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Abstract

We establish decomposition formulas for nonnegative infinitely divisible processes.
They allow to give an explicit expression of their Lévy measure. In the special case
of infinitely divisible permanental processes, one of these decompositions represents
a new isomorphism theorem involving the local time process of a transient Markov
process. We obtain in this case the expression of the Lévy measure of the total local
time process which is in itself a new result on the local time process. Finally, we iden-
tify a determining property of the local times for their connection with permanental
processes.
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1 Introduction and main results

A real valued process ψ = (ψx, x ∈ E) indexed by a general set E, is infinitely di-
visible if all its finite dimensional marginals are infinitely divisible. According to the
Lévy-Khintchine formula, for every n, and every x1, .., xn in E, the n-dimensional marginal
(ψx1

, ψx2
, .., ψxn) admits a decomposition into three independent vectors: one determinis-

tic vector, one centered Gaussian vector and one vector whose law is characterized by a
Lévy measure ν(x1,..,xn) on Rn.

We assume that ψ is nonnegative, hence the Gaussian component is always reduced
to 0. We also assume that ψ has no drift which implies that the deterministic component
is also always nul. Moreover the Lévy measure ν(x1,..,xn) must be on Rn+.

What is known about ν(x1,..,xn)? According to its definition, it must satisfy for every
α1, .., αn in Rn+

E[exp{−
n∑
i=1

αiψxi}] = exp{−
∫
Rn+

(1− e−
∑n
i=1 αiti)ν(x1,..,xn)(dt)},
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Infinitely divisible processes

with ν(x1,..,xn)(0Rn) = 0, and
∫
Rn+

1 ∧ |t| ν(x1,..,xn)(dt) <∞, where |t| = sup1≤i≤n |ti|.
But in general, nothing else is known about ν(x1,..,xn). Given an infinitely divisible

process ψ, the first natural problem is to determine {ν(x1,..,xn), (x1, .., xn) ∈ En, n > 0}.
One can formulate the problem in a more concise way by using the existence of a unique
global Lévy measure ν on RE+, the space of all functions from E into R+, (Theorem 2.8
in [16]) such that for every n > 0 and every x1, .., xn in E:

E[exp{−
n∑
i=1

αiψxi}] = exp{−
∫
RE+

(1− e−
∑n
i=1 αiy(xi))ν(dy)},

where for y element of RE+ and x in E, y(x) denotes the image of x by the function y.
The measure ν is called the Lévy measure of the process ψ (in section 2, we detail

this result due to Rosinski [16]). The problem becomes to know the Lévy measure ν.
Under an assumption of stochastic continuity, we give in Theorem 1.2 below, the gen-

eral expression of the Lévy measure of nonnegative infinitely divisible processes without
drift. To obtain it, we will first establish decomposition formulas of the nonnegative
infinitely divisible processes (Theorems 1.1 and 1.3) and use a previously established
general isomorphism theorem [5].

In the particular case of infinitely divisible permanental processes, the expression
of the Lévy measure was already known. But surprisingly, as it will be highlighted in
Remark 1.7, this example reflects the precise form of the Lévy measure in the general
case.

Theorem 1.1. Let (ψx, x ∈ E) be a nonnegative infinitely divisible process with no drift
part and finite first moment. Then for every a in E such that E[ψ(a)] > 0, the process
(ψx, x ∈ E |ψa = 0) is infinitely divisible and there exists a nonnegative infinitely divisible

process (L(a)
x , x ∈ E), independent of (ψx, x ∈ E |ψa = 0) such that:

ψ
(law)
= (ψ |ψa = 0) + L(a).

The three processes involved in Theorem 1.1 are infinitely divisible. Hence Theorem
1.1 has a counterpart in terms of Lévy measures. To formulate it we use a family of
nonnegative processes associated to ψ (see [5]) in the following way:

For every a such that E[ψ(a)] > 0, there exists a nonnegative process (r(a)(x), x ∈ E)

independent of ψ such that

ψ + r(a) has the law of ψ under E[
ψ(a)

E[ψ(a)]
, .] (1.1)

Actually the existence of (r(a), a ∈ E) characterizes the infinite divisiblity of ψ. This
characterization has been established in [5] (see also [16] for a more general framework).

When E is assumed to be a separable metric space w.r.t. some metric d, a real valued
process (Y (x), x ∈ E) is stochastically continuous if for every ε > 0 and every a in E

lim
x→a

P[|Y (x)− Y (a)| > ε] = 0

where the convergence to a is with respect to the metric d.

Theorem 1.2. Let (ψx, x ∈ E) be a nonnegative infinitely divisible process with Lévy
mesure µ and no drift. Denote by µa and µ̃a the respective Lévy measures of (ψ |ψa = 0)

and L(a). Then we have:
µ = µa + µ̃a

where
µa(dy) = 1{y(a)=0}µ(dy), µ̃a(dy) = 1{y(a)>0}µ(dy),
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Infinitely divisible processes

and for any measurable functional F on RE+

µ̃a(F ) = E[
E[ψ(a)]

r(a)(a)
F (r(a))].

If one assumes moreover that E is a separable metric space and that ψ is stochasti-
cally continuous then for any σ-finite measure m with support equal to E such that∫
E
E[ψ(x)]m(dx) <∞:

µ(F ) =

∫
E

E[
F (r(a))∫

E
r(a)(x)m(dx)

] E[ψ(a)] m(da). (1.2)

At first sight, the fact that the expression (1.2) of the Lévy measure of ψ is independent
of the choice of the measure m, is remarkable. As we will show in Remark 2.2, this fact
can be justified by the basic properties of the family (r(a), a ∈ E).

To exploit (1.2), one needs to know the law of r(a) for every a such that E[ψ(a)] > 0.
In section 4 we show how to proceed in the case of squared Bessel processes by making
use of the Markov property.

The following theorem can be viewed as an extension of Theorems 1.1 and 1.2 which
correspond to the case of the Dirac measure at point a. Instead of a Dirac measure we
consider a σ-additive measure m on E.

Theorem 1.3. Let (ψx, x ∈ E) be a nonnegative infinitely divisible process with no drift.
Let m be a σ-additive measure on E and V be an open subset of the support of m such
that

∫
V
E[ψ(x)]m(dx) <∞. Denote by φ the process ψ conditioned on

∫
V
ψ(x)m(dx) = 0.

Then φ is infinitely divisible and there exists an infinitely divisible nonnegative process
(LVx , x ∈ E) independent of φ such that

ψ
(law)
= φ + LV .

Denote by µ, µV and µ̃V the respective Lévy measure of (ψ,
∫
V
ψ(x)m(dx)),

(φ,
∫
V
φ(x)m(dx)) and (LV ,

∫
V
LVxm(dx)), then we have:

µ = µV + µ̃V

with

µV (dydt) = µ(dy × {0}), µ̃V (dydt) = 1t>0µ(dydt),

and for any measurable functional F on RE+ ×R+

µ̃V (F ) =

∫
V

E[
F (r(a),

∫
V
r

(a)
x m(dx) )∫

V
r

(a)
x m(dx)

] E[ψ(a)] m(da).

If moreover, E is a separable metric space and ψ is stochastically continuous then we
have:

ψ|V
(law)
= LV|V . (1.3)

In the case when the infinitely divisible process is a permanental process, the above
decompositions can be more explicit. To present them, we first recall that a permanental
process (φ(x), x ∈ E) with index β > 0 and a kernel k = (k(x, y), (x, y) ∈ E × E) is
characterized by its finite dimensional Laplace transforms:

E[exp{−1

2

n∑
i=1

αiφ(xi)}] = det(I + αK)−1/β
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Infinitely divisible processes

where α is the diagonal matrix with diagonal entries (αi)1≤i≤n, I is the n × n-identity
matrix and K is the matrix (k(xi, xj))1≤i,j≤n.

Note that in case β = 2 and k is symmetric positive definite, φ equals in law (η2
x, x ∈ E)

where (ηx, x ∈ E) is a centered Gaussian process with covariance k.
To select infinitely divisible permanental processes, one has to choose an appropriate

kernel. To do so, we consider a transient Markov process X with state space E, admitting
0-potential densities (g(x, y), (x, y) ∈ E × E) w.r.t. a σ-finite reference measure m and
a local time process (Lxt , x ∈ E, t ≥ 0). More precisely X is a transient Borel right
process (Ω,F , (Ft), (Xt)t≥0, (θt),Px, x ∈ E) (where Ft is σ{Xs : s ≤ t} completed and
right continuous as usual). To obtain the existence of local times, every point x in
the state space E is assumed to be regular for itself that is: Px(Tx = 0) = 1 where
Tx = inf{t > 0 : Xt = x}.

We have shown in [7] that there exists an infinitely divisible permanental process with
kernel g. We have also shown (see [7] and [9]) that a permanental process is infinitely
divisible iff it admits for kernel the 0-potential densities of a transient Markov process.

Theorem 1.4. Let Ψ be a permanental process with kernel g and index 1. For any a in E
such that g(a, a) > 0, denote by gTa the 0-potential densities of X killed at its first hitting
time of a. Then we have:

1

2
Ψ

(law)
=

1

2
ΨgTa

+ L(a)
∞ , (1.4)

where L(a)
∞ = (L

(a)
∞ (x), x ∈ E) is the total accumulated local times process of X condi-

tioned to start at a and killed at its last visit to a, and ΨgTa
is a permanental process with

kernel gTa and index 1, independent of X.

In view of Dynkin’s isomorphism [2] and its variants and extensions (see [7], [8], [4]...)
Theorem 1.4 looks familiar. In section 5, we show how Theorem 1.4 easily generates
some of these isomorphism theorems, as well as new identities.

The three processes involved in (1.4) are infinitely divisible. Since the already known
isomorphism theorems are expressed in terms of permanental processes with index 2,
denote by ψ a permanental process with kernel g and index 2 and by µ the Lévy measure
of 1

2ψ. Hence 2µ is the Lévy measure of 1
2Ψ. Theorem 1.4 has the following counterpart

in terms of Lévy measures. We assume that:
∫
E
g(x, x)m(dx) <∞. We use the notation

P̃a (and Ẽa for the corresponding expectation) for the probability under which X starts
at a and is killed at its last visit to a. This probability is obtained as follows:
for every Ft-measurable set B

P̃a[B] =
1

g(a, a)
Pa[B, g(Xt, x)].

Note that the local time process (Lx∞, x ∈ E) of X under P̃a and the process (L
(a)
∞ (x), x ∈

E) have the same law.
The life time of X is denoted by ζ.

Theorem 1.5. Let Ψ be a permanental process with kernel g and index 1. Let ΨgTa
be a

permanental process with kernel gTa and index 1, and L(a)
∞ the total accumulated local

times process of X conditioned to start at a and killed at its last visit to a. Denote by 2µ

the Lévy measure of 1
2Ψ. For any a in E such that g(a, a) > 0

µ = µa + µ̄a,

where 2µa is the Lévy measure of 1
2ΨgTa

and 2µ̄a is the Lévy measure of L(a)
∞ .

Moreover, we have

µa(dy) = 1{y(a)=0}µ(dy), µ̄a(dy) = 1{y(a)>0}µ(dy),
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Infinitely divisible processes

and for any measurable function F on RE+

µ̄a(F ) = Ẽa[
g(a, a)

2La∞
F ((Lx∞, x ∈ E))] (1.5)

µ(F ) =

∫
E

Ẽa[
F ((Lx∞, x ∈ E)

ζ
]
g(a, a)

2
m(da). (1.6)

Remark 1.6. We mention that in [7], we made a confusion between µ and µ̄a. This
changes the content of Corollary 3.3 in [7] and its consequence Theorem 3.4 [7]. Indeed
in case E is a locally compact metric space, the continuity of the local time process
obviously implies the continuity of the infinitely divisible process with Lévy measure 2µ̄a
(since it is the local time itself), but this does not immediately imply the continuity of ψ.
In section 3, we list some of the properties that ψ must satisfy, assuming the continuity
of the local time process. In particular, when X is a transient Lévy process, we show
with a simple argument that ψ must be continuous. However we still can not prove that
the joint continuity of the local time process implies the continuity of ψ in the general
case.

Remark 1.7. Note that unlike in Theorem 1.2, we dont need to assume the stochastic
continuity of the permanental process to write (1.6). The expression of the Lévy measure
(1.6) has been obtained in [10] by different means.

Besides (1.5) represents a new result on the local time process that can not be
extended to the general case. More precisely, in the general case the processes r(a) and
L(a) respectively defined in (1.1) and Theorem 1.1, are different processes. Actually in
general r(a) is not even infinitely divisible while L(a) is always infinitely divisible. Still,
we emphasize the fact that the expression (1.6) of µ is an illustration of the general
result (1.2). Indeed the life time ζ of X under P̃ a is equal to

∫
E
L

(a)
∞ (x)m(dx) and hence

(1.6) can also be written as follows:

2µ(F ) =

∫
E

E[
F (L

(a)
∞ )∫

E
L

(a)
∞ (x)m(dx)

] E[
1

2
Ψ(a)] m(da). (1.7)

Finally note that if one assumes that E is a separable metric space and ψ is stochastically
continuous (e.g. the function g is continuous w.r.t. the metric on E), then the expression
of µ given by (1.7) is still available if one replaces m by any σ–finite measure m̃ with
support equal to E such that

∫
E
E[ψ(x)] m̃(dx) <∞.

In the special case of permanental processes, Theorem 1.3 provides the decomposition
below. To introduce it we use the following notation.

Consider a continuous additive functional (At)t≥0 defined by

At =

∫
E

Lxt νA(dx),

where νA is the so-called Revuz measure of A. We denote by V the fine support of A.
Note that V is contained in the support of νA.

We assume that:
∫
V
g(x, x)νA(dx) <∞.

Define ht = inf{s ≥ 0 : As > t}. The process XV = (Xht , t ≥ 0) is a transient Markov
process living on V . Its total accumulated local times process is (Lx∞, x ∈ V ) and its
0-potential densities are (g(x, y), (x, y) ∈ V × V ) with respect to the measure νA. Denote
by ψV (resp. ΨV ) the permanental process associated to (Xht , t ≥ 0) with index 2 (resp.
1). Since the law of a permanental process is completely determined by its kernel, one
obtains:

(ψ(x), x ∈ V )
(law)
= (ψV (x), x ∈ V ) (1.8)
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and

(Ψ(x), x ∈ V )
(law)
= (ΨV (x), x ∈ V ).

Let TV be the first hitting time of V : TV = inf{t > 0 : Xt ∈ V }, and denote by gTV the
0-potential densities of X killed at TV and by ψgTV the permanental process with index 2

and kernel gTV .
The following result can be viewed as a generalization of Theorem 1.4 which corre-

sponds to the case where νA is the Dirac measure with unit mass at a.

Theorem 1.8. For any V chosen as above, ψ admits the following decomposition into
the sum of two independent nonnegative infinitely divisible processes

ψ
(law)
= ψgTV + φV , (1.9)

such that the Lévy measure of (φV , x ∈ E) is the law of (Lx∞, x ∈ E) under
1
2

∫
V
Ẽa[ 1

A∞
; . ] g(a, a)νA(da).

Moreover we have:

• the restriction to V of ψgTV is nul.

• the restriction to V of φV has the law of ψV .

• ψgTV
(law)
= (ψ |

∫
V
ψ(x)νA(dx) = 0).

Note that although the restriction to V of φV is a permanental process, φV is not a
permanental process.

Theorem 1.8 implies that the Lévy measure of ψ|V is the law of (Lx∞, x ∈ V ) under
1
2

∫
V
Ẽa[ 1

A∞
; . ]g(a, a)νA(da) and that the Lévy measure of ψgTV is µ(TV =∞; .). These

two facts have been already established in [10] (Theorem 6.1, Theorem 7.3 and Corollary
7.4).

Finally in section 2, we try to give an answer to the question of the existence
of Dynkin’s isomorphism Theorem. Namely given the family of local time processes
(L

(a)
∞ , a ∈ E) associated to the transient Markov process X, which property determines

the existence of a nonnegative process ψ, independent of X, satisfying the following
identity in law for every a in E:

ψ + L(a)
∞ has the law of ψ under E[ ψ(a)

E[ψ(a)] , . ] ?

We provide a general answer. Actually we answer the following more general question:
Given a family of nonnegative processes (r(a), a ∈ E), under what condition there exists
a nonnegative process ψ satisfying (1.1)? We already know (see [5], [16]) that when such
a process ψ exists, then it has to be infinitely divisible.

The paper is organized as follows. All the proofs of the results presented in the
introduction are given in section 6. In section 2, we establish a converse of (1.1), the
general isomorphism Theorem. Under the assumption of the continuity of the local time
process, section 3 lists various properties that the associated permanental process must
satisfy thanks to Theorem 1.4. Section 4 provides an expression of the Lévy measure of
squared Bessel processes. Section 5 presents some remarks on Theorem 1.4.

2 A converse to (1.1)

Let (r(a); a ∈ E) be a family of nonnegative processes. It is natural to ask under
what condition on the corresponding family of laws, there exists a nonnegative infinitely
divisible process (ψx, x ∈ E) without drift, satisfying (1.1). To answer this question we
will make use of a necessary condition that appeared in the proof of Theorem 1.2 but
also of the following characterization of Lévy measures established by Rosinski [16]. We
adapt it to our framework of nonnegative infinitely divisible processes.
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Lévy measures Let µ be a measure on (RE+,BE), where BE denotes the cylindrical
σ-algebra associated to RE+ the space of all functions from E into R+. There exists an
infinitely divisible nonnegative process (ψx, x ∈ E) such that for every n > 0, every
x1, .., xn in E:

E[exp{−
n∑
i=1

αiψxi}] = exp{−
∫
RE+

(1− e−
∑n
i=1 αiy(xi))ν(dy)}, (2.1)

iff µ satisfies the two following conditions:
(L1) for every x ∈ E µ(|y(x)| ∧ 1)) <∞,
(L2) for every A ∈ BE , µ(A) = µ∗(A \ 0E), where µ∗ is the inner measure.
A measure µ on (RE+,BE), is said to be a Lévy measure if it satisfies (L1) and (L2),
Conversely to every nonnegative infinitely divisible process (ψx, x ∈ E) with 0-drift,

corresponds a unique Lévy measure µ such that (2.1) is satisfied.

The proof of Theorem 1.2 (given in section 6) shows that the existence of a process
ψ satisfying (1.1) requires at least two properties from (r(a), a ∈ E). First, for every a,

one must have (6.4): P[r
(a)
a = 0] = 0. But note also that using twice (6.5), for a and b any

couple of points of E, leads to

E[ψ(a)] E[r(a)(b) F (r(a))] = E[ψ(b)] E[r(b)(a) F (r(b))], (2.2)

for any measurable functional F .
Indeed, starting from (6.5) one has:

µ(F (y)1{y(a)>0,y(b)>0}) = E[ψ(a)]E[
1

r
(a)
a

;F (r(a))1{r(a)
b >0}]

= E[ψ(b)]E[
1

r
(b)
b

;F (r(b))1{r(b)
a >0}].

Then one chooses F (y) = y(a)y(b)F̃ (y), to obtain (2.2).
The result below shows that if one assumes the existence of an appropriate measure

m on E, (2.2) is also sufficient.

Theorem 2.1. Assume that E is a separable metric space. Let (r(a); a ∈ E) be a family
of nonnegative processes such that for every a in E, r(a) is stochastically continuous.
Assume that there exists a family (ca, a ∈ E) of strictly positive numbers such that for
every measurable functional F and every a, b in E, we have for every a in E:

caE[r
(a)
b F (r(a))] = cbE[r(b)

a F (r(b))], (2.3)

and there exists a σ-finite measure m with support equal to E such that for every a in E:

P[0 <

∫
E

r(a)(x)m(dx) <∞] = 1. (2.4)

Then there exists a nonnegative infinitely divisible process ψ with 0-drift, independent of
the family (r(a), a ∈ E), such that for every a in E

ψ + r(a)(law)
= ψ under E[

ψ(a)

ca
; .],

with a Lévy measure µ given by:

µ(F ) =

∫
E

E[
F (r(a))∫

E
r(a)(x)m(dx)

]cam(da). (2.5)

Moreover if
∫
E
cam(da) <∞, then ψ satisfies: (ψ |

∫
E
ψ(x)m(dx) = 0) = 0.
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Note that (2.4) together with (2.3), imply (6.4). To see this, one writes:

caE[r
(a)
b 1{r(a)

a =0}] = cbE[r(b)
a 1{r(b)

a =0}] = 0.

Then integrate each member of the above equation with respect to m(db) to obtain:
caE[1{r(a)

a =0}

∫
E
r(a)(x)]m(dx) = 0, which leads to (6.4).

Proof. We first show that the measure µ defined by

µ(F ) =

∫
E

E[
F (r(a))∫

E
r(a)(x)m(dx)

]cam(da),

is a Lévy measure on (RE+,BE). We show that µ satisfies the two conditions (L1) and
(L2).

For every b in E, we have:

cbE[F (r(b))] = cb E[F (r(b))

∫
E
r(b)(x)m(dx)∫

E
r(b)(x)m(dx)

]

=

∫
E

cb E[
r(b)(a)F (r(b))∫
E
r(b)(x)m(dx)

]m(da)

=

∫
E

ca E[
r(a)(b)F (r(a))∫
E
r(a)(x)m(dx)

]m(da). (2.6)

Hence one obtains in particular (for F = 1)

cb =

∫
E

ca E[
r(a)(b)∫

E
r(a)(x)m(dx)

]m(da).

Consequently µ(|y(b)|) <∞ and µ satisfies (L1).
To show that µ satisfies (L2), it is sufficient to show that there exists a countable

subset T of E such that µ({y ∈ RE+ : y|T = 0}) = 0 (see [16] Remark 2.2).
Let D be a countable dense subset of E. Since, for every a in A, r(a) is stochastically

continuous, D can be used as separability set for r(a). Hence:

1{r(a)
x =0,∀x∈D} ≤ 1{r(a)

x =0,∀x∈D∩B(a,ε)} ≤ 1{r(a)
a =0} = 0 a.s.

which leads to: µ(0|D ) = 0. Consequently µ satisfies (L2).
Denote by (ψx, x ∈ E) a nonnegative infinitely divisible process with Lévy measure µ

and no drift. For every x1, x2, ..., xn in E, we have:

E[exp{−
n∑
i=1

αiψxi}] = exp{−
∫
E

caE[
1− e−

∑n
i=1 αir

(a)(xi)∫
E
r(a)(x)m(dx)

]m(da)}

hence, if one sets b = x1

E[ψb exp{−
n∑
i=1

αiψxi}] =

∫
E

caE[r(a)(b)
e−

∑n
i=1 αir

(a)(xi)∫
E
r(a)(x)m(dx)

]E[exp{−
n∑
i=1

αiψxi}]m(da).

(2.7)
One notes that using (2.6), one has∫

E

caE[
r(a)(b)e−

∑n
i=1 αir

(a)(xi)∫
E
r(a)(x)m(dx)

]m(da) = cbE[exp{−
n∑
i=1

αir
(b)(xi)}],

which with (2.7) leads to (1.1).
If
∫
E
cam(da) <∞, using Theorem 1.3 for V = E, one knows that the Lévy measure

of LV is precisely (2.5). Hence it coincides with ψ and one obtains: (ψ|
∫
E
ψ(x)m(dx) =

0) = 0 a.s.
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Infinitely divisible processes

Remark 2.2. Theorem 1.2 provides the explicit expression (1.2) of the Lévy measure
of stochastically continuous nonnegative infinitely divisible processes ψ without drift.
As a consequence of this result one obtains that for every measurable functional F on

RE+, the quantity
∫
E
E[ψ(a)]E[ F (r(a))∫

E
r(a)(x)m(dx)

]m(da) is independent of the choice of the

measure m. We show now that this remarkable property can be seen as a consequence
of (2.2). We assume that for any a in E, E[ψ(a)] > 0.

For any measure m satisfying the assumptions of Theorem 1.2, define a measure Jm
by:

Jm(F ) =

∫
E

E[ψ(a)]E[
F (r(a))∫

E
r(a)(x)m(dx)

]m(da).

We show that: Jm(F ) = Jm̃(F ), for any other measure m̃ satisfying the assumptions of
Theorem 1.2.

(1) Note that if F is such that: F (y) = y(a)F̃ (y) for some a in E, then similarly as for
(2.6), using (2.2) one has: Jm(F ) = Jm̃(F ).

(2) One easily shows that if ψ is stochastically continuous, then for every a in E such
that E[ψ(a)] > 0, r(a) is stochastically continuous too. Let D be a countable dense subset
of E, D = {an, n ≥ 1}. For every a in E, D can be chosen as separability set for r(a).
Hence one obtains: Jm({y : y|D = 0}) = 0.

Consequently: Jm(F ) =
∑∞
k=1 Jm(F,Bk), where B1 = {y ∈ RE+ : y(a1) > 0} and for

k ≥ 2, Bk = {y ∈ RE+ : y(ak) > 0, y(aj) = 0; 1 ≤ j ≤ k − 1}.
One has: F (y)1Bk(y) = y(ak)( F (y)

y(ak)1y(ak)>01Bk(y)). Hence thanks to (1), for every

k ≥ 1: Jm(F,Bk) = Jm̃(F,Bk), which finally leads to: Jm(F ) = Jm̃(F ).

3 Trajectorial properties of the permanental process

In this section we consider permanental processes admitting for kernel the 0-potential
densities of a transient Markov process with a locally compact metric state space. We
always assume that the local time process of this transient Markov process is continuous
as a process indexed by time and space.

3.1 0-1 laws

We assume that E is a compact separable metric space. Let D be a dense subset of
E, D = {an, n ≥ 1}.

First note that the continuity of the local time implies the continuity of g and of gTa .
(For example, since limb→aPa[Lb∞ > 0] = 1, it follows that: limb→a g(a, b) = g(a, a)).

Since: E[(Ψa
2 −

Ψb
2 )2] = 3(g(a, a))2 + 3(g(b, b))2 − 2g(a, a)g(b, b) − 4g(a, b)g(b, a)), it

follows that he continuity of the kernel g is equivalent to the L2-continuity of Ψ.
We have, using Theorem 1.4

Ψ
(law)
= ΨgTa1

+ 2L(a1).

Similarly

ΨgTa1

(law)
= ΨgTa1

∧Ta2
+ 2L(a1,a2)

where ΨgTa1
∧Ta2

is a permanental process independent of X, with kernel the potential

density of X killed at Ta1
∧ Ta2

, and index 1 and L(a1,a2) has the law of the local time
process of X killed at Ta1

, conditioned to start at a2 and killed at its last visit to a2.
Hence

Ψ
(law)
= ΨgTa1∧Ta2

+ 2L(a1) + 2L(a1,a2)

with the three terms on the right hand side independent.
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Iterating the procedure, one obtains Ψ as the sum of n + 1 independent terms as
follows:

Ψ
(law)
= ϕn + 2L(a1) + 2L(a1,a2) + ...+ 2L(a1,a2,...,an) (3.1)

with ϕn = ΨgTa1∧Ta2∧...∧Tan
, and for every 2 ≤ k ≤ n, L(a1,a2,...,ak) has the law of the local

time process of X conditionned to start at ak and killed at the last exit from ak before
Ta1 ∧ Ta2 ∧ ... ∧ Tak−1

.
Except for ϕn, the n+ 1 terms on the right hand side of (3.1) are continuous on E.
For simplicity, we just write L(k) instead of L(a1,a2,...,ak) for k ≥ 1. Hence for every n,

one has:
1

2
Ψ

(law)
=

1

2
ϕn +

n∑
k=1

L(k)

We show now that there exists a finite nonnegative process (Y (x), x ∈ E) independent of
X such that for every x: Y (x) = 0 a.s., and

Ψ
(law)
= Y + 2

∞∑
k=1

L(k). (3.2)

Note that the sequence of processes (ϕn) is stochastically decreasing and bounded below
by 0. Hence there exists a sequence of nonnegative processes (Yn)n≥0 defined on the

same space such that for every n: Yn
(law)
= ϕn, and for every n

0 ≤ Yn+1(x) ≤ Yn(x).

For a fixed ω, (Yn(x), n ≥ 1) decreases to some value that we denote by Y (x) (Yn
converges pointwise to Y ). Since the local time is assumed to be continuous, in particular
LTD is continuous, where TD = inf{t ≥ 0 : Xt ∈ D}. But LTD = 0 on D, hence LTD = 0

on E and gTD = 0 on E ×E. Consequently for every x in E, E[Yn(x)] decreases to 0. One
obtains: E[Y (x)] = 0 and hence Y (x) = 0 a.s.

On the other hand the sequence of processes (
∑n
k=1 L(k))n≥1 is increasing. For a

fixed ω,
∑n
k=1 L(k)(x) increases to

∑∞
k=1 L(k)(x) (a value that might be infinite).

For every n, set:

1

2
ψn =

1

2
Yn +

n∑
k=1

L(k).

Consequently, for a fixed ω, ψn(x) converges to some value ψ∞(x). The process ψ∞
satisfies:

1

2
ψ∞ =

1

2
Y +

∞∑
k=1

L(k).

For every n, for every x1, x2, ..., xp in E the vectors (ψn(x1), ψn(x2), ...ψn(xp)) all live in
the same probability space and have the law of (Ψ(x1),Ψ(x2), ...,Ψ(xp)). Consequently:

(ψ∞(x1), ψ∞(x2), ...ψ∞(xp))
(law)
= (Ψ(x1),Ψ(x2), ...Ψ(xp)),

which leads to (3.2).
Since Y admits a version which identically equals 0, one obtains that 2

∑∞
k=1 L(k) is a

version of Ψ. Another consequence is:

P[∀x ∈ E :

∞∑
k=1

L(k)(x) <∞] = 1. (3.3)
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Define the oscillation function of a random separable process Z(x)x∈E by

oscZ(a) = lim
δ→0

sup
u,v∈B(a,δ)

|Z(u)− Z(v)|.

As a consequence of (3.2), one obtains for any separable version of Ψ (that we still denote
by Ψ) that there exists an upper semi-continuous deterministic function w such that

P[oscΨ(a) = w(a),∀a ∈ E] = 1

As an immediate consequence, Ψ enjoys many 0− 1-laws. For example,

P[Ψ is continuous on E] = 0 or 1

P[ lim
y−→a

Ψ(y) = Ψ(a)] = 0 or 1

P[Ψ has a bounded discontinuity on E] = 0 or 1

P[Ψ has a bounded discontinuity at a] = 0 or 1

P[Ψ is unbounded on E] = 0 or 1

P[lim sup
x−→a

Ψ(x) = +∞] = 0 or 1

Note that the processes ϕn, n ≥ 1, enjoy the same properties simultaneously and have
the same oscillation function w.

By Fatou’s Lemma, one has: E[lim infx−→a1 ϕ1(x)] ≤ lim infx−→a1 E[ϕ1(x)] = 0. Hence:
P[lim infx−→a1 ϕ1(x) = 0] = 1, which leads to

P[lim inf
x−→a1

Ψ(x) = Ψ(a1)] = 1

Since the choice of a1 is abitrary one finally obtains:

P[lim inf
x−→a

Ψ(x) = Ψ(a)] = 1,∀a ∈ E (3.4)

and hence to
lim
δ−→0

sup
x∈B(a,δ)

Ψ(x) = lim sup
x−→a

Ψ(x) = Ψ(a) + w(a) a.s.

Using (3.3) and Theorem 7 p.213 in [17], for every fixed ω, there exists a dense subset
B(ω) in E such that

∑∞
k=1 L(k)(ω) is continuous at each point of B(ω).

Now, the set A = {x ∈ E : w(x) = 0} is a deterministic set and contains B(ω) for
every ω. Hence: Ā = E, and at least A is dense in E. Since A is deterministic, it contains
a deterministic dense set ∆. One hence obtains the following result.

Proposition 3.1. Assume that X is a transient Markov process with a continuous local
time process then there exists a dense subset ∆ of its state space such that its associated
permanental process ψ is continuous at each point of ∆ and ψ|∆ is continuous.

The following proposition has been already obtained by Marcus and Rosen. Their
argument is based on Barlow’s necessary and sufficient condition for a Lévy process to
have a continuous local time process [1] and on a sufficient condition for a permanental
process to be continuous [13]. Our proof has the merit to be a direct argument relying
exclusively on Theorem 1.4.

Proposition 3.2. Assume that X is a transient Lévy process with continuous local time
process. Then its associated permanental process admits a continuous version.

Proof. Indeed in this case the oscillation function of the associated permanental is equal
to a constant function. Thanks to Proposition 3.1, we know that it is equal to 0 on a
dense set, and hence the oscillation function is equal to 0 at each point.
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3.2 The special symmetric case

In case the transient Markov process X admits a symmetric potential density w.r.t.
a reference measure m, then the permanental process is a squared Gaussian process.
Namely, (ψ(x), x ∈ E) = (η2(x), x ∈ E) with (η(x), x ∈ E) centered Gaussian process with
covariance g. The process (η(x), x ∈ E) is the so-called associated Gaussian process to
X. The following proposition has already been obtained with other arguments in [14],
but appears as an immediate consequence of section 3.1.

Proposition 3.3. Let X be a transient symmetric Markov process with a continuous
local time process. Denote by η its associated Gaussian process. Then for any point a in
E, if η is not unbounded at a then η is continuous at a.

Indeed, we know (see [11]) that there exists a deterministic function δ such that

lim sup
x−→a

η2(x) = (η(a) +
δ(a)

2
)2.

But the assumption of continuity of the local time process, gives the existence of a
deterministic function w1 such that:

lim sup
x−→a

η2(x) = η2(a) + w1(a).

If w1(a) <∞, then immediately one has: δ(a) = w1(a) = 0.

3.3 Real indexed permanental processes

In case the transient Markov processX is real valued, then its associated permanental
process is indexed by R.

Proposition 3.4. Let X be a real valued transient Markov process with a continuous
local time process. If its associated permanental process Ψ has càdlàg trajectories then
Ψ has a continuous version.

Proof. Fix a in R. We assume that limx→a,x>a Ψ(x) = Ψ(a) and limx→a,x<a Ψ(x) = Ψ−(a).
We have established in section 3.1 that:

lim sup
x−→a

Ψ(x) = Ψ(a) + w(a) a.s.

and
lim inf
x−→a

Ψ(x) = Ψ(a) a.s.

Consequently, one obtains: w(a) <∞ and Ψ−(a) = Ψ(a) + w(a) a.s.
Let (xn) be a strictly increasing sequence converging to a.
On one hand, one has: Ψ(xn)→n→∞ Ψ(a) + w(a) a.s. But on the other hand, one has:

Ψ(xn) →n→∞ Ψ(a) in L2, which implies that there exists a subsequence (xf(n)) of (xn)

such that Ψ(xf(n))→n→∞ Ψ(a) a.s.
One hence obtains: w(a) = 0.

4 Lévy measure of squared Bessel processes

Given a nonnegative infinitely divisible process ψ without drift, to obtain its Lévy
measure one needs only to identify for any a such that E[ψa] > 0, the law of r(a) (defined
by (1.1)). To answer a question asked by Zhan Shi and Jan Rosinski, we detail the use of
Theorem 1.2 in the special case of squared Bessel processes. Let (ψt, t ≥ 0) be a squared
Bessel process with dimension δ starting from x. Denote its Lévy measure by µδ,x. The
additivity property of squared Bessel processes immediately gives:

µδ,x = δ µ1,0 + xµ0,1. (4.1)
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It is hence sufficient to compute µ1,0 and µ0,1 to obtain the following proposition.

Proposition 4.1. The Lévy measure µδ,x of a squared Bessel process with dimension δ
starting from x is given by

µδ,x(F ) =

∫ ∞
0

∫ ∞
0

e−a(δ + x
`

2a
)
e−

`
2a

2a
E[

F (X`,a)∫∞
0
X`,a
t e−tdt

]dad`,

for every measurable functional F on R
R+

+ , where the process (X`,a
t , t ≥ 0) is a non-

negative Markov process such that: X`,a
a = `, (X`,a

t+a, t ≥ 0) is a squared Bessel process

with dimension 0 starting from ` and (X`,a
a−t, 0 ≤ t ≤ a) is a squared Bessel bridge with

dimension 0, lenght a, between ` and 0.

Proof. We show below how to obtain the law of r(a) in the case of a squared Bessel
process with dimension 1 starting from 0 and in the case of dimension 0 starting from 1.
We could use the famous Ray-Knight Theorems for that, but in both cases it is shorter to
just use the definition of r(a).

Let (ψt, t ≥ 0) be a squared Bessel process starting from 0 with dimension 1. For
every a > 0, E[ψa] = a. To compute the law of r(a), we write:

ψ + r(a)(law)
= ψ under E[

ψ(a)

a
, . ].

First we note that:

E[e−λψa ]E[e−λr
(a)
a ] = E[

ψa
a
e−λψa ] (4.2)

Since: E[e−λψa ] = (1 + 2λa)−1/2, (4.2) shows that r(a)
a has an exponential law with

parameter 1
2a .

For any x1, x2, ..., xn in [0,∞) and λ1, ..., λn in R+, we have, making use of the Markov
property of ψ with obvious notation:

E[exp{−
n∑
k=1

λkψxk+a}]E[exp{−
n∑
k=1

λkr
(a)
xk+a}] =

1

a
E[ψa exp{−

n∑
k=1

λkψxk+a}]

=
1

a
E[ψaE[exp{−

n∑
k=1

λkψxk} ◦ θa|Fa]]

=
1

a
E[ψaEψa [exp{−

n∑
k=1

λkψxk}]]

Hence (r
(a)
t+a, t ≥ 0) is a squared Bessel process with dimension 0 starting from an

exponential law with parameter 1
2a .

For any x1, .., xn in (0, a) and λ1, ..., λn in R+, we have:

E[exp{−
n∑
k=1

λkψa−xk}]E[exp{−
n∑
k=1

λkr
(a)
a−xk}] =

1

a
E[ψa exp{−

n∑
k=1

λkψa−xk}],

which shows that (r
(a)
a−t, 0 ≤ t ≤ a) has the law of a squared Bessel bridge with dimension

0 and length a, starting with an exponential law with parameter 1
2a and ending at 0.

One shows (e.g. similarly as in [3]) that r(a) has the Markov property, hence condition-
ally to r(a)

a , (r
(a)
a−t, 0 ≤ t ≤ a) and (r

(a)
t+a, t ≥ 0) are independent. The law of r(a) is hence

fully described. Finally we have to choose a measure m such that:
∫∞

0
a m(da) <∞. One

can choose: m(da) = e−ada.
A similar computation gives the law of r(a) when ψ is a squared Bessel process with

dimension 0 starting from 1. In this case one obtains:
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– For every a, E[ψa] = 1.

– r
(a)
a has a gamma law Γ(2, 2a).

– Conditionnally to r(a)
a = `, (r

(a)
t+a, t ≥ 0) has the law of a squared Bessel process with

dimension 0 starting from `.

– Conditionnally to r(a)
a = `, (r

(a)
a−t, 0 ≤ t ≤ a) has the law of a squared Bessel bridge

with dimension 0 starting from ` and ending at 0.

We can also choose m(da) = e−ada.
One obtains the final expression of µδ,x thanks to (4.1).

Pitman and Yor have devoted section 4 of [15] to the description of µδ,x in terms of
the Itô excursion law of the reflecting Brownian motion.

5 Some remarks on Theorem 1.4

5.1 Some applications

Let X be a recurrent Markov process with state space E, admitting a local time
process (Lxt , x ∈ E, t ≥ 0). For every r ≥ 0, set: τr = inf{t > 0 : Lat > r} Then X killed
at time τSθ with Sθ an independent exponential variable with parameter θ, is transient.
Theorem 1.4 leads to:

1

2
ΨgτSθ

(law)
=

1

2
ΨgTa

+ L(a)
τSθ

,

where gτSθ denotes the 0-potential densities of X killed at τSθ and gTa the 0-potential
densities of X killed at Ta its first hitting time of a.

The above identity leads to:

1

2
(ΨgτSθ

|ΨgτSθ
(a) = r)

(law)
=

1

2
ΨgTa

+ L(a)
τr

and to

(ΨgτSθ
|ΨgτSθ

(a) = 0)
(law)
= ΨgTa

.

Denote by ψ and ψ̃ two independent permanental processes with kernel gτSθ and index 2.
This implies that:

ΨgτSθ

(law)
= ψ + ψ̃.

We use now a remarkable property of permanental processes that has been noticed in
[7] (Remark 2.5.1) for every p, q ≥ 0 such that p+ q = r

(ψ|ψ(a) = p) + (ψ̃|ψ̃(a) = q)
(law)
= (ψ|ψ(a) = r) + (ψ̃|ψ̃(a) = 0).

One hence obtains:

(ΨgτSθ
|ΨgτSθ

(a) = r)
(law)
= (ψ|ψ(a) = r) + (ψ̃|ψ̃(a) = 0),

to conclude that Pa a.s.

1

2
(ψ|ψ(a) = r)

(law)
=

1

2
(ψ|ψ(a) = 0) + L(a)

τr ,

which means that Pa a.s.

1

2
(ψ|ψ(a) = r)

(law)
=

1

2
ψgTa + L(a)

τr . (5.1)

This last identity has been established in [7] extending a previous result of [8]. These
identities in law are called isomorphism theorems because they can be seen as variants of
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the seminal Dynkin’s isomorphism Theorem [2]. Theorem 1.4 represents a more general
identity than (5.1) and can also generate new identities that are not obvious starting
from the known isomorphism theorems. For example, assume that X is a recurrent
Markov process killed at an independent exponential time S. Denote by gS its 0-potential
densities then for every a in E, we have, using Theorem 1.4:

1

2
ΨgS

(law)
=

1

2
ΨgTa∧S

+ L
(a)
S

or equivalently:
1

2
ΨgS

(law)
=

1

2
(ΨgS |ΨgS (a) = 0) + L

(a)
S .

5.2 Selfdecomposition property

Theorem 1.4 can be seen as an extension of the following identity for exponential
variables. Denote by eθ an exponential variable with parameter θ. Then we have for
every λ in [0, 1]:

eθ
(law)
= λeθ + Xλ,θ (5.2)

where Xλ,θ is a real variable, independent of eθ such that

Law(Xλ,θ) = (1− λ)Law(eθ) + λδ0.

(5.2) is a translation of the selfdecomposition property of the exponential law. It can also
be seen as a characterization of the exponential law.

Each of the one dimensional identities in law implied by (1.4) is an illustration of
(5.2), but (1.4) does not lead to the selfdecomposability of the permanental process since
the factor λ varies with the index x in E.

As it has been noticed in [6], permanental vectors are not selfdecomposable, but
Theorem 1.4 is reminiscent of that property.

6 Proofs of Theorem 1.1, Theorem 1.2, Theorem 1.3, Theorem
1.4, Theorem 1.5 and Theorem 1.8

Proof of Theorem 1.1. For x1, x2, ..., xn, a in E, denote by ν(dy × dt) the Lévy measure of
((ψx1

, ψx2
, ..., ψxn), ψa). Then one can write:

ν(dy × dt) = 1{t=0}ν(dy × {0}) + 1{t>0}ν(dy × dt). (6.1)

Now we look for the infinitely divisible vector corresponding to the Lévy measure
1{t=0}ν(dy × {0}). We have for every αi, 1 ≤ i ≤ n+ 1 and σ in R+

E[exp{ −
n∑
i=1

αiψ(xi)− αn+1ψa − σψa}]

= exp{−
∫
Rn+

∫ ∞
0

(1− exp{−(αn+1 + σ)t−
n∑
i=1

αiyi})ν(dydt)}.

In particular, one has:

E[exp{−σψa}] = exp{−
∫
Rn+

∫ ∞
0

(1− exp{−σt)ν(dydt)}.

Consequently:

E[exp{−
∑n
i=1 αiψ(xi)− αn+1ψa − σψa}]
E[exp{−σψa}]

= exp{−
∫
Rn+

∫ ∞
0

e−σt(1− exp{−αn+1t−
n∑
i=1

αiyi})ν(dydt)}
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which by dominated convergence, as σ tends to +∞, converges to

exp{−
∫
Rn+

(1− exp{−
n∑
i=1

αiyi})ν(dy × {0})}

On the other hand, using the fact that if L(σ) is the Laplace transform of a nonnegative
random variable Z then limσ→∞ L(σ) = P(Z = 0), one has:

E[exp{−
∑n
i=1 αiψ(xi)− αn+1ψa − σψa}]
E[exp{−σψa}]

−→σ→∞ E[exp{−
n∑
i=1

αiψ(xi)} | ψa = 0].

Denote by φ the process ψ conditioned by ψ(a) = 0. Denote by L(a) an infinitely divisible
nonnegative process with Lévy measure 1{t>0}ν(dy × dt), independent of φ. We hence
obtain

ψ
(law)
= φ + L(a).

Note that
(L(a)|L(a)(a) = 0) = 0. (6.2)

Proof of Theorem 1.2. We start from (1.1). We know that for every a such that E[ψ(a)] >

0, there exists a nonnegative process r(a) independent of ψ such that: ψ + r(a) has the
law of ψ under E[ ψ(a)

E[ψ(a)] , .].
This is a consequence of Lemma 3.1 in [5], but one can check it easily. Indeed, denote

by µn the Lévy measure of (ψx1
, ψx2

, ..., ψxn) and assume that x1 = a, then we have:

E[ ψ(a) exp{−
n∑
i=1

αiψ(xi)}] = − ∂

∂α1
exp{−

n∑
i=1

αiψ(xi)}]

= E[exp{−
n∑
i=1

αiψ(xi)}]
∂

∂α1

∫
Rn+

(1− e−
∑n
i=1 αiyi)µn(dy1dy2...dyn)

= E[exp{−
n∑
i=1

αiψ(xi)}]
∫
Rn+

y1e
−

∑n
i=1 αiyiµn(dy1dy2...dyn).

Hence

E[exp{−
n∑
i=1

αir
(a)
xi }]E[exp{−

n∑
i=1

αiψ(xi)}] = E[
ψ(a)

E[ψ(a)]
exp{−

n∑
i=1

αiψ(xi)}], (6.3)

with

E[exp{−
n∑
i=1

αir
(a)
xi }] =

1

E[ψ(a)]

∫
Rn+

y1e
−

∑n
i=1 αiyiµn(dy1dy2...dyn).

One also notes that:

P(r(a)
a ∈ dy1) =

y1

E[ψ(a)]

∫
R
n−1
+

µn(dy1dy2...dyn)

and consequently one obtains
P(r(a)

a = 0) = 0. (6.4)

We also have:

µn(dy1...dyn)1{y1>0} = E[ψ(a)]E[
1

r
(a)
a

; r(a)
xi ∈ dyi, 1 ≤ i ≤ n].
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Infinitely divisible processes

More generally one obtains

µ(dy)1{ya>0} = E[ψ(a)]E[
1

r
(a)
a

; r(a) ∈ dy]. (6.5)

Now we rewrite (6.3) under the form:

∂

∂α1
logE[exp{−

n∑
i=1

αiψ(xi)}] = −E[ψ(a)]E[exp{−
n∑
i=1

αir
(a)
xi }]. (6.6)

Therefore

∂

∂α1
log

E[exp{−
∑n
i=1 αiψ(xi)}]

E[exp{−α1ψ(x1)}
= −E[ψ(a)]E[(exp{−

n∑
i=2

αir
(a)
xi } − 1) exp{−α1r

(a)
a }].

Integration with respect to α1 on [0, σ], gives

log
E[exp{−

∑n
i=2 αiψ(xi)− σψ(a)}]

E[exp{−σψ(a)}]
− logE[exp{−

n∑
i=2

αiψ(xi)}]

= −E[ψ(a)]E[(exp{−
n∑
i=2

αir
(a)
xi } − 1)

(1− exp{−σr(a)
a }

r
(a)
a

1
r
(a)
a >0

]

−σE[(exp{−
n∑
i=2

αir
(a)
xi } − 1)1

r
(a)
a =0

].

Since r(a)
a > 0 a.s., the above equation can be rewritten as

E[exp{−
n∑
i=2

αiψ(xi)}] =
E[exp{−

∑n
i=2 αiψ(xi)− σψ(a)}]

E[exp{−σψ(a)}]
(6.7)

× exp{−E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })

(1− exp{−σr(a)
a })

r
(a)
a

]}.

The term
E[exp{−

∑n
i=2 αiψ(xi)−σψ(a)}]

E[exp{−σψ(a)}] is the Laplace transform of an infinitely divisible

nonnegative vector (ψ(σ)(xi), 2 ≤ i ≤ n).
Letting σ tend to ∞, we know that ψ(σ) converges in law to (ψ|ψ(a) = 0) (see the

proof of Theorem 1.1), a nonnegative infinitely divisible process with Lévy measure
ν(dy × {0}).

Using (6.7), one hence obtains that

lim
σ→∞

exp{−E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })

(1− exp{−σr(a)
a })

r
(a)
a

]}

exists and is the Laplace tranform of (L(a)(xi), 2 ≤ i ≤ n). Consequently, the Lévy
measure of L(a) is the law of r(a) under E[ψ(a)]E[ 1

r
(a)
a

; .].

The expression (1.2) of the Lévy measure of ψ when E is a separable metric space
and ψ is stochastically continuous, is a consequence of Theorem 1.3 (1.3) in the case
when V = E.

Proof of Theorem 1.3. Again, we start from (1.1). For any a in E, any non necessarily
distinct x1, x2, ..., xn in E, and any α1, α2, .., αn ≥ 0

E[ψ(a)]E[exp{−
n∑
i=1

αir
(a)
xi }]E[exp{−

n∑
i=1

αiψ(xi)}] = E[ψ(a) exp{−
n∑
i=1

αiψ(xi)}].
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Infinitely divisible processes

For any real function f on E, set: I(f) =
∫
V
f(x)m(dx). We have:

E[ψ(a)]E[exp{−α1I(r(a))−
n∑
i=2

αir
(a)
xi }]E[exp{−α1I(ψ)−

n∑
i=2

αiψ(xi)}]

= E[ψ(a) exp{−α1I(ψ)−
n∑
i=2

αiψ(xi)}],

which leads, after integration of each member over V with respect to m(da), to

−
∫
E

E[ψ(a)][exp{−α1I(r(a)) −
n∑
i=2

αir
(a)
xi }]m(da)

=
∂

∂α1
logE[exp{−α1I(ψ)−

n∑
i=2

αiψ(xi)}].

One obtains:

∂

∂α1
logE[exp{−α1I(ψ) −

n∑
i=2

αiψ(xi)}]

= −
∫
V

E[ψ(a)]E[exp{−α1I(r(a))−
n∑
i=2

αir
(a)
xi }]m(da)

Therefore

∂

∂α1
log

E[exp{−α1I(ψ)−
∑n
i=2 αiψ(xi)}]

E[exp{−α1I(ψ)}]

= −
∫
V

E[ψ(a)]E[(exp{−
n∑
i=2

αir
(a)
xi } − 1) exp{−α1I(r(a))}]m(da).

Integration with respect to α1 on [0, σ], gives

log
E[exp{−

∑n
i=2 αiψ(xi)− σI(ψ)}]

E[exp{−σI(ψ)}]
− logE[exp{−

n∑
i=2

αiψ(xi)}]

= −
∫
V

E[ψ(a)]E[(exp{−
n∑
i=2

αir
(a)
xi } − 1)

(1− exp{−σI(r(a))}
I(r(a))

1I(r(a))>0]m(da)

− σ

∫
V

E[ψ(a)]E[(exp{−
n∑
i=2

αir
(a)
xi } − 1)1I(r(a))=0]m(da),

and equivalently:

E[exp{−
n∑
i=2

αiψ(xi)}] =
E[exp{−

∑n
i=2 αiψ(xi)− σI(ψ)}]

E[exp{−σI(ψ)}]

× exp{−
∫
V

E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })

(1− exp{−σI(r(a))}
I(r(a))

1I(r(a))>0]m(da)}

× exp{−σ
∫
V

E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })1I(r(a))=0]m(da)}. (6.8)

Denote by φσ a nonnegative infinitely divisible process satisfying

E[exp{−
n∑
i=2

αiφσ(xi)}] =
E[exp{−

∑n
i=2 αiψ(xi)− σI(ψ)}]

E[exp{−σI(ψ)}]
.
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Infinitely divisible processes

On one hand, with elementary properties of the Laplace transform of nonnegative
random variables, we have:

E[exp{−
∑n
i=2 αiψ(xi)− σI(ψ)}]

E[exp{−σI(ψ)}]
→σ→∞ E[exp{−

n∑
i=2

αiψ(xi)} | I(ψ) = 0]. (6.9)

On the other hand note that (ψ, I(ψ)) is infinitely divisible. Denote by ν(dydt) the Lévy
measure of ((ψ(xi)2≤i≤n, I(ψ)), then we have:

E[ exp −{
n∑
i=2

αiψ(xi) + α1I(ψ) + σI(ψ)}]

= exp{−
∫
R
n−1
+

∫ ∞
0

(1− exp{−(α1 + σ)t−
n∑
i=2

αiyi})ν(dydt)}.

In particular, one has:

E[exp{−σI(ψ)}] = exp{−
∫
R
n−1
+

∫ ∞
0

(1− exp{−σt)ν(dydt)}.

Consequently:

E[exp{−
∑n
i=2 αiψ(xi)− α1I(ψ)− σI(ψ)}]
E[exp{−σI(ψ)}]

= exp{−
∫
R
n−1
+

∫ ∞
0

e−σt(1− exp{−α1t−
n∑
i=2

αiyi})ν(dydt)},

which by dominated convergence, converges, as σ tends to +∞, to

exp{−
∫
R
n−1
+

(1− exp{−
n∑
i=2

αiyi})ν(dy × {0})}.

Consequently φσ converges to an infinitely divisible nonnegative process φ∞ with Lévy

measure ν(dy × {0}) and by (6.9): φ∞
(law)
= (ψ | I(ψ) = 0).

In view of (6.8), this implies that

lim
σ→∞

( exp{−
∫
V

E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })

(1− exp{−σI(r(a))}
I(r(a))

1I(r(a))>0]m(da)}

× exp{−σ
∫
V

E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })1I(r(a))=0)m(da)})

is the Laplace transform of a nonnegative infinitely divisible vector with Lévy measure∫
R+

1t>0ν(dydt). Consequently, we must have:∫
V

E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })1I(r(a))=0]m(da) = 0

and

lim
σ→∞

exp{−
∫
V

E[ψ(a)]E[(1− exp{−
n∑
i=2

αir
(a)
xi })

(1− exp{−σI(r(a))}
I(r(a))

]m(da)}

is the Laplace transform of a nonnegative infinitely divisible vector with Lévy measure∫
R+

1t>0ν(dydt).
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Infinitely divisible processes

By monotone convergence, one obtains:∫
R+

1t>0ν(dydt) =

∫
V

E[ψ(a)]E[
1

I(r(a))
, (r(a)

xi )2≤i≤n ∈ dy]m(da).

Moreover there exists an infinitely divisible nonnegative process LV with Lévy measure∫
V
E[ψ(a)]E[ 1

I(r(a))
, (r

(a)
xi )2≤i≤n ∈ dy]m(da), independent of φ∞ such that

ψ
(law)
= φ∞ + LV . (6.10)

Note that any version of φ∞ satisfies (6.10).
Assume now that E is a separable metric space and ψ is stochastically continuous.

We show that φ∞ = 0 on V .
We know that

∫
V
φ∞(x)m(dx) = 0 a.s., hence E[

∫
V
φ∞(x)m(dx)] = 0, which implies

that there exists a subset S of V such that m(V \S) = 0 and for every x in S: E[φ∞(x)] = 0.
Consequently there exists a version of φ∞ which is identically equal to 0 on S. We still
denote this version by φ∞.

The subset S is dense in V . Indeed, let a be in V \ S. Since V is open there exists
ε > 0 such that the open ball B(a, ε) is included in V . Hence for every integer n, B(a, εn )

is included in V . Necessarely: m(B(a, εn ) > 0. This implies that: B(a, εn ) ∩ S 6= ∅. We
choose sn in B(a, εn ) ∩ S and obtain a sequence (sn) converging to a.

Since ψ is stochastically continuous (ψsn) tends to ψa in probability. This implies that
(LVsn − L

V
a ) tends to φ∞(a) in probability. Since φ∞(a) is independent of the sequence

(LVxn −L
V
a ), the variable φ∞(a) must be deterministic a.s. By (6.10), the random variable

ψa is hence the sum of a nonnegative constant and a nonnegative infinitely divisible
random variable. We have assumed that ψ has no drift hence φ∞(a) = 0 a.s. Consequently
φ∞|V admits an identically equal to 0 version. This establishes (1.3).

To establish Theorem 1.4 we first establish the following lemma which gives the
expression of gTa .

Lemma 6.1. For x, y in E, we have:

gTa(x, y) = g(x, y) − g(x, a)g(a, y)

g(a, a)
.

Proof of Lemma 6.1. g(x, y) = Ex[Ly∞] = Ex[Ly∞;Ta =∞] + Ex[Ly∞;Ta <∞], and

Ex[Ly∞;Ta <∞] = Ex[LyTa + Ly∞ ◦ θTa ;Ta <∞] = Ex[LyTa ;Ta <∞] + P[Ta <∞]Ex[Ly∞].

Hence: g(x, y) = gTa(x, y) + Px[Ta < ∞)g(a, y). To conclude, one finally notes that:
Px[Ta <∞] = g(x,a)

g(a,a) .

Proof of Theorem 1.4. We have established in [7] that for every a such that E[ψ(a)] > 0,
we have:

1

2
ψ + L(a) (law)

=
1

2
ψ under E[

ψ(a)

E[ψ(a)]
, . ] (6.11)

Hence thanks to Theorems 1.1 and 1.2, we know that there exists an infinitely divisible
nonnegative process L(a), independent of ψ, with Lévy measure the law of L(a) under
E[ψ(a)]

2 E[ 1

L
(a)
a

; .] such that:

1

2
ψ

(law)
=

1

2
(ψ|ψ(a) = 0) + L(a). (6.12)
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Infinitely divisible processes

Making use of (6.7) in the proof of Theorem 1.1, we also know that for every such fixed
a, and for every σ > 0 there exists an infinitely divisible nonnegative process `(σ) with

Lévy measure the law of L(a) under E[ g(a,a)
2

(1−exp{−σL(a)
a }

L
(a)
a

; . ] such that

1

2
ψ

(law)
=

1

2
φ(σ) + `(σ) (6.13)

where φ(σ) is independent of `(σ), and has the law of ψ under E[
exp{−σ2 ψ(a)}

E[exp{− 1
2σψ(a)} ; . ].

Moreover we know that

E[exp{−1

2

n∑
i=2

αiψ(xi)}|ψ(a) = 0] = lim
σ→∞

E[exp{− 1
2

∑n
i=2 αiψ(xi)− σ

2ψ(a)}]
E[exp{− 1

2σψ(a)}]
.

We will now identify (ψ|ψ(a) = 0) and L(a).
On one hand:

E[exp{− 1
2

∑n
i=2 αiψ(xi)− σ

2ψ(a)}]
E[exp{− 1

2σψ(a)}]

is the Laplace transform of a permanental vector (see for example [12]) with index 2 and
kernel g(σ) defined by:

g(σ)(x, y) = g(x, y)− σ

1 + σg(a, a)
g(x, a)g(a, y). (6.14)

By letting σ tend to∞ in (6.14), using Lemma 6.1, one sees that ψ(σ) converges in law to
the permanental vector with kernel gTa and index 2 and consequently

(ψ|ψ(a) = 0)
(law)
= ψgTa . (6.15)

On the other hand, from its definition, the Laplace transform of ψ(σ) satisfies

E[exp{−1

2

n∑
i=2

αiψ(σ)(xi)}] = (
1 + σg(a, a)

det(I +DσG)
)1/2 (6.16)

where G = (g(xi, xj))1≤i,j≤n and Dσ is the diagonal matrix with diagonal entries
(σ, α2, ..., αn). Developing det(I +DσG) with respect to its first row gives

det( I + DσG)

= (1 + σg(a, a))(I +DσG)11 − σg(a, x2)(I +DσG)12

+ σg(a, x3)(I +DσG)13 + ...+ (−1)n+1σg(a, xn)(I +DσG)1n

= (1 + σg(a, a))(I +D0G)11 − σg(a, x2)(I +D0G)12

+ σg(a, x3)(I +D0)13 + ...+ (−1)n+1σg(a, xn)(I +D0)1n

hence the limit in (6.16) when σ tends to∞ is equal to

(
g(a, a)

detV
)1/2

where V = (Vi,j)1≤i,j≤n with Vij = (I +D0)ij when i 6= 1 and V1j = g(a, xj).
Consequently, one obtains by letting σ tend to∞ in (6.13)

det(I +D0G)−1/2(
g(a, a)

detV
)−1/2 = lim

σ→∞
E[exp{−

n∑
i=2

αi`(σ)(xi)}] (6.17)
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Infinitely divisible processes

But note that

∂

∂σ
(det(I +DσG))−1/2 = −1

2
(det(I +DσG))−3/2 ∂

∂σ
(det(I +DσG))

= −1

2
(det(I +DσG))−3/2 detV

and also that

∂

∂σ
(det(I +DσG))−1/2 =

∂

∂σ
E[exp{−1

2

n∑
i=2

αiψ(xi)−
σ

2
ψ(a)}]

= −1

2
E[ψ(a) exp{−1

2

n∑
i=2

αiψ(xi)−
1

2
σψ(x1)}],

which together lead to:

E[ψ(a) exp{−1

2

n∑
i=2

αiψ(xi)−
1

2
σψ(x1)}] = (det(I +DσG))−3/2 detV. (6.18)

Making use of both (6.11) and (6.18), (6.17) translates into:

lim
σ→∞

E[exp{−
n∑
i=2

αi`(σ)(xi)}] = Ẽa[exp{−
n∑
i=2

αiL
xi
∞}]1/2,

which leads to Theorem 1.4.

Proof of Theorem 1.5. This theorem is a direct consequence of Theorem 1.2 and (6.11).
The only thing that we need to show is (1.6) without the assumption of stochastic
continuity required by (1.2).

Define µ1 as the Lévy measure of (( 1
2ψxi , 1 ≤ i ≤ n), 1

2

∫
E
ψ(x)m(dx)). In the proof of

Corollary 3.3 (p.1411, l.4 [7]), we have established:

yaµ(n)(dy) =
g(a, a)

2
P̃a[La∞ ∈ dya, Lxi∞ ∈ dyxi , 2 ≤ i ≤ n], (6.19)

where µ(n) is the Lévy measure of the vector ( 1
2ψxi , 1 ≤ i ≤ n).

Using the fact that:
∫
E
Lx∞m(dx) = ζ, one obtains similarly to (6.19):

yaµ1(dydt) =
g(a, a)

2
P̃a[La∞ ∈ dya, Lxi∞ ∈ dyxi , 2 ≤ i ≤ n, ζ ∈ dt]

which leads immediately to:
yaµ1(dy × {0}) = 0. (6.20)

We show now that: µ1(dy × {0}) = 0. Suppose that µ1(dy × {0}) > 0. Then using (6.20),
one has: µ1(dy × {0}) = 1ya=0µ1(dy × {0}), for every a in {xi, 1 ≤ i ≤ n}, and hence:
µ1(dy × {0}) = 1yxi=0,1≤i≤nµ1(dy × {0}) = µ1({0Rn+1}) = 0.

Integrating both sides of (6.11) with respect to m one obtains:

E [

∫
E

ψ(a) exp{−1

2

n∑
i=1

αiψ(xi)}m(da)]

=

∫
E

g(a, a)Ẽa[exp{−
n∑
i=1

αiL
xi
∞}]E[exp{−1

2

n∑
i=1

αiψ(xi)}]m(da),

from which it follows in the same manner as (6.19) has been obtained that:

tµ1(dydt) =
1

2

∫
E

g(a, a)P̃a[La∞ ∈ dya, Lxi∞ ∈ dyxi , 2 ≤ i ≤ n, ζ ∈ dt]m(da).
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Infinitely divisible processes

Since: µ1(dy × {0}) = 0, one equivalently has:

µ1(dydt) =

∫
E

g(a, a)

2
P̃a[

1

ζ
, La∞ ∈ dya, Lxi∞ ∈ dyxi , 2 ≤ i ≤ n, ζ ∈ dt]m(da).

Integrating with respect to t each member of the above equation we finally obtain

µ(n)(F ) =

∫
E

g(a, a)

2
P̃a[

F (L∞)

ζ
]m(da),

for every measurable function F on Rn+, which leads to (1.6).

Proof of Theorem 1.8. By Theorem 1.3 we know that

1

2
ψ

(law)
=

1

2
(ψ|

∫
V

ψ(x)νA(dx) = 0) + LV

where LV is an infinitely divisible nonnegative process, independent of ψ, with Lévy
measure the law of L∞ under

∫
V
E[ψ(a)

2 ]Ẽa[ 1∫
V
Lx∞νA(dx)

; . ]νA(da).

We also know that the Lévy measure of 1
2(ψ|

∫
V
ψ(x)νA(dx) = 0) is 1{

∫
V
y(x)ν(dx)=0}µ(dy)

and that the Lévy measure of LV is 1{
∫
V
y(x)ν(dx)>0}µ(dy).

Let m be a measure with support equal to E such that
∫
E
g(x, x)m(dx) < ∞, and

m|V = νA.
We now interpret φ = (ψ|

∫
V
ψ(x)νA(dx) = 0). By Theorem 1.5, we know that

1
2φ is infinitely divisible with Lévy measure the law of (Lx∞, x ∈ E) under
1
2

∫
E
g(a, a)Ẽa[ 1∫

E
Ly∞m(dy)

1∫
V
Ly∞νA(dy)=0; . ]m(da). Since we have assumed that V is the

fine support of (At)t≥0, one obtains that (Lx∞, x ∈ V ) under 1
2

∫
E
g(a, a)Ẽa[ 1∫

E
Ly∞m(dy)

×
1∫
V
Ly∞νA(dy)=0; . ]m(da) is identically equal to 0 and that the Lévy measure of 1

2φ is the

law of (Lx∞, x ∈ E) under 1
2

∫
V c
g(a, a)Ẽa[ 1∫

V c
Ly∞m(dy)

1TV =∞; . ]m(da).

Consequently: φ|V = 0 and hence LV|V
(law)
= ψ|V .

Note that for every bounded Ft-measurable variable F and every a in E:

g(a, a)Ẽa[F ] = Ea[g(Xt, a), F ] = Ea[La∞ ◦ θt, F ] (6.21)

In particular, we have, since {TV > t} is in Ft:

g(a, a)Ẽa[F, TV > t] = Ea[La∞ ◦ θt, F, TV > t]

Write: La∞ = LaTV + (La∞ − LaTV ), then

g(a, a) Ẽa[F, TV > t]

= Ea[LaTV ◦ θt, F, TV > t] + Ea[(La∞ − LaTV ) ◦ θt, F, TV > t]

= EVa [La∞ ◦ θt, F ] + Ea[(La∞ − LaTV ) ◦ θt, F, TV > t] (6.22)

where EVa is the expectation of the law of the Markov process X starting at a and killed
at TV .

Now using (6.21) for X killed at TV , one has:

EVa [La∞ ◦ θt, F ] = gTV (a, a)ẼVa [F ]. (6.23)

On the other hand, note that:

Ea[(La∞ − LaTV ) ◦ θt, F, TV > t] = Ea[(La∞ − LaTV ) ◦ θt, F, t < TV <∞] (6.24)
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Together (6.22), (6.23) and (6.24) lead for every t > 0 to:

g(a, a)Ẽa[F, TV > t] = gTV (a, a)ẼVa [F ]

+ Ea[(La∞ − LaTV ) ◦ θt, F, t < TV <∞].

In particular for every δ > 0 such that δ ≤ t and every bounded Fδ-measurable variable
G, we have:

g(a, a)Ẽa[G,TV > t] = gTV (a, a)ẼVa [G]

+ Ea[(La∞ − LaTV ) ◦ θt, G, t < TV <∞].

On {TV > t}, we have: (La∞ − LaTV ) ◦ θt = La∞ ◦ θTV . By conditioning on FTV , one hence
has:

Ea[(La∞ − LaTV ) ◦ θt, G, t < TV <∞] = Ea[g(XTV , a), G, t < TV <∞].

Since G is bounded and for every x in E: g(x, a) ≤ g(a, a) <∞, one obtains by dominated
convergence as t tends to∞:

g(a, a)Ẽa[G,TV =∞] = gTV (a, a)ẼVa [G],

which implies by identification from the Lévy measure that: φ
(law)
= ψgTV .
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