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1 Introduction

1.1 Motivation

The aim of this paper is to characterize a probabilistic convergence of Brownian
motions in terms of a geometric convergence of the underlying spaces. Our main results
show that the pointed measured Gromov (pmG) convergence of the underlying spaces
implies (or under some condition, is equivalent to) the weak convergence of Brownian
motions under Riemannian Curvature-Dimension (RCD) conditions for the underlying
spaces.

Let us consider the following motivating example: let a sequence of Riemannian
manifolds {Mn}n∈N converges to a (possibly non-smooth) metric measure space in the
Gromov–Hausdorff (GH) sense. Let (Bn,Pn) be a Brownian motions on each Mn. Noting
that (Bn,Pn) can be determined only by the underlying geometric structure of the
Riemannian manifolds Mn, an important question is whether

(Q) a sequence of Brownian motions on Riemannian manifolds also converges weakly
to the Brownian motion on the GH-limit space.

This question however does not make sense without additional assumptions because
there is a gap between the geometric and probabilistic convergences: the weak con-
vergence of Brownian motions clearly involves the first-order differentiable structure
of the underlying spaces although the GH convergence never sees any information of
differentiable structures. Indeed, we have examples whereby the limit process is no
more a diffusion process (see (ii) and (iii) in Remark 1.9).

In this paper, adopting as an additional assumption the uniform lower Ricci curvature
bound of Mn, we can answer (Q) affirmatively, which is an application of the main
results in this paper. To be more precise, we obtain the equivalence between these
geometric/probabilistic convergences in the framework of metric measure spaces under
the synthetic lower Ricci curvature bound (called RCD in this paper).

Let us explain the background issues in more detail. Generally, the GH-limit spaces of
Riemannian manifolds with lower Ricci curvature bounds (called Ricci limit spaces) are
so singular that they are not necessarily even topological manifolds and may have a dense
singular set (see Example 4.3). However, they still have “Riemannian-like” structures
and similar properties to smooth Riemannian manifolds with lower Ricci curvature
bounds, which have been investigated initially by Cheeger–Colding [17, 18, 19]. The
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Convergence of Brownian motions on RCD spaces

RCD condition is a proper generalization of the notion of lower Ricci curvature bounds
to non-smooth spaces including Ricci limit spaces (see [6, 3, 8, 29, 22]). It is known
that RCD spaces include various finite- and infinite-dimensional non-smooth spaces, not
only Ricci limit spaces, but also infinite-dimensional spaces such as Hilbert spaces with
log-concave measures (related to various stochastic partial differential equations) (see
further details in Section 4).

By recent developments of analysis on metric measure spaces, we can construct
Brownian motions on RCD spaces by using a certain quadratic form, what is called
Cheeger energy. This is a generalization of Dirichlet energy on smooth manifolds and
induces a quasi-regular strongly local conservative symmetric Dirichlet form (Ambrosio-
Gigli-Savaré [5, 6], Ambrosio–Gigli–Mondino–Rajala [3]), which is determined only by
the underlying metric measure structure.

One of the important problems for Brownian motions on these non-smooth spaces is
to characterize the weak convergence of Brownian motions in terms of some geometrical
convergence of the underlying spaces, which we call the stability of Brownian motions.
The significance of the stability can be explained from several different perspectives.
From the standpoint of limit theorems of stochastic processes, the stability is interpreted
as a geometric characterization of invariance principles for Brownian motions in the
sense that Brownian motions on limit spaces are approximated by Brownian motions
on converging spaces. From the viewpoint of “well-definedness”, the stability also
enables us to verfiy that Brownian motions in limit spaces are “well-defined” in the
sense that Brownian motions intrinsically defined by Cheeger energies on limit spaces
coincide with limit processes of Brownian motions on approximating spaces. From
the perspective that Brownian motions are considered as “a map” assigning laws of
diffusions (i.e., probability measures on path spaces) to each metric measure space,
the stability reveals the interesting fact that this map is continuous with respect to the
corresponding topologies (e.g., GH-topology of metric measure spaces/weak topology of
probability measures on path spaces), which is one ideal aspect of Brownian motions but
has not been focused on so much until now.

The main contribution of this paper is to prove the stability of Brownian motions in the
general framework of RCD spaces, whereby various singular/infinite-dimensional spaces
are included. Moreover, we show several equivalences of the weak convergence of
Brownian motions and the pmG convergence of the underlying spaces. For references to
other investigations regarding the stability problem, see the historical remarks (Section
1.3 below).

1.2 Main results

In this paper, we always consider pointed metric measure (p.m.m.) spaces X =

(X, d,m, x) whereby

(X, d) is a complete separable geodesic metric space with nonnegative and nonzero

Borel measure m which is finite on all bounded sets, and x is a fixed point in supp[m].
(1.1)

For main theorems, we assume the following condition:

Assumption 1.1. Let K ∈ R and N := N ∪ {∞}. Let {Xn}n∈N = {(Xn, dn,mn, xn)}n∈N
be a sequence of p.m.m. spaces satisfying (1.1) and RCD(K,∞) condition.

The notion of CD(K,∞) spaces was introduced by Sturm [65] and Lott–Villani [47],
and the notion of RCD(K,∞) spaces was introduced by Ambrosio–Gigli–Savaré [6]
and Ambrosio–Gigli–Mondino–Rajala [3]. The CD(K,∞) condition is a generalization
of Ricci curvature bounded from below by K to metric measure spaces in terms of
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the K-convexity of the entropy on the Wasserstein spaces. Furthermore RCD(K,∞)

condition means the CD(K,∞) and that the Cheeger energy is quadratic. We will explain
the precise definition in Subsection 2.4. RCD spaces admit the GH limit spaces of
Riemannian manifolds with lower Ricci curvature bounds, and also admit Alexandrov
spaces (metric spaces satisfying a generalized notion of “sectional curvature≥ K”)
(Petrunin [55] and Zhang–Zhu [71]), cone spaces and warped product spaces (Ketterer
[39, 40]), and quotient spaces (Galaz-García–Kell–Mondino–Sosa [28]). Moreover, not
only finite-dimensional spaces, but also several infinite-dimensional spaces related to
stochastic partial differential equations are included such as Hilbert spaces with log-
concave measures (Ambrosio–Savaré–Zambotti [9]).

Under Assumption 1.1, we can always take constants c1, c2 > 0 satisfying the following
volume growth estimate (see [65, Theorem 4.24])

mn(Br(xn)) ≤ c1ec2r
2

, ∀r > 0. (1.2)

Here we mean Br(xn) := {x ∈ Xn : d(x, xn) < r}. Taking C > c2, we set a weighted
measure m̃n as follows:

zn :=

∫
Xn

e−Cd
2
n(x,xn)dmn(x), and m̃n :=


1

zn
e−Cd

2
n(·,xn)mn, if mn(Xn) =∞,

1

mn(Xn)
mn, if mn(Xn) <∞.

(1.3)

Under Assumption 1.1, the Cheeger energy Chn on Xn = (Xn, dn,mn, xn) (see Subsection
2.4.2) induces a quasi-regular conservative symmetric strongly local Dirichlet form, and
there exists a conservative symmetric Markov process ({Pxn}x∈Xn , {Bnt }t≥0) on Xn (See
Section 3.1). We call ({Pxn}x∈Xn , {Bnt }t≥0) Brownian motion on Xn.

The following main theorem states that the weak convergence of the Brownian
motions can be characterized by the pmG convergence of the underlying spaces under
Assumption 1.1 (we will give the definition of the pmG convergence in Subsection 2.3).

Theorem 1.2. Suppose that Assumption 1.1 holds. Then the following (i) and (ii) are
equivalent:

(i) (pmG Convergence of the Underlying Spaces)

The p.m.m. spaces {Xn}n∈N converge to X∞ = (X∞, d∞,m∞, x∞) in the pmG
sense.

(ii) (Weak Convergence of the Laws of Brownian Motions)

There exist a complete separable metric space (X, d) and isometric embeddings
ιn : Xn → X (n ∈ N) so that ιn(xn)→ ι∞(x∞), and

(ιn(Bn),Pm̃nn )→ (ι∞(B∞),Pm̃∞∞ ) weakly in P(C([0,∞);X)).

Here (ιn(Bn),Pm̃nn ) means the law of the embedded Brownian motion ιn(Bn) with
the initial distribution m̃n and P(C([0,∞);X)) denotes the set of all Borel probability
measures on the continuous path space C([0,∞);X).

Remark 1.3. Several remarks for Theorem 1.2 are given below.

(i) The RCD(K,∞) condition is stable under the pmG convergence (see [30, Theorem
7.2]), and therefore the limit space X∞ also satisfies the RCD(K,∞) condition so
that the Brownian motion can be defined also on the limit space X∞.

(ii) The pmG convergence is weaker than the measured Gromov-Hausdorff conver-
gence. See [30, Theorem 3.30].
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In statement (ii) in Theorem 1.2, the initial distribution is absolutely continuous with
respect to the reference measure mn. It is natural in the next step to ask how the case
of the dirac measure δxn is, which means the Brownian motions start at the point xn. We
introduce several conditions below:

(A) For any n ∈ N, mn(Xn) = 1.

(B) For any r > 0 and any t > 0,

sup
n∈N
‖pn(t, xn, ·)‖∞,Br(xn) <∞,

whereby pn(t, x, y) is the density of the transition probability pn(t, x, dy) of {Pnt }t≥0

with respect to the reference measure mn, and ‖ · ‖∞,Br(xn) means the essential
supremum on the ball Br(xn).

Now we state the second main result.

Theorem 1.4. Suppose that Assumption 1.1 holds. If, moreover, either (A), or (B) holds,
then (i) (thus also (ii)) in Theorem 1.2 implies the following (iii)≥ε: for any ε > 0,

(iii)≥ε (Weak Convergence of the Laws of Brownian Motions Starting at Points in a Time

Interval [ε,∞))

There exist a complete separable metric space (X, d) and isometric embeddings
ιn : Xn → X (n ∈ N) so that ιn(xn)→ ι∞(x∞) and

(ιn(Bn),Pxnn )→ (ι∞(B∞),Px∞∞ ) weakly in P(C([ε,∞);X)). (1.4)

Remark 1.5. Several remarks for Theorem 1.4 are given below.

(i) Condition (B) is satisfied for any RCD∗(K,N) spaces according to the Gaussian
heat kernel estimate by Jiang–Li–Zhang [35].

(ii) If the following uniform ultra-contractivity of the heat semigroup {Ht}t≥0 holds,
then condition (B) holds (see [6, Proposition 6.4]): there exists a p > 1 so that,
with some positive constant C(t,K) dependent only on t and K, we have

‖Htf‖p ≤ C(t,K)‖f‖1, ∀f ∈ L1(X,m), ∀t > 0.

We have examples satisfying the ultra-contractivity which is a RCD(K,∞) space but
not a RCD∗(K,N) space for any 1 < N <∞. Let Xα = (R, | · − · |, Cα exp{−| · |α}dx)

whereby α ∈ {2, 4, 6, ...} is an even number and Cα is the normalizing constant. For
any α > 2, it is known that Xα satisfies the ultra-contractivity of the heat semigroup
(Kavian–Kerkyacharian–Roynette [38]) and satisfies the RCD(0,∞) condition, but
not RCD∗(K,N) for any finite 1 < N <∞.

The notion of RCD∗(K,N) condition is a generalization of Ricci curvature bounded
from below by K and dimension bounded above by N to metric measure spaces, which
is stronger than the RCD(K,∞) condition (see [29, 22, 8]).

Next we consider the converse implication that the weak convergence of Brownian
motions induces the pmG convergence of the underlying spaces. Define pn(t, x, x) =

‖pn(t/2, x, ·)pn(t/2, x, ·)‖22, which can be defined for every x ∈ X. Let us consider the
following condition: there exists t∗ > 0 and a constant M so that

sup
n∈N

pn(t∗, xn, xn) < M <∞. (1.5)

Note that, since pn(t, x, x) is non-increasing function in t, if we find the time t∗ satisfying
(1.5), then for any t > t∗, the estimate (1.5) holds. We also note that, for fixed 1 < N <∞
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and K ∈ R, if Xn satisfies the RCD∗(K,N) for all n ∈ N and infnmn(B1(xn)) > 0 (this
holds under (i), (ii), (iii)≥ε, or (iii)≥0 since {ιn(xn)}n∈N is bounded in a common ambient
space X according to ι(xn)→ ι∞(x∞)), then (1.5) is satisfied for some constant M and t∗
because of the local Gaussian heat kernel estimate by Jiang-Li-Zhang [35]. Let diam(Xn)

denote the diameter of Xn: diam(Xn) := supx,y∈Xn dn(x, y). We now state the following
theorem:

Theorem 1.6. Suppose that Assumption 1.1 and condition (1.5) hold. If, moreover,
either K > 0, or supn∈N diam(Xn) < D holds for some 0 < D < ∞, then (iii)≥ε for any
ε > 0 in Theorem 1.4 implies (i) and (ii) in Theorem 1.2 (therefore all statements (i), (ii)
and (iii)≥ε for any ε > 0 are equivalent).

Finally, we give the following statement, in which all statements (i), (ii), (iii)≥ε for
any ε > 0, and (iii)≥0 are equivalent under the RCD∗(K,N) condition with a uniform
diameter bound.

Theorem 1.7. Let K ∈ R, 1 < N < ∞ and 0 < D < ∞. Suppose that a sequence of
p.m.m. spaces {Xn}n∈N satisfies (1.1), RCD∗(K,N) and supn∈N diam(Xn) < D. Then all
four statements of (i), (ii) in Theorem 1.2, (iii)≥ε for any ε > 0 in Theorem 1.4 and the
following (iii)≥0 are equivalent:

(iii)≥0 (Weak Convergence of the Laws of Brownian Motions Starting at Points in a Time

Interval [0,∞))

There exist a compact metric space (X, d) and isometric embeddings ιn : Xn →
X (n ∈ N) so that

(ιn(Bn),Pxnn )→ (ι∞(B∞),Px∞∞ ) weakly in P(C([0,∞);X)).

Remark 1.8. We give several remarks for Theorem 1.7.

(i) The RCD∗(K,N) condition is stable under the pmG convergence (see [22]), and
therefore the limit space X∞ also satisfies the RCD∗(K,N) condition so that the
Brownian motion can be defined at every starting point also on the limit space X∞.

(ii) The pmG convergence (see Definition 2.1) is equivalent to the pointed measured
Gromov-Hausdorff convergence under the assumption in Theorem 1.7 (see [30,
Theorem 3.33]).

1.3 Historical remarks

Remark 1.9. Several historical remarks are given below.

(i) In Ambrosio–Savaré–Zambotti [9, Theorem 1.5], they investigated the weak con-
vergence of Brownian motions on a fixed Hilbert space (as an ambient space) with
varying log-concave measures and norms, which is a specific case of RCD(0,∞)

spaces. Their metrics dn are not necessarily isometric to the metric d in the ambient
space, but each dn is equivalent to d. In the case that each dn is isometric to d, our
results (Theorem 1.2 and 1.4) can be seen as a generalization of their result [9,
Theorem 1.5] to general RCD(K,∞) spaces.

(ii) In Ogura [51], under the condition of uniform upper bounds for heat kernels (not
necessarily lower bound of Ricci curvatures) and the Kasue-Kumura (KK) spectral
convergence, he studied the weak convergence of the laws of time-discretized
Brownian motions on weighted compact Riemannian manifolds. The KK spectral
convergence roughly means a uniform convergence of heat kernels and stronger
than the mGH convergence. In his case, the Ricci curvature is not necessarily
bounded from below and the limit process may be a jump process ([51, 4.6]).
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The time-discretization is one possible approach for a convergence of stochastic
processes on varying spaces, while we adopt in this paper a different approach,
i.e., embedding into one common metric space X.

(iii) If we do not assume RCD conditions for a sequence of the underlying metric
measure spaces, then limit processes are not necessarily diffusions. In Ogura–
Tomisaki–Tuchiya [52], they considered a sequence of Euclidean spaces (Rd, ‖ · ‖2)

with certain underlying measures µn whereby {(Rd, ‖·‖2, µn)}n∈N do not necessarily
satisfy RCD conditions. They showed that diffusion processes on Rd associated with
the corresponding local Dirichlet forms converge to jump processes (or generally
jump-diffusion processes) corresponding to certain non-local Dirichlet forms.

(iv) In Freidlin–Wentzell [25, 26] and Albeverio-Kusuoka [1] (see also references
therein), diffusion processes associated with SDEs on thin tubes in Rd were studied.
When thin tubes shrink to a spider graph, diffusion processes converge weakly to
a one-dimensional diffusion on this spider graph. Their setting does not satisfy
the RCD condition since spider graphs branch at points of conjunctions but RCD
spaces are essentially non-branching (see [58, Theorem 1.1]).

(v) In Athreya–Löhr–Winter [10], the weak convergence of certain Markov processes
on tree-like spaces was studied. When tree-like spaces converge in Gromov-vague
sense, the corresponding processes also converge weakly. Their tree-like spaces
admit 0-hyporbolic spaces, which are not necessarily included in RCD spaces.

(vi) In Suzuki [68], the author investigated the weak convergence of continuous stochas-
tic processes on metric spaces converging in the Lipschitz distance. The Lipschitz
convergence is stronger than the measured Gromov convergence (see [32, Sec-
tion 3.C]).

Finally we list related studies not mentioned in Remark 1.9. In Suzuki [69], the author
studied the weak convergence of non-symmetric diffusion processes on RCD spaces as
a next step of the current paper. In Li [44, 45], she studied a convergence of random
ODE/SDE on manifolds. In Stroock–Varadhan [60], Stroock–Zheng [61] and Burdzy–Chen
[16], approximations of diffusion processes on Rd by discrete Markov chains on (1/n)Zd

were investigated. In Bass–Kumagai–Uemura [12] and Chen–Kim–Kumagai [20], they
studied approximations of jump processes on proper metric spaces by Markov chains
on discrete graphs. Approximations of Markov processes on ultra-metric spaces were
explored in Suzuki [67]. In Pinsky [56], he studied approximations of Brownian motions
on Riemannian manifolds by random walks, while the case of sub-Riemannian manifolds
was investigated by Gordina and Laetsch [31]. In Croydon–Hambly–Kumagai [21], in
which it was assumed that a sequence of resistance forms converges with respect to
the GH-vague topology and satisfies a uniform volume doubling condition, they showed
the weak convergence of corresponding Brownian motions and local times. There are
many studies about scaling limits of random processes on random environments (see,
e.g., Kumagai [41] and references therein).

1.4 Organization of the paper

The paper is structured as follows: First, the notation is fixed and preliminary
facts are recalled in Section 2 (no new results are included), namely: basic notations
and basic definitions (Subsection 2.1); L2-Wasserstein distance (Subsection 2.2); pmG
convergence (Subsection 2.3); RCD(K,∞) and RCD∗(K,N) spaces (Subsection 2.4);
L2-convergence of the heat semigroup (Subsection 2.5). In Section 3, we state several
properties about Brownian motions on RCD spaces. In Section 4 we present examples in
which Assumptions 1.1 and the assumption in Theorem 1.7 are satisfied. These examples
consist of weighted Riemannian manifolds and their pmG limit spaces, Alexandrov spaces,
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and Hlibert spaces with log-concave probability measures. In Section 5, we give the
proof of Theorem 1.2. In Section 6, we show the proof of Theorem 1.4. In Section 7, we
prove Theorem 1.6. Finally, in Section 8, we prove Theorem 1.7.

2 Notation & preliminary results

2.1 Notation

Let N = {0, 1, 2, ...} and N := N ∪ {∞} denote the set of natural numbers and the
set of natural numbers with {∞} respectively. For a complete separable metric space
(X, d), we denote by Br(x) = {y ∈ X : d(x, y) < r} the open ball centered at x ∈ X

with radius r > 0. By using B(X), we mean the family of all Borel sets in (X, d); and
by Bb(X), the set of real-valued bounded Borel-measurable functions on X. Let C(X)

be the set of real-valued continuous functions on X, while Cb(X), C∞(X), C0(X) and
Cbs(X) denote the subsets of C(X) consisting of bounded functions, functions vanishing
at infinity, functions with compact support, and bounded functions with bounded support,
respectively. Let Lip(X) and Lipb(X) denote the set of Lipschitz continuous functions,
and the set of bounded Lipschitz continuous functions, respectively. For f ∈ Lip(X), we
denote by LipX(f) the global Lipschitz constant of f . The set P(X) denotes all Borel
probability measures on X. The set of continuous functions on [0,∞) valued in X is
denoted by C([0,∞), X).

A continuous curve γ : [a, b] → X is connecting x and y if γa = x and γb = y.
A continuous curve γ : [a, b]→ X is a minimal geodesic if

d(γt, γs) =
|s− t|
|b− a|

d(γa, γb) a ≤ t ≤ s ≤ b.

In particular, if d(γa,γb)
|b−a| can be replaced by 1, we say that γ is unit-speed. A metric space

X is called geodesic if for any two points x, y ∈ X, there exists a minimal geodesic
{γt}t∈[0,1] connecting x and y.

Let supp[m] = {x ∈ X : m(Br(x)) > 0, ∀r > 0} denote the support of m. Let (Y, dY )

be a complete separable metric space. For a Borel measurable map f : X → Y , let
f#m denote the push-forward measure on Y : f#m(B) = m(f−1(B)) for any Borel set
B ∈ B(Y ).

2.2 Lp-Wasserstein space

Let (Xi, di) (i = 1, 2) be complete separable metric spaces and 1 ≤ p < ∞. For
µi ∈ P(Xi), a probability measure q ∈ P(X1 ×X2) is called a coupling of µ1 and µ2 if
π1#q = µ1 and π2#q = µ2, whereby πi (i = 1, 2) is the projection πi : X1 ×X2 → Xi as
(x1, x2) 7→ xi. We denote by Π(µ, ν) the set of all coupling of µ and ν.

Let (X, d) be a complete separable metric space. Let Pp(X) be the subset of P(X)

consisting of all Borel probability measures µ on X with finite p-th moment:∫
X

dp(x, x)dµ(x) <∞ for some (and thus any) x ∈ X.

We equip Pp(X) with the transportation distance Wp, called Lp-Wasserstein distance,
defined as follows:

Wp(µ, ν) =
(

inf
q∈Π(µ,ν)

∫
X×X

dp(x, y)dq(x, y)
)1/p

. (2.1)

A coupling q ∈ Π(µ, ν) is called an optimal coupling if q attains the infimum in the
equality (2.1). It is known that, for any µ, ν, there always exists an optimal coupling
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q of µ and ν (e.g., [70, §4]). It is also known that (Pp(X),Wp) is a complete separable
geodesic metric space for 1 < p <∞ if (X, d) is a complete separable geodesic metric
space (e.g., [70, Theorem 6.18]).

2.3 Pointed measured Gromov convergence

In this subsection, we recall the definition of pmG convergence introduced in Gigli-
Mondino-Savaré [30].

Definition 2.1 (pmG Convergence [30]). A sequence of p.m.m. spaces {Xn =

(Xn, dn,mn, xn)}n∈N satisfying (1.1) is convergent to X∞ = (X∞, d∞,m∞, x∞) in the
pointed measured Gromov (pmG) sense if there exist a complete separable metric space
(X, d) and isometric embeddings ιn : Xn → X (n ∈ N := N ∪ {∞}) satisfying

ιn(xn)→ ι∞(x∞) ∈ supp[m∞], and

∫
X

f d(ιn#mn)→
∫
X

f d(ι∞#m∞), (2.2)

for any bounded continuous function f : X → R with bounded support.

Remark 2.2. We would like to remark on the pmG convergence in Definition 2.1.

(i) In general, the pmG convergence is strictly weaker than the pointed measured
Gromov-Hausdorff (pmGH) convergence ([30, Theorem 3.30, Example 3.31]). How-
ever, if supp[m∞] = X∞ and {Xn}n∈N satisfies a uniform doubling condition, then
the two notions of pmG and pmGH coincide (see [30, Theorem 3.33]).

(ii) The pmG convergence is metrizable by the distance pGW on the collection X of
all isomorphism classes of p.m.m. spaces (see [30, Definition 3.13]). The space
(X, pGW ), moreover, is a complete and separable metric space (see [30, Theorem
3.17]).

2.4 RCD spaces

In this subsection, we recall the definition of the RCD(K,∞) condition. We also recall
several properties satisfied on RCD(K,∞) spaces. See [2] for more comprehensive
accounts of this field.

2.4.1 Relative entropy

In this subsection, we recall the definition of the relative entropy functional Entm :

P2(X)→ R := R ∪ {+∞}:

Entm(µ) =


∫
X

dµ

dm
log(

dµ

dm
)dm, if µ� m,

+∞, otherwise.

Here dµ/dm denotes the Radon–Nikodym derivative. Let us write D(Entm) := {µ ∈
P2(X) : Entm(µ) < ∞}. Although m might not be a probability measure, the entropy
Entm is well-defined and lower-semicontinuous thanks to condition (1.2). Indeed, by
recalling (1.3):

z :=

∫
X

e−Cd
2(x,x)dm(x), so that m̃ :=

1

z
e−Cd

2(·,x)m,

we can check that, for any ρm = µ ∈ D(Entm) with ρ = dµ
dm , it holds that µ = zρeCd

2(·,x)m̃.
Therefore we obtain

Entm(µ) = Entm̃(µ)− C

∫
X

d2(·, x)dµ− log z,
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which implies that Entm is well-defined and lower-semicontinuous with respect to W2-
topology.

2.4.2 Cheeger energy

In this subsection, we recall the Cheeger energy Ch on (X, d,m, x). For f ∈ Lip(X), the
local Lipschitz constant |∇f | : X → R is defined as follows:

|∇f |(x) =

lim sup
y→x

|f(y)− f(x)|
d(y, x)

, if x is not isolated,

0, otherwise.

Then we now recall the definition of Cheeger energy: (see [29, 3, 5])

Ch(f) =
1

2
inf
{

lim inf
n→∞

∫
|∇fn|2dm : fn ∈ Lip(X) ∩ L2(X,m),

∫
X

|fn − f |2dm→ 0
}

W 1,2(X, d,m) = {f ∈ L2(X,m) : Ch(f) <∞}.

If Ch(f) <∞, then the Cheeger energy can be written as an integral form by minimal
weak upper gradient |∇f |w (see [5, 3]):

Ch(f) =
1

2

∫
X

|∇f |2wdm, ∀f ∈W 1,2(X, d,m).

2.4.3 RCD(K,∞) spaces

In this subsection, we recall the CD(K,∞)/RCD(K,∞) condition.

Definition 2.3. The CD(K,∞)/RCD(K,∞) conditions are defined as follows:

(i) (CD(K,∞)) [[65], [47]]

We say that (X, d,m) satisfies the curvature-dimension condition CD(K,∞) for K ∈
R if, for each µ0, µ1 ∈ D(Entm), there exists a W2-geodesic {µt}t∈[0,1] ⊂ D(Entm)

connecting µ0 and µ1 so that

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)− K

2
t(1− t)W 2

2 (µ0, µ1). (2.3)

(ii) (RCD(K,∞)) [[29, Remark 4.20], [6, Theorem 5.1], [3, Theorem 6.1]]

We say that (X, d,m) satisfies the Riemannian curvature-dimension condition
RCD(K,∞) if the following two conditions hold:

(ii-a) CD(K,∞)
(ii-b) the infinitesimal Hilbertianity, that is, the Cheeger energy Ch is a quadratic

form:

2Ch(u) + 2Ch(v) = Ch(u+ v) + Ch(u− v),

for any u, v ∈W 1,2(X, d,m).

It is known that CD(K,∞)/RCD(K,∞) conditions are stable under the pmG conver-
gence.

Theorem 2.4 (Stability of the RCD(K,∞) condition [65, 6, 3]). Let {Xn}n∈N be a se-
quence of RCD(K,∞) spaces. If Xn converges to X∞ in the pmG sense, then the limit
space X∞ is also an RCD(K,∞) space.
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2.4.4 W2-gradient flow of relative entropy

In this subsection, following [3, 5], we recall the heat flow on the L2-Wasserstein space
(P2(X),W2), which is constructed by the gradient flow of the relative entropy functional.
We also recall the stability of the heat flows under the pmG convergence.

The descendent slope |D−Entm| : P2(X)→ [−∞,∞] of the relative entropy Entm is
defined as follows:

|D−Entm|(µ) =



lim sup
W2(ν,µ)→0

(Entm(µ)− Entn(ν))+

W2(ν, µ)
, if µ ∈ D(Entm),

0, if µ is isolated in P2(X),

+∞, if µ ∈ P2(X) \D(Entm).

Here (·)+ denotes the positive part. Let X = (X, d,m, x) be a CD(K,∞) space and
µ ∈ D(Entm). A curve µ : [0,∞)→ D(Entm) ⊂ P2(X) is said to be the W2-gradient flow
of Entm starting at µ if µ is locally absolutely continuous in (P2(X),W2) with µ0 = µ and

Entm(µt) = Entm(µs) +
1

2

∫ s

t

|µ̇r|2dr +
1

2

∫ s

t

|D−Entm|2(µr)dr, 0 < ∀t < ∀s.

Under the CD(K,∞) condition, it is known that the gradient flow µt = Htµ of the relative
entropy exists uniquely for any initial measure µ ∈ D(Entm) and for any t ≥ 0 ([3, 5]).
Here D(Entm) means the closure of D(Entm). We call {Ht}t≥0 heat flow on P2(X).

Theorem 2.5 (Theorem 7.7 in [30] (Stability of heat flows)). Let {Xn=(Xn,dn,mn,xn)}n∈N
be a sequence of RCD(K,∞) spaces converging to X∞ = (X∞, d∞,m∞, x∞) in the pmG
sense. If µn ∈ P2(supp[mn]) ⊂ P2(X) converges to µ∞ ∈ P2(supp[m∞]) ⊂ P2(X) in the
W2-sense:

W2(ιn#µn, ι∞#µ∞)→ 0, n→∞,

then the solution µnt = Hnt (µn) of the heat flow starting at µn converges to the limit one
µ∞t = H∞t (µ∞) in the W2-sense:

W2(ιn#µ
n
t , ι∞#µ

∞
t )→ 0, n→∞, ∀t ≥ 0.

Here ιn is an embedding Xn → X corresponding to the pmG convergence (see Definition
2.1).

2.4.5 L2-gradient flow of Cheeger energy

We now recall the L2-gradient flow of Cheeger energy by Hilbertian theory of gradient
flows (see e.g., [7]). We also recall the important fact that the heat flow in the previous
section and the L2-gradient flow of Cheeger energy in this section coincide under the
CD(K,∞) condition.

For f0 ∈ L2(X;m), there exists a locally Lipschitz map t 7→ ft = Htf0 ∈ L2(X;m) with
ft → f0 as t ↓ 0 whose derivative satisfies

d

dt
ft ∈ −∂−Ch(ft), a.e.-t > 0. (2.4)

Here the subdifferential ∂−Ch of convex analysis is the multi-valued operator in L2(X;m)

defined at all elements of the domain of the Cheeger energy f ∈ W 1,2(X, d,m) by the
family of inequalities

h ∈ ∂−Ch(f) ⇐⇒
∫
X

h(g − f)dm ≤ Ch(g)− Ch(f), ∀g ∈ L2(X;m).
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The map Ht : f0 7→ ft is uniquely determined by (2.4) and define a contraction semigroup
(not necessarily linear) on L2(X;m). The flow f0 7→ ft = Htf is called L2-gradient flow
of the Cheeger energy, and the semigroup {Ht}t≥0 is called heat semigroup.

We recall that the L2-gradient flows of Cheeger energies and the W2-gradient flow of
entropies are equivalent under the CD(K,∞) condition.

Theorem 2.6 ([5, Theorem 9.3] (see also [3])). Let X = (X, d,m, x) be a p.m.m. space
satisfying the CD(K,∞) condition. If µ0 = f0m ∈ P2(X) with f0 ∈ L2(X;m), then

Ht(µ0) = (Htf0)m, ∀t ≥ 0.

2.4.6 RCD∗(K,N) spaces

In this subsection, we recall the definition of the RCD∗(K,N) condition and several
properties satisfied by RCD∗(K,N) spaces (see [29, 8, 22] for more details).

For each θ ∈ [0,∞), we define the following functions

Θκ(θ) =


sin(
√
κθ)√
κ

, if κ > 0,

θ, if κ = 0,

sinh(
√
−κθ)√
−κ

, if κ < 0.

We define the following functions: for t ∈ [0, 1],

σ(t)
κ (θ) =


Θκ(tθ)

Θκ(θ)
, if κθ2 6= 0 and κθ2 < π2,

t, if κθ2 = 0,

+∞, if κθ2 ≥ π2.

Let P∞(X, d,m) be the subset of P2(X) consisting of µ which is absolutely continuous
with respect to m and has bounded support.

Definition 2.7 (CD∗(K,N) and RCD∗(K,N) [11, 29]).

(i) A metric measure space (X, d,m) is said to satisfy the reduced curvature-dimension
condition CD∗(K,N) for K,N ∈ R with 1 < N < ∞ if, for each pair µ0 = ρ0m

and µ1 = ρ1m in P∞(X, d,m), there exist an optimal coupling q of µ0 and µ1 and a
geodesic µt = ρtm (t ∈ [0, 1]) in (P∞(X, d,m),W2) connecting µ0 and µ1 so that, for
all t ∈ [0, 1] and N ′ ≥ N , we have∫
ρ
− 1
N′

t dµt ≥
∫
X×X

[
σ

(1−t)
K
N′

(d(x0, x1))ρ
− 1
N′

0 (x0) + σ
(t)
K
N′

(d(x0, x1))ρ
− 1
N′

1 (x1)
]
dq(x0, x1).

(ii) A metric measure space (X, d,m) is said to satisfy the Riemannian curvature-
dimension condition RCD∗(K,N) if the following two conditions hold:

(ii-a) CD∗(K,N)
(ii-b) the infinitesimal Hilbertianity, that is the Cheeger energy Ch is a quadratic

form:

2Ch(u) + 2Ch(v) = Ch(u+ v) + Ch(u− v),

∀u, v ∈W 1,2(X, d,m).

Remark 2.8. The RCD∗(K,N) condition is stronger than the RCD(K,∞) condition. If X
is an RCD∗(K,N) space, then X is locally compact by the local volume doubling property
according to Bishop–Gromov inequality [22, Proposition 3.6] (see also [66, Corollary
2.4]).
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The RCD∗(K,N) condition is stable under the pmG convergence.

Theorem 2.9 (Stability of RCD∗(K,N) [29]). Let {Xn}n∈N be a sequence of RCD∗(K,N)

spaces. If Xn converges to X∞ in the pmG sense, then X∞ is also an RCD∗(K,N) space.

2.5 L2-convergence of heat semigroups under the PmG convergence

In Gigli–Mondino–Savaré [30], they introduced L2-convergences on varying metric
measure spaces and showed a convergence of heat semigroups in this sense under the
pmG convergence of the underlying spaces with the RCD(K,∞) condition. We recall
their results briefly.

Definition 2.10 (See [30, Definition 6.1]). Let {(Xn, dn,mn, xn)}n∈N be a sequence of
p.m.m. spaces. Assume that (Xn, dn,mn, xn) converges to (X∞, d∞,m∞, x∞) in the
pmG sense. Let (X, d) be a complete separable metric space and ιn : supp[mn] → X

be isometries as in Definition 2.1. We identify (Xn, dn,mn) with (ιn(Xn), d, ιn#mn) and
omit ιn.

(i) We say that un ∈ L2(X,mn) converges weakly to u∞ ∈ L2(X,m∞) if the following
hold:

sup
n∈N

∫
|un|2 dmn <∞ and

∫
φun dmn →

∫
φu∞ dm∞ ∀φ ∈ Cbs(X),

whereby recall that Cbs(X) denotes the set of bounded continuous functions with
bounded support.

(ii) We say that un ∈ L2(X,mn) converges strongly to u∞ ∈ L2(X,m∞) if un converges
weakly to u∞ and the following holds:

lim sup
n→∞

∫
|un|2 dmn ≤

∫
|u∞|2 dm∞.

Let {Hn
t }t≥0 be the L2(X,mn)-semigroup corresponding to the Cheeger energy Chn.

Then the following theorem states that {Hn
t }t≥0 convergence strongly in L2 under the

pmG convergence of the underlying spaces.

Theorem 2.11 (See [30, Theorem 6.11]). Let {(Xn, dn,mn, xn)}n∈N be a sequence of
p.m.m. spaces satisfying the RCD(K,∞) for all n ∈ N. Then, for any un ∈ L2(X,mn)

converging strongly to u∞ ∈ L2(X,m∞), we have, for any t > 0

Hn
t un converges strongly to H∞t u∞ in the sense of Definition 2.10.

Note that, in [30, Theorem 6.11], the above Theorem 2.11 was stated without the
condition of the infinitesimal Hilbertian.

3 Brownian motion on RCD spaces

3.1 Brownian motions on RCD(K,∞) spaces

Let (X, d,m) satisfy the RCD(K,∞) condition. Let δx denote the unit mass at x ∈ X,
and define a kernel p(t, x, dy) by the action of the heat flow (see Subsection 2.4.4)

p(t, x, dy) := Ht(δx) ∀t > 0, x ∈ X.

Then we have that (see [6, 3])

p(t, x, dy) is absolutely continuous with respect to m for any t > 0,
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and we denote the density by p(t, x, y). By [6, Theorem 6.1] and [3] (for the case of
σ-finite reference measures), the density p(t, x, y) is symmetric in x and y, and satisfies
the Chapman–Kolmogorov formula. Moreover, the following action of semigroup {Pt}t≥0

Ptf(x) :=

∫
X

f(y)dHt(δx)(dy) (3.1)

is a version of the linear heat semigroup {Ht}t≥0 defined as the gradient flow of the
Cheeger energy Ch (see Subsection 2.4.5) for any f ∈ L2(X;m). Furthermore Pt is an
extension of Ht to a continuous contraction semigroup in L1(X;m) which is point-wise
everywhere defined on supp[m] if f ∈ L∞(X;m) since Ptf becomes Lipschitz continuous
on supp[m] whenever f ∈ L∞(X;m) (see [6, Theorem 6.5] and [3, Theorem 7.3]). We
call p(t, x, dy) and p(t, x, y) the heat kernel and the heat kernel density, respectively. By
the Kolmogorov extension theorem, we can construct a family of probability measures
{Px}x∈X on X [0,∞) and a system of Markov processes ({Px}x∈X , {Bt}t≥0) on X with
respect to p(t, x, dy).

On the other hand, we can define a Dirichlet form (i.e., a symmetric closed Markovian
bilinear form) (E ,F) induced by the Cheeger energy Ch as follows:

E(u, v) =
1

4
(Ch(u+ v)− Ch(u− v)), u, v ∈ F = W 1,2(X, d,m).

By [6, Lemma 6.7] (see [3, Theorem 7.2] for σ-finite reference measures), the form (E ,F)

becomes a quasi-regular conservative strongly-local symmetric Dirichlet form below. See
[6, Proposition 4.11] for the strong locality, and the conservativeness follows from the
volume growth estimate (1.2) and Sturm’s conservativeness test [62, Theorem 4].

Therefore, by [49, Theorem IV 3.5, V1.5], there exists a family of probability measures
{Qx}x∈X on C([0,∞);X) and a system ({Qx}x∈X , {B′t}t≥0) of conservative diffusion
processes so that

ExQ(f(B′t)) = Ptf, ∀f ∈ L2(X;m) ∩ Bb(X), ∀t ≥ 0, ∀x ∈ X \ N .

Here ExQ denotes the expectation with respect to Qx and N is a set of zero-capacity with
respect to (E ,F). By conservative diffusion process, we mean that (Qx, {B′t}t≥0) is a
strong Markov process whose sample path is continuous, which means B′· ∈ C([0,∞);X)

Qx-almost surely for every x ∈ X. The systems of Markov processes corresponding to
(E ,F) are unique up to zero-capacity sets with respect to starting points x. Namely,
if there is another system of diffusion processes ({Rx}x∈X , {St}t≥0) corresponding to
(E ,F), then the laws of (Qx, {B′t}t≥0) and (Rx, {St}t≥0) coincide for every x ∈ X \N with
some set N of zero-capacity. Note that, if {Pt}t≥0 is a Feller semigroup, then N can be
taken as an empty set ∅, and the diffusion process can be defined uniquely with respect
to every starting point x. See, e.g., [27, Chapter 7, A.2] and [49, Chapter IV] for more
comprehensive accounts.

Let Px∗ denote the outer measure of Px on all subsets of X [0,∞). By the same argument
of [9, Proof of (c) in Theorem 1.2], we have that

Px∗
(
C((0,∞);X)

)
= 1 for every x ∈ X (not only quasi-every x ∈ X). (3.2)

This property is due to the absolute continuity of the heat kernel p(t, x, dy) with respect to
m for any t > 0. Note that, by the conservativeness and the strong locality of the Dirichlet
form (E ,F), we know that Qx(C([0,∞);X)) = 1 for quasi-every x ∈ X (this holds also for
Px∗). We write simply Px for Px∗ . The systems of Markov processes ({Px}x∈X , {Bt}t≥0)

and ({Qx}x∈X , {B′t}t≥0) coincide except on zero-capacity sets. In this paper, we adopt
({Px}x∈X , {Bt}t≥0) for representing a system of Brownian motions.
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Remark 3.1. The diffusion process defined above is conventionally called Brownian
motion ([6]), but this may indicate other diffusion processes than the standard Brow-
nian motion in some situations. For instance, when we take (X, d,m) = (Rd, ‖ · ‖2,

1
(2π)d/2

exp{− 1
2‖x‖

2
2}dx) whereby dx denotes the Lebesgue measure, and ‖ · ‖2 denotes

the Euclidean distance. Then (X, d,m) satisfies RCD(0,∞) and the diffusion induced by
the Cheeger energy coincides with what is known as the Ornstein-Uhlenbeck process,
which is different from the standard Brownian motion on Rd.

3.2 Brownian motions on RCD∗(K,N) spaces

In this subsection, we show the Feller property of the heat semigroup on RCD∗(K,N)

spaces.

Proposition 3.2. Under the RCD∗(K,N) condition, the heat semigroup {Ht}t≥0 has a
Feller modification. That is, there exists a semigroup {Pt}t≥0 so that Ptf = Htf m-a.e.
for any f ∈ L2(X,m) and any t > 0 and the following conditions hold:

(F-1) For any f ∈ C∞(X), Ptf ∈ C∞(X) for any t > 0.

(F-2) For any f ∈ C∞(X), ‖Ptf − f‖∞ → 0 t ↓ 0.

Remark 3.3. The following proof is the result of a private communication with Prof.
Kazuhiro Kuwae. Although the proof might be already known in some literature, we could
not find good references and we give the proof for the sake of reader’s convenience.

Proof. By [6, (iii) in Theorem 6.1], there exists a semigroup {Pt}t≥0 which is a modi-
fication of {Ht}t≥0 so that Ptf ∈ Lipb(X) if f ∈ L∞(X,m). Before checking (F-1) and
(F-2), we first give a heat kernel estimate. By [35, Theorem 1.2], we have the following
Gaussian heat kernel estimate: there exist positive constants Ci = Ci(N,K) for i = 1, 2, 3

depending only on N,K so that

p(t, x, y) ≤ C1

m(B√t(y))
exp
{
−C2

d(x, y)2

t
−C3t

}
, (3.3)

for all x, y ∈ X and 0 < t. Here the heat kernel p(t, x, y) means the integral kernel of the
heat semigroup Ptf(x) =

∫
X
fp(t, x, y)m(dy) for t > 0.

We now show condition (F-1). We already know Ptf ∈ Cb(X), so it suffices to show
that Ptf vanishes at infinity for f ∈ C∞(X) and t > 0, which is an easy consequence of
(3.3) as follows: we may assume that f is compactly supported since every element in
C∞(X) can be approximated by elements in C0(X) with respect to the uniform norm.
Let K ⊃ supp[f ] be a compact set. By (3.3) and infy∈K m(B√t(y)) > 0 (by the lower
semi-continuity of m(Br(x)) in x), we see that, for any ε > 0, there exists a compact set
K ′ ⊂ X so that

|Ptf(x)| ≤
∫
K

p(t, x, y)|f(y)|m(dy)

< ‖f‖∞
∫
K

C1

m(B√t(y))
exp
{
−C2

d(x, y)2

t
−C3t

}
m(dy)

<
C1‖f‖∞

infy∈K m(B√t(y))

∫
K

exp
{
−C2

d(x, y)2

t
−C3t

}
m(dy)

≤ ε (∀x ∈ X \K ′).

Thus we have proved (F-1).
Now we prove (F-2). We may assume f ∈ C0(X). Let K ⊃ supp[f ] be a compact set.

For given ε > 0, take δ > 0 so that |f(x)− f(y)| < ε whenever d(x, y) < δ in x, y ∈ K. By
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the Gaussian estimate (3.3), we can choose a positive number T so that p(t, x, y) < ε for
any 0 < t < T , and for any x ∈ X and y ∈ K satisfying d(x, y) ≥ δ. Then we have that, for
any x ∈ X

|Ptf(x)− f(x)| =
∣∣∣∫
K

p(t, x, y)f(y)m(dy)− f(x)
∣∣∣

≤
∫
K

p(t, x, y)
∣∣∣f(y)− f(x)

∣∣∣m(dy)

=

∫
Bδ(x)∩K

p(t, x, y)|f(y)− f(x)|m(dy) +

∫
(Bδ(x))c∩K)

p(t, x, y)|f(y)− f(x)|m(dy)

≤ ε+ 2ε‖f‖∞.

Thus we have shown that (F-2) holds.

4 Examples

In this section, several specific examples satisfying Assumption 1.1 or the assumption
in Theorem 1.7 are given. In the first subsection, we explain weighted Riemannian
manifolds whose weighted Ricci curvature is bounded below, and their pmG limit spaces.
In the second subsection, we explain Alexandrov spaces, which are a generalization of
the lower sectional curvature bound to metric spaces. In the third subsection, we give
Hilbert spaces with log-concave probability measures.

4.1 Weighted Riemanniam manifolds and pmG limit spaces

Let {(Mn, gn, wn, xn)}n∈N be a sequence of pointed complete and connected weighted
N -dimensional Riemannian manifolds whose weight satisfies wn = e−Vn for a twice
continuously differentiable function Vn ∈ C2(Mn). We write the corresponding pointed
metric measure space Mn = (Mn, dgn , wnVoln, xn) whereby dgn denotes the distance
function associated with the Riemannian metric gn; Voln denotes the Riemannian volume
measure; and xn ∈Mn is a fixed point. Let the weighted Ricci curvature RicMn

ofMn

be bounded from below by K: there exists K ∈ R so that

RicMn = Ricg +∇2Vn ≥ Kgn,

whereby Ricgn means the Ricci curvature of (Mn, gn) and ∇2 means the Hessian. Then
Mn satisfies RCD(K,∞) spaces ([59, 65]). Even when Vn : Mn → R is not in C2(Mn), if
Ricgn ≥ K and

Vn : Mn → R is K ′-convex (see [65]),

thenMn satisfies RCD(K +K ′,∞). If, moreover,

Vn : Mn → R is (K ′, N ′)-convex (see [22]),

then Mn satisfies RCD∗(K + K ′, N + N ′). The Brownian motion on Mn is a Markov
process whose infinitesimal generator An is

An =
1

2
∆Mn

− 〈∇Vn,∇〉,

whereby ∆Mn is the Laplace-Beltrami operator on Mn.
IfMn satisfying RCD(K,∞) (or, RCD∗(K,N)) converges to a metric measure space

M∞ in pmG sense, then the limit space M∞ satisfies RCD(K,∞) (or, RCD∗(K,N)),
respectively (see [30, 22]). Thus we can apply our main results and obtain the weak
convergence of the Brownian motions.

We have various singular examples appearing as the limit space. See e.g., [17,
Example 8]. We give one of the simplest examples included in this framework.

EJP 24 (2019), paper 102.
Page 16/36

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP346
http://www.imstat.org/ejp/


Convergence of Brownian motions on RCD spaces

Example 4.1 (Collapsing: Torus → Circle). Let S1 ⊂ R2 be the unit circle. Let dS1 be
the shortest path distance on S1, that is, the distance between x and y is defined by the
infimum over lengths of geodesics on S1 connecting x and y. Let

HS1 :=
1

HS1(S1)
HS1

be the normalized Hausdorff measure on (S1, dS1). Let Tn = S1×S1 be a two-dimensional
flat torus with a metric dn = dS1 ⊗ 1

ndS1 and the normalized Hausdorff measure Hn on
(Tn, dn), whereby

dS1 ⊗
1

n
dS1((x1, y1), (x2, y2)) :=

√
d2
S1

(x1, x2) +
1

n2
d2
S1

(y1, y2).

Then (Tn, dn, Hn) satisfies the RCD∗(0, 2) for any n ∈ N and converges to (S1, dS1 , HS1)

in the measured Gromov sense. Thus we can apply our result (Theorem 1.7) and the
weak convergence of the Brownian motions is equivalent to the pmG convergence of the
underlying spaces.

Figure 1: Tori Converge to a Circle.

4.2 Alexandrov spaces

We explain Alexandrov spaces, which are a generalization of lower bounds of sectional
curvatures to metric spaces. We refer the reader to [15] for basic theory of Alexandrov
spaces. Let (X, d) be a locally compact length space. For a triple of points p, q, r ∈ X, a
geodesic triangle 4pqr is a triplet of geodesics joining each two points. Let MN (K) be
the N -dimensional complete simply connected space of constant sectional curvature K.
For a geodesic triangle 4pqr, we denote by 4p̃q̃r̃ a geodesic triangle in M2(K) whose
corresponding edges have the same lengths as 4pqr.

A locally compact length space (X, d) is said to be an Alexandrov space with Curv ≥ K
if for every point x ∈ X, there exists an open set Ux including x so that for every
geodesic triangle 4pqr whose edges are totally included in Ux, the corresponding
geodesic triangle4p̃q̃r̃ satisfies the following condition: for every point z ∈ qr and z̃ ∈ q̃r̃
with d(q, z) = d(q̃, z̃), we have

d(p, z) ≥ d(p̃, z̃).

If we consider a complete N -dimensional Riemannian manifold (M, g), then (M, g) is an
Alexandrov space with Curv ≥ K if and only if sec(M) ≥ K, whereby sec(M) means the
sectional curvature of M .

Let X = (X, d,H) be an N -dimensional Alexandrov space with Curv ≥ K and H be
the Hausdorff measure (see e.g., [15] for details). According to [55, 71], X satisfies
CD∗((N − 1)K,N). Moreover, as was shown in [42], X satisfies the infinitesimal Hilber-
tian condition, and as a result, X satisfies RCD∗((N − 1)K,N). Thus we can apply our
results (Theorem 1.2, 1.4) and if a sequence of pointed Alexandrov spaces Xn with
Curv ≥ K converges to the limit space X∞ in the pmG sense, then the Brownian motions
on Xn converge weakly to the limit Brownian motion on X∞. We give several examples.
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Example 4.2 (Cone → Interval). Let Xn ⊂ R3 be a cone defined by Xn = {(x, y, z) ∈
R3 : y2 + z2 = 1

nx, 0 ≤ x < 1} ∪ {(x, y, z) ∈ R3 : y2 + z2 = 1
n , x = 1}. Let dn be the

shortest path distance on Xn and Hn be the normalized Hausdorff measure on Xn. Then
(Xn, dn, Hn) satisfies RCD∗(0, 2) and converges to ([0, 1], | · |,m) in the measured Gromov
sense, whereby m is a measure on [0, 1]. Thus we can apply our result (Theorem 1.7) and
the weak convergence of the Brownian motions is equivalent to the pmG convergence
of the underlying spaces.

0 1

Figure 2: Cones Converge to an Interval.

As a second example, we give a sequence of polygons made by the barycentric
subdivision. The limit space has dense singularities.

Example 4.3 (Dense Singularities [53, p. 632, Examples. (2)]). Let X = (X, d) be a
polyhedron in R3 with the shortest path metric d on X. Then we can check whether X is
an Alexandrov space with Curv≥ 0, which is also an RCD∗(0, 2) space. For any vertex
p ∈ X, let ∠(X, p) denote the sum of all inner angles at p of faces T ’s such that p is a
vertex of T .

Now we construct a sequence of polyhedra {Mn}n∈N inductively. Let M1 be a
tetrahedron in R3 with the barycenter o. Let Mn be defined. Then we define Mn+1 as
follows: Take a monotone decreasing sequence {εn}n∈N so that εn → 0 as n→∞ with
0 < εn < 1 and ε := Π∞n=1(1− εn) > 0. We take the barycentric subdivision of Mn. Keep
the original vertices in Mn in the same positions and move the new vertices generated
by the barycentric subdivision outward along rays emanating from o so small that, for
the new polyhedra Mn+1 generated by the new and original vertices, we have

2π − ∠(Mn+1, p) ≥ (1− εn)(2π − ∠(Mn, p)),

for any vertex p ∈Mn. See [53, p. 632, Examples. (2)] for more details.
Let dn and Hn be the shortest path distance and the Hausdorf measure on Mn. Then

there exists the Hausdorff-limit of Mn = (Mn, dn), denoted by M∞. The limit space
M∞ is a two-dimensional Alexandorv space with nonnegative curvature. In particular,
(Mn, dn, Hn) converges to (M∞, d∞, H∞) in the measured Gromov sense. The limit
space M∞ also satisfies the RCD∗(0, 2) by the stability of RCD∗(K,N) spaces under the
measured Gromov convergence (see [22]). The set of singular points in M∞ is dense (see
[53]). Since each diameter of Mn is obviously uniformly bounded by the construction, we
can apply our result (Theorem 1.7) and the weak convergence of the Brownian motions
is equivalent to the pmG convergence of the underlying spaces.

4.3 Hilbert space with log-concave measures

In this subsection, we give a specific class of RCD(0,∞) spaces, which is a Hilbert
space with log-concave measures. This subsection follows [9].

Let H be a separable Hilbert space, which would be a finite- or infinite-dimensional
space, with an inner product 〈·, ·〉 and the corresponding norm ‖ · ‖. A Borel probability
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M
1 M

2

Figure 3: Polyhedra Generated by Barycentric Subdivision.

measure γ on H satisfies log-concave condition if, for all pairs of open subsets A,B ⊂ H,
it holds that

log γ((1− t)A+ tB) ≥ (1− t) log γ(A) + t log γ(B), ∀t ∈ [0, 1].

Let K = supp[γ] and A = A(γ) be the smallest closed linear subspace containing K. We
write canonically

A = H0 + h0, h0 ∈ K, ‖h0‖ ≤ ‖k‖, ∀k ∈ K,

so that h0 is the element of the minimal norm in K and H0 is a closed linear subspace in
H.

Let C1
b (A) be the set of all Φ : A → R which are bounded, continuous and Fréchet

differentiable with a bounded continuous gradient ∇Φ : A→ H0. Then, according to [9,
Theorem 1.2], the following bilinear form becomes closable and the closed form becomes
a symmetric quasi-regular Dirichlet form E = E‖·‖,γ :

E(u, v) =

∫
K

〈∇u,∇v〉H0dγ, u, v ∈ F := C1
b (A)

√
E+‖·‖22

. (4.1)

In [9], the corresponding semigroup {Pt}t≥0 associated with (E ,F) satisfies EVI0 prop-
erty, which is equivalent to the RCD(0,∞) condition of (H, ‖ · ‖, γ) according to [6]. Let
{Hn = (H, ‖ · ‖n, γn, xn)}n∈N be a sequence of pointed Hilbert spaces with log-concave
probability measures satisfying the above conditions. Then the weak convergence of
the Brownian motions on Hn to that on H∞ follows from the pmG convergence of the
underlying spaces Hn to H∞ (Theorem 1.2, 1.4 and [9, Theorem 1.5]).

Various infinite dimensional examples are included in the framework of Hilbert spaces
with log-concave probability measures. For instance, all measures γ of the following
form satisfies the log-concave condition: let dx be the Lebsgue measure on RN and

γ =
1

Z
e−V dx, whereby V : H = RN → R convex and Z =

∫
RN

e−V dx < +∞,

such as all Gaussian measures and all Gibbs measures on on a finite lattice with a convex
Hamiltonian. See [9, Section 1.2] for various infinite-dimensional literatures related to
stochastic partial differential equations. We give several finite-dimensional examples.

Example 4.4 ([9]). We explain several examples associated with stochastic differential
equations (SDE). The first one is SDEs on the Euclidean spaceRN with variable potentials.
The second one is SDEs on variable convex domains in RN with variable potentials.

(a) (SDE with Variable Convex Potentials) Let H = RN with 1 < N < ∞. Let
{Vn : RN → R}n∈N be a sequence of convex functionals with a Lipschitz continuous
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gradient ∇Vn : RN → RN and
∫
RN

e−Vndx <∞. Take

γn =
1

Zn
e−Vndx, whereby Zn =

∫
RN

e−Vndx.

Then γn becomes a log-concave probability measure. Therefore the diffusion
process associated with the Dirichlet form (En,Fn) in (4.1) is a solution to the
following SDE:

dXn
t = −∇Vn(Xn

t )dt+
√

2dWt, X0 = xn. (4.2)

If γn converges to a probability measure γ∞ weakly and xn → x∞, then (RN , ‖ ·
‖2, γn, xn) converges to (RN , ‖·‖2, γ∞, x∞) in the pmG sense and (RN , ‖·‖2, γ∞, x∞)

is an RCD(0,∞) space by the stability of the RCD property. Thus the solution to
SDE (4.2) on Hn = (H, ‖ · ‖n, γn, xn) converges weakly to the diffusion associated
with the Cheeger energy on the limit space (Theorem 1.2, 1.4 and [9, Theorem
1.5]).

(b) (SDE on Variable Convex Subsets with Variable Convex Potentials) Let H =

RN with 1 < N < ∞ and Un ⊂ RN be a smooth convex open set. We consider a
convex functional Vn ∈ C1,1(Un) and Vn ≡ +∞ on RN \ Un with

∫
Un
e−Vndx < ∞

for n ∈ N. Take

γn =
1

Zn
e−Vndx|Un , whereby Zn =

∫
Un

e−Vndx.

Then γn becomes a log-concave probability measure. Therefore the diffusion
process associated with the Dirichlet form (En,Fn) in (4.1) is a solution of the
following SDE with reflection at the boundary:

dXn
t = −∇Vn(Xn

t )dt+
√

2dWt + nn(Xt)dL
n
t , X0 = xn. (4.3)

Here nn is an inner normal vector to ∂Un and Ln is a continuous monotone non-
decreasing process which increases only when Xt ∈ ∂Un.

If γn converges to a probability measure γ∞ weakly and xn → x∞, then (RN , ‖ ·
‖2, γn, xn) converges to (RN , ‖·‖2, γ∞, x∞) in the pmG sense and (RN , ‖·‖2, γ∞, x∞)

is an RCD(0,∞) space by the stability of the RCD property. Thus the solution to
(4.3) on Un converges weakly to the diffusion associated with the Cheeger energy
on the limit space (Theorem 1.2, 1.4 and [9, Theorem 1.5]).

5 Proof of Theorem 1.2

We first show the implication of (ii) =⇒ (i) in Theorem 1.2.

Proof of (ii) =⇒ (i) in Theorem 1.2. If we assume (ii), then it is obvious that the initial
distributions m̃n converge weakly to m̃∞. Since the weak convergence of m̃n to m̃∞
is equivalent to the convergence of mn to m∞ in the sense of (2.2) (easy to check), we
finish the proof of the implication (ii) =⇒ (i) in Theorem 1.2.

We now show the implication (i) =⇒ (ii).

Proof of (i) =⇒ (ii) in Theorem 1.2. By Definition 2.1, there exist a complete separable
metric space (X, d) and a family of isometric embeddings ιn : Xn → X such that, for any
bounded continuous function f : X → R with bounded support, we have∫

X

fd(ιn#mn)→
∫
X

fd(ι∞#m∞).
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Set the notation for the laws of Brownian motions as follows:

Bm̃nn := (ιn(Bn),Pm̃nn ), Bxnn := (ιn(Bn),Pxnn ).

Hereafter we identify ιn(Xn) with Xn and we omit ιn for simplifying the notation.
To show the weak convergence of the Brownian motions, we have two steps. The

first step is to show the weak convergence of finite-dimensional distributions, and the
second is to show tightness. We first show the weak convergence of finite-dimensional
distributions in the case that the initial distribution is the Dirac measure δxn .

Lemma 5.1 (Convergence of Finite-Dimensional Distributions). For any k ∈ N, 0 = t0 <

t1 < t2 < · · · < tk <∞ and f1, f2, ..., fk ∈ Cb(X), the following holds:

Exn [f1(Bnt1) · · · fk(Bntk)]
n→∞→ Ex∞ [f1(B∞t1 ) · · · fk(B∞tk )].

Proof. Since the limit Brownian motion Bx∞∞ is conservative, it suffices to show the
statement only for f1, f2, ..., fk ∈ Cb(X) ∩ L2(X;m∞). In fact, for any ε > 0 and T > 0,
there exists R = R(ε, T ) so that the open ball BR(x∞) satisfies

Ex∞1BR(x∞)(B
∞
t ) = Px∞(B∞t ∈ BR(x∞)) ≥ 1− ε, ∀t ∈ [0, T ].

If we know that Exn(f(Bnt )) converges to Ex∞(f(B∞t )) for any f ∈ Cb(X) ∩ L2(X;m∞),
then we know that

lim
n→∞

Pxn(Bnt ∈ BR(x∞)) = lim
n→∞

Exn(1BR(x∞)(B
n
t )) = Ex∞(1BR(x∞)(B

∞
t )) ≥ 1− ε,

for any t ∈ [0, T ]. Therefore, for any f1, ..., fk ∈ Cb(X), and any small δ > 0, we can
choose R > 0 large enough so that

lim
n→∞

Exn(f1(Bnt1) · · · fk(Bntk))

= lim
n→∞

Exn
(
f1(Bnt1) · · · fk(Bntk) :

k⋂
j=1

{Bntj ∈ BR(x∞)}
)

+ lim
n→∞

Exn
(
f1(Bnt1) · · · fk(Bntk) :

( k⋂
j=1

{Bntj ∈ BR(x∞)}
)c)

= lim
n→∞

Exn
(
f11BR(Bnt1) · · · fk1BR(Bntk)

)
+ δ.

Thus we may show the proof only for f1, f2, ..., fk ∈ Cb(X) ∩ L2(X;m∞).
Recall that we have the following equality (see Subsection 3.1): for every f ∈

Cb(X) ∩ L2(X;m∞),

Exn(f(Bnt )) = Pnt f(x), (5.1)

for every x ∈ Xn. Here recall that {Pnt }t≥0 is the semigroup defined in (3.1) by the
action of the heat flow whereby Pt is a modification of the heat semigroup Ht and Pnt f(x)

can be defined for every point x ∈ Xn if f ∈ Cb(X) ∩ L2(X;m∞). Since the Brownian
motion ({Pxn}x∈Xn , {Bnt }t≥0) is constructed by the Kolmogorov extension theorem with
the integral kernel pn(t, x, dy) of {Pnt }t≥0 as in Section 3.1, the equality (5.1) holds for
every point x ∈ Xn.

By using the Markov property, for all n ∈ N, we have

Exnn [f1(Bnt1) · · · fk(Bntk)]

= Pnt1−t0

(
f1P

n
t2−t1

(
f2 · · · Pntk−tk−1

fk

))
(xn)

=: Pnk (xn).
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By [3, Theorem 7.3], Pnk is bounded Lipschitz on Xn whose Lipschitz constant depends
only on the curvature lower-bound K.

For later arguments, we extend Pnk to the whole space X (note that Pnk is defined
only on each Xn). The key point is to extend Pnk to the whole space X preserving its
Lipschitz regularity and bounds.

Proposition 5.2. ([50, Corollary 1,2]) Let P̃nk be the function defined on the whole
space X as follows:

P̃nk (x) :=
(

sup
a∈Xn

{Pnk (a)−Hd(a, x)} ∧ sup
a∈Xn

Pnk (a)
)
∨ inf
a∈Xn

Pnk (a), x ∈ X. (5.2)

Here H denotes the same Lipschitz constant of the original function Pnk . Then P̃nk is a
bounded Lipschitz continuous function on the whole space X with the same Lipschitz
constant H and the same bound. Moreover P̃nk = Pnk on the original domain Xn. The

function P̃nk is called McShane extension of Pnk .

We now return to the proof of Lemma 5.1. We have that∣∣∣Exnn [f1(Bnt1) · · · fk(Bntk)]− Ex∞n [f1(B∞t1 ) · · · fk(B∞tk )]
∣∣∣

= |Pnk (xn)− P∞k (x∞)|

≤ |Pnk (xn)− P̃nk (x∞)|+ |P̃nk (x∞)− P∞k (x∞)|
=: (I)n + (II)n.

Therefore it suffices to show (I)n → 0 and (II)n → 0 as n→∞.
We first discuss to show (I)n → 0. Since ‖Pnt f‖∞ = ‖f‖∞‖

∫
Xn

pn(t, x, y)mn(dy)‖∞ ≤
‖f‖∞, for any f ∈ Cb(Xn) ∩ L2(X;m∞), we have

sup
n∈N
‖Pnk ‖∞ ≤

k∏
i=1

‖fi‖∞ <∞. (5.3)

Therefore, by Proposition 5.2, it holds that

sup
n∈N
‖P̃nk ‖∞ <∞. (5.4)

By [3, Theorem 7.3], we have that LipX(Pnt f) ≤ C(t,K)‖f‖∞ for any f ∈ L∞(Xn;mn) ∩
L2(X;m∞) for some positive C(t,K) depending only on t,K. Here LipX(f) means the
global Lipschitz constant of a Lipschitz function f on X. Thus by considering (5.3), there
exists a constant L depending only on tk,K and ‖f1‖∞, ...., ‖fk‖∞ (but independent of n)
so that

sup
n∈N

LipX(Pnk ) ≤ sup
n∈N

C(tk,K)‖fkPnk−1‖∞ < L <∞.

By the property of the McShane extension in Proposition 5.2, we have that

sup
n∈N

LipX(P̃nk ) ≤ sup
n∈N

C(tk,K)‖fkPnk−1‖∞ < L <∞. (5.5)

Thus we have

(I)n = |Pnk (xn)− P̃nk (x∞)| = |P̃nk (xn)− P̃nk (x∞)|

≤ Lip(P̃nk )d(xn, x∞)

≤ Ld(xn, x∞)

→ 0 (n→∞).
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We next show that (II)n → 0. By (5.4) and (5.5), we can apply the Ascoli–Arzelá theo-
rem to {P̃nk }n∈N so that {P̃nk }n∈N is relatively compact. Therefore, for any subsequence

{P̃n′k }{n′} whereby {n′} ⊂ {n}, there exists a further subsequence {P̃n′′k }{n′′} whereby
{n′′} ⊂ {n′} satisfying

P̃n′′k → F ′′ uniformly in X. (5.6)

On the other hand, we have that Pnk converges to P∞k L2-strongly in the sense of
Definition 2.10. We give a proof below.

Lemma 5.3. Pnk converges to P∞k in the L2-strong sense in Definition 2.10.

Proof. By Theorem 2.11, the statement is true for k = 1. Assume that the statement is
true when k = l. Since we have

Pnl+1 = Pntl+1−tl(f
(n)
l+1P

n
l ),

by Theorem 2.11, it is sufficient to show fl+1Pnl → fl+1P∞l strongly in L2. This is obvious
to be true because Pnl → P∞l strongly (the assumption of the induction), fl+1 ∈ Cb(X)

and Pnl is bounded uniformly in n thanks to (5.4). Thus the statement is true for any
k ∈ N.

We return to the proof of Lemma 5.1.

Proof of Lemma 5.1. By using Lemma 5.3 and (5.6), it is obvious to check that

F ′′|X∞ = P∞k ,

whereby F ′′|X∞ means the restriction of F ′′ into X∞. The R.H.S. P∞k of the above
equality is clearly independent of choices of subsequences and thus the limit F ′′|X∞ is
independent of choices of subsequences. Thus we conclude that

P̃nk → P
∞
k uniformly in X∞. (5.7)

Now we return to show (II)n goes to zero. By (5.7), we have that

(II)n = |P̃nk (x∞)− P∞k (x∞)| ≤ ‖P̃nk − P
∞
k ‖∞,X∞

→ 0 (n→∞).

Here ‖ · ‖∞,X∞ means the uniform norm on X∞. Thus we finish the proof of Lemma
5.1.

We next show the weak convergence of finite-dimensional distributions for the case
that initial distributions are W1-convergent, which includes m̃n for the case of mn(Xn) =

∞.

Lemma 5.4. Let {νn}n∈N ⊂ P(Xn) be a sequence of probability measures on Xn ⊂ X

converging to ν∞ ∈ P(X∞) in W1-distance. Then, for any k ∈ N, 0 = t0 < t1 < t2 < · · · <
tk <∞ and f1, f2, ..., fk ∈ Cb(X) ∩ L2(X;m∞), the following holds:

Eνn [f1(Bnt1) · · · fk(Bntk)]
n→∞→ Eν∞ [f1(B∞t1 ) · · · fk(B∞tk )].

Proof. By the same argument at the beginning of Lemma 5.1, it suffices to show the
statement for any f1, f2, ..., fk ∈ Cb(X) ∩ L2(X;m∞). Recall that we set in Lemma 5.1 as
follows:

Exn[f1(Bnt1) · · · fk(Bntk)]

= Pnt1−t0

(
f

(n)
1 Pnt2−t1

(
f

(n)
2 · · · Pntk−tk−1

f
(n)
k

))
(x)

=: Pnk (x).
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By the Kantorovich–Rubinstein duality (see e.g., [70, Theorem 5.10]), we have

W1(νn, ν∞) =
1

L
sup{

∫
X

fdνn −
∫
X

fν∞ : f ∈ Lipb(X), LipX(f) ≤ L}.

According to (5.4) and (5.5), we have that P̃nk is bounded and supn∈N Lip(P̃nk ) < L <∞
for some constant L. Thus we have that∣∣∣∫

X

P̃nk dνn −
∫
X

P̃nk dν∞
∣∣∣ ≤ LW1(νn, ν∞). (5.8)

Since P̃nk converges to P∞k uniformly in Cb(X∞) by (5.7), and νn converges to ν∞ in the
W1-distance, by using (5.8), we have that∣∣∣Eνn [f1(Bnt1) · · · fk(Bntk)]− Eν∞ [f1(B∞t1 ) · · · fk(B∞tk )]

∣∣∣
=
∣∣∣∫
X

Pnk dνn −
∫
X

P∞k dν∞

∣∣∣
≤
∣∣∣∫
X

Pnk dνn −
∫
X

P̃nk dν∞
∣∣∣+∣∣∣ ∫

X

P̃nk dν∞ −
∫
X

P∞k dν∞

∣∣∣
≤ LW1(νn, ν∞) + ‖P̃nk − P

n
k ‖∞,X∞

∫
X

dν∞

→ 0, n→∞.

Thus we have completed the proof.

We now show the weak convergence of finite-dimensional distributions for the case
that initial distributions are 1

mn(Xn)mn, which corresponds to the case of mn(Xn) <∞.

Lemma 5.5. Let mn(Xn) < ∞ for any n ∈ N. Then, for any k ∈ N, 0 = t0 < t1 < t2 <

· · · < tk <∞ and f1, f2, ..., fk ∈ Cb(X), the following holds:

Em̃n [f1(Bnt1) · · · fk(Bntk)]
n→∞→ Em̃∞ [f1(B∞t1 ) · · · fk(B∞t∞)].

Proof. Because of mn(Xn) <∞, we have f ∈ L2(X,mn) for all f ∈ Cb(X) for any n ∈ N.
Since m̃n converges weakly to m̃∞ in P(X), for any ε > 0, there exists a compact set
K ⊂ X so that

sup
n∈N

m̃n(Kc) < ε.

Thus, by (5.3), for any δ > 0, there exists a compact set K ⊂ X so that

sup
n∈N

∣∣∣∫
Xn

Pnk dm̃n −
∫
K

Pnk dm̃n

∣∣∣ ≤ ( k∏
i=1

‖fi‖∞
)

sup
n∈N

m̃n(Kc) < δ. (5.9)

Take r > 0 so that K ⊂ Br(xn) := {x ∈ X : d(xn, x) < r}. Let 1̃Rr denote the following
function: (r < R)

1̃Rr (x) =


1, x ∈ Br(xn),

1− d(x,Br(xn))

R− r
, x ∈ BR(xn) \Br(xn),

0, otherwise.
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Then 1̃Rr ∈ Cbs(X). Thus, by Theorem 2.11 and (5.9), for any δ > 0, there exists r > 0 so
that ∣∣∣Em̃n [f1(Bnt1) · · · fk(Bntk)]− Em̃∞ [f1(B∞t1 ) · · · fk(B∞t∞)]

∣∣∣
=
∣∣∣∫
Xn

Pnk dm̃n −
∫
X∞

P∞k dm̃∞
∣∣∣

=
∣∣∣∫
Xn

Pnk dm̃n −
∫
Xn

1̃Rr Pnk dm̃n +

∫
Xn

1̃Rr Pnk dm̃n

−
∫
Xn

1̃Rr P∞k dm̃∞ +

∫
Xn

1̃Rr P∞k dm̃∞ −
∫
X∞

P∞k dm̃∞
∣∣∣

≤ δ +
∣∣∣∫
X

1̃Rr Pnk dm̃n −
∫
X

1̃Rr P∞k dm̃∞
∣∣∣+ δ

n→∞→ 2δ.

In the fourth line, the first δ comes from using (5.9) and the second δ comes from using
the tightness of the single measure m∞. The the middle term in the fourth line converges
to zero thanks to the L2-strong convergence of the heat semigroup Pt in the sense of
Definition 2.10. Note that the total mass mn(Xn)→ m∞(X∞)(≤ ∞) because of the pmG
convergence. Thus we have completed the proof.

Now we show the tightness of {Bm̃n}. For later arguments, we show the tightness
for more general initial distributions νn than m̃n.

Lemma 5.6. Let νn ∈ P(Xn) satisfy the following conditions:

(i) νn → ν∞ weakly in P(X);

(ii) νn is absolutely continuous with respect to mn with dνn = φndmn and there exists
a positive constant M so that, for any r > 0,

sup
n∈N
‖φn‖∞,Br(xn) < M <∞.

Then {Bνn}n∈N is tight in P(C([0,∞), X)).

Proof. Let us denote the law of h(Bn) for h ∈ Lipb(X) as follows:

Bνn,h = (h(Bn),Pνnn ).

It is easy to show that Lipb(X) strongly separates points in Cb(X), that is, for every x
and ε > 0, there exists a finite set {hi}li=1 ⊂ Lipb(X) so that

inf
y:d(y,x)≥ε

max
1≤i≤l

|hi(x)− hi(y)| > 0.

Therefore, by [23, Corollary 3.9.2] with Lemma 5.4, the following two statements are
equivalent:

(i) {Bνn}n∈N is tight in P(C([0,∞), X));

(ii) {Bνn,h}n∈N is tight in P(C([0,∞),R)).

Thus we will show that, for any h ∈ Lipb(X),

{Bνn,h}n∈N is tight in P(C([0,∞);R)).

We note that, although [23, Corollary 3.9.2] gives sufficient conditions for tightness
only in the càdlàg space D([0,∞);X), since the law of each Brownian motion Bm̃nn for
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n ∈ N has its support on the space of continuous paths C([0,∞);X), the tightness in
D([0,∞);X) implies the tightness in C([0,∞), X). See, e.g., [24, Lemma 5 in Appendix]
for this point.

Since νn converges weakly to ν∞ in P(X), the set of the laws of the initial distributions
{(h(Bn0 ),Pνnn )}n∈N = {h#m̃n}n∈N is clearly tight in P(R). For δ > 0, let us define

Ln,hη,T (x) := Pxn( sup
0≤s,t≤T
|t−s|≤η

|h(Bt)− h(Bs)| > δ).

The desired result we would like to show is the following:

lim
η→0

sup
n∈N

∫
Xn

Ln,hη,T dνn = 0, (5.10)

for any T > 0. By conditions (i) and (ii) in this lemma, for any ε > 0, there exists R > 0

so that ∫
Xn

Ln,hη,T dνn = ‖φn1BR(xn)‖∞
∫
Xn

Ln,hη,T1BR(xn)dmn + νn(BcR(xn))

< M

∫
Xn

Ln,hη,T1BR(xn)dmn + ε.

It suffices to show, for any T,R > 0,

lim
η→0

sup
n∈N

∫
Xn

Ln,hη,T1BR(xn)dmn = 0.

Let mn,R := 1Y Rn mn whereby

Y Rn = BR(xn)

is the closure of the open ball BR(xn). We have∫
Xn

Ln,hη,T dmn,R = P
mn,R
n,R+r

(
sup

0≤s,t≤T
|t−s|≤η

|h(Bnt )− h(Bns )| > δ : Λr

)
+ Pmn,R

(
sup

0≤s,t≤T
|t−s|≤η

|h(Bnt )− h(Bns )| > δ : Λcr

)
:= (I)n,η + (II)n,η,

whereby Λr := {w ∈ Ωn : sup0≤t≤T |dn(Bnt , xn) − dn(Bn0 , xn)| < r}. Here Pxn,r is a
conservative diffusion process associated with (Chrn,Frn)

Chrn(f) =
1

2

∫
Y rn

|∇f |2w,Y rn dmn,r, Frn := {f ∈ L2(Y rn ;mn,r) : Chrn(f) <∞}.

Recall that |∇f |2w,Y rn means the minimal weak upper gradient on Y rn (see Subsection
2.4.2). We note that the Cheeger energy Chrn on the closed ball Y rn is also quadratic
because of [6, Theorem 4.19]. Since closed balls are not necessarily convex subset in
Xn, the closed ball Y rn is not necessarily an RCD(K,∞) space. However, we can still
construct the Brownian motion on Y rn since we have that (Chrn,Frn) is quadratic ([6,
Theorem 4.19]) and [d(x, ·)] ≤ mn,r ([6, (iv) Theorem 4.18]) for any fixed x ∈ Y rn , which
imply that (Chrn,Frn) becomes a quasi-regular Dirichlet form by the same manner of [6,
Lemma 6.7] and [9, Theorem 1.2] (see also [3, §7.2]). Here [f ] means the energy measure
of the Cheeger energy (see [6, (4.21)]) and [d(xn, ·)] ≤ mn,r means

d[d(xn, ·)]
dmn,r

(y) ≤ 1 mn,r-a.e. y ∈ Y rn .
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Note that although [6, Lemma 6.7] assumed the RCD(K,∞) condition, only the quadratic-
ity of the Cheeger energy and [d(xn, ·)] ≤ mn,r are used to construct the Brownian
motions, and the CD(K,∞) condition is not necessary (see also [46, §4] for more detailed
studies of the Cheeger energies and Brownian motions on subsets in RCD(K,∞) spaces).

We first estimate (I)n,η. By Lyons-Zheng decomposition ([48], and see also [27,
Section 5.7]), we have

h(Bnt )− h(Bns ) =
1

2
(M

[h]
t −M [h]

s ) +
1

2
(M

[h]
T−t(rT )−M [h]

T−s(rT )), P
mn,R+r

R+r -a.e.,

for 0 ≤ t ≤ T .

Then by time-symmetry (see [27, Lemma 5.7.1]), we have

(I)n,η ≤ P
mn,R+r

R+r ( sup
0≤s,t≤T
|t−s|≤η

|h(Bnt )− h(Bns )| > δ)

≤ Pmn,R+r

R+r ( sup
0≤s,t≤T
|t−s|≤η

∣∣M [h],n
t −M [h],n

s

∣∣ > δ)

+ P
mn,R+r

R+r ( sup
0≤s,t≤T
|t−s|≤η

∣∣M [h],n
T−t (rT )−M [h],n

T−s (rT )
∣∣ > δ)

= 2P
mn,R+r

R+r ( sup
0≤s,t≤T
|t−s|≤η

∣∣M [h],n
t −M [h],n

s

∣∣ > δ). (5.11)

Since M [h],n is a continuous martingale, by the martingale representation theorem,
there exists the one-dimensional Brownian motion Bn(t) on an extended probability
space (Ω̃,M̃, P̃xn) whereby M [h],n is represented as a time-changed Brownian motion
with respect to the quadratic variation P̃xn-a.s, q.e. x ∈ Y R+r

n (see, e.g., Ikeda–Watanabe
[34, Chapter II Theorem 7.3’]). That is, for q.e. x ∈ Y R+r

n ,

M
[h],n
t = Bn(〈M [h],n〉t) = Bn

(∫ t

0

dµn〈h〉

dmn
(Bnu )du

)
= Bn

(∫ t

0

|∇h|2
w,Y R+r

n
(Bnu )du

)
P̃xn-a.s.

The last equality followed from [6, (iv) Theorem 4.18]. Since |∇h|w,Y R+r
n
≤ Lip(h), we

have

{ω ∈ Ω̃ : sup
0≤s,t≤T
|t−s|≤η

∣∣M [h],n
t −M [h],n

s

∣∣ > δ}

= {ω ∈ Ω̃ : sup
0≤s,t≤T
|t−s|≤η

∣∣∣Bn
(∫ t

0

|∇h|2
w,Y R+r

n
(Bnu )du

)
−Bn

(∫ s

0

|∇h|2
w,Y R+r

n
(Bnu )du

)∣∣∣ > δ}

⊂ {ω ∈ Ω̃ : sup
0≤s,t≤Lip(h)2T

|t−s|≤Lip(h)2η

∣∣Bn(t)−Bn(s)
∣∣ > δ}.

Let W be the standard Wiener measure on C([0,∞);R). Let

θ(η, h) := Wn( sup
0≤s,t≤Lip(h)2T

|t−s|≤Lip(h)2η

|ω(t)− ω(s)| > δ).

By (5.11) and noting supn∈Nmn(BR+r(xn)) < ∞ because of the weak convergence of
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mn, we have, for any T > 0,

(I)n,η ≤ sup
n∈N

∫
Xn

Ln,hη,T dmn,R+r

≤ sup
n∈N

2P
mn,R+r

R+r ( sup
0≤s,t≤T
|t−s|≤η

∣∣M [h]
t −M [h]

s

∣∣ > δ)

≤ 2θ(η, h) sup
n∈N

mn(BR+r(xn))

η→0→ 0. (5.12)

We now estimate (II)n,η. We have the following estimate:

(II)n,η = Pmn,R
(

sup
0≤s,t≤T
|t−s|≤η

|h(Bnt )− h(Bns )| > δ : Λcr

)

≤ 6mn(BR+r(xn))
1√
2π

∫ ∞
2r

3
√

Lip(h)2T

exp{−s
2

2
}ds

≤ c exp{c2(R+ r)2}
∫ ∞

2r

3
√

Lip(h)2T

exp{−s
2

2
}ds.

≤ c exp{c2(R+ r)2}
3
√

Lip(h)2T

2r
exp{− r2

18Lip(h)2T
}

r→∞→ 0. (5.13)

Here c > 0 is a constant independent of n. In the second line above, we used [27, Lemma
5.7.2], in the third line, we used the volume growth estimate (1.2) and, in the fourth line,
we used the fact

∫∞
x

exp{ s
2

2 ds} ≤
1
x exp{−x

2

2 }. Thus, by (5.12) and (5.13), we have that,
for any R > 0,

lim
η→0

sup
n∈N

∫
Xn

Ln,hη,T1BR(xn)dmn = lim
η→0

sup
n∈N

(
(I)n,η + (II)n,η

)
= 0.

Thus we have the desired result (5.10).

We resume to prove Theorem 1.2.

Proof of Theorem 1.2. It is easy to check that conditions (i) and (ii) in Lemma 5.6 are
satisfied with νn = m̃n in the both cases of mn(Xn) = ∞ and mn(Xn) < ∞. Thus we
have shown the tightness. By using Lemma 5.5, we have completed the proof of (i) =⇒
(ii) in Theorem 1.2 in the case of mn(Xn) <∞. Moreover, we can check easily that the
conditions in Lemma 5.4 are satisfied with νn = m̃n in the case of mn(Xn) =∞ (see [30,
Remark 4.6]). Therefore, we have completed the proof of (i) =⇒ (ii) in Theorem 1.2 in
the case of mn(Xn) =∞. We finish the proof of (i) =⇒ (ii) in Theorem 1.2.

6 Proof of Theorem 1.4

We show the following statement: for any ε > 0,

(iii)≥ε There exist a complete separable metric space (X, d) and isometric embeddings
ιn : Xn → X (n ∈ N) so that

(ιn(Bn),Pxnn )→ (ι∞(B∞),Px∞∞ ) weakly in P(C([ε,∞);X)).
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We first discuss the case of condition (A), that is, mn(Xn) = 1.
Since we have already shown the weak convergence of the finite-dimensional distri-

butions under the general RCD(K,∞) condition for starting points xn in Lemma 5.1, it
suffices to prove the tightness:

Lemma 6.1. Under condition (A), {Bxnn }n∈N is tight in P(C([ε,∞), X)) for any ε > 0.

Proof. In the proof of [30, Theorem 7.7], we have

sup
n∈N

Entmn(pn(ε, xn, dy)) = sup
n∈N

Entmn(µn,xnε ) <∞,

where µn,xnε := Hnε δxn defined in Subsection 2.4.4. Let Bxnn and Bmnn be restricted to the
path space C([ε,∞), X). By using Markov property, we have that

dBxnn
dBmnn

= p(ε, xn, B
n
ε ).

In fact, we have that, for any Borel measurable functions F : C([ε,∞), X) :→ R,

Exn(F (Bnε+·)) = Exn(EB
n
ε (F ))

=

∫
Xn

Ey
(
F (Bn· )

)
pn(ε, xn, dy)

=

∫
Xn

Ey(F (Bn· ))pn(ε, xn, y)mn(dy)

= Emn(pn(ε, xn, B
n
0 )F (Bn· ))

= Emn(pn(ε, xn, B
n
ε )F (Bnε+·)),

whereby in the last line, we used the stationarity.
Let us denote Entν(µ) = Ent(µ|ν). By the fact that supn∈N Entmn(pn(ε, xn, dy)) <∞,

we have

sup
n∈N

Ent(Bxnn |Bmnn ) = sup
n∈N

∫
Ω

pn(ε, xn, B
n
ε ) log

{
pn(ε, xn, B

n
ε )
}
dPmnn

= sup
n∈N

∫
Xn

Pnε

(
pn(ε, xn, ·) log{pn(ε, xn, ·)}

)
dmn

= sup
n∈N

∫
Xn

pn(ε, xn, ·) log{pn(ε, xn, ·)}dmn

= sup
n∈N

Entmn(pn(ε, xn, dy)) <∞.

In the third line above, we used the invariance property of mn with respect to the heat
semigroup {Pnt }t≥0 whereby ∫

Xn

Pnt fdmn =

∫
Xn

fdmn.

Since {Bmnn }n∈N is tight by Lemma 5.6, by using the tightness criterion with respect to
the entropy [30, Proposition 4.1], we have the tightness of {Bxnn }n∈N.

Proof of Theorem 1.4 in the case of (A). By the weak convergence of the finite-dimen-
sional distributions in Lemma 5.1, and the tightness in Lemma 6.1, we have finished the
proof of Theorem 1.4 for the case (A).

Now we prove Theorem 1.4 in the case of condition (B).
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Proof of Theorem 1.4 in the case of (B). By using Markov property, we have that, for
any Borel measurable functions F : C([ε,∞), X)→ R,

Exn(F (Bnε+·)) = Exn
(
EB

n
ε
(
F (Bn· )

))
=

∫
Xn

Ey
(
F (Bn· )

)
pn(ε, xn, dy)

= Epn(ε,xn,dy)(F (Bn· )).

By Theorem 2.5, it holds that pn(ε, xn, dy)→ p∞(ε, x∞, dy) in W2-sense and thus also in
W1-sense (see e.g., [70, Remark 6.6]). Therefore, condition (i) in Lemma 5.6 holds with
νn = pn(ε, xn, dy). Moreover, condition (ii) with νn = pn(ε, xn, dy) in Lemma 5.6 also holds
by the assumption (B). Therefore, by Lemma 5.4, and Lemma 5.6 with νn = pn(ε, xn, dy),
we have the desired result.

7 Proof of Theorem 1.6

Proof of Theorem 1.6. The goal of the proof is to show the pmG convergence of Xn to
X∞, that is, for any f ∈ Cbs(X) (recall Cbs(X) means the set of bounded continuous
functions with bounded supports), we have∫

X

fdmn →
∫
X

fdm∞ as n→∞.

We first consider the case of K > 0.
The case of K > 0:
Let λ1

n be the spectral gap of Chn:

λ1
n := inf{ Chn(f)

‖f‖2L2(mn)

: f ∈ Lip(Xn) \ {0},
∫
Xn

fdmn = 0}.

The following is a well-known fact (easy to obtain by using the spectral resolution):

‖Pnt −mn(·)‖2→2 ≤ e−λ
1
nt, ∀t > 0, (7.1)

whereby ‖ · ‖2→2 means the operator norm from L2(Xn;mn) to L2(Xn;mn), and mn(f) :=
1

mn(Xn)

∫
Xn

fdmn.
By (7.1) and the assumption (1.5), we have that, for any t > t∗ (t∗ appeared in the

assumption (1.5)),

‖pn(t, xn, ·)−
1

mn(Xn)
‖L2(mn)

= ‖(Pns −mn(·))pn(t− s, xn, ·)‖L2(mn)

≤ e−λ
1
ns‖pn(t− s, xn, ·)‖L2(mn)

= e−λ
1
ns
(
pn(2(t− s), xn, xn)

)1/2
(0 < s < t, t∗ < h := t− s)

< M1/2e−λ
1
n(t−h). (7.2)

Since the global Poincaré inequality holds under the CD(K,∞) condition with a positive
K > 0 (see e.g., [70, Theorem 30.25]), we have that there exists a positive constant
CP = CP (K) depending only on K so that

inf
n∈N

λn > CP > 0. (7.3)
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By the condition of K > 0, there exists a positive constant C so that supn∈Nmn(Xn) < C

(see [65, Theorem 4.26]). Thus, by statement (iii)≥ε, (7.2) and (7.3), we have that, for
any δ > 0,∣∣∣∫

X

fdmn −
∫
X

fdm∞

∣∣∣
=
∣∣∣∫
X

fdmn −mn(Xn)Exnn (f(Bnt )) +mn(Xn)Exnn (f(Bnt ))−m∞(X∞)Ex∞∞ (f(B∞t ))

+m∞(X∞)Ex∞∞ (f(B∞t ))−
∫
X

fdm∞

∣∣∣
≤ C

(∫
X

|pn(t, xn, y)− 1

mn(Xn)
|fdmn + |Exnn (f(Bnt ))− Ex∞∞ (f(B∞t ))|

+

∫
X

|p∞(t, xn, y)− 1

m∞(X∞)
|fdm∞

)
≤ C

(
‖f‖L2(mn)‖pn(t, xn, ·)−

1

mn(Xn)
‖L2(mn) + |Exnn (f(Bnt ))− Ex∞∞ (f(B∞t ))|

+ ‖f‖L2(m∞)‖p∞(t, x∞, ·)−
1

m∞(X∞)
‖L2(m∞)

)
≤ C

(
‖f‖L2(mn)Me−λ

1
n(t−h) + |Exnn (f(Bnt ))− Ex∞∞ (f(B∞t ))|+ ‖f‖L2(m∞)Me−λ

1
∞(t−h)

)
≤ C

(
‖f‖L2(mn)Me−CP (t−h) + |Exnn (f(Bnt ))− Ex∞∞ (f(B∞t ))|+ ‖f‖L2(m∞)Me−CP (t−h)

)
→ δ + 0 + δ as n→∞ and sufficiently large t.

Thus we finish the proof of Theorem 1.6 for the case of K > 0.
The case of supn∈N diam(Xn) < D:
The case of supn∈N diam(Xn) < D can be proved in the same way as the case of K > 0

since the local Poincaré inequality holds for any RCD(K,∞) spaces (see [57, Theorem
1.1]). If supn∈N diam(Xn) < D holds, then the local Poincaré inequality is equivalent to
the global Poincaré inequality and the proof will be the same as the case of K > 0. Thus
we finish the proof of Theorem 1.6.

8 Proof of Theorem 1.7

In this section, we prove Theorem 1.7. In the previous sections, we have already
proved (i) ⇐⇒ (ii) by Theorem 1.2. If supn diam(Xn) <∞, then the implication of (iii)≥ε
(or (iii)≥0) =⇒ (i) follows from Theorem 1.6. Thus we only have to show the implication
(i) =⇒ (iii)≥0.

Proof of (i) =⇒ (iii)≥0 in Theorem 1.7. Since we have already shown the weak
convergence of the laws of finite-dimensional distributions in Lemma 5.1 for the general
RCD(K,∞) case, what we should prove is only the tightness of the Brownian motions on
C([0,∞];X).

Lemma 8.1. {Bn}n∈N is tight in P(C([0,∞), X)).

Proof. Since xn converges to x∞ in (X, d), the set of the laws of the initial distributions
{Bn0 }n∈N = {δxn}n∈N is clearly tight in P(X). Thus it suffices to show the following (see
[13, Theorem 12.3]): for each T > 0, there exist β > 0, C > 0 and θ > 1 such that, for all
n ∈ N

Exn [d̃β(Bnt , B
n
t+h)] ≤ Chθ, (0 ≤ t ≤ T and 0 ≤ h ≤ 1), (8.1)

whereby d̃(x, y) := d(x, y) ∧ 1.
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We first give a heat kernel estimate. Let supn∈N diam(Xn) < D. By the generalized
Bishop–Gromov inequality [22, Proposition 3.6], we have the following volume growth
estimate: for any D > 0, there exist positive constants ν = ν(N,K,D) > 0 and c =

c(N,K,D) > 0 such that, for all n ∈ N

mn(Br(x)) ≥ cr2ν (0 ≤ r ≤ D). (8.2)

In fact, by the generalized Bishop–Gromov inequality, we have that, for any 0 < r ≤ D <

∞,

mn(Br(x)) ≥
∫ r

0
ΘK/N (t)Ndt∫D

0
ΘK/N (t)Ndt

mn(BD(x))≥c(N,K,D)

∫ r

0

ΘK/N (t)Ndt.

Here c(N,K,D) = 1∫D
0

ΘK/N (t)Ndt
. Thus we have (8.2). Combining (3.3) with (8.2), we

have the following uniform upper heat kernel estimate:

pn(t, x, y) ≤ C1

ctν
exp
{
−C2

dn(x, y)2

t

}
, (8.3)

for all x, y ∈ Xn and 0 < t ≤ D2. Here constants C1, C2, c, ν only depend on the given
constants N,K,D. Note that the constant C3 in (3.3) can be taken as zero under
supn∈N diam(Xn) < D according to [63, 64] (note that the MCP condition is satisfied
under the assumption of Theorem 1.7).

Take β > 0 such that β/2− ν > 1, and set θ = β/2− ν. By the Markov property, we
have

L.H.S. of (8.1)

=

∫
Xn×Xn

pn(t, xn, y)pn(h, y, z)d̃β(ιn(y), ιn(z))mn(dy)mn(dz)

≤
∫
Xn×Xn

pn(t, xn, y)pn(h, y, z)dβ(ιn(y), ιn(z))mn(dy)mn(dz). (8.4)

By the Gaussian heat kernel estimate (8.3), we have∫
Xn

pn(s, y, z)dβ(ιn(y), ιn(z))mn(dz)

≤ C1

csν

∫
Xn

exp
(
−C2

dn(y, z)2

s

)
dβ(ιn(y), ιn(z))mn(dz)

≤ C1

csν

∫
Xn

exp
(
−C2

dn(y, z)2

s

)
dβn(y, z)mn(dz)

≤ C1c
−1C

2/β
2 sβ/2−νmn(Xn) sup

y,z∈Xn

{(
C2
dn(y, z)2

s

)β/2
exp
(
−C2

dn(y, z)2

s

)}
≤ C1c

−1C
2/β
2 C3Mβs

β/2−ν

= C4s
β/2−ν , (8.5)

whereby Mβ := supt≥0 t
β/2 exp(−t), C3 = supn∈Nmn(Xn) and C4 = C4(N,K,D, β) =

C1c
−1C

2/β
2 C3Mβ are constants dependent only on N,K,D, β (independent of n). Note

that, since mn converges weakly to m∞ and m∞(X∞) <∞ because of diam(X∞) < D,
we have that supn∈Nmn(Xn) = C3 <∞. By (8.5), we have

R.H.S. of (8.4) ≤ C4h
β/2−ν

∫
Xn

pn(t, xn, y)mn(dy)

≤ C4h
β/2−ν .

Thus we finish the proof.

Thus we have completed the proof of Theorem 1.7.
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