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Abstract

We consider the so-called Dickman subordinator, whose Lévy measure has density 1
x

restricted to the interval (0, 1). The marginal density of this process, known as the
Dickman function, appears in many areas of mathematics, from number theory to
combinatorics. In this paper, we study renewal processes in the domain of attraction
of the Dickman subordinator, for which we prove local renewal theorems. We then
present applications to marginally relevant disordered systems, such as pinning and
directed polymer models, and prove sharp second moment estimates on their partition
functions.
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1 Introduction and main results

1.1 Motivation

We consider the subordinator (increasing Lévy process) denoted by Y = (Ys)s≥0,
which is pure jump with Lévy measure

ν(dt) :=
1

t
1(0,1)(t) dt . (1.1)

Equivalently, its Laplace transform is given by

E[eλYs ] = exp

{
s

∫ 1

0

(eλt − 1)
dt

t

}
. (1.2)
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The Dickman subordinator, renewal theorems, and disordered systems

We call Y the Dickman subordinator (see Remark 1.2 below). It is suggestive to view
it as a “truncated 0-stable subordinator”, by analogy with the well known α-stable
subordinator whose Lévy measure is 1

t1+α1(0,∞)(t) dt, for α ∈ (0, 1). In our case α = 0

and the restriction 1(0,1)(t) in (1.1) ensures that ν is a legitimate Lévy measure, i.e.∫
R

(t2 ∧ 1) ν(dt) <∞.
Interestingly, the Dickman subordinator admits an explicit marginal density

fs(t) :=
P(Ys ∈ dt)

dt
, for s, t ∈ (0,∞) , (1.3)

which we recall in the following result.

Theorem 1.1 (Density of the Dickman subordinator). For all s ∈ (0,∞) one has

fs(t) =


s ts−1 e−γ s

Γ(s+ 1)
for t ∈ (0, 1],

s ts−1e−γs

Γ(s+ 1)
− sts−1

∫ t−1

0

fs(a)

(1 + a)s
da for t ∈ (1,∞),

(1.4)

where Γ(·) denotes Euler’s gamma function and γ = −
∫∞

0
log u e−u du ' 0.577 is the

Euler-Mascheroni constant.

Theorem 1.1 follows from general results about self-decomposable Lévy processes
[S99].1 We give the details in Appendix B, where we also present an alternative, self-
contained derivation of the density fs(t), based on direct probabilistic arguments. We
refer to [BKKK14] for further examples of subordinators with explicit densities.

Remark 1.2 (Dickman function and Dickman distribution). The function

%(t) := eγ f1(t)

is known as the Dickman function and plays an important role in number theory and
combinatorics [T95, ABT03]. By (1.4) we see that % satisfies

%(t) ≡ 1 for t ∈ (0, 1] , t %′(t) + %(t− 1) = 0 for t ∈ (1,∞) , (1.5)

which is the classical definition of the Dickman function. Examples where % emerges are:

• If Xn denotes the largest prime factor of a uniformly chosen integer in {1, . . . , n},
then limn→∞ P(Xn ≤ nt) = %(1/t) [D30].

• If Yn denotes the size of the longest cycle in a uniformly chosen permutation of n
elements, then limn→∞ P(Yn ≤ nt) = %(1/t) [K77].

Thus both (logXn/ log n) and (Yn/n) converge in law as n→∞ to a random variable L1

with P(L1 ≤ t) = %(1/t). The density of L1 equals t−1%(t−1 − 1), by (1.5).
The marginal law Y1 of our subordinator, called the Dickman distribution in the

literature, also arises in many contexts, from logarithmic combinatorial structures
[ABT03, Theorem 4.6] to theoretical computer science [HT01]. We stress that Y1 and
L1 are different — their laws are supported in (0,∞) and (0, 1), respectively — though
both are related to the Dickman function: their densities are e−γ%(t) and t−1%(t−1 − 1),
respectively

In this paper, we present a novel application of the Dickman subordinator in the
context of disordered systems, such as pinning and directed polymer models. We will
discuss the details in Section 3, but let us give here the crux of the problem in an
elementary way, which can naturally arise in various other settings.

1We thank Thomas Simon for pointing out this connection.
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The Dickman subordinator, renewal theorems, and disordered systems

Given q, r ∈ (0,∞), let us consider the weighted series of convolutions

vN :=

∞∑
k=1

qk
∑

0<n1<n2<...<nk≤N

1

nr1(n2 − n1)r · · · (nk − nk−1)r
. (1.6)

We are interested in the following question: for a fixed exponent r ∈ (0,∞), can one
choose q = qN so that vN converges to a non-zero and finite limit limit as N → ∞, i.e.
vN → v ∈ (0,∞)? The answer naturally depends on the exponent r.

If r < 1, we can, straightforwardly, use a Riemann sum approximation and by choosing
q = λN−1+r, for fixed λ ∈ (0,∞), we have that vN will converge to

v :=

∞∑
k=1

λk

{ ∫
· · ·
∫

0<t1<...<tk<1

dt1 · · · dtk
tr1(t2 − t1)r · · · (tk − tk−1)r

}
=

∞∑
k=1

λk
Γ(r)k+1

Γ((k + 1)r) (1.7)

where the last equality is deduced from the normalization of the Dirichlet distribution.
If r ≥ 1, then, as it is readily seen, the Riemann sum approach fails, as it leads to

iterated integrals which are infinite. The idea now is to express the series (1.6) as a
renewal function. The case r > 1 is easy: we can take a small, but fixed q > 0, more
precisely

q ∈
(

0,
1

R

)
, where R :=

∑
n∈N

1

nr
∈ (0,∞) ,

and consider the renewal process τ = (τk)k≥0 with inter-arrival law P(τ1 = n) = 1
R

1
nr for

n ∈ N. We can then write

vN =

∞∑
k=1

(
qR
)k

P(τk ≤ N) −−−−→
N→∞

v :=
qR

1− qR
∈ (0,∞) .

The case r = 1 is more interesting2. This case is subtle because the normalization
R =

∑
n∈N

1
n =∞. The way around this problem is to first normalize 1

n to a probability
on {1, 2, . . . , N}. More precisely, we take

RN :=

N∑
n=1

1

n
= logN

(
1 + o(1)

)
,

and consider the renewal process τ (N) = (τ
(N)
k )k≥0 with inter-arrival law

P
(
τ

(N)
1 = n

)
=

1

RN

1

n
for n ∈ {1, 2, . . . , N} . (1.8)

Note that this renewal process is a discrete analogue of the Dickman subordinator.
Choosing q = λ/RN , with λ < 1, we can see, via dominated convergence, that

vN =

∞∑
k=1

λk P(τ
(N)
k ≤ N) −−−−→

N→∞
v :=

λ

1− λ
∈ (0,∞) (1.9)

because P(τ
(N)
k ≤ N)→ 1 as N →∞, for any fixed k ∈ N. But when λ = 1, then vN →∞

and then finer questions emerge, e.g., at which rate does vN →∞? Or what happens if
instead of P(τ

(N)
k ≤ N) we consider P(τ

(N)
k = N) in (1.9), i.e. if we fix nk = N in (1.6)?

To answer these questions, it is necessary to explore the domain of attraction of
the Dickman subordinator — to which τ (N) belongs, as we show below — and to prove
renewal theorems. Indeed, the left hand side of (1.9) for λ = 1 defines the renewal
measure of τ (N). Establishing results of this type is the core of our paper.

2It can be called marginal or critical, due to its relations to disordered systems, see [CSZ17b] for the
relevant terminology and statistical mechanics background.
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1.2 Main results

We study a class of renewal processes τ (N) which generalize (1.8). Let us fix a
sequence (r(n))n∈N such that

r(n) :=
a

n
(1 + o(1)) as n→∞ , (1.10)

for some constant a ∈ (0,∞), so that

RN :=

N∑
n=1

r(n) = a logN(1 + o(1)) as N →∞ . (1.11)

For each N ∈ N, we consider i.i.d. random variables (T
(N)
i )i∈N with distribution

P(T
(N)
i = n) :=

r(n)

RN
1{1,...,N}(n) . (1.12)

(The precise value of the constant a is immaterial, since it gets simplified in (1.12).)
Let τ (N) = (τ

(N)
k )k∈N0 denote the associated random walk (renewal process):

τ
(N)
0 := 0 , τ

(N)
k :=

k∑
i=1

T
(N)
i . (1.13)

We first show that τ (N) is in the domain of attraction of the Dickman subordinator Y .

Proposition 1.3 (Convergence of rescaled renewal process). The rescaled process(
τ

(N)
bs logNc

N

)
s≥0

converges in distribution to the Dickman subordinator (Ys)s≥0, as N →∞.

We then define an exponentially weighted renewal density UN,λ(n) for τ (N), which is
a local version of the quantity which appears in (1.9):

UN,λ(n) :=
∑
k≥0

λk P(τ
(N)
k = n) for N,n ∈ N, λ ∈ (0,∞) . (1.14)

We similarly define the corresponding quantity for the Dickman subordinator:

Gϑ(t) :=

∫ ∞
0

eϑs fs(t) ds for t ∈ (0,∞) , ϑ ∈ R , (1.15)

which becomes more explicit for t ∈ (0, 1], by (1.4):

Gϑ(t) =

∫ ∞
0

e(ϑ−γ)s s ts−1

Γ(s+ 1)
ds for t ∈ (0, 1] , ϑ ∈ R . (1.16)

Our main result identifies the asymptotic behavior of the renewal density UN,λ(n)

for large N and n = O(N). This is shown to be of the order E[T
(N)
1 ]−1 ∼ ( N

logN )−1, in
analogy with the classical renewal theorem, with a sharp prefactor given by Gϑ( nN ).

Theorem 1.4 (Sharp renewal theorem). Fix any ϑ ∈ R and let (λN )N∈N satisfy

λN = 1 +
ϑ

logN

(
1 + o(1)

)
as N →∞ . (1.17)
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For any fixed 0 < δ < T <∞, the following relation holds as N →∞:

UN,λN (n) =
logN

N
Gϑ( nN ) (1 + o(1)) , uniformly for δN ≤ n ≤ TN . (1.18)

Moreover, for any fixed T < ∞, the following uniform bound holds, for a suitable
C ∈ (0,∞):

UN,λN (n) ≤ C logN

N
Gϑ( nN ) , ∀0 < n ≤ TN . (1.19)

As anticipated, we will present an application to disordered systems in Section 3: for
pinning and directed polymer models, we derive the sharp asymptotic behavior of the
second moment of the partition function in the weak disorder regime (see Theorems 3.1
and 3.3).

We stress that Theorem 1.4 extends the literature on renewal theorems in the case
of infinite mean. Typically, the cases studied in the literature correspond to renewal
processes of the form τn = T1 + · · ·+ Tn, where the i.i.d. increments (Ti)i≥1 have law

P(T1 = n) = φ(n)n−(1+α), (1.20)

with φ(·) a slowly varying function. In case α ∈ (0, 1], limit theorems for the renewal
density U(n) =

∑
k≥1 P(τk = n) have been the subject of many works, e.g. [GL62], [E70],

[D97], just to mention a few of the most notable ones. The sharpest results in this
direction have been recently established in [CD19] when α ∈ (0, 1), and in [B19+] when
α = 1.

In the case of (1.20) with α = 0, results of the sorts of Theorem 1.4 have been
obtained in [NW08, N12, AB16]. One technical difference between these references and
our result is that we deal with a non-summable sequence 1/n, hence it is necessary to
consider a family of renewal processes τ (N) whose law varies with N ∈ N (triangular
array) via a suitable cutoff. This brings our renewal process out of the scope of the cited
references.

We point out that it is possible to generalize our assumption (1.10) to more general
renewals with inter-arrival decay exponent α = 0. More precisely, replace the constant
a therein by a slowly varying function φ(n) such that

∑
n∈N φ(n)/n =∞, in which case

RN =
∑N
n=1 φ(n)/n is also a slowly varying function with RN/φ(N) → ∞ (see [BGT89,

Prop. 1.5.9a]). We expect that our results extend to this case with the same techniques,
but we prefer to stick to the simpler assumption (1.10), which considerably simplifies
notation.

Let us give an overview of the proof of Theorem 1.4 (see Section 6 for more details).
In order to prove the upper bound (1.19), a key tool is the following sharp estimate on
the local probability P(τ

(N)
k = n). It suggests that the main contribution to {τ (N)

k = n}
comes from the strategy that a single increment T (N)

i takes values close to n.

Proposition 1.5 (Sharp local estimate). Let us set log+(x) := (log x)+. There are con-
stants C ∈ (0,∞) and c ∈ (0, 1) such that for all N, k ∈ N and n ≤ N we have

P
(
τ

(N)
k = n

)
≤ C kP

(
T

(N)
1 = n

)
P
(
T

(N)
1 ≤ n

)k−1
e−

c k
logn+1 log+ c k

logn+1 . (1.21)

We point out that (1.21) sharpens [AB16, eq. (1.11) in Theorem 1.1], thanks to the
last term which decays super-exponentially in k. This will be essential for us, in order to
counterbalance the exponential weight λk in the renewal density UN,λ(n), see (1.14).

In order to prove the local limit theorem (1.18), we use a strategy of independent
interest: we are going to deduce it from the weak convergence in Proposition 1.3
by exploiting recursive formulas for the renewal densities UN,λ and Gϑ, based on a
decomposition according to the jump that straddles a fixed site; see (6.13) and (6.14).
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The Dickman subordinator, renewal theorems, and disordered systems

These formulas provide integral representations of the renewal densities UN,λ and Gϑ
which reduce a local limit behavior to an averaged one, thus allowing to strengthen
weak convergence results to local ones.

Finally, we establish fine asymptotic properties of the continuum renewal density Gϑ.

Proposition 1.6. For any fixed ϑ ∈ R, the function Gϑ(t) is continuous (actually C∞)
and strictly positive for t ∈ (0, 1]. As t ↓ 0 we have Gϑ(t)→∞, more precisely

Gϑ(t) =
1

t(log 1
t )

2

{
1 +

2ϑ

log 1
t

+ O

(
1

(log 1
t )

2

)}
. (1.22)

Remark 1.7. Our results also apply to renewal processes with a density. Fix a bounded
and continuous function r : [0,∞) → (0,∞) with r(t) = a

t (1 + o(1)) as t → ∞, so that

RN :=
∫ N

0
r(t) dt = a logN(1 + o(1)). If we consider the renewal process τ (N)

k in (1.13)
with

P(T
(N)
i ∈ dt) =

r(t)

RN
1[0,N ](t) dt ,

then Proposition 1.3, Theorem 1.4 and Proposition 1.5 still hold, provided P
(
τ

(N)
k = n

)
denotes the density of τ (N)

k . The proofs can be easily adapted, replacing sums by
integrals.

1.3 Organization of the paper

In Section 2 we present multi-dimensional extensions of our main results, where we
extend the subordinator and the renewal processes with a spatial component. This is
guided by applications to the directed polymer model.

In Section 3 we discuss the applications of our results to disordered systems and
more specifically to pinning and directed polymer models. A result of independent
interest is Proposition 3.2, where we prove sharp asymptotic results on the expected
number of encounters at the origin of two independent simple random walks on Z; this
also gives the expected number of encounters (anywhere) of two independent simple
random walks on Z2.

The remaining sections 4-8 are devoted to the proofs. Appendix A contains results
for disordered systems, while Appendix B is devoted to the Dickman subordinator.

2 Multidimensional extensions

We extend our subordinator Y by adding a spatial component, that for simplicity
we assume to be Gaussian. More precisely, we fix a dimension d ∈ N and we let
W = (Wt)t∈[0,∞) denote a standard Brownian motion on Rd. Its density is given by

gt(x) :=
1

(2πt)d/2
exp(− |x|

2

2t ) , (2.1)

where |x| is the Euclidean norm. Note that
√
cWt has density gct(x), for every c ∈ (0,∞).

Recall the definition (1.1) of the measure ν. We denote by Y c := (Y c
s)s≥0 = (Ys, V

c
s )s≥0

the Lévy process on [0,∞) × Rd with zero drift, no Brownian component, and Lévy
measure

ν(dt,dx) := ν(dt) gct(x) dx =
1(0,1)(t)

t
gct(x) dtdx . (2.2)

Equivalently, for all λ ∈ R1+d and s ∈ [0,∞),

E[e〈λ,Y
c
s〉] = exp

{
s

∫
(0,1)×Rd

(e〈λ,(t,x)〉 − 1)
gct(x)

t
dtdx

}
. (2.3)

We can identify the probability density of Y c
s for s ∈ [0,∞) as follows.
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Proposition 2.1 (Density of Lévy process). We have the following representation:

(Y c
s)s∈[0,∞)

d
=

(
(Ys,

√
cWYs)

)
s∈[0,∞)

,

with W independent of Y . Consequently, Y c
s has probability density (recall (1.3) and

(2.1))
fs(t, x) = fs(t) gct(x) . (2.4)

We now define a family of random walks in the domain of attraction of Y c. Recall
that r(n) was defined in (1.10). We consider a family of probability kernels p(n, ·) on
Zd, indexed by n ∈ N, which converge in law to

√
cW1 when rescaled diffusively. More

precisely, we assume the following conditions:

(i)
∑
x∈Zd

xi p(n, x) = 0 for i = 1, . . . , d

(ii)
∑
x∈Zd

|x|2 p(n, x) = O(n) as n→∞

(iii) sup
x∈Zd

∣∣nd/2 p(n, x)− gc
(
x√
n

)∣∣ = o(1) as n→∞ .

(2.5)

Note that c ∈ (0,∞) is the asymptotic variance of each component. Also note that, by
(iii),

sup
x∈Z

p(n, x) = O

(
1

nd/2

)
as n→∞ . (2.6)

Then we define, for every N ∈ N, the i.i.d. random variables (T
(N)
i , X

(N)
i ) ∈ N×Zd

by

P
(
(T

(N)
i , X

(N)
i ) = (n, x)

)
:=

r(n) p(n, x)

RN
1{1,...,N}(n) , (2.7)

with r(n), RN as in (1.10), (1.11). Let (τ (N), S(N)) be the associated random walk, i.e.

τ
(N)
k := T

(N)
1 + . . .+ T

(N)
k , S

(N)
k := X

(N)
1 + . . .+X

(N)
k . (2.8)

We have the following analogue of Proposition 1.3.

Proposition 2.2 (Convergence of rescaled Lévy process). Assume that the conditions in
(2.5) hold. The rescaled process(

τ
(N)
bs logNc

N
,
S

(N)
bs logNc√
N

)
s≥0

converges in distribution to (Y c
s := (Ys, V

c
s ))s≥0, as N →∞.

We finally introduce the exponentially weighted renewal density

UN,λ(n, x) :=
∑
k≥0

λk P(τ
(N)
k = n, S

(N)
k = x) , (2.9)

as well as its continuum version:

Gϑ(t, x) :=

∫ ∞
0

eϑs fs(t, x) ds = Gϑ(t) gct(x) for t ∈ (0,∞) , x ∈ Rd , (2.10)

where the second equality follows by (1.15) and Proposition 2.1. Recall (1.14) and
observe that ∑

x∈Zd
UN,λ(n, x) = UN,λ(n) (2.11)

The following result is an extension of Theorem 1.4.
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Theorem 2.3 (Space-time renewal theorem). Fix any ϑ ∈ R and let (λN )N∈N satisfy

λN = 1 +
ϑ

logN

(
1 + o(1)

)
as N →∞ .

For any fixed 0 < δ < T <∞, the following relation holds as N →∞:

UN,λN (n, x) =
logN

N1+d/2
Gϑ
(
n
N

)
gc nN

(
x√
N

)(
1 + o(1)

)
,

uniformly for δN ≤ n ≤ TN, |x| ≤ 1
δ

√
N .

(2.12)

Moreover, for any fixed T < ∞, the following uniform bound holds, for a suitable
C ∈ (0,∞):

UN,λN (n, x) ≤ C logN

N

1

nd/2
Gϑ( nN ) , ∀0 < n ≤ TN , ∀x ∈ Zd . (2.13)

The bound (2.13) is to be expected, in view of (2.12), because supz∈Rd gt(z) ≤ C
td/2

.

Finally, we show that the probability UN,λ(n,·)
UN,λ(n) is concentrated on the diffusive scale

O(
√
n).

Theorem 2.4. There exists a constant C ∈ (0,∞) such that for all N ∈ N and λ ∈ (0,∞)

∑
x∈Zd: |x|>M

√
n

UN,λ(n, x)

UN,λ(n)
≤ C

M2
, ∀n ∈ N , ∀M > 0 . (2.14)

3 Applications to disordered systems

In this section we discuss applications of our previous results to two marginally
relevant disordered systems: the pinning model with tail exponent 1/2 and the (2 + 1)-
dimensional directed polymer model. For simplicity, we focus on the case when these
models are built from the simple random walk on Z and on Z2, respectively.

Both models contain disorder, given by a family ω = (ωi)i∈T of i.i.d. random variables;
T = N for the pinning model, T = N×Z2 for the directed polymer model. We assume
that

E[ωi] = 0 , E[ω2
i ] = 1 , λ(β) := logE[exp(βωi)] <∞ ∀β > 0 . (3.1)

An important role is played by

σ2
β := eλ(2β)−2λ(β) − 1 . (3.2)

Before presenting our results, in order to put them into context and to provide
motivation, we discuss the key notion of relevance of disorder.

3.1 Relevance of disorder

Both the pinning model and the directed polymer model are Gibbs measures on
random walk paths, which depend on the realization of the disorder. A key question
for these models, and more generally for disordered systems, is whether an arbitrarily
small, but fixed amount of disorder is able to change the large scale properties of the
model without disorder. When the answer is positive (resp. negative), the model is called
disorder relevant (resp. irrelevant). In borderline cases, where the answer depends on
finer properties, the model is called marginally relevant or irrelevant.

Important progress has been obtained in recent years in the mathematical under-
standing of the relevance of disorder, in particular for the pinning model, where the
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problem can be cast in terms of critical point shift (and critical exponents). We refer
to [G10] for a detailed presentation of the key results and for the relevant literature.

The pinning model based on the simple random walk on Z is marginally relevant,
as shown in [GLT10]. Sharp estimates on the critical point shift were more recently
obtained in [BL18]. For the directed polymer model based on the simple random walk
on Z2, analogous sharp results are given in [BL17], in terms of free energy estimates.

In [CSZ17a] we proposed a different approach to study disorder relevance: when a
model is disorder relevant, it should be possible to suitably rescale the disorder strength
to zero, as the system size diverges, and still obtain a non-trivial limiting model where
disorder is present. Such an intermediate disorder regime had been investigated in
[AKQ14a, AKQ14b] for the directed polymer model based on the simple random walk on
Z, which is disorder relevant. The starting point to build a non-trivial limiting model is
to determine the scaling limits of the family of partition functions, which encode a great
deal of information.

The scaling limits of partition functions were obtained in [CSZ17a] for several models
that are disorder relevant (see also [CSZ15]). However, the case of marginally relevant
models — which include the pinning model on Z and the directed polymer model on Z2

— is much more delicate. In [CSZ17b] we showed that for such models a phase transition
emerges on a suitable intermediate disorder scale, and below the critical point, the
family of partition functions converges to an explicit Gaussian random field (the solution
of the additive stochastic heat equation, in the case of the directed polmyer on Z2).

In this section we focus on a suitable window around the critical point, which
corresponds to a precise way of scaling down the disorder strength to zero (see (3.9) and
(3.22) below). In this critical window, the partition functions are expected to converge
to a non-trivial limiting random field, which has fundamental connections with singular
stochastic PDEs (see the discussion in [CSZ17b]).

Our new results, described in Theorems 3.1 and 3.7 below, give sharp asymptotic
estimates for the second moment of partition functions. These estimates, besides pro-
viding an important piece of information by themselves, are instrumental to investigate
scaling limits. Indeed, we proved in the recent paper [CSZ18] that the family of partition
functions of the directed polymer on Z2 admits non-trivial random field limits, whose
covariance exhibits logarithmic divergence along the diagonal. This is achieved by a
third moment computation on the partition function, where the second moment estimates
derived here play a crucial role.

3.2 Pinning model

Let X = (Xn)n∈N0
be the simple symmetric random walk on Z with probability and

expectation denoted by P(·) and E[·], respectively. We set

u(n) := P(X2n = 0) =
1

22n

(
2n

n

)
=

1√
π

1√
n

(
1 + o(1)

)
as n→∞ . (3.3)

Fix a sequence of i.i.d. random variables ω = (ωn)n∈N, independent of X, satisfying (3.1).
The (constrained) partition function of the pinning model is defined as follows:

ZβN := E
[
e
∑N−1
n=1 (βωn−λ(β))1{X2n=0} 1{X2N=0}

]
, (3.4)

where we work with X2n rather than Xn to avoid periodicity issues.
Writing ZβN as a polynomial chaos expansion [CSZ17a] (we review the computation

in Appendix A.1), we obtain the following expression for the second moment:

E[(ZβN )2] =
∑
k≥1

(σ2
β)k−1

∑
0<n1<...<nk−1<nk:=N

u(n1)2 u(n2 − n1)2 · · · u(nk − nk−1)2 , (3.5)
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where σ2
β is defined in (3.2). Let us define

r(n) := u(n)2 =
1

π n

(
1 + o(1)

)
, (3.6)

RN :=

N∑
n=1

r(n) =

N∑
n=1

{
1

22n

(
2n

n

)}2

=
1

π
logN

(
1 + o(1)

)
, (3.7)

and denote by (τ
(N)
k )k∈N0 the renewal process with increments law given by (1.12). Then,

recalling (3.5) and (1.14), for every N ∈ N and 1 ≤ n ≤ N we can write

E[(Zβn)2] =
1

σ2
β

∑
k≥1

(
σ2
β RN

)k
P(τ

(N)
k = n)

=
1

σ2
β

UN,λ(n) , where λ := σ2
β RN .

(3.8)

As a direct corollary of Theorem 1.4, we have the following result.

Theorem 3.1 (Second moment asymptotics for pinning model). Let ZβN be the partition
function of the pinning model based on the simple symmetric random walk on Z, see
(3.4). Define σ2

β by (3.2) and RN by (3.7). Fix ϑ ∈ R and rescale β = βN so that

σ2
βN =

1

RN

(
1 +

ϑ

logN

(
1 + o(1)

))
as N →∞ . (3.9)

Then, for any fixed δ > 0, the following relation holds as N →∞:

E[(ZβNn )2] =
(logN)2

πN
Gϑ( nN ) (1 + o(1)) , uniformly for δN ≤ n ≤ N . (3.10)

Moreover, the following uniform bound holds, for a suitable constant C ∈ (0,∞):

E[(ZβNn )2] ≤ C (logN)2

N
Gϑ( nN ) , ∀1 ≤ n ≤ N . (3.11)

In view of (3.7), it is tempting to replace RN by 1
π logN in (3.9). However, to do this

properly, a sharper asymptotic estimate on RN as N → ∞ is needed. The following
result, of independent interest, is proved in Appendix A.3.

Proposition 3.2. As N →∞

RN :=

N∑
n=1

{
1

22n

(
2n

n

)}2

=
logN + α

π
+ o(1) , with α := γ + log 16− π , (3.12)

where γ = −
∫∞

0
log u e−u du ' 0.577 is the Euler-Mascheroni constant.

Corollary 3.3. Relation (3.9) can be rewritten as follows, with α := γ + log 16− π:

σ2
βN =

π

logN

(
1 +

ϑ− α
logN

(
1 + o(1)

))
as N →∞ . (3.13)

We stress that identifying the constant α in (3.12) is subtle, because it is a non
asymptotic quantity (changing any single term of the sequence in brackets modifies the
value of α!). To accomplish the task, in Appendix A.3 we relate α to a truly asymptotic
property, i.e. the tail behavior of the first return to zero of the simple symmetric random
walk on Z2.
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Remark 3.4. From (3.8), we note that E[(ZβNn )2] is in fact the partition function of a
homogeneous pinning model, see [G07], with underlying renewal τ (N), which has inter-
arrival exponent α = 0. Theorem 3.1 effectively identifies the “critical window” for such
a pinning model and determines the asymptotics of the partition function in this critical
window. Analogous results when α > 0 have been obtained in [S09].

Remark 3.5. Relation (3.13) can be made more explicit, by expressing σ2
βN

in terms of
β2
N . The details are carried out in Appendix A.4.

Remark 3.6. If one removes the constraint {X2N = 0} from (3.4), then one obtains
the free partition function Zβ,fN . The asymptotic behavior of its second moment can be
determined explicitly, in analogy with Theorem 3.1, see Appendix A.2.

3.3 Directed polymer in random environment

Let S = (Sn)n∈N0
be the simple symmetric random walk on Z2, with probability and

expectation denoted by P(·) and E[·], respectively. We set

qn(x) := P(Sn = x) , (3.14)

and note that, recalling the definition (3.3) of u(n), we can write∑
x∈Z2

qn(x)2 = P(S2n = 0) =

{
1

22n

(
2n

n

)}2

=: u(n)2 , (3.15)

where the second equality holds because the projections of S along the two main
diagonals are independent simple random walks on Z/

√
2.

Note that Cov[S
(i)
1 , S

(j)
1 ] = 1

2 1{i=j}, where S(i)
1 is the i-th component of S1, for i = 1, 2.

As a consequence, Sn/
√
n converges in distribution to the Gaussian law on R2 with

density g 1
2
(·) (recall (2.1)). The random walk S is periodic, because (n, Sn) takes values

in
Z3

even :=
{
z = (z1, z2, z3) ∈ Z3 : z1 + z2 + z3 ∈ 2Z

}
.

Then the local central limit theorem gives that, as n→∞,

n qn(x) = g 1
2

(
x√
n

)
21{(n,x)∈Z3

even} + o(1) , uniformly for x ∈ Z2 , (3.16)

where the factor 2 is due to periodicity, because the constraint (n, x) ∈ Z3
even restricts x

in a sublattice of Z2 whose cells have area equal to 2.
Fix now a sequence of i.i.d. random variables ω = (ωn,x)(n,x)∈N×Z2 satisfying (3.1),

independent of S. The (constrained) partition function of the directed polymer in random
environment is defined as follows:

ZβN (x) := E
[
e
∑N−1
n=1 (βωn,Sn−λ(β)) 1{SN=x}

]
= E

[
e
∑N−1
n=1

∑
z∈Z2 (βωn,z−λ(β))1{Sn=z} 1{SN=x}

]
.

(3.17)

In analogy with (3.5) (see Appendix A.1), we have a representation for the second
moment:

E
[(
ZβN (x)

)2]
=
∑
k≥1

(σ2
β)k−1

∑
0<n1<...<nk−1<nk=N

x1,...,xk∈Z2: xk=x

qn1
(x1)2 qn2−n1

(x2 − x1)2 ·

· · · qnk−nk−1
(xk − xk−1)2 .

(3.18)

To apply the results in Section 2, we define for (n, x) ∈ N×Z2

p(n, x) :=
qn(x)2

u(n)2
, where u(n) :=

1

22n

(
2n

n

)
.
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Note that p(n, ·) is a probability kernel on Z2, by (3.15). Since gt(x)2 = 1
4πtgt/2(x) (see

(2.1)), it follows by (3.16) and (3.3) that, uniformly for x ∈ Z2,

n p(n, x) = g 1
4

(
x√
n

)
21{(n,x)∈Z3

even} + o(1) . (3.19)

Thus p(n, ·) fulfills condition (iii) in (2.5) with c = 1
4 (the multiplicative factor 2 is a minor

correction, due to periodicity). Conditions (i) and (ii) in (2.5) are also fulfilled.
Let (τ (N), S(N)) = (τ

(N)
k , S

(N)
k )k≥0 be the random walk with increment law given by

(2.7), where r(n) and RN are the same as in (3.6)-(3.7). More explicitly:

P
(
(τ

(N)
1 , S

(N)
1 ) = (n, x)

)
:=

1

RN
qn(x)2 1{1,...,N}(n) . (3.20)

Recalling (3.18) and (2.9), we can write

E
[(
Zβn(x)

)2]
=

1

σ2
β

∑
k≥1

(
σ2
β RN

)k
P(τ

(N)
k = n, S

(N)
k = x)

=
1

σ2
β

UN,λ(n, x) , where λ := σ2
β RN .

(3.21)

As a corollary of Theorem 2.3, taking into account periodicity, we have the following
result.

Theorem 3.7 (Second moment asymptotics for directed polymer). Let ZβN (x) be the
partition function of the directed polymer in random environment based on the simple
symmetric random walk on Z2, see (3.17). Define σ2

β by (3.2) and RN by (3.7). Fix ϑ ∈ R
and rescale β = βN so that

σ2
βN =

1

RN

(
1 +

ϑ

logN

(
1 + o(1)

))
as N →∞ . (3.22)

For any fixed δ > 0, the following relation holds as N →∞:

E
[(
ZβNn (x)

)2]
=

(logN)2

πN2
Gϑ
(
n
N

)
g n

4N

(
x√
N

)
21{(n,x)∈Z3

even} (1 + o(1)) ,

uniformly for δN ≤ n ≤ N, |x| ≤ 1
δ

√
N .

(3.23)

Remark 3.8. Relation (3.22) can be equivalently rewritten as relation (3.13), as ex-
plained in Corollary 3.3. These conditions on σ2

βN
can be explicitly reformulated in terms

of β2
N , see Appendix A.4 for details.

Remark 3.9. Also for the directed polymer model we can define a free partition function
Zβ,fN , removing the constraint {S2N = x} from (3.17). The asymptotic behavior of its
second moment is determined in Appendix A.2.

4 Preliminary results

In this section we prove Propositions 1.3, 1.6, 2.1, and 2.2.
We start with Propositions 1.3 and 2.2, for which we prove convergence in the

sense of finite-dimensional distributions. It is not difficult to obtain convergence in the
Skorokhod topology, but we omit it for brevity, since we do not need such results.

Proof of Proposition 1.3. We recall that the renewal process τ (N)
k was defined in (1.13).

We set

Y (N)
s :=

τ
(N)
bs logNc

N
. (4.1)
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Note that the process Y (N)
s has independent and stationary increments (for s ∈

1
logNN0), hence the convergence of its finite-dimensional distributions follows if we show
that

Y (N)
s −−−−→

N→∞
Ys in distribution (4.2)

for every fixed s ∈ [0,∞). This could be proved by checking the convergence of Laplace
transforms. We give a more direct proof, which will be useful in the proof of Proposi-
tion 2.2.

Fix ε > 0 and let Ξ(ε) be a Poisson Point Process on [ε, 1] with intensity measure sdt
t .

More explicitly, we can write

Ξ(ε) = {t(ε)i }i=1,...,N (ε) ,

where the number of points N (ε) has a Poisson distribution:

N (ε) ∼ Pois(λ(ε)) , where λ(ε) =

∫ 1

ε

s
dt

t
= s log 1/ε , (4.3)

while (t
(ε)
i )i∈N are i.i.d. random variables with law

P(t
(ε)
i > x) =

∫ 1

x
s dt
t∫ 1

ε
s dt
t

=
log x

log ε
for x ∈ [ε, 1] . (4.4)

We define

Y (ε)
s :=

∑
t∈Ξ(ε)

t =

N (ε)∑
i=1

t
(ε)
i , (4.5)

which is a compound Poisson random variable. Its Laplace transform equals

E[e−λY
(ε)
s ] = exp

(
− s

∫ 1

ε

1− e−λt

t
dt

)
,

from which it follows that limε→0 Y
(ε)
s = Y s in distribution (recall (1.2)).

Next we define

Y (N,ε)
s :=

1

N

∑
i∈I(N,ε)s

T
(N)
i , where I(N,ε)

s :=
{

1 ≤ i ≤ bs logNc : T
(N)
i > εN

}
.

(4.6)
Note that, by (1.10)-(1.11), for some constant C ∈ (0,∞) we can write

E
[∣∣Y (N)

s − Y (N,ε)
s

∣∣] =
1

N
E

[ ∑
i/∈I(N,ε)s

T
(N)
i

]
=
bs logNc

N
E
[
T

(N)
1 1{T (N)

1 ≤εN}

]

=
bs logNc

N

bεNc∑
n=1

n
r(n)

RN
≤ C bs logNc

N

bεNc
logN

≤ C εs .

(4.7)

Thus Y (N)
s and Y (N,ε)

s are close in distribution for ε > 0 small, uniformly in N ∈ N.
The proof of (4.2) will be completed if we show that limN→∞ Y

(N,ε)
s = Y

(ε)
s in distribu-

tion, for any fixed ε > 0. Let us define the point process

Ξ(N,ε) :=

{
t
(N,ε)
i :=

1

N
T

(N)
i : i ∈ I(N,ε)

s

}
,

so that we can write
Y (N,ε)
s :=

∑
t∈Ξ(N,ε)

t =
∑

i∈I(N,ε)s

t
(N,ε)
i .

It remains to show that Ξ(N,ε) converges in distribution to Ξ(ε) as N →∞ (recall (4.5)).
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• The number of points |I(N,ε)
s | in Ξ(ε) has a Binomial distribution Bin(n, p), with

n = bs logNc , p = P(T
(N)
1 > εN) ∼ log 1/ε

logN
,

hence as N →∞ it converges in distribution to N (ε) ∼ Pois(λ(ε)), see (4.3).

• Each point t(N,ε)i ∈ Ξ(N,ε) has the law of 1
N T

(N)
1 conditioned on T

(N)
1 > εN , and it

follows by (1.10)-(1.11) that as N → ∞ this converges in distribution to t(ε)1 , see
(4.4).

This completes the proof of Proposition 1.3.

Proof of Proposition 2.2. We recall that the random walk (τ
(N)
k , S

(N)
k ) was introduced in

(2.8). We introduce the shortcut

Y (N)
s := (Y (N)

s , V (N)
s ) :=

(
τ

(N)
bs logNc

N
,
S

(N)
bs logNc√

N

)
, s ≥ 0. (4.8)

In analogy with (4.2), it suffices to show that for every fixed s ∈ [0,∞)

Y (N)
s −−−−→

N→∞
Y s := (Ys, V

c
s ) in distribution . (4.9)

Fix ε > 0 and recall that Y (ε)
s was defined in (4.5). With Proposition 2.1 in mind, we

define
V (ε)
s :=

√
cW

Y
(ε)
s

, (4.10)

where W is an independent Brownian motion on Rd. Since limε→0 Y
(ε)
s = Ys in distribu-

tion, recalling Proposition 2.1 we see that for every fixed s ∈ [0,∞)

Y (ε)
s := (Y (ε)

s , V (ε)
s )

d−−−→
ε→0

Y s = (Ys, V
c
s ) .

Recall the definition (4.6) of Y (N,ε)
s and I(N,ε)

s . We define similarly

V (N,ε)
s :=

1√
N

∑
i∈I(N,ε)s

X
(N)
i . (4.11)

We showed in (4.7) that Y (N,ε)
s approximates Y (N)

s in L1, for ε > 0 small. We are now
going to show that V (N,ε)

s approximates V (N)
s in L2. Recalling (2.7), (2.5), we can write

E
[∣∣X(N)

1

∣∣2 ∣∣T (N)
1 = n

]
=
∑
x∈Z2

|x|2 p(n, x) ≤ c n . (4.12)

Since conditionally on (T
(N)
i )

i/∈I(N,ε)s
, (X

(N)
i )

i/∈I(N,ε)s
are independent with mean 0, we

have

E
[∣∣V (N)

s − V (N,ε)
s

∣∣2] =
1

N
E
[∣∣ ∑
i/∈I(N,ε)s

X
(N)
i

∣∣2]
≤ c

N
E
[ ∑
i/∈I(N,ε)s

T
(N)
i

]
= cE[Y (N)

s − Y (N,ε)
s ] ≤ cC ε s ,

(4.13)

where we have applied (4.7). This, together with (4.7), proves that we can approximate
Y (N)
s by Y (N,ε)

s in distribution, uniformly in N , by choosing ε small.
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To complete the proof of (4.9), it remains to show that, for every fixed ε > 0,

Y (N,ε)
s :=

(
Y (N,ε)
s , V (N,ε)

s

)
−−−−→
N→∞

Y (ε)
s = (Y (ε)

s , V (ε)
s ) in distribution , (4.14)

where V (ε)
s was defined in (4.10). In the proof of Proposition 1.3 we showed that Ξ(N,ε)

converges in distribution to Ξ(ε) as N →∞. By Skorohod’s representation theorem, we
can construct a coupling such that Ξ(N,ε) converges almost surely to Ξ(ε), that is the
number and sizes of jumps of Y (N,ε)

s converge almost surely to those of Y (ε)
s . Given a

sequence of jumps of (Y
(N,ε)
s )N∈N, say t(N,ε)iN

→ t
(ε)
i for some jump t(ε)i of Y (ε)

s , we have

that X(N)
iN

/
√
N converges in distribution to a centered Gaussian random variable with

covariance matrix (c t
(ε)
i I), by the definition of X(N)

iN
in (2.7) and the local limit theorem

in (2.5). Therefore, conditionally on all the jumps, the random variables V (N,ε)
s in (4.11)

converges in distribution to the Gaussian law with covariance matrix

N (ε)∑
i=1

(c t
(ε)
i I) = cY (ε)

s I ,

which is precisely the law of V (ε)
s :=

√
cW

Y
(ε)
s

. This proves (4.14).

Proof of Proposition 1.6. Note that P(Ys ≤ 1) = e−γs/Γ(s + 1), by the first line of (1.4).
With the change of variable u = (log 1

t )s in (1.16), we can write

Gϑ(t) =
1

t

∫ ∞
0

s e(log t)s eϑs P(Ys ≤ 1) ds

=
1

t(log 1
t )

2

∫ ∞
0

u e−u e
ϑ

log(1/t)
u P(Yu/ log(1/t) ≤ 1) du .

Note that P(Yu/ log(1/t) ≤ 1) = 1 − O( 1
(log(1/t))2 ) as t ↓ 0, for any fixed u > 0, by (B.7).

Expanding the exponential, as t ↓ 0, we obtain by dominated convergence

Gϑ(t) =
1

t(log 1
t )

2

{∫ ∞
0

u e−u du +
ϑ

log(1/t)

∫ ∞
0

u2 e−u du + O

(
1

(log(1/t))2

)}
,

which coincides with (1.22).

Proof of Proposition 2.1. It suffices to compute the joint Laplace transform of
(Ys,

√
cWYs) and show that it agrees with (2.3). For % ∈ R2, s ≥ 0, t > 0, by inde-

pendence of Y an W ,

E[e〈%,
√
cWYs 〉 |Ys = t] = E[e〈%,

√
cWt〉] = E[e

√
c t 〈%,W1〉] = e

1
2 c|%|

2t .

Then for λ ∈ R,

E[eλYs+〈%,
√
cWYs 〉] = E[e(λ+ 1

2 c|%|
2)Ys ] = exp

{
s

∫ 1

0

(e(λ+ 1
2 c|%|

2)t − 1)
1

t
dt

}
,

where we have applied (1.2). It remains to observe that, by explicit computation,

e(λ+ 1
2 c|%|

2)t − 1 =

∫
R2

(eλt+〈%,x〉 − 1) gct(x) dx , (4.15)

which gives (2.3).
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5 Proof of Proposition 1.5

This section is devoted to the proof of Proposition 1.5. Let us rewrite relation (1.21):

P
(
τ

(N)
k = n

)
≤ C kP

(
T

(N)
1 = n

)
P
(
T

(N)
1 ≤ n

)k−1
e−

c k
logn+1 log+ c k

logn+1 . (5.1)

The strategy, as in [AB16], is to isolate the contribution of the largest increment T (N)
i .

Our analysis is complicated by the fact that our renewal processes τ (N) varies with
N ∈ N.

Before proving Proposition 1.5, we derive some useful consequences. We recall that
the renewal process (τ

(N)
k )k≥0 was defined in (1.13).

Proposition 5.1. There are constants C ∈ (0,∞), c ∈ (0, 1) and, for every ε > 0, Nε ∈ N
such that for all N ≥ Nε, s ∈ (0,∞) ∩ 1

logNN, t ∈ (0, 1] ∩ 1
NN we have

P
(
τ

(N)
s logN = tN

)
≤ C

1

N

s

t
t(1−ε)s e−cs log+(cs) . (5.2)

Recalling that fs(t) is the density of Ys, see (1.4), it follows that for N ∈ N large enough

P
(
τ

(N)
s logN = tN

)
≤ C ′

1

N
fcs(t) . (5.3)

Proof. Let us prove (5.3). Since Γ(s + 1) = es(log s−1)+log(
√

2πs)(1 + o(1)) as s → ∞, by
Stirling’s formula, and since γ ' 0.577 < 1, it follows by (1.4) that there is c1 > 0 such
that

fs(t) ≥ c1
s

t
ts e−s log+(s) , ∀t ∈ (0, 1] , ∀s ∈ (0,∞) . (5.4)

Then, if we choose ε = 1− c in (5.2), we see that (5.3) follows (with C ′ = C/(cc1)).
In order to prove (5.2), let us derive some estimates. We denote by c1, c2, . . . generic

absolute constants in (0,∞). By (1.12)-(1.11),

P
(
T

(N)
1 ≤ r

)
=

Rr
RN
≤ c1

log r

logN
, ∀r,N ∈ N . (5.5)

At the same time

P
(
T

(N)
1 ≤ r

)
=

Rr
RN

= 1− RN −Rr
RN

≤ e−
RN−Rr
RN . (5.6)

By (1.10), we can fix η > 0 small enough so that RN−Rr
RN

≥ η log(N/r)
logN for all r,N ∈ N with

r ≤ N . Plugging this into (5.6), we obtain a bound that will be useful later:

P
(
T

(N)
1 ≤ r

)
≤
(
r

N

) η
logN

, ∀N ∈ N, ∀r = 1, . . . , N . (5.7)

We can sharpen this bound. For every ε > 0, let us show that there is Nε <∞ such
that

P
(
T

(N)
1 ≤ r

)
≤
(
r

N

) 1−ε
logN

, ∀N ≥ Nε , ∀r = 1, 2, . . . , N . (5.8)

We first consider the range r ≤ Nϑ, where ϑ := e−1/c1. Then, by (5.5),

P
(
T

(N)
1 ≤ r

)
≤ P

(
T

(N)
1 ≤ Nϑ

)
≤ c1 ϑ = e−1 =

(
1
N

) 1
logN ≤

(
r
N

) 1
logN ≤

(
r
N

) 1−ε
logN .

Next we take r ≥ Nϑ. Then RN−Rr
RN

≥ (1 − ε) log(N/r)
logN for N large enough, by (1.10),

which plugged into (5.6) completes the proof of (5.8). We point out that the bounds (5.7),
(5.8) are poor for small r, but they provide a simple and unified expression, valid for all
r = 1, . . . , N .

We can finally show that (5.2) follows by (5.1) (from Proposition 1.5) where we plug
k = s logN and n = tN , for s ∈ (0,∞) ∩ 1

logNN0 and t ∈ (0, 1] ∩ 1
NN. Indeed, note that:
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• by (1.12)-(1.11) we have kP
(
T

(N)
1 = n

)
≤ c2 k

(logN)n = c2
1
N

s
t ;

• since k
logn+1 ≥

k
logN+1 ≥ c3 s for n ≤ N , the last term in (5.1) matches with the

corresponding term in (5.2);

• by (5.8) we have P
(
T

(N)
1 ≤ n

)k−1 ≤ t(1−ε)s t−
1

logN ≤ t(1−ε)s ( 1
N )−

1
logN = e t(1−ε)s,

because t ≥ 1
N , hence (5.2) is deduced.

Before starting with the proof of Proposition 1.5, we derive some large deviation
estimates. We start by giving an upper bound on the upper tail P(τ

(m)
k ≥ n) for arbitrary

m, k, n ∈ N. This is a Fuk-Nagaev type inequality, see [N79, Theorem 1.1].

Lemma 5.2. There exists a constant C ∈ (1,∞) such that for all m ∈ N and s, t ∈ [0,∞)

P
(
τ

(m)
bs(logm+1)c ≥ tm

)
≤ e−t log+( t

Cs ) . (5.9)

Proof. We are going to prove that for all m,n, k ∈ N

P
(
τ

(m)
k ≥ n

)
≤
(

C km

n (logm+ 1)
∧ 1

) n
m

, (5.10)

which is just a rewriting of (5.9). For some c1 < ∞ we have E[τ
(m)
1 ] ≤ c1

m
logm+1 , see

(1.10)-(1.12). Since τ (m)
1 ≤ m, we can estimate

E
[
eλτ

(m)
1
]

= 1 +
∑
j≥1

λj

j!
E[(τ

(m)
1 )j ] ≤ 1 +

∑
j≥1

λj

j!
mj−1 E[τ

(m)
1 ] ≤ 1 +

c1
logm+ 1

∑
j≥1

(λm)j

j!

≤ 1 +
c1

logm+ 1
eλm .

This yields, by Markov inequality, for all λ ≥ 0,

P
(
τ

(m)
k ≥ n

)
≤ e−λn E

[
eλτ

(m)
1
]k

= e−λn
(
1 + c1

logm+1e
λm
)k

≤ e−λn exp
(

c1 k
logm+1e

λm
)
. (5.11)

We now choose λ such that

k
logm+1 e

λm = n
m , that is e−λ =

(
mk

n (logm+1)

) 1
m .

If mk
n (logm+1) > 1 relation (5.10) holds trivially, so we assume mk

n (logm+1) ≤ 1, so that λ ≥ 0.

This choice of λ, when plugged into (5.11), gives (5.10) with C = ec1+1.

Remark 5.3. Heuristically, the upper bound (5.10) corresponds to requiring that among
the k increments T (m)

1 , T
(m)
2 , . . . , T

(m)
k there are ` := n

m “big jumps” of size comparable
to m. To be more precise, let us first recall the standard Cramer large deviations bound

P(Pois(λ) > t) ≤ e−t(log t
λ−1) =

(
eλ
t

)t
, ∀λ, t > 0 .

Now fix a ∈ (0, 1) and note that P(T
(m)
1 > am) ∼ pm := c

logm (where c = log 1
a ). If we

denote by Nk,am the number of increments T (m)
i of size at least am, we can write

P(Nk,m ≥ `) = P(Bin(k, pm) ≥ `) ≈ P(Pois(k pm) ≥ `) ≤
(e k pm

`

)`
.

If we choose ` = n
m , we obtain the same bound as in (5.10). This indicates that the

strategy just outlined captures the essential contribution to the event {τ (m)
k ≥ n}.

We complement Lemma 5.2 with a bound on the lower tail P(τ
(m)
k ≤ n).
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Lemma 5.4. There exists a constant c ∈ (0, 1) such that for all m ∈ N and s, t ∈ [0,∞)

P
(
τ

(m)
bs(logm+1)c ≤ tm

)
≤ e−c s log+( cst ) . (5.12)

Proof. We are going to prove that there exists c ∈ (0, 1) such that for all m,n, k ∈ N

P
(
τ

(m)
k ≤ n

)
≤
(
n (logm+ 1)

c km
∧ 1

) c k
logm+1

, (5.13)

which is just a rewriting of (5.12). For λ ≥ 0 we have

P(τ
(m)
k ≤ n) = P(e−λτ

(m)
k ≥ e−λn) ≤ eλn E[e−λT

(m)
1 ]k . (5.14)

Next we evaluate, by (1.10)-(1.11),

E[e−λT
(m)
1 ] =

m∑
n=1

e−λn
r(n)

Rm
= 1−

m∑
n=1

(1− e−λn)
r(n)

Rm
≤ 1− c1

logm+ 1

m∑
n=1

1− e−λn

n
,

for some c1 ∈ (0, 1). Since the function x 7→ 1−e−x
x is decreasing for x ≥ 0, we can bound

E[e−λT
(m)
1 ] ≤ 1− c1

logm+ 1

∫ m+1

1

1− e−λt

t
dt = 1− c1

logm+ 1

∫ λ(m+1)

λ

1− e−x

x
dx .

We are going to fix 1
m ≤ λ ≤ 1. Restricting the integration to the interval 1 ≤ x ≤ λm

and bounding 1− e−x ≥ (1− e−1) we obtain, for c2 := (1− e−1)c1,

E[e−λT
(m)
1 ] ≤ 1− c2

logm+1 log(λm) ≤ e−
c2

logm+1 log(λm) =
(

1
λm

) c2
logm+1

.

Looking back at (5.14), we obtain

P(τ
(m)
k ≤ n) ≤ eλn

(
1
λm

)c2 k
logm+1

. (5.15)

We are ready to prove (5.13). Assume first that k ≤ n and let λ := k
n (logm+1) ≤ 1. We

may assume that λ ≥ 1
m , because for λm < 1 the right hand side of (5.13) equals 1 and

there is nothing to prove. We then have 1
m ≤ λ ≤ 1. Plugging λ into (5.15) gives

P(τ
(m)
k ≤ n) ≤

(
e

1
c2 n (logm+ 1)

km
∧ 1

)c2 k
logm+1

,

where we inserted “∧1” because the left hand side is a probability. Since x ≥ e−1/x for
x ≥ 0, in the exponent we can replace c2 by c := e−1/c2 , which yields (5.13).

Finally, for k > n the left hand side of (5.13) vanishes, because τ (m)
k ≥ k.

Remark 5.5. For renewal processes with a density, see Remark 1.7, the proof of
Lemma 5.4 can be easily adapted, replacing sums by integrals. The only difference is
that we no longer have τ (m)

k ≥ k, so the case k > n needs a separate treatment. To this
purpose, we note that

E[e−λT
(m)
1 ] =

∫ m

0

e−λt
r(t)

Rm
dt ≤ c0

logm+ 1

∫ ∞
0

e−λt dt =
c0

logm+ 1

1

λ
,

for some c0 ∈ (1,∞). If we set λ = k
n , by (5.14) we get

P(τ
(m)
k ≤ n) ≤

(
n

k

)k (
e c0

logm+ 1

)k
. (5.16)
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We now give a lower bound on the right hand side of (5.13). We assume that the fraction
therein is ≤ 1, otherwise there is nothing to prove. Since c ∈ (0, 1), for k > n we can
bound(

n

k

) c k
logm+1

(
logm+ 1

cm

) c k
logm+1

≥
(
n

k

)k (
1

m+ 1

) c k
logm+1

=

(
n

k

)k
e−c k ≥

(
n

k

)k
e−k .

This is larger than the right hand side of (5.16), if we take m ≥ m0 := bexp(e2 c0)c (so
that e c0

logm+1 ≤ e
−1). This shows that (5.16) holds for k > n and m ≥ m0.

It remains to consider the case k > n and m < m0. Note that lowering c increases
the right hand side of (5.13), so we can assume that c ≤ logm0+1

e c0m0
. Since m 7→ logm+1

m is
decreasing for m ≥ 1, we can bound the right hand side of (5.13) from below (assuming
that the fraction therein is ≤ 1) as follows, for k > n and m < m0:(

n

k

logm0 + 1

cm0

) c k
logm+1

≥
(
n

k
e c0

) c k
logm+1

≥
(
n

k

e c0
logm+ 1

) c k
logm+1

,

which is larger than the right hand side of (5.16). This completes the proof of (5.13) for
renewal processes with a density, as in Remark 1.7.

Proof of Proposition 1.5. We have to prove relation (5.1) for all N, k, n ∈ N with n ≤ N .
Let us set

M
(N)
k := max

1≤i≤k
T

(N)
i ,

and note that {τ (N)
k = n} ⊆ {M (N)

k ≤ n}. This yields

P
(
τ

(N)
k = n

)
P
(
T

(N)
1 ≤ n

)k = P
(
τ

(N)
k = n

∣∣M (N)
k ≤ n

)
= P

(
τ

(n)
k = n

)
, (5.17)

where the last equality holds because the random variables T (N)
i , conditioned on {T (N)

i ≤
n}, have the same law as T (n)

i , see (1.12). Let us now divide both sides of (5.1) by

P
(
T

(N)
1 ≤ n

)k
. The equality (5.17) and the observation that P(T

(N)
1 = n)/P(T

(N)
1 ≤ n) =

P(T
(n)
1 = n) show that (5.1) is implied by

P
(
τ

(n)
k = n

)
≤ C k

1

n (log n+ 1)
e−

c k
logn+1 log+ c k

logn+1 . (5.18)

Note that there is no longer dependence on N .
It remains to prove (5.18). By Lemma 5.4, more precisely by (5.13), we can bound

P
(
τ

(n)
k = n

)
≤ P

(
τ

(n)
k ≤ n

)
≤
(

log n+ 1

c k
∧ 1

) c k
logn+1

= e−
c k

logn+1 log+ c k
logn+1 .

This shows that (5.18) holds for every k ∈ N if we take C = C(n) := n (log n+ 1). Then,
for any fixed n̄ ∈ N, we can set C := maxn≤n̄ C(n) and relation (5.18) holds for all n ≤ n̄
and k ∈ N. As a consequence, it remains to prove that there is another constant C <∞
such that relation (5.18) holds for all n ≥ n̄ and k ∈ N. Note that n̄ ∈ N is arbitrary.

We start by estimating, for any m ∈ (1, n] (possibly not an integer, for later conve-
nience)

P
(
τ

(n)
k = n , M

(n)
k ∈ (e−1m,m]

)
≤ k

∑
r∈(e−1m,m]

P(T
(n)
1 = r) P

(
τ

(n)
k−1 = n− r , M (n)

k−1 ≤ r
)

≤ k max
r∈(e−1m,m]

P(T
(n)
1 = r) P

(
T

(n)
1 ≤ m

)k−1 ∑
r∈(e−1m,m]

P
(
τ

(n)
k−1 = n− r

∣∣M (n)
k−1 ≤ m

)
.

(5.19)
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Since T (n)
i conditioned on T

(n)
i ≤ m is distributed as T (m)

i := T
(bmc)
i , we get, by (1.12)-

(1.11),

P
(
τ

(n)
k = n , M

(n)
k ∈ (e−1m,m]

)
≤ c4 k

1

m (log n+ 1)
P
(
T

(n)
1 ≤ m

)k−1
P
(
n−m ≤ τ (m)

k−1 < n− e−1m
)
.

(5.20)

We bound P(T
(n)
1 ≤ m)k−1 ≤ (mn )

η(k−1)
logn ≤ e (mn )

ηk
logn , by (5.7). Choosing m = e−`n in

(5.20) and summing over 0 ≤ ` ≤ log n, we obtain the key bound

P
(
τ

(n)
k = n

)
=

blognc∑
`=0

P
(
τ

(n)
k = n , M

(n)
k ∈ (e−`−1n, e−`n]

)
≤ c4 k

1

n (log n+ 1)

blognc∑
`=0

e` P
(
T

(n)
1 ≤ e−`n

)k−1
P
(

(1− e−`)n ≤ τ (e−`n)
k−1 < (1− e−(`+1))n

)
.

(5.21)

To complete the proof of (5.18), we show that, for suitable C ∈ (0,∞) and c ∈ (0, 1),

blognc∑
`=0

e` P
(
T

(n)
1 ≤ e−`n

)k−1
P
(

(1− e−`)n ≤ τ (e−`n)
k−1 < n

)
≤ C e−

c k
logn+1 log+ c k

logn+1 . (5.22)

Let c ∈ (0, 1) be the constant in Lemma 5.4. We recall that we may fix n̄ arbitrarily
and focus on n ≥ n̄. We fix c′ ∈ (0, 1) with c′ > c, and we choose n̄ so that, by (5.8) with
N = n and r = e−`n,

P
(
T

(n)
1 ≤ e−`n

)
≤ (e−`)

c′
logn ∀n ≥ n̄ , ∀` = 0, 1, . . . , blog nc .

Then (5.22) is reduced to showing that for all n ≥ n̄ and k = 1, . . . , n

blognc∑
`=0

e` (e−`)
c′(k−1)
logn P

(
(1− e−`)n ≤ τ (e−`n)

k−1 < n
)
≤ C e−

c k
logn+1 log+ c k

logn+1 . (5.23)

We first consider the regime of k ∈ N such that

k > 1 + 2
c′−c (log n+ 1) . (5.24)

We use Lemma 5.4 to bound the probability in (5.23). More precisely, we apply relation
(5.12) with m = e−`n, s = k−1

log(e−`n)+1
, t = e` and with log+ replaced by log, to get an

upper bound. Since e−`n ≤ n, we get by monotonicity

P
(
τ

(e−`n)
k−1 < n

)
≤ e

− c (k−1)

log(e−`n)+1
log
(
e−`

c (k−1)

log(e−`n)+1

)
≤ e−

c (k−1)
logn+1 log(e−` c (k−1)

logn+1 )

=
{
e−

c (k−1)
logn+1 log

c (k−1)
logn+1

} (
e
c (k−1)
logn

)`
.

(5.25)

Since k − 1 ≥ k
2 for k ≥ 2, if we redefine c/2 as c, we see that the term in brackets in

(5.25) matches with the right hand side of (5.23) (where we can replace log+ by log, by
(5.24) and 2

c′−c > c). The other term in (5.25), when inserted in the left hand side of
(5.23), gives a contribution to the sum which is uniformly bounded, by (5.24):

blognc∑
`=0

e` (e−`)
c′(k−1)
logn

(
e
c (k−1)
logn

)` ≤ ∞∑
`=0

(
e1−(c′−c) k

logn
)` ≤ ∞∑

`=0

e−` < ∞ .
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This completes the proof of (5.23) under the assumption (5.24).

Next we consider the complementary regime of (5.24), that is

k ≤ A log n+B , (5.26)

for suitably fixed constants A,B. In this case the right hand side of (5.23) is uniformly
bounded from below by a positive constant. Therefore it suffices to show that

blognc∑
`=1

e` P
(
n
2 ≤ τ

(e−`n)
k−1 < n

)
≤ C , (5.27)

where, in order to lighten notation, we removed from (5.22) the term ` = 0 (which
contributes at most one) and then bounded (1− e−`)n ≥ n

2 for ` ≥ 1.

We apply Lemma 5.2 (with the constant C renamed D, to avoid confusion with (5.27)).
Relation (5.9) with m = e−`n, s = k

log(e−`n)+1
, t = 1

2e
` gives

P
(
τ

(e−`n)
k ≥ n

2

)
≤ e

− 1
2 e
` log+

(
e`

2D
logn−`+1

k

)
= e

−e`
{

1
2 log+

(
1

2D
1
x`

)}
, (5.28)

where we have introduced the shorthand

x` := k e−`

logn−`+1 . (5.29)

For ` such that x` <
1

2De2 the right hand side of (5.28) is at most e−e
`

. We claim that

x` <
1

2De2 for all ` ≥ ¯̀, where ¯̀ := blog
(
4(A+B)De2)c+ 1 . (5.30)

This completes the proof of (5.27), because the sum is at most
∑¯̀

`=1 e
`+
∑∞
`=¯̀+1 e

` e−e
`

<

∞.

It remains to prove that relation (5.30) holds in regime (5.26). We recall that we may
assume that n is large enough. Consider first the range 1

2 log n ≤ ` ≤ blog nc: then

x` ≤ k e−` ≤ k√
n
≤ A logn+B√

n
−−−−→
n→∞

0 ,

hence we have x` <
1

2De2 for n large enough. Consider finally the range ` < 1
2 log n: then

x` ≤ k
1
2 logn

e−` ≤ A logn+B
1
2 logn

e−` ≤ 2(A+B) e−
¯̀≤ 1

2De2 ,

by the definition (5.30) of ¯̀. This completes the proof.

We conclude this section by extending Proposition 5.1 to the multidimensional setting.
We recall that (τ

(N)
k , S

(N)
k ) is defined in (2.8).

Proposition 5.6. There are constants C ∈ (0,∞), c ∈ (0, 1) and, for every ε > 0, Nε ∈ N
such that for all N ≥ Nε, s ∈ (0,∞) ∩ 1

logNN, t ∈ (0, 1] ∩ 1
NN and x ∈ 1√

N
Zd we have

P
(
τ

(N)
s logN = tN , S

(N)
s logN = x

√
N
)
≤ C

1

N1+ d
2

s

t1+ d
2

t(1−ε)s e−cs log+(cs) . (5.31)

It follows that for N ∈ N large enough

P
(
τ

(N)
s logN = tN , S

(N)
s logN = x

√
N
)
≤ C ′

1

N

1

(Nt)
d
2

fcs(t) . (5.32)
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Proof. We follow closely the proof of Proposition 5.1. Relation (5.32) follows from (5.31)
with ε = 1− c, thanks to the bound (5.4), so we focus on (5.31).

We will prove an analog of relation (5.1): for all N, k, n ∈ N with n ≤ N and for all
z ∈ Zd

P
(
τ

(N)
k = n , S

(N)
k = z

)
≤ C

k

n
d
2

P
(
T

(N)
1 = n

)
P
(
T

(N)
1 ≤ n

)k−1
e−

c k
logn+1 log+ c k

logn+1 . (5.33)

Note that the only difference with respect to (5.1) is the term n
d
2 in the denominator.

In the proof of Proposition 5.1 we showed that (5.2) follows from (5.1). In exactly the
same way, relation (5.31) follows from (5.33), by choosing k = s logN , n = Nt, z = x

√
N .

It remains to prove (5.33). Arguing as in (5.17), we remove the dependence on N

and it suffices to prove the following analog of (5.18): for all n, k ∈ N and for all z ∈ Zd

P
(
τ

(n)
k = n , S

(n)
k = z

)
≤ C

k

n
d
2

1

n (log n+ 1)
e−

c k
logn+1 log+ c k

logn+1 . (5.34)

To this purpose, we claim that we can modify (5.20) as follows:

P
(
τ

(n)
k = n , S

(n)
k = z , M

(n)
k ∈ (e−1m,m]

)
≤ c4

k

m
d
2

1

m (log n+ 1)
P
(
T

(n)
1 ≤ m

)k−1
P
(
n−m ≤ τ (m)

k−1 < n− e−1m
)
.

(5.35)

This is because, arguing as in (5.19), we can write

P
(
τ

(n)
k = n , S

(n)
k = x , M

(n)
k ∈ (e−1m,m]

)
≤ k

∑
r∈(e−1m,m] , y∈Zd

P(T
(n)
1 = r , X

(n)
1 = y) P

(
τ

(n)
k−1 = n− r , S(n)

k−1 = x− y , M (n)
k−1 ≤ r

)
≤ k

{
max

r∈(e−1m,m] , y∈Zd
P(T

(n)
1 = r , X

(n)
1 = y)

}
P
(
T

(n)
1 ≤ m

)k−1

∑
r∈(e−1m,m]

P
(
τ

(n)
k−1 = n− r

∣∣M (n)
k−1 ≤ m

)
,

and it follows by (2.7), (2.6) and (1.10)-(1.11) that

max
r∈(e−1m,m] , y∈Zd

P(T
(n)
1 = r , X

(n)
1 = y) ≤ C

log n+ 1

1

m1+ d
2

.

We can now plug m = e−`n into (5.35) and sum over ` = 0, 1, . . . , blog nc, as in (5.21).
This leads to our goal (5.34), provided we prove the following analog of (5.22):

blognc∑
`=0

e(1+ d
2 )` P

(
T

(n)
1 ≤ e−`n

)k−1
P
(

(1− e−`)n ≤ τ (e−`n)
k−1 < n

)
≤ C e−

c k
logn+1 log+ c k

logn+1 .

The only difference with respect to (5.22) is the term e(1+ d
2 )` instead of e` in the sum. It

is straightforward to adapt the lines following (5.22) and complete the proof.

6 Proof of Theorem 1.4: case T = 1

In this section we prove Theorem 1.4 for T = 1. The case T > 1 will be deduced in
the next Section 7. We prove separately the uniform upper bound (1.19) and the local
limit theorem (1.18), assuming throughout the section that n ≤ N (because T = 1).

For later use, we state an immediate corollary of Lemma 5.4.

Lemma 6.1. There is a constant c ∈ (0, 1) such that for all N ∈ N and s, t ∈ [0,∞)

P
(
τ

(N)
bs logNc ≤ tN

)
≤ es−c s log s

t . (6.1)
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6.1 Proof of (1.19)

Recall the definition (4.1) of Y (N)
s . From the definition (1.14) of UN,λ(n) and the

upper bound (5.3) (which we can apply for n
N ≤ 1), we get for large N

UN,λ(n) =
∑
k≥0

λk P
(
Y

(N)
k

logN

= n
N

)
≤ C logN

N

{
1

logN

∑
k≥0

λk fc k
logN

(
n
N

)}
. (6.2)

We now choose λ = λN as in (1.17). Then for some A ∈ (0,∞) we have

λN ≤ 1 +A ϑ
logN ≤ e

A ϑ
logN , ∀N ∈ N ,

hence

UN,λN (n) ≤ C logN

N

{
1

logN

∑
k≥0

e
k

logN Aϑ fc k
logN

(
n
N

)}
. (6.3)

The bracket is a Riemann sum, which converges as N →∞ to the corresponding integral.
It follows that for every N ∈ N we can write, recalling (1.15),

UN,λN (n) ≤ C ′ logN

N

{∫ ∞
0

esAϑ fcs
(
n
N

)
ds

}
=
C ′

c

logN

N
GA

c ϑ

(
n
N

)
, (6.4)

for some constant C ′. (The fact that C ′ is uniform over 1 ≤ n ≤ N is proved below.)
To complete the proof of (1.19), we can replaceGA

c ϑ

(
n
N

)
byGϑ

(
n
N

)
, possibly enlarging

the constant C ′, because the function t 7→ Gϑ(t) is strictly positive, continuous and its
asymptotic behavior as t→ 0 for different values of ϑ is comparable, by Proposition 1.6.
(Note that in Theorem 1.4 the parameter ϑ is fixed.)

We finally prove the following claim: we can bound the Riemann sum in (6.3) by a
multiple of the coresponding integral in (6.4), uniformly over 1 ≤ n ≤ N . By (1.4) we
can write

esAϑ fcs(t) =
1

t
exp

((
log t+

A

c
ϑ− γ

)
cs− log Γ(cs)

)
. (6.5)

Since log Γ(·) is smooth and strictly convex, given any t ∈ (0,∞), the function s 7→
esAϑ fcs(t) is increasing for s ≤ s̄ and decreasing for s ≥ s̄, where s̄ = s̄(t, Aϑ, c) is
characterized by

(log Γ)′(cs̄) = log t+
A

c
ϑ− γ . (6.6)

Henceforth we fix t = n
N , with 1 ≤ n ≤ N .

Let us now define sk := k
logN and write

1

logN

∑
k≥0

e
k

logNAϑ fc k
logN

(
n
N

)
=
∑
k≥0

1
logN esk Aϑ fcsk

(
n
N

)
. (6.7)

If we set k̄ := max{k ≥ 0 : sk ≤ s̄}, so that sk̄ ≤ s̄ < sk̄+1, we note that each term
in the sum (6.7) with k ≤ k̄ − 1 (resp. with k ≥ k̄ + 2) can be bounded from above by
the corresponding integral on the interval [sk, sk+1) (resp. on the interval [sk−1, sk)), by
monotonicity of the function s 7→ esAϑ fcs(t). For the two remaining terms, corresponding
to k = k̄ and k = k̄ + 1, we replace sk by s̄ where the maximum is achieved. This yields

1

logN

∑
k≥0

e
k

logNAϑ fc k
logN

(
n
N

)
≤
∫ ∞

0

esAϑ fcs
(
n
N

)
ds + 2

logN es̄Aϑ fcs̄
(
n
N

)
. (6.8)

It remains to deal with the last term. Recall that s 7→ esAϑfcs(
n
N ) is maximized for

s = s̄. We will show that shifting s̄ by 1
logN decreases the maximum by a multiplicative

constant:

c := sup
N∈N, 1≤n≤N

es̄ A ϑ fcs̄(
n
N )

e(s̄+ 1
logN )Aϑ fc(s̄+ 1

logN )(
n
N )

< ∞ . (6.9)
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Since s 7→ esAϑfcs(
n
N ) is decreasing for s ≥ s̄, we can bound the last term in (6.8) as

follows:

2
logN es̄ A ϑ fcs̄

(
n
N

)
≤ 2c

∫ s̄+ 1
logN

s̄

esAϑ fcs
(
n
N

)
ds ≤ 2c

∫ ∞
0

esAϑ fcs
(
n
N

)
ds ,

which completes the proof of the claim.
It remains to prove (6.9). By the representation (6.5), the ratio in (6.9) equals

exp
{
−
(

log n
N + A

c ϑ− γ
)

c
logN +

(
log Γ(cs̄+ c

logN )− log Γ(cs̄)
)}

≤ exp
{
O(1) + c

logN (log Γ)′(cs̄+ c
logN )

}
,

by 1 ≤ n ≤ N and by convexity of log Γ(·). It follows by (6.6) that s̄ is uniformly bounded
from above (indeed s̄ ≤ Aϑ/c− γ, because t = n

N ≤ 1 and (log Γ)′(·) is increasing). Then
(log Γ)′(cs̄+ c

logN ) ≤ (log Γ)′(Aϑ− cγ + c
logN ) is also uniformly bounded from above.

6.2 Proof of (1.18)

We organize the proof in three steps.

Step 1. We first prove an “integrated version” of (1.18). Let us define a measure G(N)
λ

on [0,∞) as follows:

G
(N)
λ ( · ) :=

1

logN

∞∑
n=0

UN,λ(n) δ n
N

( · ) , (6.10)

where δt( · ) is the Dirac mass at t, and UN,λ(·) is defined in (1.14). Recall also (1.15).

Lemma 6.2. Fix ϑ ∈ R and choose λ = λN as in (1.17). As N → ∞, the measure
G

(N)
λN

converges vaguely to Gϑ(t) dt, i.e. for every compactly supported continuous
φ : [0,∞)→ R ∫ ∞

0

φ(t)G
(N)
λN

(dt) −−−−→
N→∞

∫ ∞
0

φ(t)Gϑ(t) dt . (6.11)

Proof. Recalling the definition (1.14) of UN,λ(n), we can write∫ ∞
0

φ(t)G
(N)
λN

(dt) =
1

logN

∞∑
n=0

UN,λ(n)φ
(
n
N

)
=

1

logN

∑
k≥0

(λN )k E
[
φ
( τ(N)

k

N

)]
=

∫ ∞
0

(λN )bs logNc E
[
φ
( τ(N)

bs logNc
N

)]
ds .

(6.12)

Note that limN→∞(λN )bs logNc = eϑs, by (1.17). Similarly, by Proposition 1.3

lim
N→∞

E
[
φ
( τ(N)

bs logNc
N

)]
= E

[
φ
(
Ys
)]
.

Interchanging limit and integral, which we justify in a moment, we obtain from (6.12)

lim
N→∞

∫ ∞
0

φ(t)G
(N)
λN

(dt) =

∫ ∞
0

eϑs E
[
φ
(
Ys
)]

ds .

If we write E
[
φ
(
Ys
)]

=
∫∞

0
φ(t) fs(t) dt, we have proved (6.11) (recall (1.15)).

Let us finally justify that we can bring the limit inside the integral in (6.12). Since
(λN )bs logNc ≤ eCs for some constant C, by (1.17), and since φ is bounded, we can apply
dominated convergence on any bounded interval s ∈ [0,M ]. It remains to show that
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the integral restricted to s ∈ [M,∞) is small for large M , uniformly in N ∈ N. To this
purpose, we use Lemma 6.1: since φ is compactly supported, say in [0, A], the bound
(6.1) yields

‖φ‖∞
∫ ∞
M

eCs P(τ
(N)
bs logNc ≤ AN) ds ≤ ‖φ‖∞

∫ ∞
M

es(C+1−c log s
A ) ds .

If we take M large, so that c log M
A ≥ C + 2, the integral is at most

∫∞
M
e−s ds = e−M .

Step 2. We now derive representation formulas for UN,λ(n) and Gϑ(t): for any n̄, t̄ ∈
(0,∞)

UN,λ(n) = λ
∑

0≤l<n̄≤m≤n

UN,λ(l) P(T
(N)
1 = m− l)UN,λ(n−m) ∀n ∈ N ∩ (n̄,∞), (6.13)

Gϑ(t) =

∫
0<u<t̄≤v<t

Gϑ(u)
1

v − u
1(0,1)(v − u)Gϑ(t− v) dudv , ∀t ∈ (t̄,∞) . (6.14)

(Note that for t ∈ (0, 1] the indicator function 1(0,1)(v − u) ≡ 1 disappears.)
Relation (6.13) is obtained through a renewal decomposition: if we sum over the

unique index i ∈ {1, . . . , k} such that τ (N)
i−1 < n̄ while τ (N)

i ≥ n̄, we can write

P(τ
(N)
k = n) =

k∑
i=1

P
(
τ

(N)
i−1 < n̄, τ

(N)
i ≥ n̄, τ (N)

k = n
)

=
∑

0≤l<n̄≤m≤n

k∑
i=1

P
(
τ

(N)
i−1 = l) P

(
T

(N)
1 = m− l

)
P
(
τ

(N)
k−i = n−m

)
.

Plugging this into the definition (1.14) of UN,λ(n), we obtain (6.13).
Next we prove (6.14). Define the stopping time τ := inf{r ∈ [0,∞) : Yr > t̄} and note

that Yτ− ≤ t̄, Yτ > t̄. The joint law of (τ, Yτ−, Yτ ) is explicit: for r ∈ (0,∞) and u ≤ t̄ < v

P(τ ∈ dr, Yτ− ∈ du, Yτ ∈ dv) = drP(Yr ∈ du) ν(dv − u)

= drP(Yr ∈ du)
1

v − u
1(0,1)(v − u) dv ,

by a slight generalization of [Ber96, Prop. 2 in Ch. III]. By the strong Markov property

P(Ys ∈ dt) =

∫
(0,s)×(0,t̄)×(t̄,t)

P(τ ∈ dr, Yτ− ∈ du, Yτ ∈ dv) P(Ys−r ∈ dt− v)

=

∫ s

0

dr

∫
0<u<t̄<v<t

P(Yr ∈ du)
1

v − u
1(0,1)(v − u) dvP(Ys−r ∈ dt− v) ,

which yields a corresponding relation between densities:

fs(t) =

∫ s

0

dr

∫
0<u<t̄<v<t

fr(u)
1

v − u
1(0,1)(v − u) fs−r(t− v) dudv .

Multiplying by eϑs = eϑreϑ(s−r) and integrating over s ∈ (0,∞), we get (6.14) (recall
(1.15)).

Step 3. The final step in the proof of (1.18) consists in combining formulas (6.13)-
(6.14) with Lemma 6.2. First of all we note that in order to prove (1.18) uniformly for
δN ≤ n ≤ N , it suffices to consider an arbitrary but fixed sequence n = nN such that

tN :=
nN
N
−−−−→
N→∞

t ∈ (0, 1] , (6.15)
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and prove that

lim
N→∞

N

logN
UN,λN (nN ) = Gϑ(t) . (6.16)

This implies (1.18), as one can prove by contradiction.
Let us prove (6.16). Recalling (6.10), we first rewrite (6.13), with n̄ = nN/2, as a

double integral, setting u := l/N and v := m/N , as follows (we recall that tN = nN
N ):

N

logN
UN,λN (nN ) = λN

∫
0≤u< tN

2 ≤v≤tN

G
(N)
λN

(
du
)
φ(N)(u, v) G

(N)
λN

(
tN − dv

)
, (6.17)

where we set, for 0 ≤ u < v ≤ 1,

φ(N)(u, v) :=
(
N logN

)
P
(
T

(N)
1 = bNvc − bNuc

)
.

Note that, by (1.12)-(1.11), we have

lim
N→∞

φ(N)(u, v) = φ(u, v) :=
1

v − u
. (6.18)

By Lemma 6.2 and (6.15), we have the vague convergence of the product measure

G
(N)
λN

(
du
)
G

(N)
λN

(
tN − dv

) v−−−−→
N→∞

Gϑ(u)Gϑ(t− v) dudv . (6.19)

Since λN → 1, see (1.17), by (6.18) and (6.19) it is natural to expect that the right hand
side of (6.17) converges to the right hand side of (6.14) with t̄ = t

2 . This is indeed the
case, as we now show, which would complete the proof of (6.16), hence of Theorem 1.4.

We are left with justifying the convergence of the right hand side of (6.17). The
delicate point is that φ(u, v) in (6.18) diverges as v − u ↓ 0. Fix ε > 0 and consider the
domain

Dε :=
{

(u, v) : v − u ≥ ε t
}
. (6.20)

The convergence in (6.18) holds uniformly over (u, v) ∈ Dε, and the limiting function
1

v−u is bounded and continuous on Dε. Then, by (6.19), the integral in the right hand
side of (6.17) restricted on Dε converges to the integral in the right hand side of (6.14)
restricted on Dε.

To complete the proof, it remains to show that the integral in the right hand side
of (6.17) restricted on Dc

ε = {v − u ≤ ε t} is small for ε > 0 small, uniformly in (large)

N ∈ N. By the definition (6.10) of G(N)
λ (·), as well as (1.12)-(1.11), this contribution is

bounded by

C1

∑
u,v∈ 1

NN0:

0≤u< tN
2 ≤v≤tN , v−u≤εt

UN,λN (Nu)

logN

1

v − u
UN,λN (N(tN − v))

logN
,

(6.21)

where C1, C2, . . . are generic constants. By the upper bound (1.19), this is at most

C2
1

N2

∑
u,v∈ 1

NN0:

0≤u< tN
2 ≤v≤tN , v−u≤εt

Gϑ(u)
1

v − u
Gϑ(tN − v) . (6.22)

Since tN → t, see (6.15), we can bound this Riemann sum by the corresponding integral:

C3

∫
0<u< t

2≤v<t , v−u≤ε t

Gϑ(u)
1

v − u
Gϑ(t− v) dudv .

Finally, if we let ε ↓ 0, this integral vanishes by dominated convergence (recall (6.14)).
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7 Proof of Theorem 1.4: case T > 1

In this section we prove Theorem 1.4 in case T > 1. Without loss of generality, we
may assume that T ∈ N. The case T = 1 was already treated in Section 6. Proceeding
inductively, we assume that Theorem 1.4 holds for some fixed value of T ∈ N, and our
goal is to prove that relations (1.18) and (1.19) hold for TN < n ≤ (T + 1)N .

Let us rewrite relation (6.13) for n̄ = TN and (6.14) for t̄ = T :

UN,λ(n) = λ
∑

0≤l<TN≤m≤n

UN,λ(l) P(T
(N)
1 = m− l)UN,λ(n−m) , ∀n > TN , (7.1)

Gϑ(t) =

∫
0<u<T≤v<t

Gϑ(u)
1

v − u
1(0,1)(v − u)Gϑ(t− v) dudv , ∀t > T . (7.2)

7.1 Proof of (1.18)

Since we focus on the range TN < n ≤ (T + 1)N , in (7.1) we have both l ≤ TN

and n −m ≤ N , hence we can bound UN,λN (l) and UN,λN (n −m) using (1.18), by the

inductive assumption. Bounding P(T
(N)
1 = m− l) by (1.10)-(1.12), we get

UN,λN (n) ≤ C1
(logN)2

N2
λ

∑
0≤l<TN≤m≤n

Gϑ( l
N )

1(0,N ](m− l)
(logN)(m− l)

Gϑ(n−mN ) ,

for some constants C1, C2 (possibly depending on T ). By Riemann sum approximation

UN,λN (n) ≤ C1
logN

N3

∑
0≤l<TN≤m≤n

Gϑ( l
N )

1

(m−lN )
1(0,1](

m−l
N )Gϑ(n−mN )

≤ C2
logN

N

∫
0<u<T≤v< n

N

Gϑ(u)
1

v − u
1(0,1)(v − u)Gϑ( nN − v) dudv .

The integral equals Gϑ( nN ) by (7.2), so relation (1.18) is proved.

(To check that the Riemann sum approximation constant C2 is uniform for TN <

n ≤ (T + 1)N , one can argue as in Step 3 of Section 6: just repeat the above steps for
an arbitrary but fixed sequence n = nN such that nN

N → t ∈ [T, T + 1]. We omit the
details.)

7.2 Proof of (1.19)

We can follow Step 3 of Section 6 almost verbatim: the only difference is that for
TN < n ≤ (T + 1)N we have nN

N → t ∈ [T, T + 1]. To pass from (6.21) to (6.22), we can
apply the upper bound (1.19), by the inductive assumption.

8 Proof of Theorems 2.4 and 2.3

We first prove Theorem 2.4, i.e. relation (2.14), which is easy. We then reduce the
proof of Theorem 2.3 to that of Theorem 1.4, given in Section 6, proving separately the
upper bound (2.13) and the local limit theorem (2.12). We assume for simplicity that
T = 1, i.e. we focus on n ≤ N , because the case T > 1 can be deduced arguing as in
Section 7.

8.1 Proof of (2.14)

By (2.7) and (2.5), conditioned on the T (N)
i ’s, the random variables X(N)

i are inde-

pendent with zero mean and E
[∣∣X(N)

i

∣∣2 ∣∣T (N)
i = ni

]
≤ c ni for some c < ∞, see (4.12).
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Recalling (2.8), we then have

E
[∣∣S(N)

k

∣∣2 ∣∣∣T (N)
1 = n1, . . . , T

(N)
k = nk

]
=

k∑
i=1

E
[∣∣X(N)

i

∣∣2 ∣∣∣T (N)
i = ni

]
≤ c
(
n1 + . . .+ nk

)
,

for any choice of n1, . . . , nk ∈ N. It follows that E
[∣∣S(N)

k

∣∣2 ∣∣ τ (N)
k = n

]
≤ c n, hence∑

x∈Z2: |x|>M
√
n

P
(
τ

(N)
k = n , S

(N)
k = x

)
= P

(
τ

(N)
k = n , |S(N)

k | > M
√
n
)
≤ c

M2
P
(
τ

(N)
k = n

)
,

by Markov’s inequality. Multiplying by λk and summing over k, we obtain (2.14).

8.2 Proof of (2.13)

Recall the definition (4.8) of Y (N)
s . From the definition (2.9) of UN,λ(n, x) and the

upper bound (5.32), we get for large N and n ≤ N

UN,λ(n, x) =
∑
k≥0

λk P
(
Y

(N)
k

logN

= ( nN ,
x√
N

)
)
≤ C logN

N

1

nd/2

{
1

logN

∑
k≥0

λk fc k
logN

(
n
N

)}
.

The bracket is the same as in (6.2). We showed in Subsection 6.1 that, if λ = λN is chosen
as in (1.17), the bracket is at most a constant times Gϑ( nN ). This proves (2.13).

8.3 Proof of (2.12)

We proceed in three steps.

Step 1. We first prove an “integrated version” of (2.12). We define a measure G(N)
λ on

[0,∞)×R2 by setting

G
(N)
λ ( · ) :=

1

logN

∞∑
n=0

∑
x∈Z2

UN,λ(n, x) δ( nN ,
x√
N

)( · ) , (8.1)

where we recall that UN,λ(·) is defined in (2.9). Recall also the definition (2.10) of
Gϑ(t, x).

Lemma 8.1. Fix ϑ ∈ R and choose λ = λN as in (1.17). For every bounded and
continuous φ : [0,∞)×R2 → R, which is compactly supported in the first variable,∫

[0,∞)×R2

φ(t, x)G
(N)
λN

(dt,dx) −−−−→
N→∞

∫
[0,∞)×R2

φ(t, x)Gϑ(t, x) dtdx . (8.2)

Proof. Arguing as in (6.12), we can write∫
[0,∞)×R2

φ(t, x)G
(N)
λN

(dt, dx) =

∫ ∞
0

(λN )bs logNc E
[
φ
(
τ
(N)

bs logNc
N ,

S
(N)

bs logNc√
N

)]
ds .

We can exchange limN→∞ with the integral by dominated convergence, thanks to
Lemma 6.1, as shown in the proof of Lemma 6.2. Then we get, by Proposition 2.2,

lim
N→∞

∫
[0,∞)×R2

φ(t, x)G
(N)
λN

(dt,dx) =

∫ ∞
0

eϑs E
[
φ
(
Ys, V

c
s

)]
ds

=

∫ ∞
0

eϑs
(∫

[0,∞)×R2

φ(t, x)fs(t, x) dtdx

)
ds ,

which coincides with the right hand side of (8.2) (recall (2.10)).

EJP 24 (2019), paper 101.
Page 28/40

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP353
http://www.imstat.org/ejp/


The Dickman subordinator, renewal theorems, and disordered systems

Step 2. Next we give representation formulas for UN,λ(n, z), Gϑ(t, x): for any n̄, t̄ ∈
(0,∞)

UN,λ(n, x) = λ
∑

0≤l<n̄≤m≤n
y,z∈Z2

UN,λ(l, y) P
(
T

(N)
1 = m− l,X(N)

1 = z − y
)
UN,λ(n−m,x− z)

∀n ∈ N ∩ (n̄,∞) , (8.3)

Gϑ(t, x) =

∫
0<u<t̄≤v<t
y,x∈R2

Gϑ(u, y)
gc(v−u)(z − y)

v − u
Gϑ(t− v, x− z) dudv ∀t ∈ (t̄,∞) . (8.4)

These relations are proved in the same way as (6.13) and (6.14).

Step 3. We finally prove (2.12) by combining formulas (8.3)-(8.4) with Lemma 8.1. It
suffices to fix arbitrary sequences n = nN ∈ {1, . . . , N} and x = xN ∈ Z2 such that

tN :=
nN
N
−−−−→
N→∞

t ∈ (0, 1] , wN :=
xN√
N
−−−−→
N→∞

w ∈ R2 , (8.5)

and prove that

lim
N→∞

N1+d/2

logN
UN,λN (nN , wN ) = Gϑ(t, w) = Gϑ(t) gcϑ(w) . (8.6)

To prove (8.6), we rewrite the sums in (8.3) with n̄ = n
2 as integrals, recalling (8.1):

N1+d/2

logN
UN,λN (nN , wN )

= λN

∫
0≤u< tN

2 ≤v≤tN
y,z∈R2

G
(N)
λN

(
du,dy

)
φ(N)(u, v; y, z) G

(N)
λN

(
tN − dv, wN − dz

)
, (8.7)

where we set, for 0 ≤ u < v ≤ 1 and y, z ∈ R2,

φ(N)(u, v; y, z) := N1+d/2 logN P
(
T

(N)
1 = bNvc − bNuc, X(N)

1 = b
√
Nzc − b

√
Nyc

)
.

Note that by (2.5), (2.7) and (1.12)-(1.11) we have

lim
N→∞

φ(N)(u, v; y, z) = φ(u, v; y, z) :=
gc(v−u)(z − y)

v − u
. (8.8)

Moreover, by Lemma 8.1 and (8.5) we have the convergence of the product measure

G
(N)
λN

(
du,dy

)
G

(N)
λN

(
tN −dv, wN −dz

)
−−−−→
N→∞

Gϑ(u, y)Gϑ(t−v, w−z) dudy dv dz . (8.9)

Since λN → 1 (see (1.17)), we expect by (8.8) and (8.9) that the right hand side of (8.7)
converges to the right hand side of (8.4) as N →∞, proving our goal (8.6).

The difficulty is that the function φ(N)(u, v; y, z) converges to a function φ(u, v; y, z)

which is singular as v − u → 0, see (8.8). This can be controlled as in the proof of
Theorem 1.4, see the paragraphs following (6.19).

• First we fix ε > 0 and restrict the integral in (8.7) to the domain Dε = {v − u ≥ ε t}.
Here we can apply the convergence (8.9), because φ(u, v; y, z) is bounded and the
convergence φ(N)(u, v; y, z)→ φ(u, v; y, z) is uniform.
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• Then we consider the contribution to the integral in (8.7) from Dc
ε = {v − u < ε t}.

Recalling (8.1), this contribution can be written as follows:

∑
u,v∈ 1

NN0, y,z∈ 1√
N
Z2

0≤u< tN
2 ≤v≤tN , v−u<εt

UN,λN

(
Nu,
√
Ny
)

logN
φ(N)(u, v; y, z)

×
UN,λN

(
N(tN − v),

√
N(wN − z)

)
logN

. (8.10)

We need to show that this is small for ε > 0 small, uniformly in large N ∈ N.

By (2.13) we can bound, uniformly in z ∈ 1√
N
Z2,

UN,λN

(
N(tN − v),

√
N(wN − z)

)
logN

≤ C 1

N1+ d
2

1

(tN − v)
d
2

Gϑ
(
tN − v

)
,

and note that tN − v ≥ tN
2 − ε. Next, by definition of φ(N) and by (1.12)-(1.11),

∑
z∈ 1√

N
Z2

φ(N)(u, v; y, z) = N1+ d
2 (logN) P

(
T

(N)
1 = bNvc − bNuc

)
≤ C1

N
d
2

v − u
.

Finally we observe that, by (1.14), (2.9) and (1.19),

∑
y∈ 1√

N
Z2

UN,λN

(
Nu,
√
Ny
)

logN
=
UN,λN (Nu)

logN
≤ C 1

N
Gϑ(u) .

These bounds show that (8.10) is bounded by a constant times

1

N2

1

( tN2 − ε)
d
2

∑
u,v∈ 1

NN0

0≤u< tN
2 ≤v≤tN , v−u<εt

Gϑ(u)
1

v − u
Gϑ(tN − v) . (8.11)

Since tN → t, we have tN
2 > t

3 for N large, and if we take ε < t
6 we see that the

prefactor ( tN2 − ε)
−d/2 ≤ ( t6 )−d/2 is bounded (recall that t is fixed). The sum in

(8.11) is the same as that in (6.22), which we had shown to be small for ε > 0 small,
uniformly in large N ∈ N. This completes the proof.

A Additional results for disordered systems

In this appendix we prove some results for disordered systems, stated in Section 3.

A.1 Proof of relations (3.5) and (3.18)

We recall the polynomial chaos expansion used in [CSZ17a, CSZ17b]. Let us introduce
the random variables

ηi :=
eβωi−λ(β)

σβ
, where σ2

β := eλ(2β)−2λ(β) − 1 , (A.1)

so that (ηi) are i.i.d. with zero mean and unit variance (recall (3.1)).
Recall the definition (3.4) of ZβN and note that we can write

e(βωn−λ(β))1{X2n=0} = 1 + σβ ηn 1{X2n=0} . (A.2)
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We now write the exponential in (3.4) as a product and perform an expansion, exploiting
(A.2). Recalling the definition (3.3) of u(n), we obtain:

ZβN = E

[
N−1∏
n=1

e(βωn−λ(β))1{X2n=0} 1{X2N=0}

]

=

N∑
k=1

(σβ)k−1
∑

0<n1<...<nk−1<nk:=N

u(n1)u(n2 − n1) · · · u(nk − nk−1)

· ηn1
ηn2
· · · ηnk−1

.

(A.3)

This formula expresses ZβN as a multilinear polynomial of the random variables. Since
the monomials for different k are orthogonal in L2(P), we get (3.5).

The proof of (3.18) is similar, because we can represent ZβN (x) in (3.17) as follows:

ZβN (x) =

N∑
k=1

(σβ)k−1
∑

0<n1<...<nk−1<nk:=N

x1,...,xk∈Z2: xk=x

qn1(x1) qn2−n1(x2 − x1) · · · qnk−nk−1
(xk − xk−1)

· ηn1,x1 ηn2,x2 · · · ηnk−1,xk−1
.

(A.4)

This completes the proof.

A.2 Free partition function

For the pinning model, one can consider the free partition function Zβ,fN , in which the
constraint {X2N = 0} is removed from (3.4), and the sum is extended up to N :

Zβ,fN := E
[
e
∑N
n=1(βωn−λ(β))1{X2n=0}

]
. (A.5)

Then we have the following analogue of Theorem 3.1. Let us set, recalling (1.15)-(1.16),

Gϑ(u) :=

∫ u

0

Gϑ(t) dt =

∫ ∞
0

e(ϑ−γ)s us

Γ(s+ 1)
ds , for u ∈ (0, 1] . (A.6)

Proposition A.1 (Free pinning model partition function). Rescale β = βN as in (3.9).
Then, for any fixed δ > 0, the following relation holds as N →∞:

E[(ZβN ,fn )2] = (logN)Gϑ( nN ) (1 + o(1)) , uniformly for δN ≤ n ≤ N , (A.7)

with G(·) defined in (A.6). Moreover, the following bound holds, for a suitable C ∈ (0,∞):

E[(ZβN ,fn )2] ≤ C (logN)Gϑ( nN ) , ∀1 ≤ n ≤ N . (A.8)

Finally, since E[ZβN ,fn ] = 1, relations (A.7) and (A.8) holds also for Var[ZβN ,fn ].

Proof. Arguing as in §A.1, one can write a decomposition for Zβ,fn similar to (A.3). As
a consequence, the second moment of Zβ,fn is given by an expression similar to (3.5),
namely

E[(Zβ,fn )2] = 1 +
∑
k≥1

(σ2
β)k

∑
0<n1<...<nk≤n

u(n1)2 u(n2 − n1)2 · · · u(nk − nk−1)2 , (A.9)

which yields an analogue of relation (3.8):

E[(Zβ,fn )2] = 1 +
∑
k≥1

(
σ2
β RN

)k
P(τ

(N)
k ≤ n) = 1 +

n∑
`=1

∑
k≥1

(
σ2
β RN

)k
P(τ

(N)
k = `)

= 1 +

n∑
`=1

UN,λ(`) , where λ := σ2
β RN .

It then suffices to apply (1.18) and (1.19) to get (A.7) and (A.8).
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Also for the directed polymer in random environment we can consider the free (or
point-to-plane) partition function Zβ,fN , in which the constraint {SN = x} is removed
from (3.17), and the sum is extended up to N :

Zβ,fN := E
[
e
∑N
n=1(βωn,Sn−λ(β))

]
= E

[
e
∑N
n=1

∑
z∈Z2 (βωn,z−λ(β))1{Sn=z}

]
. (A.10)

The second moment of Zβ,fN turns out to be identical to that of Zβ,fN (pinning model).

Proposition A.2 (Free directed polymer partition function). Rescale β = βN as in (3.22).
Then relations (A.7) and (A.8) hold verbatim for the free partition function ZβN ,fn of the
directed polymer in random environment, defined in (A.10).

Proof. Arguing as in §A.1, one can write a decomposition for Zβ,fn similar to (A.4). Then
the second moment of Zβ,fn can be represented as follows:

E
[
(Zβ,fn )2

]
= 1 +

∑
k≥1

(σ2
β)k

∑
0<n1<...<nk≤N
x1,...,xk∈Z2

qn1(x1)2 qn2−n1(x2 − x1)2 ·

· · · qnk−nk−1
(xk − xk−1)2 .

(A.11)

Since
∑
x∈Z2 qn(x)2 = u(n)2, see (3.15), we can sum over xk, xk−1, . . . , x1 in (A.11) to

obtain precisely the same expression as in (A.9). In other words, the free partition
functions of the pinning and directed polymer models have the same second moment :

E
[
(Zβ,fn )2

]
= E

[
(Zβ,fn )2

]
.

This completes the proof.

A.3 Proof of Proposition 3.2

Let T := min{m ∈ N : Sm = 0} denote the first return time to the origin of the simple
symmetric random walk on Z2. Let (ξi)i∈N be i.i.d. random variables distributed as T/2.
We define

LN :=
N∑
n=1

1{S2n=0} = max
{
k ∈ N0 : ξ1 + . . .+ ξk ≤ N

}
,

so that, recalling (3.15) and the definition (3.12) of RN , we can write

RN =

N∑
n=1

P(S2n = 0) = E[LN ] =

N∑
k=1

P(LN ≥ k) =

N∑
k=1

P(ξ1 + . . .+ ξk ≤ N) .

Let (ξ
(N)
i )i∈N be i.i.d. random variables with the law of ξ1 conditionally on {ξ1 ≤ N}.

Then we have the following key representation of RN :

RN =

N∑
k=1

P(ξ1 ≤ N)k P(ξ
(N)
1 + . . .+ ξ

(N)
k ≤ N)

=

N∑
k=1

P(ξ1 ≤ N)k −
N∑
k=1

P(ξ1 ≤ N)k P(ξ
(N)
1 + . . .+ ξ

(N)
k > N) .

(A.12)

We are going to show that the first sum gives the leading contribution to the right hand
side of (3.12), while the second sum is negligible.

EJP 24 (2019), paper 101.
Page 32/40

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP353
http://www.imstat.org/ejp/


The Dickman subordinator, renewal theorems, and disordered systems

We need estimates on the law of ξ1. By Corollary 1.2 and Remark 4 in [U11], we have

P(ξ1 = k) = P(T = 2k) =
π

k

(
1

(log 16k)2
− 2γ

(log 16k)3
+O

(
1

(log 16k)4

))
=

π

k(log k)2
− 2π(γ + log 16)

k(log k)3
+O

(
1

(log k)4

)
,

P(ξ1 ≥ k) = P(T ≥ 2k) =
π

log k
− π(γ + log 16)

(log k)2
+O

(
1

(log k)3

)
,

(A.13)

as k →∞, where γ is the Euler-Mascheroni constant. Then, as N →∞, we can write

P(ξ1 ≤ N)

P(ξ1 > N)
=

1− π
logN +O( 1

(logN)2 )

π
logN

(
1− (γ+log 16)

(logN) +O
(

1
(logN)2

)) =
logN

π
+

(
γ + log 16

π
− 1

)
+ o(1) ,

P(ξ1 ≤ N)N =
(
1− π

logN +O( 1
(logN)2 )

)N
= e−

πN
logN (1+o(1)) = o

(
1

logN

)
.

From this we deduce the asymptotic behavior of the first sum in the last line of (A.12):

N∑
k=1

P(ξ1 ≤ N)k =
P(ξ1 ≤ N)

P(ξ1 > N)

(
1− P(ξ1 ≤ N)N

)
=

logN

π
+

(
γ + log 16

π
− 1

)
+ o(1) ,

which matches with the right hand side of (3.12). It remains to show that the second
sum in the last line of (A.12) is asymptotically vanishing, i.e.

lim
N→∞

%N = 0 , where %N :=

N∑
k=1

P(ξ1 ≤ N)k P(ξ
(N)
1 + . . .+ ξ

(N)
k > N) . (A.14)

Denoting by C1, C2 suitable absolute constants, we have by relation (A.13)

E
[
ξ

(N)
1

]
=

1

P(ξ1 ≤ N)

N∑
`=1

`P(ξ1 = `) ≤ C1

N∑
`=1

1

(log `)2
≤ C2

N

(logN)2
, (A.15)

hence by Markov’s inequality

P
(
ξ

(N)
1 + . . .+ ξ

(N)
k > N

)
≤ C2

k

(logN)2
.

Since P(ξ1 ≤ N) ≤ e−
1

logN for large N , by (A.13), we can control the tail of %N in (A.14)
by

%>AN :=
∑

k>A logN

P(ξ1 ≤ N)kP(ξ
(N)
1 + . . .+ ξ

(N)
k > N) ≤ C2

∑
k>A logN

e−
k

logN
k

(logN)2
.

By a Riemann sum approximation, the last sum converges to
∫∞
A
x e−x dx = (1 +A)e−A

as N →∞. In particular, for every fixed A ∈ (0,∞), we have shown that

lim sup
N→∞

%>AN ≤ (1 +A)e−A . (A.16)

Next we focus on the contribution %≤AN of the terms with k ≤ A logN , i.e.

%≤AN :=
∑

k≤A logN

P(ξ1 ≤ N)k P(ξ
(N)
1 + . . .+ ξ

(N)
k > N)

≤ (A logN) P(ξ
(N)
1 + . . .+ ξ

(N)
A logN > N) .

(A.17)
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We fix ε ∈ (0, 1
2 ) and write

ξ
(N)
1 + . . .+ ξ

(N)
k =

k∑
i=1

ξ
(N)
i 1{ξ(N)

i ≤ε2N} +

k∑
i=1

ξ
(N)
i 1{ξ(N)

i >ε2N} =: U− + U+ ,

so that we can decompose

P(ξ
(N)
1 + . . .+ ξ

(N)
k > N) ≤ P(U− > εN) + P(U+ > (1− ε)N) , (A.18)

and we estimate separately each term. In analogy with (A.15) we have

E
[
U−

]
= kE

[
ξ

(N)
1 1{ξ(N)

1 ≤ε2N}

]
= k

ε2N∑
`=1

`P(ξ1 = `)

P(ξ1 ≤ N)
≤ k

ε2N∑
`=1

C1

(log `)2
≤ C2

ε2Nk

(log(ε2N))2
,

hence by Markov’s inequality

P
(
U− > εN

)
≤ C2

εk

(log(ε2N))2
. (A.19)

Next we observe that

{U+ > (1− ε)N} ⊆
( k⋃
i=1

{ξ(N)
i > (1− ε)N}

)
∪
( ⋃

1≤i<j≤k

{ξ(N)
i > ε2N, ξ

(N)
j > ε2N}

)
,

because either ξ(N)
i > (1− ε)N for a single i, or necessarily ξ(N)

i > ε2N and ξ(N)
j > ε2N

for at least two distinct i 6= j (otherwise U+ vanishes). Since for fixed c ∈ (0, 1)

P(ξ
(N)
1 > cN) ≤ C1

N∑
`=cN

1

` (log `)2
≤ C1

1

(log cN)2

N∑
`=cN

1

`
≤ C1

log 1
c

(log cN)2
,

it follows that

P(U+ > (1− ε)N) ≤ k C1

log 1
1−ε

(log((1− ε)N))2
+
k(k − 1)

2

[
C1

log 1
ε2

(log(ε2N))2

]2

.

Recalling (A.17)-(A.18)-(A.19) and plugging k = A logN , we get

lim sup
N→∞

%≤AN ≤ A2
(
C2 ε+ C1 log 1

1−ε
)
.

By (A.16), since %N = %≤AN + %>AN , we obtain (A.14) by letting ε→ 0 and then A→∞.

A.4 Explicit asymptotics in terms of β

Relation (3.9) (equivalently (3.22)) and relation (3.13) can be rewritten more explicitly
in terms of βN . To this purpose, we need the cumulants κ3, κ4 of the distribution of ωi
(recall (3.1)), defined by

λ(β) =
1

2
β2 +

κ3

3!
β3 +

κ4

4!
β4 +O(β5) as β → 0 . (A.20)

By direct computation σ2
β = β2 + κ3 β

3 +
(

1
2 + 7

12κ4

)
β4 +O(β5) as β → 0, hence

σ2
β = ε =⇒ β2 = ε− κ3 ε

3/2 + ( 3
2κ

2
3 − 7

12κ4 − 1
2 ) ε2 + o(ε2) as ε→ 0 . (A.21)

As a consequence, we can rewrite (3.13) as follows, with α := γ + log 16− π:

β2
N =

π

logN
− κ3 π

3/2

(logN)3/2
+
π(ϑ− α) + π2( 3

2κ
2
3 − 1

2 −
7
12κ4)

(logN)2

(
1 + o(1)

)
.
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B On the Dickman subordinator

Theorem 1.1 on the density of the Dickman subordinator can be deduced from general
results about self-decomposable Lévy processes, see [S99, §53].

• Let us first derive (1.4) for t ∈ (0, 1]. The law of Ys satisfies the assumptions of [S99,
Lemma 53.2] with n = 1, a1 = 1 and c = s, which yields fs(t) = Kts−1 for t ∈ (0, 1].
To show that K = e−γs/Γ(s), as in (1.4), one can apply [S99, Theorem 53.6] which

gives fs(t) = (1+o(1))κ ts−1/Γ(s) as t ↓ 0, with κ = exp{s(
∫ 1

0
e−x−1
x dx+

∫∞
1

e−x

x dx)}.
The identification κ = exp{−γs} follows by [GR07, Entry 8.367 (12), page 906].

• We then deduce (1.4) for t ∈ (1,∞). We can apply [S99, Theorem 51.1], which
reads as follows (where ν(dt) = s

t 1(0,1)(t) dt, γ0 = 0 and fs(t) is the density of Ys):∫ t

0

y fs(y) dy =

∫ t

0

(∫ t−y

0

fs(u) du

)
y
s

y
1(0,1)(y) dy .

Differentiating with respect to t, for t > 1, we get tfs(t) = s
∫ 1

0
fs(t− y) dy, which

already shows that fs(t) can be deduced from {fs(u) : u ∈ (t − 1, t)}. To obtain
(1.4), we further differentiate this relation (note that fs(·) ∈ C1 on (1,∞), by [S99,
Lemma 53.2]) to get fs(t) + tf ′s(t) = s (fs(t)− fs(t− 1)), which can be rewritten as
(t1−sfs(t))

′ = −s t−s fs(t− 1). Integrating on (0, t), since t1−sfs(t)→ K = e−γs/Γ(s)

as t ↓ 0, we obtain t1−sfs(t)−K = s
∫ t

0
fs(u−1)
us du, which coincides with the second

line of (1.4) (note that fs(t) ≡ 0 for t < 0).

This completes the proof of (1.4).3

We now present an alternative proof of Theorem 1.1, which exploits a key scale
invariance property of the Dickman subordinator Y . Let Ms denote the maximal jump
up to time s:

Ms := max
u∈(0,s]

∆Yu , where ∆Yu := Yu − Yu− = Yu − lim
ε↓0

Yu−ε . (B.1)

We first prove the following result.

Proposition B.1 (Scale-invariance). Fix s ∈ (0,∞), t ∈ (0, 1). Conditional on all jumps of
Y up to time s being smaller than t, the random variable Ys/t has the same law as Ys, i.e.

P

(
Ys
t
∈ ·
∣∣∣∣Ms < t

)
= P(Ys ∈ ·) . (B.2)

Proof. We use the standard representation of the Lévy process Y = (Ys)s∈[0,∞) in terms
of a Poisson Point Process (PPP). Let Π be a PPP on [0,∞)× (0, 1) with intensity measure

µ(dx, dy) := Leb(dx)⊗ ν(dy) = dx⊗
1(0,1)(y)

y
dy . (B.3)

We recall that Π is a random countable subset of [0,∞)× (0, 1), whose points we denote
by (si, ti). Let us define

Π(s,t) := Π ∩ ([0, s]× (0, t)) , Y (t)
s :=

∑
(si,ti)∈Π(s,t)

ti . (B.4)

Then we can represent our Lévy process Ys in terms of Π as follows:

Ys
d
= Y (1)

s . (B.5)

3This proof was kindly provided to us by Thomas Simon.
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Let us identify Ys with Y (1)
s . Note that ∆Ys = t 6= 0 if and only if (s, t) ∈ Π, see (B.1).

On the event {Ms < t} = {Π ∩ ([0, s]× [t, 1)) = ∅} we have Y (1)
s = Y

(t)
s , hence

P

(
Ys
t
∈ ·
∣∣∣∣Ms < t

)
= P

(
Y

(t)
s

t
∈ ·
∣∣∣∣Π ∩ ([0, s]× [t, 1)) = ∅

)
= P

(
Y

(t)
s

t
∈ ·
)
,

because Y (t)
s is a function of Π(s,t), which is independent of Π∩([0, s]× [t, 1)), by definition

of PPP. To prove our goal (B.2), it remains to show that

P

(
Y

(t)
s

t
∈ ·
)

= P
(
Y (1)
s ∈ ·

)
.

By (B.4), it suffices to prove the following property: if we denote by φt : R2 → R2 the
map (x, y) 7→ (x, 1

t y), then the random set φt(Π(s,t)) has the same law as Π(s,1).
Note that Π(s,t) is a PPP with intensity measure µ(s,t) given by the original intensity

measure µ restricted on [0, s] × (0, t) (see (B.3)). We also observe that the random set
φt(Π

(s,t)) is a PPP with intensity measure given by µ(s,t) ◦ φ−1
t , i.e. the image law of µ(s,t)

under φt. The proof is completed by noting that φt sends µ(s,t) to µ(s,1), because the map
y 7→ y/t sends the measure 1

y 1(0,t)(y) dy to the measure 1
y 1(0,1)(y) dy.

In our proof of Theorem 1.1, we will also need the following estimate. This can be
deduced from [RW02, Lemma 6], but we give a direct proof in our setting.

Lemma B.2. As s ↓ 0 we have
P(Ys > 1) = o(s) . (B.6)

Remark B.3. The bound (B.6) is an intermediate step in establishing Theorem 1.1 and
it is not optimal. Indeed, it is a consequence of Theorem 1.1 that the optimal estimate is

P(Ys > 1) = O(s2) as s ↓ 0 , (B.7)

because P(Ys ≤ 1) = e−γs/Γ(s+ 1), by (1.4), and we note that as s ↓ 0 we have

Γ(s+ 1) = Γ(1) + Γ′(1)s+O(s2) = 1− γs+O(s2) , (B.8)

since Γ′(1) =
∫∞

0
log u e−u du = −γ. Relation (B.7) then follows.

Proof of Lemma B.2. Fix a function αs →∞ as s→ 0, to be determined later. Recall the
definition (B.1) of ∆Yu = Yu − Yu− and define

Ns :=
∑

u∈(0,s]

1{∆Yu> 1
αs
} = number of jumps of Y of size > 1

αs
in the interval (0, s] .

We recall that Y only increases by jumps, that is Ys =
∑
u∈(0,s] ∆Yu. We denote by Y >s

the contribution to Ys given by jumps of size > 1
αs

, and Y ≤s := Ys − Y >s . Then we bound

P(Ys > 1) ≤ P(Ns ≥ 2) + P(Ns = 1, Ys > 1) + P(Ns = 0, Y ≤s > 1) (B.9)

For the first term, we note that Ns ∼ Pois(λs) with λs = s
∫ 1

1/αs
1
x dx = s logαs, hence

P(Ns ≥ 2) = O(λ2
s) = O(s2(logαs)

2) .

For the third term, since (Y ≤s )s≥0 has Lévy measure 1
x 1(0, 1

αs
)(x) dx, we can bound

P(Y ≤s > 1) ≤ E[Y ≤s ] = s

∫ 1
αs

0

x
1

x
dx =

s

αs
. (B.10)
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We fix αs = 1/s, so that both P(Ns ≥ 2) and P(Y ≤s > 1) are O(s3/2).
It remains to estimate the second term in the right hand side of (B.9). On the event

{Ns = 1}, the random variable W := Y >s has density 1
logαs

1
x 1( 1

αs
,1)(x). Also note that

Y ≤s is independent of Ns. If we fix %s ∈ (1, 2), to be determined later, we can write

P(Ns = 1, Ys > 1) ≤ P(Ns = 1, Y >s > 1
%s

) + P(Ns = 1, Y >s ≤ 1
%s
, Y ≤s > 1− 1

%s
)

≤ P(Ns = 1)
{

P(W > 1
%s

) + P(Y ≤s > %s−1
%s

)
}

≤ λs
{

log %s
logαs

+
%s

%s − 1
E[Y ≤s ]

}
,

because Ns ∼ Pois(λs). Since λs = s logαs and E[Y ≤s ] = s
αs

, see (B.10), we get

P(Ns = 1, Ys > 1) ≤ s logαs

{
log %s
logαs

+
2s

αs(%s − 1)

}
= s log %s +

logαs
αs

2s2

%s − 1

Note that lims→0
logαs
αs

= 0, because we have fixed αs = 1/s. We now choose %s = 1 +
√
s

to get P(Ns = 1, Ys > 1) = O(s3/2), which completes the proof.

Proof of Theorem 1.1. We start proving the first line of (1.4), so we assume t ∈ (0, 1).
Recall that Ms was defined in (B.1). Plainly, we can write

P(Ys ≤ t) = P(Ys ≤ t, Ms < t) = P(Ms < t) P(Ys ≤ t |Ms < t) .

We use the PPP representation of Ys that we introduced in the proof of Proposition B.1.
In particular, if Π denotes a PPP with intensity measure µ in (B.3), we can write

P(Ms < t) = P(Π ∩ ([0, s]× [t, 1)) = ∅) = e−µ([0,s]×[t,1)) = e−s
∫ 1
t

1
y dy = ts .

For t ∈ (0, 1) we have P(Ys ≤ t |Ms < t) = P(Ys ≤ 1), by Proposition B.1, hence

P(Ys ≤ t) = ts P(Ys ≤ 1) for t ∈ (0, 1) . (B.11)

This leads to

fs(t) = s ts−1 Fs(1) for t ∈ (0, 1) , where Fs(t) := P(Ys ≤ t). (B.12)

It remains to identify Fs(1). Since (Ys)s≥0 has stationary and independent increments,
for any n ∈ N, the density fs is the convolution of fs/n with itself n times. Then for any
t ∈ (0, 1) we can write, by (B.12),

fs(t) =

∫
0<t1<...<tn−1<t

f s
n

(t1) f s
n

(t2 − t1) · · · f s
n

(t− tn−1) dt1 . . . dtn−1

=
(
s
n F s

n
(1)
)n ∫

0<t1<...<tn−1<t

t
s
n−1
1 (t2 − t1)

s
n−1 · · · (t− tn−1)

s
n−1 dt1 . . . dtn−1

=
(
s
n F s

n
(1)
)n
ts−1

∫
0<u1<...<un−1<1

u
s
n−1
1 (u2 − u1)

s
n−1 · · · (1− un−1)

s
n−1 du1 . . . dun−1

=
(
s
n F s

n
(1)
)n
ts−1 Γ( sn )n

Γ(s)
=
(
F s
n

(1)
)n
ts−1 Γ(1 + s

n )n

Γ(s)
,

where we recognized the density of the Dirichlet distribution (with parameters n and s
n )

and, in the last step, we used the property Γ(1 + x) = xΓ(x). By (B.8)

Γ(1 + s
n )n −−−−→

n→∞
e−γ s .
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Since Fu(1) = 1− o(u) as u→ 0, by Lemma B.2, we have
(
F s
n

(1)
)n → 1. This yields

fs(t) = lim
n→∞

(
F s
n

(1)
)n
ts−1 Γ(1 + s

n )n

Γ(s)
=
ts−1 e−γ s

Γ(s)
=
s ts−1 e−γ s

Γ(s+ 1)
,

which proves the first line of (1.4).
It remains to prove the second line of (1.4). We exploit the PPP construction of Ys, see

(B.3)-(B.5). By identifying the largest jump Ms = u, see (B.1), we have for any t ∈ (0,∞)

P(Ys ∈ dt) =

∫ t∧1

0

P(Ys ∈ dt |Ms = u) P(Ms ∈ du)

=

∫ t∧1

0

{
1
u fs

(
t−u
u

)
dt
}{

s
u e
−s
∫ 1
u

dx
x du

}
=

(∫ t∧1

0

fs
(
t−u
u

)
s us−2 du

)
dt .

(B.13)

The second equality holds for the following reasons.

• Ys conditioned on {Ms < u} has the same law as uYs, by Proposition B.1, hence

P(Ys ∈ dt |Ms = u) = P(Ys ∈ dt− u |Ms < u) = 1
u fs

(
t−u
u ) du .

• s
u is the Poisson intensity of finding a jump of size u in the time interval [0, s], while

e−s
∫ 1
u

dx
x = us is the probability that all other jumps are smaller than u, hence

P(Ms ∈ du) = µ([0, s]× du) e−µ([0,s]×(u,1)) = s
u du e−s

∫ 1
u

1
x dx .

Making the change of variable a := t−u
u , we can rewrite (B.13) as

fs(t) = s ts−1

∫ ∞
(t−1)+

fs(a)

(1 + a)s
da

= s ts−1

(∫ ∞
0

fs(a)

(1 + a)s
da−

∫ (t−1)+

0

fs(a)

(1 + a)s
da

)
.

(B.14)

For t ∈ (0, 1), the second integral equals 0, while fs(t) = s ts−1 e−γ s

Γ(s+1) by the first line of

(1.4), that we have already proved. This implies that the first integral must equal e−γ s

Γ(s+1) .
This concludes the proof of the second line of (1.4).
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