫ 1

0

n

n∑
j=1

a2
tj−1

(Btj −Bt)(Bt −Btj−1
)1Ij (t)dt.

We shall investigate these terms.

(i) For G1, Table 7 shows
√
nE[Ψ(z, x)G1] = O(n−0.5) and it is negligible in the asymp-

totic expansion.

(ii) For G2, applying Itô’s formula, we have G2 = G′2 + G′′2 , where

G′2 =

n∑
j=1

∫
Ij

na2
tj−1

∫ t

tj−1

∫ s

tj−1

2dBrdBs dt
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Table 7: E[Ψ(z, x)G1]

n
∑
j

∑
k(k < j) dt IBP by qj IBP by Bt −Btk−1

order

1 1 1 −1 −2 −1 −1

and

G′′2 =
1

2

n∑
j=1

∫
Ij

(
a2
tj−1
− a2

t

)
1Ij (t)dt.

Table 8 shows
√
nE[Ψ(z, x)G′2] = O(n−0.5) and it is negligible in the asymptotic

expansion. We should remark that
√
nG′2 is

◦
Cn of [31] and it has non-trivial limit

distribution though the expectation
√
nE[Ψ(z, x)G′2] asymptotically vanishes. We

see G′′2 is of O(n−1) in L2, and it is also negligible. Consequently, G2 is negligible
in the asymptotic expansion.

Table 8: E[Ψ(z, x)G′2]

n
∑
j dt IBP by

∫ t
tj−1

∫ s
tj−1

dBrdBs order

1 1 −1 −2 −1

(iii) Finally, for G3 Table 9 shows
√
nE[Ψ(z, x)G3] = O(n−0.5) and we can neglect it.

Table 9: E[Ψ(z, x)G3]

n
∑
j dt IBP by Btj −Bt IBP by Bt −Btk−1

order

1 1 −1 −1 −1 −1

As a consequence of these observations, S(2,0)
0 = 0, i.e., the quasi tangent has no

effect in the asymptotic expansion. However, the effect of the tangent already appeared
in that of the quasi torsion.

6 Quadratic form of a fractional Brownian motion with random
weights

6.1 Weighted quadratic variation

Let B = {Bt, t ∈ [0, 1]} be a fractional Brownian motion with Hurst parameter
H ∈ ( 1

4 ,
3
4 ). We are interested in the following sequence of weighted quadratic variations:

Zn = n2H− 1
2

n∑
j=1

atj−1
((∆Bj,n)2 − n−2H),

where tj = j/n, at = a(Bt) and a is a function such that a and all its derivatives up to
some order N have moderate growth. We use the notation ∆Bj,n = Bj/n −B(j−1)/n. It is
known (see, for instance [15, 14]) that for this example the limit variance G∞ is given by

G∞ = 2c2H

∫ 1

0

a(Bs)
2ds,
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where

c2H =

∞∑
k=−∞

ρH(k)2 (6.1)

ρH(k) =
1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
.

Set Ij = [tj−1, tj). Then,

atj−1
(∆j,nB)2 = δ(atj−1

∆Bj,n1Ij ) + atj−1
n−2H + ∆Bj,n〈Datj−1

,1Ij 〉H.

Therefore, we obtain the decomposition

Zn = δ(un)+rnNn =: Mn + rnNn,

where

un(t) = n2H− 1
2

n∑
j=1

atj−1∆Bj,n1Ij (t)

and

rnNn = n2H− 1
2

n∑
j=1

∆Bj,n〈Datj−1
,1Ij 〉H.

Set

Ψ(z) = exp

(
−z2c2H

∫ 1

0

a2(Bs)ds

)
. (6.2)

In this example, we take Wn = W∞ = 0, Xn = X∞ = 0 and ψ = 1. We are going to study
the quasi torsion and the quasi tangent of the Skorohod integral Mn = δ(un). In this
example there will be also a contribution to the asymptotic expansion coming from the
perturbation term Nn. The scaling factor rn will be taken as

rn =

 n2H− 3
2 when H ∈ ( 1

2 ,
3
4 ),

n
1
2−2H when H ∈

(
1
4 ,

1
2

)
.

This choice of rn is motivated by the rate of convergence

|E[ϕ(Zn)− E[ϕ(ζG1/2
∞ )]| ≤ Ca,H max

1≤i≤5
‖ϕ(i)‖∞rn

obtained in [14] for ϕ ∈ C5
b (R), where ζ is N(0, 1).

6.2 Quasi torsion

We recall that

qTor = r−1
n 〈D〈DMn, un〉H, un〉H.

Set qj = (∆Bj,n)2 − n−2H = I2(1⊗2
Ij

). We have

〈DMn, un〉H = n4H−1

〈
n∑
j=1

[
(Datj−1

)qj + 2atj−1
∆Bj,n1Ij

]
,

n∑
k=1

atk−1
∆Bk,n1Ik

〉
H

−rn〈DNn, un〉H
=: Φn,1 − rn〈DNn, un〉H.
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(A) We first study the contribution of the term 〈DΦn,1, un〉H in the asymptotic expansion.
We have

〈DΦn,1, un〉H = n6H− 3
2

n∑
j,k,`=1

[
(DrDsatj−1

)qj + 2(Dsatj−1
)∆Bj,n1Ij (r)

+2(Dratj−1)∆Bj,n1Ij (s) + 2atj−11Ij (s)1Ij (r)
]

∗[atk−1
∆Bk,n1Ik(s)] ∗ [at`−1

∆B`,n1I`(r)]

+n6H− 3
2

n∑
j,k,`=1

[
(Dsatj−1)qj + 2atj−1∆Bj,n1Ij (s)

]
∗
[
(Dratk−1

)∆Bk,n1Ik(s) + atk−1
1Ik(r)1Ik(s)

]
∗[at`−1

∆B`,n1I`(r)],

where the product A ∗B means that whenever we found repeated variables in A and B,
we compute the corresponding inner product in H. We have a total of eight terms, that
we denote by

〈DΦn,1, un〉H =

8∑
i=1

Ii.

We are interested in the asymptotic behavior of r−1
n E[Ψ(z)Ii] for i = 1, . . . , 8.

(i) The first term is

I1 = n6H− 3
2

n∑
j,k,`=1

a′′tj−1
atk−1

at`−1
qj∆Bk,n∆B`,nαtj−1,kαtj−1,`,

where we have used the notation αt,k = 〈1[0,t],1Ik〉H. We can make the decomposition

∆Bk,n∆B`,n = I2(1Ik ⊗ 1I`) + βk,`,

where βk,` = 〈1Ik ,1I`〉H. Integrating by parts shows that the contribution of I2(1Ik ⊗ 1I`)

is of order lower than that of βk,`. In this way, it suffices to consider the term

I1,0 = n6H− 3
2

n∑
j,k,`=1

a′′tj−1
atk−1

at`−1
qjβk,`αtj−1,kαtj−1,`.

In this case, the factors of the above expressions have the following orders of conver-
gence:

• First factor: n6H− 3
2

• The IPB formula for qj produces a factor n−2(2H∧1), due to part (a) of Lemma 6.2
below.

• The terms |αtj−1,kαtj−1,`| are bounded by CHn−2(2H∧1) by part (a) of Lemma 6.2
below.

•
∑n
k,`=1 |βk,`| ≤ CHn(1−2H)∨0 due to part (c) of Lemma 6.2.

• Finally we get a factor n from the sum in j.

Therefore, the order of this term is n6H− 1
2−4(2H∧1)+(1−2H)∨0. For H > 1

2 this gives n6H− 9
2

and for H < 1
2 , we obtain the order n

1
2−4H . In both cases, when H → 1

2 , we obtain n−1.5

as in the Brownian motion case. We remark that 6H − 9
2 < 2H − 3

2 if 1
2 < H < 3

4 , and
1
2 − 4H < 1

2 − 2H if 1
4 < H < 1

2 . Therefore, this term will not contribute to the limit.
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(ii) The second term is equal to

I2 = 2n6H− 3
2

n∑
j,k,`=1

atk−1
a′tj−1

at`−1
∆Bj,n∆Bk,n∆B`,nβj,`αtj−1,k,

where βj,` = 〈1Ij ,1I`〉H. As before, we can replace the product ∆Bj,n∆B`,n by βj,`, and
we have to deal with the term

I2,0 = 2n6H− 3
2

n∑
j,k,`=1

atk−1
a′tj−1

at`−1
∆Bk,nβ

2
j,`αtj−1,k.

We get the following contributions:

• First factor: n6H− 3
2

• The IPB formula for ∆Bk,n produces a factor n−(2H∧1), due to part (a) of Lemma
6.2 below.

•
∑n
k=1 |αtj−1,k| ≤ CH due to part (b) of Lemma 6.2, and

∑n
j,`=1 β

2
j,` ≤ CHn

1−4H by
part (d) of Lemma 6.2.

Therefore, the order of this term is n2H− 1
2−(2H∧1) = n−[( 3

2−2H)∧ 1
2 ], which in the Brownian

case gives n−
1
2 . From this result we deduce that this term will not contribute to the

asymptotic expansion if H < 1
2 . The contribution of n

3
2−2HE[Ψ(z)I2] when H > 1

2 is
evaluated as follows.

Define a measure µn on [0, 1]2 by

µn =

n∑
j,`=1

n−1+4Hβ2
j,` δ(tj−1,t`−1).

Then ∫
[0,1]2

ϕ(t, s)µn(dt, ds) → c2H

∫
[0,1]

ϕ(t, t)dt (6.3)

as n→∞ for every ϕ ∈ C([0, 1]2), where c2H is defined in (6.1). Notice that

sup
τ∈[0,1],1≤k≤n

∣∣∣∣∫ τ

0

(
n

∫
Ik

|r − s|2H−2dr − |tk−1 − s|2H−2

)
ds

∣∣∣∣ ≤ Cn1−2H → 0 (6.4)

as n tends to infinity. We can write

n
3
2−2HE[Ψ(z)I2]

= 2n4HE

Ψ(z)
n∑

j,k,`=1

atk−1
a′tj−1

at`−1
β2
j,`∆Bk,nαtj−1,k

+ o(1)

= 2n

n∑
k=1

∫
[0,1]2

µn(dt, dt′)E
[〈
D{Ψ(z)atk−1

a′tat′},1Ik
〉
H

]
αt,k + o(1)

= 2α2
Hn
−1

n∑
k=1

∫
[0,1]2

µn(dt, dt′)E

[ ∫ 1

0

∫ tk

tk−1

Ds′{Ψ(z)atk−1
a′tat′}|r − s′|2H−2drds′

]
×
∫

[0,1]

1[0,t](s)|tk−1 − s|2H−2ds+ o(1)
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Using (6.4) and (6.3), we obtain

n
3
2−2HE[Ψ(z)I2]

= 2α2
H

∫
[0,1]2

µn(dt, dt′)

{∫
[0,1]

drE

[ ∫
[0,1]

Ds′{Ψ(z)ara
′
tat′}|r − s′|2H−2ds′

]
×
∫

[0,1]

1[0,t](s)|r − s|2H−2ds

}
+ o(1)

→ 2α2
Hc

2
H

∫
[0,1]

dt

{∫
[0,1]

drE

[ ∫
[0,1]

Ds′{Ψ(z)ara
′
tat}|r − s′|2H−2ds′

]
×
∫

[0,1]

1[0,t](s)|r − s|2H−2ds

}
= CH,3

∫
[0,1]4

E
[
Ds′

(
Ψ(z)a(Br)Ds(a

2(Bt))
)]
|r − s|2H−2|r − s′|2H−2dsds′drdt,

where αH = H(2H − 1) and

CH,3 = α2
H

+∞∑
j=−∞

ρH(j)2.

(iii) By symmetriy, the third term is analogous to the second one and produces the same
contribution.

(iv) The fourth term is given by

I4 = 2n6H− 3
2

n∑
j,k,`=1

atj−1
atk−1

at`−1
βj,kβj,`∆Bk,n∆B`,n.

We can make the decomposition

∆Bk,n∆B`,n = I2(1Ik ⊗ 1I`) + βk,`.

By integration by parts the contribution of I2(1Ik ⊗ 1I`) is of lower order than that of
βk,`. In this way, it suffices to consider the term

I4,0 = 2n6H− 3
2

n∑
j,k,`=1

atj−1
atk−1

at`−1
βj,kβj,`βk,`.

From part (f) of Lemma 6.2, we see that this term is bounded in Lp by n2H− 3
2 if H > 1

2

and by n−
1
2 if H < 1

2 . This clearly implies that

lim
n→∞

n
1
2−2HI4 = 0 (6.5)

if H < 1
2 , in Lp for all p ≥ 2. On the other hand, we claim that, if H > 1

2 we also have the
following convergence is Lp for all p ≥ 2, and, as a consequence, this term produces no
contribution.

lim
n→∞

n
3
2−2HI4 = 0. (6.6)

Proof of (6.6): We need to show that

lim
n→∞

n4H
n∑

j,k,`=1

atj−1atk−1
at`−1

βj,kβj,`βk,` = 0
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in Lp. We can write

n4H
n∑

j,k,`=1

atj−1
atk−1

at`−1
βj,kβj,`βk,`

= n−2H
n∑

j,k,`=1

a(B j−1
n

)a(B k−1
n

)a(B `−1
n

)ρH(j − k)ρH(j − `)ρH(k − `)

= n−2H
∑

1≤j≤n
1≤j+i≤n
1≤j+h≤n

a(B j−1
n

)a(B j+i−1
n

)a(B j+h−1
n

)ρH(i)ρH(h)ρH(i− h)

and it suffices to show that

lim
n→∞

n1−2H
∑

j,h:1≤i<h≤n

∣∣ρH(i)ρH(h)ρH(i− h)
∣∣ = 0. (6.7)

By the inequality supi≥1 |ρ(i)|/i2H−2 <∞, we have

n1−2H
∑

j,h:1≤i<h≤n

∣∣ρH(i)ρH(h)ρH(i− h)
∣∣

. n1−2H
∑

j,h:1≤i<h≤n

i2H−2h2H−2(h− i)2H−2

= n1−2H
n∑
h=1

h6H−5
h−1∑
i=1

(i/h)2H−2(1− i/h)2H−2/h

. B(2H − 1, 2H − 1)n1−2H+(6H−4)+ .

The last term is O(n4H−3) when 2/3 ≤ H < 3/4, and O(n1−2H) when 1/2 < H < 2/3.
This gives (6.7) and hence (6.6).

(v) The fifth term is

I5 = n6H− 3
2

n∑
j,k,`=1

a′tj−1
a′tk−1

at`−1
qjαtj−1,kαtk−1,`∆Bk,n∆B`,n.

As before, we replace ∆Bk,n∆B`,n by βk,` and it suffices to study the term

I5,0 = n6H− 3
2

n∑
j,k,`=1

a′tj−1
a′tk−1

at`−1
qjαtj−1,kαtk−1,`βk,`.

We get the following contributions:

• The first factor n6H− 3
2 .

• Integration by parts for qj produces n−2(2H∧1).

• |αtj−1,kαtk−1,`| is bounded by CHn−2(2H∧1), due to Lemma 6.2 (a).

•
∑
k,` |βk,`| ≤ CHn(1−2H)∨0 due to Lemma 6.2 (c).

• A factor n comes from the sum on j.

All together gives the order n6H− 1
2−4(2H∧1)+(1−2H)∨0, which does not produce any contri-

bution.

(vi) The sixth term is

I6 = n6H− 3
2

n∑
j,k,`=1

a′tj−1
atk−1

at`−1
qjαtj−1,kβk,`∆B`,n.

We get the following contributions:
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• The first factor n6H− 3
2 .

• Integration by parts for qj and ∆B`,n produces n−3(2H∧1).

• |αtj−1,k| is bounded by CHn−(2H∧1), due to Lemma 6.2 (a).

•
∑
k,` |βk,`| ≤ CHn(1−2H)∨0, due to Lemma 6.2 (c).

• A factor n comes from the sum on j.

We get the same order as for the fifth term and no contribution.

(vii) The seventh term is given by

I7 = 2n6H− 3
2

n∑
j,k,`=1

atj−1
a′tk−1

at`−1
∆Bj,n∆Bk,n∆B`,nαtk−1,`βj,k.

Its contribution is the same as that of (ii); replace indices j, k and ` by k, ` and j,
respectively.

(viii) The eighth term is given by

I8 = 2n6H− 3
2

n∑
j,k,`=1

atj−1
atk−1

at`−1
∆Bj,n∆B`,nβj,kβk,`.

Its contribution is the same as that of term (iv) ; exchange j and k.

(B) One can show by a similar argument that

lim
n→∞

〈D〈DNn, un〉H, un〉H = 0,

in Lp, for all p ≥ 2.

In conclusion, we obtain the following results on the random symbol S3(iz) for
S(3,0)(iz, ix):

Case H > 1
2 We have proved that

E[Ψ(z)S3(iz)] = lim
n→∞

1

3
n

3
2−2HE

[
Ψ(z) 〈D〈DMn, un〉H, un〉H (iz)3

]
= CH,3(iz)3

∫
[0,1]4

E
[
Ds′

(
Ψ(z)a(Br)Ds(a

2(Bt))
)]

×|r − s|2H−2|r − s′|2H−2dsds′drdt.

Taking into account that αH
∫ t

0
|r − s|2H−2ds = ∂RH

∂r (t, r), we can write the above expres-
sion as follows:

E[Ψ(z)S3(iz)]

= c4H(iz)5

∫
[0,1]3

E
[
Ψ(z)(a2)′(Bθ)a(Br)(a

2)′(Bt)
] ∂RH
∂r

(θ, r)
∂RH
∂r

(t, r)dtdθdr

+Hc2H(iz)3

∫
[0,1]2

E
[
Ψ(z)a′(Br)(a

2)′(Bt)
]
r2H−1 ∂RH

∂r
(t, r)dtdr

+c2H(iz)3

∫
[0,1]2

E
[
Ψ(z)a(Br)(a

2)′′(Bt)
](∂RH

∂r
(t, r)

)2

dtdr.

Case H < 1
2 We have obtained, that in this case, S3(iz) = 0.
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6.3 Quasi tangent

For the quasi tangent we have

〈DMn, un〉H −G∞ = n4H−1

〈
n∑
j=1

[
(Datj−1

)qj + 2atj−1
∆Bj,n1Ij

]
,

n∑
k=1

atk−1
∆Bk,n1Ik

〉
H

−2c2H

∫ 1

0

a2(Bs)ds−rn〈DNn, un〉H

= Gn,1 +Gn,2 +Gn,3 +Gn,4,

where

Gn,1 = n4H−1
n∑

j,k=1

〈(Datj−1
)qj , atk−1

∆Bk,n1Ik〉H = n4H−1
n∑

j,k=1

a′tj−1
atk−1

αtj−1,kqj∆Bk,n,

Gn,2 = 2n4H−1
n∑

j,k=1

atj−1
atk−1

[∆Bj,n∆Bk,n − βj,k]βj,k,

Gn,3 = 2n4H−1
n∑

j,k=1

atj−1
atk−1

β2
j,k − 2c2H

∫ 1

0

a2(Bs)ds

and

Gn,4 = −rn〈DNn, un〉H.

Integrating by parts the terms qj and ∆Bk,n and using that, by Lemma 6.2 (b),∑n
k=1 |αtj−1,k| is bounded by a constant not depending on n, we obtain:

|E[Ψ(z)Gn,1]| ≤ Cn4H−1+1−3(2H∧1) = Cn4H−3(2H∧1).

For H > 1
2 , we get 4H − 3 which is faster than 2H − 3

2 because H < 3/4, and for H < 1
2 ,

we obtain −2H which is faster than 1
2 − 2H.

For the term Gn,2, by using integration-by-parts to ∆Bj,n∆Bk,n− βj,k and Lemma 6.2
(c), we get

|E[Ψ(z)Gn,2]| ≤ Cn4H−1−2(2H∧1)+(1−2H)∨0,

which produces the same rates as before.

It is possible to show that Gn,4 has no contribution to the limit.

Finally,

Gn,3 = 2n4H−1
n∑

j,k=1

atj−1atk−1
β2
j,k − 2c2H

∫ 1

0

a2(Bs)ds

=
2

n

n∑
j,k=1

a(Btj−1
)a(Btk−1

)ρ2
H(j − k)− 2c2H

∫ 1

0

a2(Bs)ds

=
2

n

∑
1≤j≤n,1≤j+i≤n

a(Btj−1
)a(Btj+i−1

)ρ2
H(i)− 2c2H

∫ 1

0

a2(Bs)ds.
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Replacing a(Btj+i−1
) by a(Btj−1

) with integration-by-parts, we have the error

E

Ψ(z)

 1

n

∑
1≤j≤n,1≤j+i≤n

a(Btj−1)
(
a(Btj+i−1)− a(Btj−1)

)
ρ2
H(i)




=
1

n

∑
1≤j≤n,1≤j+i≤n

E

[〈
D

{
Ψ(z)a(Btj−1)

∫ 1

0

a′
(
Btj−1 + θ(Btj+i−1 −Btj−1)

)
dθ

}
,

1[tj−1,tj+i−1]

〉]
ρ2
H(i)

.
n∑
i=1

(i/n)(2H)∧1ρ2
H(i)

. n−2H∧1+(2H∧1+2(2H−2)+1)+ .

In the case 1/2 < H < 3/4, this converges to zero at the rate n4H−3, that is faster
than n2H−3/2, and in the case 1/4 < H < 1/2, at the rate n−2H , that is faster than
n

1
2−2H . Let ε ∈ (0, 1). Divide the sum

∑
1≤j≤n into

∑
nε+1≤j≤n−nε and the rest. Since the

convergence c2H = limI↑Z
∑
i∈I ρ(i)2 is monotone, the order of the Lp-norm of

1

n

∑
1≤j≤n,1≤j+i≤n

a(Btj−1)2ρH(i)2 − 1

n

∑
1≤j≤n

a(Btj−1)2c2H

is not greater thanc2H − ∑
−nε≤i≤nε

ρH(i)2

+ n−1+ε . n(4H−3)ε + n−1+ε.

Then, in case H ∈ (1/2, 3/4), we can find ε ∈ (1/2, 1) such that n−(3−4H)ε + n−1+ε =

o(n2H−3/2). In case H ∈ (1/4, 1/2), it is possible to find ε ∈ (0, 1/2) such that n−(3−4H)ε +

n−1+ε = o(n
1
2−2H). Once again by the Taylor formula and integration-by-parts, we see

E

Ψ(z)

 1

n

∑
1≤j≤n

a(Btj−1
)2 −

∫ 1

0

a2(Bs)ds


 = O(n−(2H)∧1),

which is o(n2H−3/2) for H > 1/2, and o(n
1
2−2H) for H ∈ (1/4, 1/2). Therefore, Gn,3 has

no contribution.
In conclusion, the quasi tangent has no effect in the asymptotic expansion, that is,

G2
0 = S

(2,0)
0 = 0.

6.4 Perturbation term

In this subsection we study the contribution of the term Nn to the asymptotic expan-
sion. More precisely we will compute the random symbol G1(iz) for S(1,0). The action of
this symbol is defined by

E[Ψ(z)G1(iz)] = lim
n→∞

E[Ψ(z)Nn(iz)].

(i) Case H > 1
2 . We recall that

Nn = n

n∑
j=1

∆Bj,n〈Datj−1
,1Ij 〉H.
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Integrating by parts yields

E[Ψ(z)Nn(iz)] = n

n∑
j=1

E[〈D〈Ψ(z)Datj−1
,1Ij 〉H,1Ij 〉H(iz)

= n

n∑
j=1

E[Ψ(z)a′′(Btj−1
)]α2

tj−1,j(iz)

+
n

2
c2H

n∑
j=1

∫ 1

0

E[Ψ(z)(a2)′(Bs)a
′
tj−1

]αtj−1,jαs,jds(iz)
3

=: G1,n +G2,n.

We know that

α2
tj−1,j =

1

4
n−4H(j2H − (j − 1)2H − 1)2. (6.8)

Expanding the square (j2H−(j−1)2H−1)2 it turns out that the terms −2(j2H−(j−1)2H)

and 1 do not contribute to the limit. So, for G1,n it suffices to consider the term

1

4
n1−4H

n∑
j=1

E[Ψ(z)a′′(Btj−1
)](j2H − (j − 1)2H)2

= H2n1−4H
n∑
j=1

E[Ψ(z)a′′(Btj−1
)]j2(2H−1) + o(1)

= H2E

[
Ψ(z)

∫ 1

0

a′′(Bs)s
4H−2ds

]
+ o(1).

For G2,n, we have

n

n∑
j=1

∫ 1

0

E[Ψ(z)(a2)′sa
′
tj−1

]αtj−1,jαs,jds

= H2(2H − 1)

n∑
j=1

∫ 1

0

E[Ψ(z)(a2)′sa
′
tj−1

](j/n)2H−1

(∫ tj

t=tj−1

∫ s

r=0

|t− r|2H−2drdt

)
ds

+o(1)

= H2(2H − 1)

∫ 1

0

∫ 1

0

E[Ψ(z)(a2)′sa
′
t]t

2H−1

(∫ s

0

|t− r|2H−2dr

)
dtds+ o(1)

= H2

∫ 1

0

∫ 1

0

E[Ψ(z)(a2)′sa
′
t]t

2H−1
{
t2H−1 + |s− t|2H−1sign(s− t)

}
dtds+ o(1)

and hence

G2,n =
1

2
Hc2H

∫ 1

0

∫ 1

0

E[Ψ(z)(a2)′sa
′
t]t

2H−1 ∂RH
∂t

(t, s)dtds (iz)3 + o(1).

Therefore, we have proved that

E[Ψ(z)G1(iz)] = H2E

[
Ψ(z)

∫ 1

0

a′′(Bs)s
4H−2ds

]
(iz)

+
1

2
Hc2HE

[
Ψ(z)

∫ 1

0

∫ 1

0

(a2)′(Bs)a
′(Bt)t

2H−1 ∂RH
∂t

(t, s)dtds

]
(iz)3.
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(ii) Case H < 1
2 . In this case,

Nn = n4H−1
n∑
j=1

∆Bj,n〈Datj−1
,1Ij 〉H.

Re-defining G1,n and G2,n by replacing the factor n by n4H−1, we proceed as before, but
in that case the dominating term in α2

tj−1,j
in G1,n is the constant 1 and we obtain

E[Ψ(z)G1(iz)] = E

[
Ψ(z)

1

4
(iz)

∫ 1

0

a′′(Bs)ds

]
.

Indeed, the term G2,n converges to zero because, by Lemma 6.2 (a) and (b), we can write

|G2,n| . n2H−1 sup
s∈[0,1]

n∑
j=1

|αs,j | ≤ n2H−1CH .

We already know

lim
n→∞

E[Ψ(z)〈DNn, un〉H] = 0.

This means G2
1 = S

(2,0)
1 = 0.

Remark 6.1. The functional Ψ(z) should be replaced by Ψ(z)ψn when we need a trunca-
tion ψn. However, the above arguments are essentially unchanged because ‖1− ψn‖`,p
would converge to zero much faster than the total error we found.

The following lemma is in Nourdin, Nualart and Peccati [14].

Lemma 6.2. Let 0 < H < 1 and n ≥ 1. We have, for some constant CH ,

(a) |αt,k| 6 n−(2H∧1) for any t ∈ [0, 1] and k = 1, . . . , n.

(b) supt∈[0,1]

∑n
k=1 |αt,k| ≤ CH .

(c)
∑n
k,j=1 |βj,k| ≤ CHn(1−2H)∨0.

(d) If H < 3
4 , then

∑n
k,j=1 β

2
j,k ≤ CHn1−4H .

(e)
∑n
k,j=1 |βk,lβj,l| ≤ CHn−(4H∧2) for any l = 1, . . . , n.

(f) If H < 3
4 , then

∑n
k,j=1 |βk,lβj,lβj,k| ≤ CHn−4H−(2H∧1) for any l = 1, . . . , n.

7 Asymptotic expansion for measurable functions

Let ` = ď + 8 and denote by βx the maximum degree in x of S. We denote by σF the
Malliavin covariance matrix of a multivariate functional F and write ∆F = detσF . Let
d2 = (`+ βx − 7) ∨

(
2[(d1 + 2)/2] + 2[(βx + 1)/2]

)
, where [x] is the maximum integer not

larger than x. We consider the following condition.

[C ] (i) un ∈ D`+1,∞(H ⊗ Rd), G∞ ∈ D(`+1)∨d2,∞(Rd ⊗+ R
d), Wn, Nn ∈ D`,∞(Rd), W∞ ∈

D`∨d2,∞(Rd), Xn ∈ D`,∞(Rd1), X∞ ∈ D`∨(d2+1),∞(Rd1).

(ii) For every p > 1, the following estimates hold:

‖un‖`,p = O(1) (7.1)

‖G(2)
n ‖`−2,p = O(rn) (7.2)

‖G(3)
n ‖`−2,p = O(rn) (7.3)
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‖
〈
DG(3)

n , un
〉
H
‖`−1,p = o(rn) (7.4)

∥∥〈D〈DG(2)
n , un

〉
H
, un
〉
H

∥∥
`−3,p

= o(rn) (7.5)

∑
A=W∞,X∞

∥∥〈DA, un〉H
∥∥
`−3,p

= O(rn) (7.6)

∑
A=W∞,X∞

∥∥〈D〈DA, un〉H, un
〉
H

∥∥
`−2,p

= o(rn) (7.7)

‖
◦
Wn ‖`−1,p + ‖Nn‖`−1,p + ‖

◦
Xn ‖`−1,p = O(1) (7.8)

∑
B=

◦
Wn,Nn,

◦
Xn

∥∥〈D〈DB, un〉H, un
〉
H

∥∥
`−2,p

= o(1) (7.9)

(iii) For each pair (Tn,T) = (S
(3,0)
n ,S(3,0)), (S

(2,0)
0,n ,S

(2,0)
0 ), (S

(2,0)
n ,S(2,0)),

(S
(1,1)
n ,S(1,1)), (S

(1,0)
n ,S(1,0)), (S

(0,1)
n ,S(0,1)), (S

(2,0)
1,n ,S

(2,0)
1 ) and (S

(1,1)
1,n ,S

(1,1)
1 ),

the following conditions are satisfied.

(a) T is a polynomial random symbol the coefficients of which are in
Dď+βx+1,1+ =

⋃
p>1D

ď+βx+1,p.

(b) For some p > 1, there exists a polynomial random symbol T̄n that has Lp

coefficients and the same degree as T,

E
[
Ψ(z, x)Tn(iz, ix)

]
= E

[
Ψ(z, x)T̄n(iz, ix)

]
and T̄n → T in Lp.

(iv) (a) detG−1
∞ ∈ L∞−.

(b) There exist c ∈ (−1, 0) ∪ (0, 1) and κ > 0 such that

P
[
∆(cMn+W∞,X∞) < sn

]
= O(r1+κ

n )

for some positive random variables sn ∈ D`−2,∞ satisfying supn∈N(‖s−1
n ‖p+

‖sn‖`−2,p) <∞ for every p > 1.
(c) There exists κ1 > 0 such that∑

A=DW∞,DX∞

∥∥〈DMn,A〉H
∥∥
p

= O(rκ1
n )

for every p > 1.

Remark 7.1. (i) In [C] (i), the index ` + 1 of un comes from (7.5), and ` + 1 of G∞
comes from D`−1G∞ in (7.4). The index ` in (7.1) is for Dď+6ψn; `− 2 in (7.2) for (7.18);
`− 2 in (7.3) for R[11] defined later; `− 1 in (7.4) for (7.19); `− 3 in (7.5) for R[2]; `− 1

in (7.6) for (7.22); ` − 2 in (7.7) for (7.20); ` − 1 in (7.8) is for application of IBP ď + 6

times; ` − 2 in (7.9) is for (7.21). (ii) Intuitively, [C] (iv) (c) is a kind of orthogonality
between Mn and (W∞, X∞). It is natural because Mn converges stably in most statistical
problems. We will give a slightly different formulation of the problem later. (iii) The
degree of Tn and T may be different. That T̄n → T in Lp means Lp convergence of all
the random coefficients. (iv) Condition [C] (iv) (b) ensures non-degeneracy of X∞, that
is, ∆−1

X∞
∈ L∞−.
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Remark 7.2. Condition [C] (iii) is a sufficient condition for the forthcoming results. We
can replace [C] (iii) by

[C ] (iii)[ For the pairs of polynomial random symbols (Tn,T) = (S
(3,0)
n ,S(3,0)),

(S
(2,0)
0,n ,S

(2,0)
0 ), (S

(2,0)
n ,S(2,0)), (S

(1,1)
n ,S(1,1)), (S

(1,0)
n ,S(1,0)), (S

(0,1)
n ,S(0,1)),

(S
(2,0)
1,n ,S

(2,0)
1 ) and (S

(1,1)
1,n ,S

(1,1)
1 ), the coefficients of T are in Dď+βx+1,1+, and

lim
n→∞

\∂αE
[
Ψ(z, x)Tn(iz, ix)

]
= \∂αE

[
Ψ(z, x)T(iz, ix)

]
for every (z, x) ∈ Rď and α ∈ Zď

+.

Define ξn by

ξn =
3sn

2sn + 12∆n
+
en
s2
n

+
fn

∆2
X∞

(7.10)

for ∆n = ∆(cMn+W∞,X∞). The functionals en and fn will be specified later. Let ψ ∈
C∞(R; [0, 1]) such that ψ(x) = 1 for |x| ≤ 1/2 and ψ(x) = 0 for |x| ≥ 1. Let ψn = ψ(ξn).
Then supn∈N ‖ψn‖`−2,p <∞ for every p > 1.

Denote by φ(z;µ,Σ) the density function of the normal distribution with mean vector
µ and covariance matrix Σ. We write Sn = 1 + rnS. Define the function pn(z, x) by

pn(z, x) = E

[
Sn(∂z, ∂x)∗

{
φ(z;W∞, G∞)δx(X∞)

}]
,

where δx(X∞) is Watanabe’s delta function, i.e., the pull-back of the delta function
δx by X∞. See [9] for the notion of generalized Wiener functionals and Watanabe’s
delta function. The operation of the adjoint ς(∂z, ∂x)∗ for a random polynomial symbol
ς(iz, ix) =

∑
α cα(iz, ix)α is defined by

E

[
ς(∂z, ∂x)∗

{
φ(z;W∞, G∞)δx(X∞)

}]
=

∑
α

(−∂z,−∂x)αE

[
cαφ(z;W∞, G∞)δx(X∞)

]
.

The function pn(z, x) is well defined under [C].
Given positive numbers M and γ, denote by E(M,γ) the set of measurable functions

f : Rď → R satisfying |f(z, x)| ≤ M(1 + |z| + |x|)γ for all (z, x) ∈ Rď. We intend to
approximate the joint distribution of (Zn, Xn) by the density function pn(z, x). The error
of the approximation is evaluated by the supremum of

∆n(f) =

∣∣∣∣E[f(Zn, Xn)
]
−
∫
Rď

f(z, x)pn(z, x)dzdx

∣∣∣∣
in f ∈ E(M,γ).

For Žn = (Zn, Xn), we write Žαn = Zα1
n Xα2

n for α = (α1, α2) ∈ Zd
+ ×Z

d1
+ = Zď

+. Define
ĝαn(z, x) by

ĝαn(z, x) = E
[
ψnŽ

α
n exp

(
Zn[iz] +Xn[ix]

)]
for z ∈ Rd and x ∈ Rd1 . Define gαn(z, x) by

gαn(z, x) =
1

(2π)ď

∫
Rď

exp
(
− z[iz]− x[ix]

)
ĝαn(z, x)dzdx

if the integral exists.
In the notation of Section 2.2,

ĝαn(z, x) = E
[
eλn(1;z,x)ψnŽ

α
n

]
= ϕn

(
1, z, x;ψnŽ

α
n

)
= ϕn

(
1;ψnŽ

α
n

)
.
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Moreover,

ĝαn(z, x) = \∂αĝ0
n(z, x) = \∂αϕn(1;ψn)

for α ∈ Zď
+, where \∂α = \∂α1

z \∂
α2

x .
Let

h0
n(z, x) = E

[
ψnφ(z;W∞, G∞)δx(X∞)

]
+rnE

[
S(∂z, ∂x)∗

{
φ(z;W∞, G∞)δx(X∞)

}]
and let

hαn(z, x) = (z, x)αh0
n(z, x)

for α ∈ Zď
+. It holds that sup(z,x)∈Rď

∣∣hαn(z, x)
∣∣ <∞ for any α ∈ Zď

+ and n ∈ N. Let

ĥαn(z, x) =

∫
Rď

ez[iz]+x[ix]hαn(z, x)dzdx.

Then

ĥαn(z, x) = \∂αE
[
Ψ(z, x)ψn

]
+ rn\∂αE

[
Ψ(z, x)S(iz, ix)

]
.

Let Λn(d) = {u ∈ Rd; |u| ≤ r−qn }, where q ∈ (0, 1/2).

Lemma 7.3. Suppose that [C] is fulfilled. Then

(a) For each (z, x) ∈ Rď and α ∈ Zď
+,

ĝαn(z, x)− ĥαn(z, x) = o(rn). (7.11)

(b) For every α ∈ Zď
+,

sup
n

sup
(z,x)∈Λn(ď)

|(z, x)|ď+1r−1
n

∣∣ĝαn(z, x)− ĥαn(z, x)
∣∣ < ∞. (7.12)

Proof. First we estimate

ϕn(θ, z, x; Ξ) = E
[
eλn(θ,z,x)Ξ]

for Ξ ∈ Dk,∞ = ∩p>1D
k,p, k ≤ ď + 6. Let

M̌n(θ) =
(
Mn + θ−1Wn(θ) + rnNn, Xn(θ)

)
for θ ∈ (0, 1]. Suppose that there exists θ0 ∈ [0, 1) such that

sup
θ∈(θ0,1]

E

[
∆−p
M̌n(θ)

1{
∑k
j=0 ‖DjΞ‖H⊗j>0}

]
< ∞ (7.13)

and that

sup
θ∈(0,θ0]

E

[
∆−pXn(θ)1{

∑k
j=0 ‖DjΞ‖H⊗j>0}

]
< ∞ (7.14)

for every p > 1.
By definition,

ϕn(θ, z, x; Ξ) = E
[
eM̌n(θ)[θiz,ix]e2−1(1−θ2)G∞[(iz)⊗2] Ξ].
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Use Mn,Wn,W∞, Nn∈Dk+1,∞(Rd), Xn, X∞ ∈ Dk+1,∞(Rd1), and detG−1
∞ ∈ L∞−, then

with the IBP-formula k-times with respect to M̌n(θ), we obtain

∣∣ϕn(θ, z, x; Ξ)
∣∣ ≤ ∣∣(θz, x)∣∣−kE[ exp

(
− 1

2
(1− θ2)G∞[z⊗2]

)
× |An(θ, z; Ξ)|

]
for θ ∈ (θ0, 1], the functional An(θ, z; Ξ) is linear in Ξ, and the expectation on the right-
hand side is dominated by a polynomial in

‖G−1
∞ ‖p, ‖G∞‖k,p, ‖M̌n(θ)‖k+1,p, ‖∆−1

M̌n(θ)
1{

∑k
j=0 ‖DjΞ‖H⊗j>0}‖p, ‖Ξ‖k,p

for some p > 1 uniformly in θ ∈ (0, 1], (z, x) ∈ Rď and n ∈ N. For it, we may add an
independent Gaussian variable to M̌n(θ) and shrink its variance after integration-by-parts.
Here we remark that

sup
θ,z

[
exp

(
− 1

2
(1− θ2)G∞[z⊗2]

)
× ‖(1− θ2)Dj1G∞[z⊗2]‖H⊗j1 · · ·

· · · ‖(1− θ2)DjmG∞[z⊗2]‖H⊗jm
]
∈ L∞−,

which is a consequence of Lp integrability of G−1
∞ for sufficiently large p. [This estimate

is possible only when z appears with factor 1 − θ2. Otherwise, even though the non-
degeneracy of G∞ is used, the factor (1− θ2)−1 would appear and the estimation failed
for θ near 1. ] Therefore

sup
θ∈(θ0,1]

∣∣ϕn(θ, z, x; Ξ)
∣∣ .

∣∣(z, x)∣∣−k
uniformly in (z, x) ∈ Rď and n ∈ N.

For θ ∈ (0, θ0), we use nondegeneracy of Xn(θ). Applying ingeration-by-parts with
respect to Xn(θ) to

ϕn(θ, z, x; Ξ) = E

[
eXn(θ)[ix] exp

(
2−1(1− θ2)G∞[(iz)⊗2]

+θMn[iz] +Wn(θ)[iz] + θrnN [iz]

)
Ξ

]
,

we obain

(ix)α2ϕn(θ, z, x; Ξ) = E
[
eλn(θ;z,x)Bn,α2

(θ, z; Ξ)
]

for some functional Bn,α2(θ, z; Ξ) for θ ∈ (0, θ0) and α2 ∈ Zd1
+ with |α2| = k. For every

L > 0, the L1-norm of the functional Bn,α2(θ, z; Ξ) is dominated by a polynomial of

‖Xn(θ)‖k+1,p, ‖∆−1
Xn(θ)1{

∑k
j=0 ‖DjΞ‖H⊗j>0}‖p, ‖G

−1
∞ ‖p, ‖G∞‖k,p,

‖Mn‖k,p, ‖Wn(θ)‖k,p, ‖Nn‖k,p, ‖Ξ‖k,p, (1 + |z|)−L

uniformly in θ ∈ (0, θ0) and n ∈ N, if we take a sufficiently large p. Therefore we have∣∣ϕn(θ, z, x; Ξ)
∣∣ . |(z, x)|−k

uniformly in θ ∈ (0, θ0), (z, x) ∈ Rď and n ∈ N. Consequently, we obtained

sup
θ∈(0,1]

∣∣ϕn(θ, z, x; Ξ)
∣∣ .

∣∣(z, x)∣∣−k (7.15)
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uniformly in (z, x) ∈ Rď and n ∈ N, under the assumptions (7.13) and (7.14).
For θ ≥ |c|,

∆M̌n(θ) = ∆(Mn+θ−1W∞,X∞) + rnd
∗
n(θ),

where {d∗n(θ); θ ∈ [|c|, 1], n ∈ N} is a family of functionals bounded in Dď+6,∞. Moreover,

∆(Mn+θ−1W∞,X∞)

= θ−2d det

[
〈θDMn, θDMn〉H + 〈DW∞, DW∞〉H 〈DX∞, DW∞〉H

〈DW∞, DX∞〉H 〈DX∞, DX∞〉H

]
+ r(1∧κ1)/2

n ḋn(θ)

≥ det

[
〈cDMn, cDMn〉H + 〈DW∞, DW∞〉H 〈DX∞, DW∞〉H

〈DW∞, DX∞〉H 〈DX∞, DX∞〉H

]
+ r(1∧κ1)/2

n ḋn(θ)

= ∆(cMn+W∞,X∞) + r(1∧κ1)/2
n d̃n(θ)

for θ ∈ [|c|, 1], where ḋn(θ) and d̃n(θ) are functionals in Dď+6,∞ such that

sup
θ∈[0,1],n∈N

r−(1∧κ1)/2
n

{
‖ḋn(θ)‖ď+6,p+‖d̃n(θ)‖ď+6,p

}
< ∞

for every p > 1. Consequently,

∆M̌n(θ) ≥ ∆(cMn+W∞,X∞) + r(1∧κ1)/2
n d∗∗n (θ) (7.16)

for θ ∈ [|c|, 1] and n ∈ N. The functional d∗∗n (θ) is defined by d∗n(θ) and d̃n(θ). We define
en as the sum of squares of the coefficient of the polynomial d∗∗n (θ) in θ and θ−1. Then
‖en‖ď+6,p = O(r1∧κ1

n ) for every p > 1. On the other hand, we have an expansion

∆Xn(θ) = ∆X∞

(
1 + r1/2

n ∆−1
X∞

d̂n(θ)
)

with a functional d̂n(θ) such that all coefficients of this polynomial in θ are of O(r
1/2
n ) in

L∞−. Let fn be the sum of squares of the coefficients of d̂n(θ). By [C] (iv) (b) and the
definition of ψn, considering the event {ξn > 1/2} ⊃ {ψn < 1}, we have

‖1− ψn‖ď+6,1+2−1κ = O(rp1
n ) (7.17)

for p1 = (1 + κ)/(1 + 2−1κ) > 1. If ξn ≤ 1, then infθ∈[|c|,1] ∆M̌n(θ) ≥ sn/13 and
infθ∈[0,1] ∆Xn(θ) ≥ ∆X∞/2 for large n. Thus the conditions (7.13) and (7.14) are en-
sured and hence the estimate (7.15) is available for various functionals Ξ having a factor
related to ψn, as we will see below. Condition (7.1) gives L∞−-boundedness of ď + 6

derivatives of σMn
.

Condition (7.2) with (7.1) implies

‖
〈
DG(2)

n , un
〉
H
‖ď+5,p = O(rn) (7.18)

[This is the only place where the Lp boundedness of D`−2G
(2)
n is required. That is, we

will only need that ‖G(2)
n ‖`−3,p = O(rn) and (7.18) in what follows. ] Condition (7.4)

implies ∥∥∥∥〈D(〈DG(3)
n , un

〉
H

)
, un

〉
H

∥∥∥∥
ď+6,p

= o(rn) (7.19)

for every p > 1 under (7.1). Condition (7.7) implies∑
A=W∞,X∞

∥∥∥∥〈D(〈D〈DA, un〉H, un
〉
H

)
, un

〉
H

∥∥∥∥
ď+5,p

= o(rn) (7.20)
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under (7.1). Moreover, Condition (7.9) implies∑
B=

◦
Wn,Nn,

◦
Xn

∥∥∥∥〈D〈D〈DB, un〉H, un
〉
H
, un

〉
H

∥∥∥∥
ď+5,p

= o(1) (7.21)

under (7.1).
The estimate ‖Ĝ(1)

n (θ)‖ď+5,p = O(rn) for every p > 1 follows from (7.6), (7.8) and (7.1).

The estimate ‖Ǧ(1)
n ‖ď+5,p = O(rn) for every p > 1 follows from (7.8), therefore

‖G(1)
n (θ)‖ď+5,p = O(rn) (7.22)

for every p > 1. We obtain ∥∥〈DĜ(1)
n (θ), un

〉
H

∥∥
ď+5,p

= o(rn) (7.23)

for every p > 1 from (7.7) and (7.9). Estimate∥∥〈DǦ(1)
n , un

〉
H

∥∥
ď+5,p

= O(rn) (7.24)

for every p > 1 follows from (7.8).
We have ∥∥∥∥〈D〈DĜ(1)

n (θ), un
〉
H
, un

〉
H

∥∥∥∥
ď+5,p

= o(rn)

by (7.20) and (7.21). Follows the estimate∥∥∥∥〈D〈DǦ(1)
n , un

〉
H
, un

〉
H

∥∥∥∥
ď+5,p

= o(rn)

from (7.9), so that ∥∥∥∥〈D〈DG(1)
n (θ), un

〉
H
, un

〉
H

∥∥∥∥
ď+5,p

= o(rn). (7.25)

Since ϕn(0;ψn) = E[Ψ(z, x)ψn], Proposition 2.6 gives

ĝαn(z, x)− ĥαn(z, x) = \∂αRn(z, x) =

12∑
i=3

\∂αR(i)
n (z, x).

We shall show

sup
n

sup
(z,x)∈Λn(ď)

|(z, x)|ď+1r−1
n

∣∣\∂αR(i)
n (z, x)

∣∣ < ∞ (7.26)

for i = 3, ..., 12.
We remind the representation of R(3)

n (z, x) = ρ
(3)
n (f) with f(z, x) = exp(z[iz] + x[ix]).

There appear 24 terms in this expression and we name them R[i] (i = 1, ..., 24). We
will repeatedly use the inequality (7.15) based on integration-by-parts (IBP) to estimate
\∂αR[i]. It should be noted that the factors (1−θ2)G∞[iz, ·] and their Malliavin derivatives
come out but they are controlled by exp

(
2−1(1 − θ2)G∞[(iz)⊗2]

)
if non-degeneracy of

G∞ is used, as already mentioned. Estimates of R[i] are as follows.

• R[1]. The estimate sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[1]| = o(rn) follows from ď + 4 times
IBP, (7.17), (7.1) and (7.2).
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• R[9]. There are three components R[9, j] (j = 1, 2, 3) of R[9] corresponding to the
decomposition〈

D
〈
D(G(z)ψn), un[iz]

〉
H
, un[iz]

〉
H

=

〈
D
〈
DG(z), un[iz]

〉
H
, un[iz]

〉
H

ψn

+2
〈
DG(z), un[iz]

〉
H

〈
Dψn, un[iz]

〉
H

+G(z)

〈
D
〈
Dψn, un[iz]

〉
H
, un[iz]

〉
H

(7.27)

for G = G
(3)
n . The estimate sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[9, 1]| = o(rn) follows from

ď + 6 IBP, (7.19) and (7.17). Since ‖
〈
DG

(3)
n (z), un[iz]

〉
H
‖ď+4,p . o(rn)|z|4 by (7.4)

and |(z, x)| ≤ r−qn ≤ r
−1/2
n , we may deal with |(z, x)|3 for R[9, 2]. Apply ď + 4 IBP,

(7.17) and (7.1) to obtain sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[9, 2]| = O(rp1
n ). Similarly,

we use ‖G(3)
n (z)‖ď+4,p . O(rn)|z|3 by (7.3), ď + 4 IBP, (7.17) and (7.1) to obtain

sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[9, 3]| = O(rp1
n ). Thus, sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[9]| =

o(rn).

• R[2]. We take a way similar to R[9] to show sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[2]| = o(rn).

R[2, j] (j = 1, 2, 3) are defined by (7.27) for G = G
(2)
n . Apply ď+ 5 IBP to R[2, 1] with

(7.5) and (7.17). ď+ 3 IBP to R[2, 2] with (7.18), (7.17) and (7.1). ď+ 3 IBP to R[2, 3]

with (7.2), (7.17) and (7.1).

• R[16]. In the same way as for R[2], we can show sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[16]| =
o(rn). In this case, decomposing R[16] into R[16, j] (j = 1, 2, 3) by (7.27) for G =

G
(1)
n , we apply ď + 5 IBP to R[16, 1] with (7.25) and (7.17). ď + 3 IBP to R[16, 2] with

(7.23), (7.24), (7.17) and (7.1). ď + 3 IBP to R[16, 3] with (7.22), (7.17) and (7.1).

• R[23]. There are two terms R[23, i] (i = 1, 2) for the decomposition

F
〈
D
(
Gψn

)
, un[iz]

〉
H

= F
〈
DG,un[iz]

〉
H
ψn + FG

〈
Dψn, un[iz]

〉
H

(7.28)

for F = 1 and G = G
(3)
n (z). Apply ď+ 5 IBP, (7.4) and (7.17) to R[23, 1], and ď+ 3 IBP,

(7.3) and (7.17) to R[23, 2]. Then we obtain sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[23]| = o(rn).

• R[24]. There are two terms R[24, i] (i = 1, 2) according to (7.28) for F = 1 and

G = Ĝ
(1)
n (θ; z, x). To R[24, 1], use ď + 4 IBP with (7.23) and (7.17). To R[24, 2], ď + 2

IBP with (7.22) and (7.17). Then sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[24]| = o(rn).

• R[11]. By the decomposition (7.28) for F = G = G
(3)
n (z), we have two terms R[11, i]

(i = 1, 2) as the components of R[11]. The factor |(z, x)|2 is canceled by r2q
n . Apply

ď + 6 IBP with (7.4) and (7.17) to R[11, 1]. Apply ď + 4 IBP with (7.3) and (7.17) to
R[11, 2]. Then we have sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[11]| = o(rn).

• R[10]. This case is similar to R[11]. There appear two terms R[10, i] (i = 1, 2) by

(7.28) for F = G
(2)
n (z) and G = G

(3)
n (z). Then we obtain

sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[10]| = o(rn) by applying ď + 5 IBP with (7.4), (7.2) and

(7.17) to R[10, 1], and by ď + 3 IBP with (7.2), (7.3) and (7.17) to R[10, 2].

• R[12]. This case is similar to R[10]. There appear two terms R[10, i] (i = 1, 2) by

(7.28) for F = G
(1)
n (θ; z, x) and G = G

(3)
n (z). Then sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[12]| =

o(rn). For that, apply ď + 5 IBP with (7.4), (7.22) and (7.17) to R[12, 1], and by ď + 3

IBP with (7.22), (7.3) and (7.17) to R[12, 2].
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• R[4]. There appear two terms R[4, i] (i = 1, 2) by (7.28) for F = G
(3)
n (z) and

G = G
(2)
n (z). We obtain sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[4, 1]| = O(r

2(1−q)
n ) by apply-

ing ď + 5 IBP with (7.18) and (7.17). In this case, the factor |(z, x)|2 is evalu-
ated by r−2q

n . Apply ď + 3 IBP with (7.2), (7.3) and (7.17) to R[4, 2] to obtain
sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[4, 2]| = O(rp1

n ), therefore sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[4]|
= O(rp2

n ), where p2 = p1 ∧ {2(1− q)}.
• R[3]. This is similar to the case R[4]. There appear two terms R[3, i] (i = 1, 2) by

(7.28) for F = G = G
(2)
n (z). We obtain sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[3]| = O(rp2

n ) by

applying ď + 4 IBP with (7.18) and (7.17) to R[3, 1], and by ď + 2 IBP with (7.2) and
(7.17) to R[3, 2].

• R[5]. Similar to the case R[3]. There appear two terms R[5, i] (i = 1, 2) by (7.28) for

F = G
(1)
n (θ; z, x) and G = G

(2)
n (z). We obtain sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[5]| = O(rp2

n )

by applying ď + 4 IBP with (7.18), (7.22) and (7.17) to R[3, 1], and by ď + 2 IBP with
(7.2), (7.22) and (7.17) to R[3, 2].

• R[18]. Similar to R[4]. There are two terms R[18, i] (i = 1, 2) by (7.28) for F = G
(3)
n (z)

and G = G
(1)
n (θ; z, x). Then sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[18]| = O(rp2

n ) follows from

ď + 5 IBP with (7.23), (7.24), (7.3) and (7.17) to R[18, 1], and also ď + 3 IBP with
(7.22), (7.3) and (7.17) to R[18, 2].

• R[17]. Similar to R[18]. There are two terms R[17, i] (i = 1, 2) by (7.28) for F =

G
(2)
n (z) and G = G

(1)
n (θ; z, x). Then sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[17]| = O(rp2

n ) follows

from ď + 4 IBP with (7.23), (7.24), (7.2) and (7.17) to R[17, 1], as well as ď + 2 IBP
with (7.22), (7.2) and (7.17) to R[17, 2].

• R[19]. Similar to R[17]. Two terms R[19, i] (i = 1, 2) by (7.28) for F = G
(1)
n (θ′; z, x)

and G = G
(1)
n (θ; z, x). Then sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[19]| = O(rp2

n ), which follows

from ď + 4 IBP with (7.23), (7.24), (7.22) and (7.17) to R[19, 1], as well as ď + 2 IBP
with (7.22) and (7.17) to R[19, 2].

• R[14]. One factor |(z, x)| is cancelled by r1/2
n offered by

(
G

(3)
n (z)

)2
. We apply ď+6 IBP

with (7.3) and (7.17) to obtain sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[14]| = O(r
3/2
n ). [Another

way of estimating is to cancel the factor |(z, x)|2 by r2q
n taken from

(
G

(3)
n (z)

)2
before

applying less order of IBP formulas. This is the case in the following estimates
though we adopted the same way as for R[14]. ]

• R[13]. Similar to R[14]. Cancelling one factor |(z, x)| by r1/2
n in G

(2)
n (z)G

(3)
n (z), we

apply ď+5 IBP with (7.2), (7.3) and (7.17) to show sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[13]| =
O(r

3/2
n ).

• R[7]. It is essentially the same as R[13]. Therefore sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[7]| =
O(r

3/2
n ).

• R[15]. Similar to R[14]. Cancelling one factor |(z, x)| by r1/2
n in G(1)

n (θ; z, x)G
(3)
n (z), we

apply ď+5 IBP with (7.22), (7.3) and (7.17) to showsup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[15]|=
O(r

3/2
n ).

• R[21]. Essentially same as R[15], therefore sup(z,x)∈Λn(ď)|(z, x)|ď+1|\∂αR[21]|=O(r
3/2
n ).

• R[6]. One factor cancellation and ď + 4 IBP with (7.2) and (7.17) give

sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[6]| = O(r
3/2
n ).

• R[8]. Similarly to R[6], ď + 4 IBP with (7.22), (7.2) and (7.17) gives

sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[8]| = O(r
3/2
n ).

• R[20]. This is essentially equivalent to R[8]. sup(z,x)∈Λn(ď) |(z, x)|ď+1|\∂αR[20]| =

O(r
3/2
n ).
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• R[22]. Apply ď+4 IBP with (7.22) and (7.17) to obtain sup(z,x)∈Λn(ď)|(z, x)|ď+1|\∂αR[22]|
= O(r

3/2
n ).

In conclusion,

sup
(z,x)∈Λn(ď)

|(z, x)|ď+1
∣∣\∂αR(i)

n (z, x)
∣∣ = o(rn) (7.29)

for i = 3 and in particular (7.26) is valid for i = 3.
It is possible to obtain sup(z,x)∈Λn(ď) |(z, x)|ď+1

∣∣\∂αR(i)
n (z, x)

∣∣ = O(rp1
n ), and (7.29), hence

(7.26) for i = 4 with ď+3 IBP, (7.8) and (7.17). Each R(i)
n (z, x) (i = 5, ..., 12) is a difference

of two terms. We will estimate each term separately. Apply ď + βx + 1 IBP with respect
to X∞ to ς and use exp

(
2−1G∞[(iz)⊗2]

)
with non-degeneracy of G∞ (without IBP) to

obtain

sup
(z,x)∈Rď

|(z, x)|ď+1
∣∣E[Ψ(z, x)ς(iz, ix)]

∣∣ < ∞

for ς = S(3,0),S
(2,0)
0 ,S(2,0),S(1,1),S(1,0),S(0,1),S

(2,0)
1 and S

(1,1)
1 . Remark that we need

X∞ ∈ Dď+βx+2,∞(Rd1), W∞ ∈ Dď+βx+1,∞(Rd) and G∞ ∈ Dď+βx+1,∞(Rd ⊗+ R
d) in this

procedure. To estimate each first term, ď + 4 = `− 4 IBP with respect to X∞ is sufficient
because the degree of each random symbol is not greater than three. For that, Conditions
(7.1), (7.2), (7.3), (7.6) and (7.8) work together with the factor exp

(
2−1G∞[(iz)⊗2]

)
with

non-degeneracy of G∞. In this way, we obtain

sup
n

sup
(z,x)∈Rď

|(z, x)|ď+1
∣∣E[Ψ(z, x)ςn(iz, ix)]

∣∣ < ∞

for ςn = S
(3,0)
n ,S

(2,0)
0,n ,S

(2,0)
n ,S

(1,1)
n ,S

(1,0)
n ,S

(0,1)
n ,S

(2,0)
1,n and S

(1,1)
1,n . Consequently, (7.26)

was verified for i = 5, ..., 12. Thus, (7.12) was proved.
Furthermore, [C] (iii)[ and (7.17) gives \∂αR(i)

n (z, x) = o(rn) for i = 5, ..., 12, and then
we obtain (7.11). Now it suffices to show that [C] (iii) implies [C] (iii)[. For η > 0, let

F ηn (z′, x′) = E
[
Ψ(z′, x′)ψ

(
η(|G∞|+ |W∞|+ |X∞|)

)
T̄n(iz′, ix′)

]
((z′, x′) ∈ Cď)

for n ∈ N ∪ {∞}, where T̄∞ = T. F ηn are analytic functions of (z′, x′) for η > 0 and
n ∈ N ∪ {∞}. Let

F 0
n(z, x) = E

[
Ψ(z, x)T̄n(iz, ix)

]
((z, x) ∈ Rď)

for n ∈ N ∪ {∞}. Then \∂αF ηn on Rď is explicitly expressed by

\∂αF ηn (z, x) = E
[
\∂α{Ψ(z, x)T̄n(iz, ix)}ψ

(
η(|G∞|+ |W∞|+ |X∞|)

)]
for η ≥ 0, n ∈ N ∪ {∞} and (z, x) ∈ Rď. Remark that the differential operator \∂α is
in the real domain, so that this equation is valid even for η = 0. On the other hand,
∂α(z′,x′)F

0
n(z′, x′) is not defined. Fix (z, x) ∈ Rď and α ∈ Zď

+. Let ε > 0. Then there exists
η > 0 such that

sup
n∈N∪{∞}

∑
a=0,α

|\∂aF ηn (z, x)− \∂aF 0
n(z, x)| < ε (7.30)

For η > 0, the gap F ηn (z′, x′) − F η∞(z′, x′) → 0 locally uniformly as n → ∞ because the
coefficients of T̄n − T converge to zero in Lp for some p > 1. Cauchy’s integral formula
for multivariate analytic functions ensures the convergence

\∂αF ηn (z, x)→ \∂αF η∞(z, x) (n→∞) (7.31)

EJP 24 (2019), paper 119.
Page 57/64

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP310
http://www.imstat.org/ejp/


Asymptotic expansion of Skorohod integrals

for every η > 0. Then (7.30) and (7.31) give lim supn→∞
∣∣\∂αF 0

∞(z, x) − \∂αF 0
n(z, x)

∣∣ < 2ε,

and hence

lim
n→∞

\∂αF 0
n(z, x) = \∂αF 0

∞(z, x).

By the equality in [C] (iii) (b), we obtain

lim
n→∞

\∂αE
[
Ψ(z, x)Tn(iz, ix)

]
= \∂αE

[
Ψ(z, x)T(iz, ix)

]
,

that is [C] (iii)[. This completes the proof of Lemma 7.3.

The following is a slightly different set of conditions.

[C\ ] (i) [C] (i) holds.

(ii) (7.1), (7.2), (7.3), (7.6) and (7.8) hold for every p > 1. Furthermore, there exists
a positive constant κ such that the following estimates hold:

‖
〈
DG(3)

n , un
〉
H
‖`−1,p = O(r1+κ

n ) (7.32)

∥∥〈D〈DG(2)
n , un

〉
H
, un
〉
H

∥∥
`−3,p

= O(r1+κ
n ) (7.33)

∑
A=W∞,X∞

∥∥〈D〈DA, un〉H, un
〉
H

∥∥
`−2,p

= O(r1+κ
n ) (7.34)

∑
B=

◦
Wn,Nn,

◦
Xn

∥∥〈D〈DB, un〉H, un
〉
H

∥∥
`−2,p

= O(rκn) (7.35)

(iii) [C] (iii) holds.

(iv) (a) detG−1
∞ ∈ L∞−.

(b) There exists κ > 0 such that

P
[
∆(Mn+W∞,X∞) < sn

]
= O(r1+κ

n )

for some positive random variables sn ∈ D`−2,∞ satisfying supn∈N(‖s−1
n ‖p+

‖sn‖`−2,p) <∞ for every p > 1.

The functional ψn is re-defined by ψn = ψ(ξn) with

ξn =
3sn

2sn + 12∆n
+
en
s2
n

+
fn

∆2
X∞

(7.36)

for ∆n = ∆(Mn+W∞,X∞) this time. The functional fn is defined as before, and en will be
specified in the proof of the following lemma.

Lemma 7.4. Under [C\], the properties (a) and (b) of Lemma 7.3 hold true.

Proof. The plot of the proof is quite similar to that of Lemma 7.3, however some modi-
fications are necessary. Let ε be a positive number. We may assume that rn < 1 for all
n ∈ N. Instead of (7.13) and (7.14), we will use the non-degeneracy of the forms

sup
θ∈(
√

1−rεn,1]

E

[
∆−p
M̌n(θ)

1{
∑k
j=0 |DjΞ|H⊗j>0}

]
< ∞ (7.37)
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and

sup
θ∈(0,
√

1−rεn]

E

[
∆−pXn(θ)1{

∑k
j=0 |DjΞ|H⊗j>0}

]
< ∞ (7.38)

for every p > 1 and a suitably differentiable functional Ξ. For the same reason as before,
we have ∣∣ϕn(θ, z, x; Ξ)

∣∣ . |(z, x)|−k

uniformly in θ ∈ (
√

1− rεn, 1], (z, x) ∈ Rď and n ∈ N. For θ ∈ (0,
√

1− rεn], we will use
ď + βx + 1 IBP below, just like before, and this procedure gives some power of |z|. To
cancel the power of |z| (including z’s coming from random polynomials when we use it),
we attach the factor (1− θ2), and then a power of (1− θ2)−1 appears. We can replace it
by r−εLn , where L is a definite number. Thus what we obtained is

sup
n

sup
θ∈(0,1)

sup
(z,x)∈Rď

rεLn |(z, x)|k
∣∣ϕn(θ, z, x; Ξ)

∣∣ < ∞. (7.39)

We need non-degeneracy (7.37) and (7.38) to apply the estimate (7.39). For our
purposes, when the functional Ξ has ψn or its derivative of certain order, it is sufficient
to show non-degeneracy of M̌n(θ) and Xn(θ) under truncation by ψn with ξn of (7.36).
We make ε sufficiently small. Then it is easy to see

∆M̌n(θ) = ∆(Mn+W∞,X∞) + rε/2n d∗∗n (θ)

for some functional d∗∗n (θ) such that sup
θ∈(
√

1−rεn,1],n∈N r
−ε/2
n ‖d∗∗n (θ)‖ď+6,p <∞ for every

p > 1. Define en as before with the coefficients of d∗∗n (θ). Then we see (7.17) holds and
∆M̌n(θ) and ∆Xn(θ) have uniform non-degeneracy under ψn, as before.

For proof of the lemma, it is sufficient to show (7.26) for i = 3, ..., 12. We can take
the same way as the proof of Lemma 7.3. Indeed, estimations of R(i)

n (z, x) (i = 4, ..., 12)

are the same since we only use nondegneracy of G∞ and ∆X∞ . Only estimation of

R
(3)
n (z, x) is slightly different. We do the same way for estimation of R[i] (i = 1, ..., 24)

with (7.39), but in this situation, the bounds o(rn) that appeared in the previous proof
become O(r1+κ′

n ) for some positive constant κ′, thanks to [C\] (ii). Taking a sufficiently
small ε so that εL < κ′, we obtain (7.12) in the present situation.

The definition of ψn varies, depending on [C] or [C\], in the following lemma.

Lemma 7.5. Suppose that either [C] or [C\] is fulfilled. Then, for each m ∈ Z+,

sup
(z,x)∈Rď

∣∣|(z, x)|m
(
g0
n(z, x)− h0

n(z, x)
)∣∣ = o(rn)

as n→∞.

Proof. ď + 3 times IBP provides

sup
n

sup
(z,x)∈Rď

|(z, x)|ď+3|ĝαn(z, x)| < ∞.

Therefore, ∫
Rď\Λn(ď)

|ĝαn(z, x)|dzdx = O(r3q
n ) (7.40)
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for every α ∈ Zď
+. We apply ď + 3 times IBP with respect to X∞ to \∂αE[Ψ(z, x)ψn] and

use exp
(
2−1G∞[(iz)⊗2]

)
with non-degeneracy of G∞ to derive

sup
n

sup
(z,x)∈Rď

|(z, x)|ď+3
∣∣\∂αE[Ψ(z, x)ψn]

∣∣ < ∞.

We remark that the factor x does not emerge but some product of z can newly appear
though cancelled by the exponential. So∫

Rď\Λn(ď)

∣∣\∂αE[Ψ(z, x)ψn]
∣∣dzdx = O(r3q

n )

for every α ∈ Zď
+. Let ς be any random symbol, like S(3,0), that appears in the rn-order

term of Sn. We apply ď + βx + 1 times IBP with respect to X∞ to \∂αE
[
Ψ(z, x)ς(iz, ix)

]
,

and next use the Gaussianity of Ψ in z to show∫
Rď\Λn(ď)

∣∣\∂αE[Ψ(z, x)ς(iz, ix)
]∣∣dzdx = O(rqn)

for every α ∈ Zď
+. Thus∫

Rď\Λn(ď)

|ĥαn(z, x)|dzdx = O(r3q
n ) +O(r1+q

n ). (7.41)

This term becomes o(rn) if we choose q ∈ (1/3, 1/2).
Now

∆α
n := sup

(z,x)∈Rď

∣∣(z, x)α
(
g0
n(z, x)− h0

n(z, x)
)∣∣

= sup
(z,x)∈Rď

1

(2π)ď

∣∣∣∣ ∫
Rď

e−z[iz]−x[ix]
(
ĝαn(z, x)− ĥαn(z, x)

)
dzdx

∣∣∣∣
≤ 1

(2π)ď

∫
Rď\Λn(ď)

∣∣ĝαn(z, x)
∣∣dzdx +

1

(2π)ď

∫
Rď\Λn(ď)

∣∣ĥαn(z, x)
∣∣dzdx

+
rn

(2π)ď

∫
Λn(ď)

r−1
n

∣∣ĝαn(z, x)− ĥαn(z, x)
∣∣dzdx.

By (7.40), (7.41) and the properties (a) and (b) provided by either Lemma 7.3 or Lemma
7.4, we obtain ∆α

n = o(rn).

Here is the main theorem in this section.

Theorem 7.6. Suppose that either [C] or [C\] is fulfilled. Then, for any positive numbers
M and γ,

sup
f∈E(M,γ)

∆n(f) = o(rn)

as n→∞.

Proof. The local density g0
n is a continuous version of the density (E[ψn|Žn=(z, x)]dP Žn)/

dzdx, admits any order of moments and

E
[
f(Žn)ψn

]
=

∫
Rď

f(z, x)g0
n(z, x)dzdx.

Let p = 1 + κ/2, where κ is the one given in [C] (iv) (b) or in [C\] (iv) (b). Then

sup
f∈E(M,γ)

∣∣E[f(Žn)
]
− E

[
f(Žn)ψn

]∣∣ ≤ sup
f∈E(M,γ)

‖f(Žn)‖p/(p−1)‖1− ψn‖p = o(rn).
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For k1, k2 ∈ Z+, we have

|z|k1 |x|2k2
∣∣E[(1− ψn)φ(z;W∞, G∞)δx(X∞)

]∣∣
=

∣∣E[X2k2
∞ (1− ψn)|z|k1φ(z;W∞, G∞)δx(X∞)

]∣∣
≤ C(k1, k2)‖1− ψn‖ν,p

for all (z, x) ∈ Rď, where C(k1, k2) is a constant depending on (k1, k2), where ν =

2[1 + d1/2] ≤ d1 + 2. Therefore,

sup
f∈E(M,γ)

∣∣∣∣ ∫
Rď

f(z, x)E
[
(1− ψn)φ(z;W∞, G∞)δx(X∞)

]
dzdx

∣∣∣∣
= O(‖1− ψn‖ν,p) = o(rn).

This estimate makes it possible to replace pn by h0
n.

In this way, estimation of ∆n(f) is reduced to∣∣∣∣ ∫
Rď

f(z, x)g0
n(z, x)dzdx−

∫
Rď

f(z, x)h0
n(z, x)dzdx

∣∣∣∣
≤

∫
Rď

|f(z, x)|
(
1 + |(z, x)|)−mdzdx× sup

(z,x)∈Rď

∣∣(1 + |(z, x)|)m
(
g0
n(z, x)− h0

n(z, x)
)∣∣

= o(rn)

by Lemma 7.5 if m is chosen as m > ď + γ.

It is easy to give the joint asymptotic expansion with a reference variable in the
applications of the previous sections, while we do not give statements explicitly here. In
statistics, the joint expansion is quite important because the reference variable will be
the random Fisher information matrix, an asymptotically ancillary statistic, and so on, in
the context of the non-ergodic statistics.

On the other hand, it is also possible to give a similar asymptotic expansion of
E[f(Zn)] without a reference variable Xn. In fact, our result already applies to such
a case if we take a variable Xn = X∞ ∼ N(0, 1) independent of other variables. The
expansion formula is valid in particular for functions f(z) of z. Integrating out x from
pn(z, x), we obtain a formula

∫
pn(z, x)dx. Formally, this formula corresponds to the

case βx = 0 and d1 = 0. As a matter of fact, some of differentiability conditions can be
reduced due to lack of the reference variable Xn. We shall give a simplified version of
Theorem 7.6 with [C\] but without the reference variable Xn, among several possibilities.
In what follows, we will only consider the variable

Zn = Mn + rnNn.

In this situation, we need the random symbols

S(3,0)
n (iz) =

1

3
r−1
n

〈
D
〈
DMn[iz], un[iz]

〉
H
, un[iz]

〉
H

≡ 1

3
qTor[(iz)⊗3],

S
(2,0)
0,n (iz) =

1

2
r−1
n G(2)

n (z) =
1

2
r−1
n

(〈
DMn[iz], un[iz]

〉
H
−G∞[(iz)2]

)
≡ 1

2
qTan[(iz)⊗2],

S(1,0)
n (iz) = Nn[iz],

S
(2,0)
1,n (iz) =

〈
DNn[iz], un[iz]

〉
H

.

Let

Ψ(z) = exp
(
2−1G∞[(iz)⊗2]

)
.

We consider the following condition. Recall ` = d + 8 when d1 = 0.
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[D ] (i) un ∈ D`+1,∞(H⊗Rd), G∞ ∈ D`+1,∞(Rd ⊗+ R
d), Nn ∈ D`,∞(Rd).

(ii) There exists a positive constant κ such that the following estimates hold for
every p > 1:

‖un‖`,p = O(1)

‖G(2)
n ‖`−2,p = O(rn)

‖G(3)
n ‖`−2,p = O(rn)

‖
〈
DG(3)

n , un
〉
H
‖`−1,p = O(r1+κ

n )

∥∥∥∥〈D〈DG(2)
n , un

〉
H
, un
〉
H

∥∥∥∥
`−3,p

= O(r1+κ
n )

‖Nn‖`−1,p = O(1)

∥∥∥∥〈D〈DNn, un〉H, un〉H∥∥∥∥
`−2,p

= O(rκn).

(iii) For each pair (Tn,T) = (S
(3,0)
n ,S(3,0)), (S

(2,0)
0,n ,S

(2,0)
0 ), (S

(1,0)
n ,S(1,0)) and

(S
(2,0)
1,n ,S

(2,0)
1 ), the following conditions are satisfied.

(a) T is a polynomial random symbol the coefficients of which are in L1+ =

∪p>1L
p.

(b) For some p > 1, there exists a polynomial random symbol T̄n that has Lp

coefficients and the same degree as T,

E
[
Ψ(z)Tn(iz)

]
= E

[
Ψ(z)T̄n(iz)

]
and T̄n → T in Lp.

(iv) (a) detG−1
∞ ∈ L∞−.

(b) There exists κ > 0 such that

P
[
∆Mn

< sn
]

= O(r1+κ
n )

for some positive random variables sn ∈ D`−2,∞ satisfying supn∈N(‖s−1
n ‖p+

‖sn‖`−2,p) <∞ for every p > 1.

In the present situation, the random symbol S is defined by

S(iz) = S(3,0)(iz) + S
(2,0)
0 (iz) + S(1,0)(iz) + S

(2,0)
1 (iz).

Let Sn = 1 + rnS and define p̂n(z) by

p̂(z) = E
[
Sn(∂z)

∗φ(z; 0, G∞)
]

with naturally defined adjoint operation Sn(∂z)
∗. We follow the proof of Theorem 7.6 but

with

ϕn(θ, z; Ξ) = E
[
eλn(θ;z)Ξ

]
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for ϕn(θ, z, x; Ξ), where

λn(θ; z) = θMn[iz] + 2−1(1− θ2)G∞[(iz)⊗2] + θrnNn[iz].

Then, in place of (7.39), we obtain

sup
n

sup
θ∈(0,1)

sup
z∈Rd

rεLn |z|k
∣∣ϕn(θ, z; Ξ)

∣∣ < ∞.

For this estimate for θ ∈ (0,
√

1− rεn ], only non-degeneracy of G∞ is used. In this way,
we can prove the validity of the asymptotic expansion by p̂n. Denote by Ê(M,γ) the set
of measurable functions f : Rd → R such that |f(z)| ≤M(1 + |z|)γ for all z ∈ Rd. Let

∆̂n(f) =

∣∣∣∣E[f(Zn)
]
−
∫
Rd

f(z)p̂n(z)dz

∣∣∣∣
for f ∈ Ê(M,γ).

Theorem 7.7. Suppose that Condition [D] is satisfied. Then, for any positive numbers
M and γ,

sup
f∈Ê(M,γ)

∆̂n(f) = o(rn)

as n→∞.
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