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Abstract

Disagreement percolation connects a Gibbs lattice gas and i.i.d. site percolation on the
same lattice such that non-percolation implies uniqueness of the Gibbs measure. This
work generalises disagreement percolation to the hard-sphere model and the Boolean
model. Non-percolation of the Boolean model implies the uniqueness of the Gibbs
measure and exponential decay of pair correlations and finite volume errors. Hence,
lower bounds on the critical intensity for percolation of the Boolean model imply lower
bounds on the critical activity for a (potential) phase transition. These lower bounds
improve upon known bounds obtained by cluster expansion techniques. The proof
uses a novel dependent thinning from a Poisson point process to the hard-sphere
model, with the thinning probability related to a derivative of the free energy.
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1 Introduction

Disagreement percolation by van den Berg and Maes [31] is a sufficient condition
on the activity of a discrete Gibbs specification on a graph for uniqueness of the Gibbs
measure. It implies the absence of phase transitions and the analyticity of the free energy
in the high-temperature case. It has also been used to derive the Poincaré inequality
in the context of lattice Ising spin systems [4]. This paper generalises disagreement
percolation to the hard-sphere model on Rd, the continuum equivalent of the well-studied
hard-core model [32].

The core of disagreement percolation is a coupling between three point processes
on a bounded domain. Two are hard-sphere models with the same activity and differing
boundary conditions. The third one is a Boolean model stochastically dominating the
points of disagreement between the two hard-sphere models. The connected components
of the Gilbert graph of the Boolean model connected to the boundary control the extent
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Hard-sphere disagreement percolation

of the differing influence of the boundary conditions on the hard-sphere models. In the
sub-critical phase of percolation, the almost-sure finite percolation clusters imply the
equality of the two hard-sphere realisations with high probability on a small domain
inside a larger domain. Taking a limit along an exhaustive sequence of bounded domains
implies the uniqueness of the Gibbs measure of the hard-sphere model.

The disagreement coupling connects the activity of the hard-sphere models and the
intensity of the Poisson point process. Hence, lower bounds on the critical intensity of
the Boolean model imply lower bounds on the critical activity of the hard-sphere model.
In one dimension, the results replicate Tonk’s classic result of the complete absence
of phase transitions [27]. In two dimensions, the new bounds improve upon the best
known cluster expansion bounds [24, 9] by at least a factor of two. Scaling discrete
results suggest that they exceed the best theoretical largest activities achievable by
cluster expansion techniques. In high dimensions, extrapolation of known upper bounds
on the activities achievable in the discrete case to the continuum suggests that the
disagreement percolation bounds always go beyond the region attainable by cluster
expansion techniques.

This work exclusively treats the hard-sphere model. One reason is its central impor-
tance in statistical mechanics and its easy and emblematic definition. Another reason is
the comparison with the cluster expansion bounds. More important though, the bounds
in this paper stem from a twisted disagreement coupling optimised for the hard-sphere
model. While a generalisation of the disagreement approach to simple finite-range Gibbs
point processes with bounded interaction range seems possible, the twisted coupling
depends critically on the hard-sphere constraint. The twisted approach takes inspiration
from a disagreement percolation tailored to the hard-core model [32].

The twisted disagreement coupling is defined in a recursive fashion and uses condi-
tional couplings between a hard-sphere model and its dominating Poisson point process.
The measurability of such a conditional coupling with respect to its boundary conditions
is crucial for the existence of the twisted disagreement coupling. The measurability of
dominating couplings has not been a topic in the relevant literature on couplings [21, 10]
yet. One solution is the use a dependent thinning from the dominating Poisson point pro-
cess. The thinning probability is the derivative of the free energy of the yet unexplored
part of the domain, rescaled by the activity. It can be expressed as a ratio of partition
functions. The thinning approach is the key to ignore the uncountable nature of Rd and
to focus on the almost-surely finite set of points of interest.

Section 2 introduces notation and basic terms. The main theorems, resulting bounds
and discussion are in Section 3. Section 4 contains the proofs about disagreement
percolation. Section 5 presents the dependent thinning. Section 6 elaborates the twisted
disagreement coupling.

2 Setup

2.1 Space

Consider the Euclidean space Rd with the Euclidean metric ||.|| and the Lebesgue
measure L. The bounded and all Borel sets of Rd are Bb and B respectively. Fix a
non-negative finite radius R. For x ∈ Rd, let S(x) := {y ∈ Rd | ||x − y|| ≤ R} be the
closed sphere of radius R around x. The volume of S(x) is vdR

d. For B ∈ B, let
S(B) :=

⋃
x∈B S(x) and R(B) := S(B) \B be the sphere and ring of radius R around B

respectively. Let δ(A,B) be the distance between A,B ∈ Bb. A van Hove sequence [24,
Def 2.1.1] is a monotone increasing sequence (Bn)n∈N of bounded Borel sets converging
to Rd and eventually containing every bounded Borel set. The increasing hypercubes
([−n, n]d)n∈N are a van Hove sequence.

EJP 24 (2019), paper 91.
Page 2/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP320
http://www.imstat.org/ejp/


Hard-sphere disagreement percolation

The Gilbert graph of a configuration C has vertices C and edges connecting points at
distance at most R, i.e., {{x, y} ⊆ C | ||x− y|| ≤ R}. The configuration C is a R–cluster,
if it is R–connected, i.e., its Gilbert graph is connected. Two points x and y are R–

connected by a configuration C, written x
in C←−→ y, if there is a finite path of jumps of at

most distance R between x and y using only points in C as intermediate points. Two
Borel sets are R–connected by a configuration C, if there is a R–connected pair of points,
with one point from each set.

2.2 Point processes

For B ∈ B, let CB be the locally finite point configurations on B, i.e., for each
C ∈ CB and A ∈ Bb, |C ∩ A| < ∞. Let FB be the σ–algebra on CB generated by
{{C ∈ CB |C ∩A = ∅} |B ⊇ A ∈ B}, i.e., compatible with the Fell topology.

A simple point process (short PP) on a Borel set B ∈ B is a random variable taking
values in CB. This work treats a PP as a locally finite random subset of points of Rd,
instead of as a random measure or as a collection of marginal counting rvs. Let P be a
PP law and denote by ξ the canonical variable on CRd . For B ⊇ A ∈ B, abbreviate ξ ∩A
to ξA.

A Borel measure M on (CB ,FB) is the local Janossy measure [5, after (5.3.2)] of P on
B ∈ Bb, if

∀E ∈ FB : P(ξB ∈ E) =

∫
E

M(dC) . (2.1)

This definition of local Janossy measure is a portmanteau version of the traditional
definition on generating cylinder sets.

Because the local Janossy measure of a PP law P on B ∈ B on B ⊇ A ∈ Bb equals the
Janossy measure of the restriction of the law to A, the remainder of this paper drops
the quantifier “local”. If ξ has finite moment measures of all orders under P, then the
Janossy measure in (2.1) exists [5, Theorem 5.4.I]. For B ∈ Bb and C ∈ CB, write the
infinitesimal of the Janossy measure of P on B at C as P(ξB = dC).

The intensity measure of the PP law P is the average number of points on bounded
Borel sets. For B ∈ Bb, it equals

∫
CB |C|P(ξB = dC).

2.3 The Boolean model

The classic PP is the Poisson PP law Ppoi
B,α of intensity α on B ∈ B, i.e., with intensity

measure αL.

A configuration C ∈ CRd R–percolates, if it contains an infiniteR–cluster. The bounded
finiteness of C renders this equivalent to the existence of an unbounded R–cluster. The
Boolean model of intensity α is a Ppoi

Rd,α
–distributed PP, with closed spheres of radius R/2

centred at the points. If spheres overlap, then the corresponding points are connected.
This is just R–connectivity from Section 2.1. The Boolean model percolates, if it contains
an infinite R–cluster.

Adding more points improves R–connectivity. Hence, the probability of percolation is
monotone increasing in α. The Poissonian nature of the Boolean model makes percolation
a tail event, i.e., it holds with either probability 0 or 1. Thus, a critical intensity separates
the non-percolating and percolating regimes.

Theorem 2.1 ([18, Theorem 3.3]). For d ≥ 2, a λb(d) ∈ ]0,∞[ separates the sub-critical
(almost-never percolating) from the super-critical (almost-surely percolating) intensities.
If α < λb(d) and (Bn)n∈N is van Hove, then

Ppoi
Bn,α

(A
in ξ←−→R(Bn)) −−−−→

n→∞
0 . (2.2)
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Hard-sphere disagreement percolation

In one dimension, percolation almost-never happens at finite intensities. Whence,
λb(1) = ∞ [18, Theorem 3.1]. In the sub-critical regime, the size of the R–cluster
containing the origin decays exponentially [18, Section 3.7]. Section 3.2 discusses
bounds on λb(d).

2.4 The hard-sphere model

Let [.] be Iverson brackets.1 For disjoint Y,C ∈ CRd , the indicator function H of the
conditional hard-core constraint of Y under condition C is given by

H(Y |C) :=
∏

{x,y}⊆Y

[||x− y|| > R]
∏

y∈Y,x∈C
[||x− y|| > R] . (2.3)

For a bounded domain B ∈ Bb, a boundary condition C ∈ CBc and an activity λ ∈ [0,∞[,
consider the hard-sphere model with law Phs

B,C,λ. As it is the Poisson PP of intensity λ
conditioned to be hard-core, its Janossy infinitesimal is

Phs
B,C,λ(dY ) = Ppoi

B,λ(dY |H(ξ|C) = 1) . (2.4)

The alternative definition in statistical mechanics uses the pair potential

u : (Rd)2 7→ [0,∞] (x, y) 7→

{
∞ if ||x− y|| ≤ R ,
0 if ||x− y|| > R .

(2.5a)

The Hamiltonian of n ordered points in B is

H(x1, . . . , xn|C) :=
∑

1≤i<j≤n

u(xi, xj) +
∑

1≤i≤n,y∈C

u(xi, y) . (2.5b)

The density of x ∈ Bn is

Phs
B,C,λ(dx) :=

λne−H(x|C)

n!Z(B,C, λ)
dx , (2.5c)

where the partition function Z is

Z(B,C, λ) :=

∞∑
n=0

λn

n!

∫
Bn

e−H(x|C)dx . (2.5d)

The convention e−∞ = 0 encodes (2.3) by (2.5b). The remainder of this paper uses the
PP notation as in (2.4), except for the partition function Z. Because of the bounded
range interaction in H(Y |C) in (2.3), one may restrict the boundary condition to CR(B).

A Gibbs measure is a weak limit of a sequence (Phs
Bn,Cn,λ

)n∈N along a van Hove
sequence (Bn)n∈N and a sequence (Cn)n∈N of boundary conditions with Cn ∈ CBc

n
[22,

Sections 2 and 3]. The Gibbs measures Gλ of the specification Phs
λ := (Phs

B,C,λ)B∈Bb,C∈CBc

form a simplex. Unlike in the lattice case [25], in the continuum case of dimension
greater than one, the existence of a finite critical activity at which a phase transition
happens is widely believed, but not yet proven. See the solution in one dimension [27],
the absence of positional phase transition in two dimensions [23], which does not
exclude a conjectured orientational phase transition, and the discussion of the state of
the problem in higher dimensions [17, Section 3.3]. If R = 0, then there is no interaction,
the hard-sphere model reduces to a Poisson PP and Ppoi

Rd,λ
is the unique Gibbs measure.

1They work better with diverse logical expressions than indicator functions.
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2.5 Stochastic domination

On CnB, the standard product σ–algebra is F⊗nB . The canonical variables on CnB are
ξ := (ξ1, . . . , ξn). A coupling P of n PP laws P1, . . . ,Pn on B ∈ B is a probability measure
on (CnB ,F

⊗n
B ) such that, for all 1 ≤ i ≤ n and E ∈ FB, P(ξi ∈ E) = Pi(ξ ∈ E).

A PP law P2 stochastically dominates a PP P1, if there exists a coupling P of them
with P(ξ1 ⊆ ξ2) = 1. Equivalently, by Strassen’s theorem, for all increasing events E,
P1(E) ≤ P2(E). A Poisson PP stochastically dominates a hard-sphere model with the
same activity as the intensity of the Poisson PP [10, Example 2.2].

3 Results

3.1 Disagreement percolation

At the core of disagreement percolation is a coupling of two instances of the hard-
sphere model on the same finite volume, but with differing boundary conditions, such
that the set of points differing between the two instances (the disagreement cluster) is
stochastically dominated by a Poisson PP. Therefore, one may control the disagreement
clusters and the influence of the differing boundary conditions by the percolation clusters
of the Boolean model.

If the intensity of the dominating Poisson PP is below the critical value for percolation
in the Boolean model, then the finiteness of percolation clusters controls the influence of
the differing boundary conditions. The influence vanishes as the finite volume tends to
the whole space. This implies the uniqueness of the Gibbs measure of the hard-sphere
model. Furthermore, as the cluster size of the Boolean model decays exponentially in
the sub-critical phase, controls of the Gibbs measure such as the influence of boundary
conditions or the reduced pair correlation function decay exponentially, too.

The remainder of this section formalises the preceding outline. The proofs are in
Section 4. The symmetric difference S1 4 S2 between sets S1 and S2 equals (S1 \ S2) ∪
(S2 \ S1).

Definition 3.1. Let α, λ ∈ [0,∞[. A disagreement coupling on B ∈ Bb with C1, C2 ∈ CBc

of intensity α and activity λ is a law P on (C3
B ,F

⊗3
B ) with

∀ 1 ≤ i ≤ 2, E ∈ FB : P(ξi ∈ E) = Phs
B,Ci,λ(ξ ∈ E) , (3.1a)

∀E ∈ FB : P(ξ3 ∈ E) = Ppoi
B,α(ξ ∈ E) , (3.1b)

P(ξ1 4 ξ2 ⊆ ξ3) = 1 , (3.1c)

P(∀x ∈ ξ1 4 ξ2 : x
in ξ14ξ2←−−−−→C1 4 C2) = 1 . (3.1d)

A disagreement coupling family of intensity α and activity λ is a family of disagreement
couplings (PB,C1,C2,λ,α)B∈Bb,C1,C2∈CBc .

A disagreement coupling family in the sub-critical phase of the Boolean model implies
uniqueness of the Gibbs measure.

Theorem 3.2. If there exists a disagreement coupling family of intensity α < λb(d) at
activity λ, then Gλ consists of a single Gibbs measure.

Disagreement percolation also implies that the sensitivity to changes in the bound-
ary condition (3.3a), the finite volume error (3.3b) and the probabilities of separated
events (3.3c) on small sets decay exponentially. The rate of exponential decay is the
same as the one of the Boolean model (3.2), which holds in the whole sub-critical regime
of the Boolean model [18, Section 3.7].

Theorem 3.3. Assume the existence of a disagreement coupling family of intensity
α < λb(d) at activity λ and a there exist K ≥ 1, κ > 0 such that, for all A,B ∈ Bb with
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diam(A) ≤ 1,

Ppoi
Rd,α

(A
in ξ←−→B) ≤ Ke−κδ(A,B) . (3.2)

For all A,B ∈ Bb with diam(A) ≤ 1, A ⊆ B, C ∈ CBc , x ∈ (B ∪ C)c and E ∈ CA,

|Phs
B,C,λ(ξA ∈ E)− Phs

B,C∪{x},λ(ξA ∈ E)| ≤ Ke−κδ(A,{x}) . (3.3a)

Let ν be the unique Gibbs measure in Gλ. For all A,B ∈ Bb with diam(A) ≤ 1, A ⊆ B,
C ∈ CBc and E ∈ CA,

|Phs
B,C,λ(ξA ∈ E)− ν(ξA ∈ E)| ≤ Ke−κδ(A,B

c) . (3.3b)

For all A,B ∈ Bb with diam(A) ≤ 1, E ∈ CA and F ∈ CB,

|ν(ξA ∈ E, ξB ∈ F )− ν(ξA ∈ E)ν(ξB ∈ F )| ≤ Ke−κδ(A,B) . (3.3c)

3.2 Bounds from disagreement percolation

The hard-sphere model admits a disagreement coupling family of the same intensity
as its activity.

Theorem 3.4. There exists a disagreement coupling family of intensity λ for Phs
λ , with

property (3.1c) improved to

P(ξ1 ∪ ξ2 ⊆ ξ3) = 1 . (3.4)

If λ < λb(d), then Gλ is a singleton and exponential decay as in (3.3) holds.

Theorem 3.4 follows from the disagreement coupling family in Section 6 and the-
orems 3.2 and 3.3. A motivation of this coupling is in Section 3.4 and discussion of
generalisations and other approaches in Section 3.5.

Bounds on λb(d) translate directly into sufficient conditions for the uniqueness of the
Gibbs measure. In one dimension the Boolean model never percolates [18, Theorem 3.1].

λb(1) =∞ . (3.5a)

In two dimensions, rigorous bounds on λb(2) are [ 0.174
R2 , 0.843

R2 ] [18, Theorem 3.10]. More
recent high confidence bounds in [1], taken from [19, Equation (2)], are

0.358

R2
∼ 1.127

πR2
< λb(2) . (3.5b)

For dimensions 2 to 10, simulation bounds are in [28, 29]. Another set of high confi-
dence and rigorous bounds via an Ornstein-Zernike approach are in [33, Table 4]. The
asymptotic behaviour of the critical intensity [20], taken from [18, Section 3.10], is

lim
d→∞

λb(d)vdR
d = 1 . (3.5c)

The inequality (3.3c) from Theorem 3.4 implies the exponential decay of the reduced
pair correlation function.

Theorem 3.5. If λ < λb(d) and (3.2) holds with α = λ, then, for all x, y ∈ Rd and using
the constants from (3.2), the reduced pair correlation function ρ decays as

ρ(x, y) ≤ Ke−κ||x−y|| . (3.6)
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3.3 Comparison with expansion bounds

Popular methods to study the absence of phase transitions, in particular to guarantee
the uniqueness of the Gibbs measure, are virial and cluster expansion methods [24].
Both deliver analyticity of the free energy, too. Let λce(d) be the radius of the cluster
expansion in d dimensions.

In one dimension, disagreement percolation (3.5a) replicates Tonks’ classic result of
the complete absence of phase transitions via virial expansion methods [3, 12, 15, 27].
In terms of the activity, it is known that the radius of the cluster expansion is exactly [3,
11, 15]

λce(1) =
1

eR
. (3.7a)

In two dimensions, the best currently known lower bounds [9] and upper bounds [24,
Section 4.5] are

0.1625

R2
∼ 0.5107

πR2
< λce(2) <

2

eπR2
∼ 0.2342

R2
. (3.7b)

The bounds in (3.7b) are between 0.45 and 0.65 times the disagreement percolation
bound in (3.5b). General bounds on the cluster expansion radius from [24, Section 4.5]
are

1

evdRd
≤ λce(d) ≤ 2

vdRd
. (3.7c)

As v1 = 2, equation (3.7a) shows that the upper bound is tight. I conjecture that the
asymptotic behaviour in high dimensions is

lim
d→∞

λce(d)vdR
d =

1

e
. (3.7d)

Comparing (3.5c) and (3.7d), the asymptotic improvement should be by a factor of e.
This is not surprising, because on the infinite k–regular tree Tk, the critical percolation

probability is 1
k−1 and the radius of the cluster expansion is (k−2)k−2

(k−1)k−1 ∼ 1
e(k−1) . Both

Zd and Rd behave for large d as T2d, for both percolation and cluster expansion. Ex-
trapolating arguments of [26, Section 8] gives a heuristic for the upper bound in (3.7c),
too. Finally, I conjecture that disagreement percolation is always better than cluster
expansion. A possible approach is recent work connecting the Ornstein-Zernike equation
for the Boolean model with Ruelle-like sufficient conditions for cluster expansion [16].

3.4 Motivation behind the dependent thinning and twisted coupling

This section assumes familiarity with the dependent thinning in Definition 5.2 and
the twisted disagreement coupling family in Definition 6.1.

The approach to disagreement percolation in [31] is a vertex-wise conditional coupling
of two Markov fields on a finite graph. A uniform control of those couplings allows
stochastic domination by a Bernoulli product field. This poses a problem on Rd. The key
insight is to flip the picture around. Start with the Bernoulli random field and reinterpret
the conditional couplings as simultaneous dependent thinnings to the two dominated
Markov fields. Transferring this to the PP case is non-trivial, but helpfully [32] introduced
an optimisation for the hard-core model. This reduces the thinning probability onto
two hard-core models on a single vertex to a thinning probability of a single hard-core
model. The equivalent of the discrete thinning probability is the rhs of (5.8). This was
the starting point of the generalisation to the PP case. In the PP case, this enables the
independent construction on the disjoint domains in (6.1a). It allows to “twist” two hard-
sphere models of activity λ under a single Ppoi

λ PP, i.e., have joint stochastic domination
in (6.3e).
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The overall recursive approach from the dependent vertex-wise couplings stays
and translates into the recursive definition (6.1b). The recursive definition of P tw-rec

B,C1,C2

demands that it is jointly measurable in the boundary conditions C1 and C2. By the above
outline, this comes back to the measurability of P thin

B,C in the boundary condition C. The
classic dominating couplings between a Poisson PP and a hard-sphere model in [21, 10]
are implicit and do not provide this measurability readily. Besides the generalisation of
the thinning probability from the discrete case, this is the main reason for the explicit
construction of P thin

B,C in Section 5.4. But the D = ∅ case in (6.1b) suggests to use the
dependent thinning approach for a single dominated hard-sphere model, too. In this
case, the calculations are doable and lead to the dependent thinning in Definition 5.2.

The Papangelou intensity [6, (15.6.13)] is the infinitesimal cost of adding another
point to a given configuration. It is H({x}|Y ∪ C)λ for the hard-sphere model. The
Poisson PP has constant Papangelou intensity λ. Thus, one can control the hard-sphere
model pointwise incrementally by a Poisson PP. All three stochastic dominations of
a hard-sphere model by a Poisson PP (the dependent thinning in Definition 5.2, [10]
and [21]) build upon this fact. In the D = ∅ case, P tw-rec reduces to the same setting,
too. It is yet unknown if this is the smallest Poisson intensity needed to dominate the
hard-sphere model. Looking at (5.9a) and (5.8), one sees that λ is indeed approached
for x far enough away from C and Y and large B. The rewrite of the thinning probability
as the derivative of a finite volume free energy in (5.8) adds another interpretation:
acceptance of a point x happens with a probability depending on the change in the free
energy. For large domains the point would change nothing in the free energy, whence it
could be accepted with probabilities approaching 1. Again, no smaller Poisson intensity
smaller than λ allows this. Because the thinning procedure depends on the ordering
from Section 5.3, I consider the preceding thoughts only a strong indicator but not a
proof for the minimality of λ.

Another natural question is whether the depending thinning factorises over clusters
of the dominating Poisson PP. Although it looks likely to be true, because the answer is
not relevant here, this question is not investigated.

3.5 Outlook

In the lattice case, disagreement percolation implies the complete analyticity of the
free energy, pointed out by Schonmann [31, Note added in proof], and the Poincare
inequality for the usual spin-flip dynamics [4]. In principle, both results should be
generalisable to the hard-sphere model, too. The exponential control in (3.3) looks
exactly like what is needed in the discrete case for complete analyticity [8], but a theory
for PPs is still missing.

The proofs of theorems 3.2 and 3.3 are independent of the hard-sphere model and
apply to arbitrary Gibbs PPs with bounded range interaction. A generalisation to the
physically interesting case of marked Gibbs PP models with finite, but unbounded, range
should be possible. This demands a notational and definitional base exceeding the limits
of a single paper, though.

Beyond the hard-sphere model, one could do a product construction in (6.1a) and
compensate by adding an additional Ppoi

B,λ in the D = ∅ case in (6.1a). This would lead to
a disagreement coupling family of intensity 2λ, for a repulsive potential. The recursive
construction still demands the dominating coupling to be measurable in the boundary
conditions.

The more simple product approach from [30] with a swapping argument yields only a
lower bound of λb(d)/2. Thus, it is not strong enough for the comparison in Section 3.3.
Also, the same measurability concerns as in the twisted approach surface, too.
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Another sufficient condition for uniqueness Gibbs measure, and even complete
analyticity of the free energy, is Dobrushin’s uniqueness condition [7]. There have been
generalisations to the PP case [13, 14], but I make no explicit comparison here.

4 Proof of Theorems 3.2, 3.3 and 3.5

The proof of Theorem 3.2 follows closely the one in the discrete case [31, proof
of corollaries 1 and 2]. Proposition 4.1 applies a disagreement coupling to bound the
difference between the two hard-sphere models by a percolation connection probability.
This proposition is the key control of the influence of the differing boundary conditions.
Theorem 3.2 uses a disagreement coupling family to exploit these bounds on increasing
scales. First, it restricts to a small domain, then it applies the bounds from disagreement
coupling and finally, it uses the sub-criticality of the Boolean model to tighten the
bound to zero as the domain increases. Theorem 3.3 uses Proposition 4.1 to control the
influence of the differing boundary conditions on general events. Theorem 3.5 derives
a tighter disagreement bound for increasing events from (3.4) and proves exponential
decay of the pair correlation function.

Proposition 4.1. Let A,B ∈ Bb with A ⊆ B, C1, C2 ∈ CBc and α, λ ∈ [0,∞[. Let
P := PB,C1,C2,λ,α be a disagreement coupling. For E ∈ FA,

|Phs
B,C1,λ(ξA ∈ E)− Phs

B,C2,λ(ξA ∈ E)| ≤ Ppoi
B,α(A

in ξ←−→C1 4 C2) . (4.1)

Proof. First, reduce the difference by cancelling symmetric parts.

|Phs
B,C1,λ(ξA ∈ E)− Phs

B,C2,λ(ξA ∈ E)|
(3.1a)
= |P(ξ1

A ∈ E)− P(ξ2
A ∈ E)|

= |P(ξ1
A ∈ E, ξ2

A 6∈ E)− P(ξ1
A 6∈ E, ξ2

A ∈ E)|

≤ max{P(ξ1
A ∈ E, ξ2

A 6∈ E),P(ξ1
A 6∈ E, ξ2

A ∈ E)} .

Second, relax the asymmetry to disagreement and use disagreement percolation.

P(ξ1
A ∈ E, ξ2

A 6∈ E)
relax
≤ P(ξ1

A 4 ξ2
A 6= ∅)

(3.1d)
≤ P(A

in ξ14ξ2←−−−−→C1 4 C2)

(3.1c)
≤ P(A

in ξ3←−→C1 4 C2)

(3.1b)
= Ppoi

B,α(A
in ξ←−→C1 4 C2) .

For disjoint A,B ∈ Bb and E ∈ FB, the following identities hold for the Janossy
infinitesimals.

P(ξA = dY ) =

∫
CB
P(ξA∪B = d(Y ∪ Z)) ,

P(ξA = dY , ξB ∈ E) =

∫
CB

[Z ∈ E]P(ξA∪B = d(Y ∪ Z)) ,

P(ξA = dY |ξB ∈ E) =

∫
CB

[Z ∈ E]P(ξA∪B = d(Y ∪ Z))

P(ξB ∈ E)
.

(4.2)
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Proof of Theorem 3.2. Let ν1, ν2 ∈ Gλ. Showing that ν1 = ν2 is equivalent to

∀A ∈ Bb, E ∈ FA : ν1(ξA ∈ E) = ν2(ξA ∈ E) .

The hard-sphere property ensures that a Gibbs measure in Gλ has moment measures of
all orders [5, (5.4.9)]. Thus, its local Janossy measures exist.

The following result controls the difference between two measures. Let µ1 and µ2 be
probability measures on the measurable space (Ω,A). For all f : Ω→ [0, 1] measurable,∣∣∣∣∫ fdµ1 −

∫
fdµ2

∣∣∣∣ =

∣∣∣∣∫
Ω2

(f(ω1)− f(ω2))dµ1(ω1)dµ2(ω2)

∣∣∣∣
≤
∫

Ω2

|f(ω1)− f(ω2)|dµ1(ω1)dµ2(ω2)

≤ sup{|f(ω1)− f(ω2)| |ω1, ω2 ∈ Ω} .

(4.3)

Let (Bn)n∈N be a van Hove sequence with A ⊆ B1. For each Gibbs measure ν ∈ Gλ
and n ∈ N, the Gibbs property restricts the discussion to the bounded Borel set Bn.
Second, the existence of a disagreement coupling family of intensity α and (4.3) controls
the difference between different Gibbs measures by the connection probability of the
Boolean model. Taking the limit along the van Hove sequence shows that the difference
is zero.

|ν1(ξA ∈ E)− ν2(ξA ∈ E)|

(4.2)
=

∣∣∣∣∣
∫
CBc

n

Phs
Bn,C1,λ(ξA ∈ E)ν1(ξBc

n
= dC1)

−
∫
CBc

n

Phs
Bn,C2,λ(ξA ∈ E)ν2(ξBc

n
= dC2)

∣∣∣∣∣
(4.3)
≤ sup

{∣∣Phs
Bn,C1,λ(ξA ∈ E)− Phs

Bn,C2,λ(ξA ∈ E)
∣∣ ∣∣C1, C2 ∈ CBc

n

}
(4.1)
≤ sup

{
Ppoi
Bn,α

(A
in ξ←−→C1 4 C2)

∣∣∣C1, C2 ∈ CBc
n

}
relax
≤ Ppoi

Bn,α
(A

in ξ←−→Bcn)
(2.2)−−−−→
n→∞

0 .

Proof of Theorem 3.3. For (3.3a), let C1 := C and C2 := C ∪ {x}. Thus,

|Phs
B,C,λ(ξA ∈ E)− Phs

B,C∪{x},λ(ξA ∈ E)|
(4.1)
≤ Ppoi

B,α(A
in ξ←−→{x})

(3.2)
≤ Ke−κδ(A,{x}) .

For (3.3b), one has

|Phs
B,C,λ(ξA ∈ E)− ν(ξA ∈ E)|

(4.2)
=

∣∣∣∣∣Phs
B,C,λ(ξA ∈ E)−

∫
CR(B)

Phs
B,C′,λ(ξA ∈ E)ν(ξR(B) = dC ′)

∣∣∣∣∣
≤

∫
CR(B)

∣∣∣Phs
B,C,λ(ξA ∈ E)− Phs

B,C′,λ(ξA ∈ E)
∣∣∣ν(ξR(B) = dC ′)

(4.1)
≤
∫
CR(B)

Ppoi
B,α(A

in ξ←−→C 4 C ′)ν(ξR(B) = dC ′)

relax
≤

∫
CR(B)

Ppoi
B,α(A

in ξ←−→Bc)ν(ξR(B) = dC ′)

(3.2)
≤ Ke−κδ(A,B

c) .
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For (3.3c), assume that δ(A,B) > 0. Choose a sphere D containing A such that
δ(A,R(D)) > δ(A,B). Let D′ := R(D) ∪B. Hence, δ(A,D′) ≥ δ(A,B), and

|ν(ξA ∈ E, ξB ∈ F )− ν(ξA ∈ E)ν(ξB ∈ F )|
(4.2)
≤
∫
CD′

∣∣∣Phs
D\B,C,λ(ξA ∈ E)− ν(ξA ∈ E)

∣∣∣[C ∩B ∈ F ]ν(ξD′ = dC)

(3.3b)
≤

∫
CD′

Ke−κδ(A,D
′)[C ∩B ∈ F ]ν(ξD′ = dC)

= Ke−κδ(A,B)ν(ξB ∈ F ) ≤ Ke−κδ(A,B) .

Proof of Theorem 3.5. Property (3.4) modifies (4.1) for increasing events to

|Phs
B,C1,λ(ξA ∈ E)− Phs

B,C2,λ(ξA ∈ E)| ≤ Ppoi
A,λ(E)Ppoi

B,λ(A
in ξ←−→Bc) . (4.4)

This follows from retracing the second part of the proof of Proposition 4.1 with

P(ξ1
A ∈ E, ξ2

A 6∈ E) = P(ξ1
A ∈ E, ξ1

A 4 ξ2
A 6= ∅)

(3.1d)
≤ P(ξ1

A ∈ E,A
in ξ14ξ2←−−−−→C1 4 C2)

relax
≤ P(ξ1

A ∈ E,A
in (ξ1∪ξ2)\A←−−−−−−−→Bc)

(3.4)
≤ P(ξ3

A ∈ E,A
in ξ3\A←−−−→Bc)

(3.1b)
= Ppoi

A,λ(E)Ppoi
B,λ(A

in ξ←−→Bc) .

Retracing the proofs of (3.3b) and (3.3c) using (4.4) instead of (4.1) modifies (3.3c) to:
For all A,B ∈ Bb, increasing E ∈ CA and increasing F ∈ CB,

|ν(ξA∈E, ξB∈F )− ν(ξA∈E)ν(ξB∈F )| ≤ Ppoi
A,λ(E)Ppoi

B,λ(F )Ke−κδ(A,B) . (4.5)

For all disjoint A,B ∈ Bb, bound the second factorial cumulant measure as∣∣∣Eν |ξA||ξB | − Eν |ξA|Eν |ξB |∣∣∣
≤

∞∑
n,m=1

∣∣∣ν(|ξA| ≥ n, |ξB | ≥ m)− ν(|ξA| ≥ n)ν(|ξB | ≥ m)
∣∣∣

(4.5)
≤

∞∑
n,m=1

Ppoi
A,λ(|ξ| ≥ n)Ppoi

B,λ(|ξ| ≥ m)Ke−κδ(A,B)

= λL(A)λL(B)Ke−κδ(A,B) .

Statement (3.6) follows by disintegration with respect to λ2L2.

5 Dependently thinning Poisson to hard-sphere

Sections 5.1 and 5.2 contain additional facts about joint Janossy measures and the
hard-sphere model respectively. Section 5.3 describes a measurable total ordering of
Euclidean space. The dependent thinning from a Ppoi

B,λ to a Phs
B,C,λ is in Section 5.4. This

section fixes λ ∈ [0,∞[. Hence, it drops the λ in Phs
B,C,λ, Z(B,C, λ) and Ppoi

B,λ.
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5.1 Joint Janossy measure

Let n ≥ 2 and P be a coupling of n PP laws. A Borel measure M on (CnB ,F
⊗n
B ) is the

(local) joint Janossy measure of P on B ∈ Bb, if, for all E1, . . . , En ∈ FB,

P(∀ 1 ≤ i ≤ n : ξiB ∈ Ei) =

∫
CnB

∏
1≤i≤n

[Yi ∈ Ei]M(dY ) . (5.1)

Because the local joint Janossy measure on A ⊆ B of a coupling P on B equals the joint
Janossy measure of the restriction of the coupling to A, the remainder of this paper
drops the quantifier “local”. This definition of a joint Janossy measure is between the
portmanteau style of the classic case (2.1) and the explicit style on generating sets in [5,
Section 5.3]. As the sets

∏n
i=1Ei generate F⊗nB , there is no loss of generality. If P admits

a joint Janossy measure on B, then P(ξB = dY ) denotes its infinitesimal at Y ∈ CnB.
The identities (4.2) generalise directly from the classic to the joint case. Joint Janossy

measures of marginals of a coupling P result from integrating out the joint Janossy
measure over the complement.

5.2 More about the hard-sphere model

The conditional hard-sphere constraint H chains.

∀X,Y, Z ∈ CRd : H(X ∪ Y |Z) = H(X|Y ∪ Z)H(Y |Z) . (5.2)

The function H is CBc×CB → {0, 1} and measurable on (CBc×CB ,FBc⊗FB) as a product
of measurable functions (2.3). It is monotone decreasing in both arguments.

For B ∈ Bb, the function

CBc → [0,∞[ C 7→ Z(B,C) (5.3)

is measurable on (CBc ,FBc) and monotone decreasing. Consequently, Phs
B,C is measurable

in the boundary condition C, too. For C ∈ CRd , the function

Bb → [0,∞[ B 7→ Z(B,C \B) (5.4)

is monotone increasing. Finally, the relation between (2.4) and (2.5d) is

Z(B,C) = Ppoi
B (H(ξ|C) = 1) eλL(B) . (5.5)

The hard-sphere model fulfils the DLR conditions [22, (2.2)–(2.4)]. That is, for
A,B ∈ Bb, X ∈ CA and Y ∈ CB, the Janossy infinitesimal chains.

Phs
A∪B,C(d(X ∪ Y )) = Phs

A∪B,C(ξA = dX)Phs
B,C∪X(dY ) . (5.6)

5.3 Ordering and derivative

This section presents a measurable total ordering of Rd+. It allows to define a
derivative of measurable functions of Borel subsets of Rd+.

The unsigned binary digit sequences are

D := {ι ∈ {0, 1}Z | ∃k : ∀n ≥ k : ιn = 0} .

A sequence gets assigned a non-negative real value through the map

b : D → R+ ι 7→
∑
n∈Z

ιn2n .
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Figure 1: Total ordering of the unit square. The top three levels, with the ith level
corresponding the effect of the ith binary digit a point, inducing the ordering are shown.
The first level divides the unit square into four quarter-squares and orders them along
the biggest arrow (top-right first, bottom-left last). Then, within each quarter square,
this ordering is repeated (four middle arrows). The sixteen smallest arrows show the
third level, decomposing each sixteenth-square into four parts and ordering them. The
full ordering repeats this recursively on all scales.

There is no inverse of b, because multiples of some 2n, n ∈ Z have two preimages under
b: one ending in an infinite sequence of 0s and another one ending in an infinite sequence
of 1s. Observing that those multiples form a L null-set of R+ and choosing the preimage
ending in an infinite sequence of 0s allows to restrict b to a measurable bijection. This
allows to construct another measurable bijection

b̂ : Rd+ → R+ (x1, . . . , xd) 7→ b−1(n 7→ b(x(nmod d)+1)bn/dc) .

From here on use the bijection b̂ implicitly. See also Figure 1.

The bijection b̂ orders Rd+ measurably and totally. Denote this order by ≺. The
symbols ±∞ extend ≺ with elements being bigger and smaller than each element of Rd+.
For a, b ∈ Rd+ ∪ {±∞} with a ≺ b, there is the interval ]a, b] := {x | a ≺ x � b}, as well as
all standard variations thereof.

Let B ∈ Bb with B ⊆ Rd+ and L(B) > 0. As L–a.e. x ∈ B is a density point of L [2,
Section 5.8(ii)], there exists εx > 0, such that for all 0 < ε < εx there exist points
x−ε , x

+
ε ∈ B with x−ε ≺ x ≺ x+

ε such that L(]x−ε , x[) = L(]x, x+
ε [) = ε. The derivative of

f : ]a, b[→ R at x is

f ′(x) := lim
ε→0

f(x+
ε )− f(x−ε )

2ε
, (5.7)

whenever this limit is defined. This is the usual one-dimensional derivative on R+

mapped back through b̂−1.
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5.4 The thinning

This section presents a coupling between a hard-sphere PP and a dominating Poisson
PP. The coupling is an explicit dependent thinning from the dominating Poisson PP. The
thinning probability2 is related to the logarithm of the free energy. Its explicit form
implies the measurability of the coupling with respect to the boundary condition.

For the remainder of this section, fix B ∈ Bb and C ∈ CBc . Without loss of generality,
translation-invariance of the hard-sphere model lets us restrict to B ⊆ Rd+. This way, the
order from Section 5.3 applies. For the remainder of Section 5, restrict intervals to B,
i.e., ]a, b] denotes ]a, b] ∩B.

Proposition 5.1. For L–a.e. x ∈ B and Y ∈ C]−∞,x[,

− 1

λ

∂

∂x
logZ(]x,∞[, C ∪ Y ) = H({x}|C ∪ Y )

Z(]x,∞[, C ∪ Y ∪ {x})
Z(]x,∞[, C ∪ Y )

. (5.8)

The proof of Proposition 5.1 is in Section 5.5. Proposition 5.1 calculates the derivative
of the free energy of a right-unbounded interval in B with respect to the Poisson intensity.
The monotonicity of Z in the domain (5.4) applied to the lhs of (5.8) implies its monotone
growth in x outside of S(C ∪ Y ). The monotonicity applied to the rhs of (5.8) implies
that its value lies in [0, 1]. For each Y ∈ CB, this yields a restricted thinning kernel
pY : ] maxY,∞[→ [0, 1], with pY (x) given by the lhs of (5.8) and interpreted as the
probability of keeping the point x.

The thinning arises from an ordered exploration of B. It explores the points of a
Poisson realisation Y2 ∈ CB in the order induced by ≺. The starting thinning kernel is p∅.
At the first point y1 ∈ Y2 it keeps, it is replaced by the kernel p{y1}. The second kernel
explores Y2 ∩ ]y1,∞[. At the first point y2 ∈ Y2 ∩ ]y1,∞[ it keeps, it is replaced by the
kernel p{y1,y2} exploring Y2 ∩ ]y2,∞[. Iterate until all of Y2 has been explored. The usage
of the restricted thinning kernels is “one-shot”, i.e., a kernel is used until the first time
it keeps a point from Y2 and then replaced by the next thinning kernel with updated
dependencies. The following definition formalises this dependent update of the thinning
kernel.

Definition 5.2. For x ∈ B and Y1 ∈ CB, the dependent thinning probability is

p(x | Y1) := pY1∩]−∞,x[(x) . (5.9a)

The choice function distinguishes between kept and deleted points.

c(x, Y1) := [x ∈ Y1]p(x | Y1) + [x 6∈ Y1](1− p(x | Y1)) . (5.9b)

The Janossy infinitesimal of the thinning is

P thin
B,C(dY ) := [Y1 ⊆ Y2]

(∏
x∈Y2

c(x, Y1)

)
Ppoi
B (dY2) . (5.9c)

The dependent thinning kernel p(. | Y1) is a piece-wise combination of the restricted
kernels. The term Y1 ∩ ] −∞, x[ in the rhs of (5.9a) selects the appropriate restricted
kernel, depending on the already explored and kept points. The choice function (5.9b)
assigns correct probabilities to points being kept as part of Y1 and deleted on B \ Y1

respectively. Finally, the Janossy infinitesimal (5.9c) describes the joint probability of a
Poisson realisation Y2 and keeping exactly the subset Y1 for the thinned process.

2The established name for keeping a point as part of the smaller thinned PP.
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Theorem 5.3. The dependent thinning P thin
B,C is a dominating coupling between a Poisson

PP and a hard-sphere PP, as

P thin
B,C(ξ1 = dY ) = Phs

B,C(dY ) , (5.10a)

P thin
B,C(ξ2 = dY ) = Ppoi

B (dY ) (5.10b)

and
P thin
B,C(ξ1 ⊆ ξ2) = 1 . (5.10c)

The boundary condition may be restricted to R(B). The law P thin
B,C is measurable in C.

The proof of Theorem 5.3 is in Section 5.7.

5.5 Proof of Proposition 5.1

As L–a.e. L(] maxY, x]) > 0, rephrase the dependence between x and Y in (5.8). For
L–a.e. a ∈ B ∪ {−∞}, b ∈ ]a,∞[, Y ∈ C]−∞,a] and x ∈ ]a, b[, the aim is to show that (5.8)
holds. Let C ′ := C ∪ Y . Regard the measurable functions

h : ]a, b]→ [0, 1] x 7→ H({x}|C ′) ,
z : [a, b]→ [0,∞[ x 7→ Z(]x,∞[, C ′) ,

s : [a, b]→ [0,∞[ x 7→ Z(]x,∞[, C ′ ∪ {x}) .
(5.11)

Using the derivative (5.7), if z′ = −λhs on ]a, b[, then (5.8) follows from

−
(

log z

λ

)′
= − z

′

λz
= −−λhs

λz
=
hs

z
.

The remainder of this section shows that z′ = −λhs L–a.e. on ]a, b[.
Wlog assume that L(]a, b[) > 0. Fix x ∈ ]a, b[. Using the notation from (5.7), let

Aε := ]x−ε , x
+
ε ], for ε < εx. If ε is small enough, then Aε ⊆ S(y) holds uniformly in y ∈ Aε.

Let A−ε := ]x−ε ,∞[ and A+
ε := [x+

ε ,∞[ = A−ε \Aε. Using (5.5), expand z(x−ε ) and z(x+
ε ) as

z(x−ε ) = eλL(A−ε )

∫
C
A
−
ε

H(Z|C ′)Ppoi

A−ε
(dZ)

= eλL(A−ε )

∫
CAε

H(X|C ′)
∫
C
A

+
ε

H(Z|C ′ ∪X)Ppoi

A+
ε

(dZ)Ppoi
Aε

(dX) ,

z(x+
ε ) = eλL(A+

ε )

∫
C
A

+
ε

H(Z|C ′)Ppoi

A+
ε

(dZ)

= eλL(A−ε )

∫
CAε

[X = ∅]H(X|C ′)
∫
C
A

+
ε

H(Z|C ′ ∪X)Ppoi

A+
ε

(dZ)Ppoi
Aε

(dX) ,

to see that z′(x) = lim
ε→0

z(x+
ε )− z(x−ε )

2ε
equals

lim
ε→0

eλL(A−ε )

2ε

∫
CAε

−[X 6= ∅]H(X|C ′)
∫
C
A

+
ε

H(Z|C ′ ∪X)Ppoi

A+
ε

(dZ)Ppoi
Aε

(dX) .

The case |X| ≥ 2 is irrelevant, because all integrands take values in [−1, 1] and Ppoi
Aε

(|ξ| ≥
2) = o(ε2). Hence, in the case |X| = 1, let y be the single point in X and rewrite z′(x)

into

− lim
ε→0

eλL(A−ε )

2ε

∫
Aε

H({y}|C ′)
∫
C
A

+
ε

H(Z|C ′ ∪ {y})Ppoi

A+
ε

(dZ)e−2λελdy .
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Expand the domain of the inner integration from A+
ε to ]y,∞[ paying a penalty of

eλL(]y,x+
ε ]). As L(A−ε ) + L(]y, x+

ε ])− 2ε = L(]y,∞[), rewrite z′(x) into

− lim
ε→0

1

2ε

∫
Aε

H({y}|C ′)︸ ︷︷ ︸
=h(y)

eλL(]y,∞[)

∫
C]y,∞[

H(Z|C ′ ∪ {y})Ppoi
]y,∞[(dZ)︸ ︷︷ ︸

=s(y) by (5.5)

λdy .

The Lebesgue differentiation theorem [2, Thm 5.6.2] implies that, L–a.e.,

z′(x) = − lim
ε→0

1

2ε

∫
Aε

h(y)s(y)λdy = −λh(x)s(x) .

5.6 Deleting all points and an integral equation

This section calculates the probability of deleting all points within an interval of
B. The key point is that the dependent thinning kernel reduces to a single restricted
thinning kernel. For all a, b ∈ B ∪ {±∞} with a ≺ b, Y ∈ C]−∞,a] and X ∈ C[b,∞[,∫

C]a,b[

∏
z∈Z

c(z, Y ∪X)Ppoi
]a,b[(dZ) =

Z(]b,∞[, C ∪ Y )

Z(]a,∞[, C ∪ Y )
. (5.12)

The case ]−∞,∞[ = B implies Y = ∅ and the correct probability 1/Z(B,C).
The solution of (5.12) comes from an integral equation. For each x ∈ ]a, b[ , as

(Y ∪X) ∩ ]−∞, x[ = Y , c(z, Y ∪X) = 1− p(x | Y ) = 1− pY (x). Regard the measurable
functions

q : ]a, b[→ [0, 1] x 7→ 1− pY (x) ,

l : [a, b]→ [0,∞[ x 7→
∫

]x,b[

1dy = L(]x, b[) ,

e : [a, b]→ [1,∞[ x 7→ eλL(]x,b[) = eλl(x) ,

t : [a, b]→ [0, 1] x 7→ e(x)

∫
C]x,b[

∏
z∈Z

q(z)Ppoi
]x,b[(dZ) .

(5.13)

Showing (5.12) is equivalent to calculating t(a)/e(a). If ]x, b[ contains a point, then
splitting the smallest point off yields an integral equation for t.

t(x) = e(x)

∫
C]x,b[

∏
z∈Z

q(z)Ppoi
]x,b[(dZ)

= e(x)Ppoi
]x,b[(ξ = ∅)

+ e(x)

∫
]x,b[

q(y)e−λL(]x,y[)

∫
C]y,b[

∏
z∈Z

q(z)Ppoi
]y,b[(dZ)λdy

= 1 + λ

∫
]x,b[

q(y)t(y)dy .

(5.14a)

There is a boundary condition

t(b) = e(b)

∫
C∅

1Ppoi
∅ (dZ) = 1 . (5.14b)

Thus, a solution of (5.14) yields (5.12). Because the setup in (5.11) is the same as
in (5.13), consider

g : [a, b]→ [0,∞[ x 7→ e(x)

z(x)
.
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Establish that l, e, z en g are absolutely continuous by showing that they are Lipschitz
continuous on [a, b] [2, Lemma 5.3.2]. Both e and z are monotone decreasing with bounds
e(a) ≥ e(x) and z(a) ≥ z(x) ≥ z(b) ≥ 1, for x ∈ [a, b]. Because l has Lipschitz constant 1,
e has Lipschitz constant λe(a). For a � x ≺ y � b, use (2.5d) to expand z and obtain the
bound

|z(x)− z(y)| ≤
∞∑
n=1

λn

n!

∣∣∣∫
]x,∞[n\]y,∞[n

e−H(a1,...,an|C)
n∏
i=1

dai

∣∣∣
≤
∞∑
n=1

λn

n!
L(]x,∞[n\]y,∞[n) ≤

∞∑
n=1

λn

n!
n|x− y|L(]y,∞[)n−1 = λe(y)|x− y| .

Hence, z has Lipschitz constant λe(a). For a � x ≺ y � b, bound g by

|g(x)− g(y)| =
∣∣∣e(x)z(y)− e(y)z(y) + e(y)z(y)− e(y)z(x)

z(x)z(y)

∣∣∣
≤ |e(x)− e(y)|

z(x)
+
e(y)|z(x)− z(y)|

z(x)z(y)
.

Applying the bounds for e and z, g has Lipschitz constant λ e(a)
z(b) + λ e(a)2

z(b)2 .
As the functions l, e, z en g are all absolutely continuous with respect to L, they are

Lebesgue differentiable L–a.e. . Because l′ = −1 and e′ = −λe, L–a.e. on ]a, b[,

g′ =
ze′ − ez′

z2
=
z(−λe)− e(−λhs)

z2
= −λe

z

(
1− hs

z

)
(5.8)
= −λgq .

As e(b) = 1, g(b) = 1
z(b) ≤ 1, by (5.3). Integration of g yields

g(x) = g(b)−
∫

]x,b[

g′(y)dy =
1

z(b)
+ λ

∫
]x,b[

g(y)q(y)dy .

Hence, the function z(b)g solves (5.14) L–a.e. and is L–a.e. equal to t. The expression
t(a)
e(a) = z(b)g(a)

e(a) = z(b)
e(a)

e(a)
z(a) = z(b)

z(a) yields the rhs of (5.12).

5.7 Proof of Theorem 5.3

The thinning P thin
B,C is well-defined, as the choice function sums to one over all possible

choices.
∀ disjoint X,Z ∈ CB : β(X,Z) :=

∑
Y⊆Z

∏
x∈Z

c(x,X ∪ Y ) = 1 . (5.15)

Ascertain (5.15) by induction on the size of Z. The base case Z = ∅ is trivially true.
Otherwise, let z := minZ (with respect to ≺) and Z ′ := Z \ {z}. For each Y ⊆ Z, the fact
that Y ⊆ [z,∞[ implies that (X ∪ Y )∩]−∞, z] = X∩]−∞, z], whence

c(z,X ∪ Y ) = p(z | X ∪ Y ) = pX∩]−∞,z[(z) . (5.16)

Hence, with P := pX∩]−∞,z[(z),

β(X,Z)
(5.15)

=
∑
Y ′⊆Z′

(∏
x∈Z

c(x,X ∪ {z} ∪ Y ′) +
∏
x∈Z

c(x,X ∪ Y ′)

)
(5.16)

=
∑
Y ′⊆Z′

P
∏
x∈Z′

c(x,X ∪ {z} ∪ Y ′) +
∑
Y ′⊆Z′

(1− P )
∏
x∈Z′

c(x,X ∪ Y ′)

(5.15)
= Pβ(X ∪ {z}, Z ′) + (1− P )β(X,Z ′)

ind
= P + 1− P = 1 .
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The freedom to restrict the boundary condition C to C ∩R(B) ∈ CR(B) follows from
the same freedom for H and Z (2.5d). The measurability in the boundary condition
follows from the measurability preserving operations in (5.9) and the measurability of
the rhs of (5.8).

The fact that P thin
B,C is a stochastic domination is evident from the construction. The

construction as thinning implies that the second marginal is Poisson (5.10b). The
remainder of this section shows that the first marginal is hard-sphere (5.10a).

Let Y ∈ CB with n := |Y |. Order Y =: {y1, . . . , yn} increasingly by ≺. Let y0 := −∞
and yn+1 := ∞. For 0 ≤ i ≤ n, let Bi := ]yi, yi+1[, Ai := ]yi,∞[, Yi := {y1, . . . , yi} and
Ci := C ∪ Yi. Thus, Y ∩ ]−∞, yi[ = Yi−1.

P thin
B,C(ξ1 = dY )

(5.9c)
=

∫
CB

[Y ⊆ Z]
∏
z∈Z

c(z, Y )Ppoi
B (dZ)

=

(∫
CB\Y

∏
z∈Z

c(z, Y )Ppoi
B (dZ)

)∏
y∈Y

c(y, Y )

 eλL(B)Ppoi
B (dY )

(5.9b)
=

(∫
CB\Y

∏
z∈Z

c(z, Y )Ppoi
B\Y (dZ)

)∏
y∈Y

p(y | Y )

 eλL(B)Ppoi
B (dY )

(5.9a)
=

(
n∏
i=0

∫
CBi

∏
z∈Z

c(z, Y )Ppoi
Bi

(dZ)

)(
n∏
i=1

pYi−1(yi)

)
eλL(B)Ppoi

B (dY ) .

For 0 ≤ i ≤ n, ∫
CBi

∏
z∈Z

c(z, Y )Ppoi
Bi

(dZ)
(5.12)

=
Z(Ai+1, Ci)

Z(Ai, Ci)
.

For 1 ≤ i ≤ n,

pYi−1
(yi)

(5.8)
= H({yi}|Ci−1)

Z(Ai, Ci)

Z(Ai, Ci−1)
.

Combine these rewritings to see that P thin
B,C(ξ1 = dY ) equals(

n∏
i=0

Z(Ai+1, Ci)

Z(Ai, Ci)

)(
n∏
i=1

H({yi}|Ci−1)
Z(Ai, Ci)

Z(Ai, Ci−1)

)
eλL(B)Ppoi

B (dY ) .

Combine the hard-sphere constraints by (5.2). Join the two products and cancel the
factors except the denominator at index 0 and the numerator at index n from the left
product.

P thin
B,C(ξ1 = dY ) =

Z(An+1, Cn)

Z(A0, C0))
H(Y |C)eλL(B)Ppoi

B (dY )

=
Z(∅, C ∪ Y )H(Y |C)Ppoi

B (dY )

Z(B,C)e−λL(B)

(5.5)
=

H(Y |C)Ppoi
B (dY )

Ppoi
B (dY |H(ξ|C) = 1)

(2.4)
= Phs

B,C(dY ) .

6 The twisted coupling family

Definition 6.1 defines a family of couplings recursively. Proposition 6.3 shows that it is
a disagreement coupling family of intensity λ for the hard-sphere model. The notational
conventions outlined at the beginning of Section 5 apply.
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Definition 6.1. Let B ∈ Bb and C1, C2 ∈ CBc . For 1 ≤ i ≤ 2, let Fi := B ∩ R(Ci). Let
D := F1∪F2 be the zone of disagreement and partition it into D1 := F2 \F1, D2 := F1 \F2

and D0 := F1 ∩ F2.
Define the joint Janossy intensity of the law P tw-zone

B,C1,C2
on (C3

D,F
⊗3
D ) by

P tw-zone
B,C1,C2

(dY ) := Ppoi
D0

(d(Y3 ∩D0))

×[Y1 ⊆ D1]P thin
B,C1

(ξD1
= d(Y1 ∩D1, Y3 ∩D1))

×[Y2 ⊆ D2]P thin
B,C2

(ξD2
= d(Y2 ∩D2, Y3 ∩D2)) .

(6.1a)

Define the joint Janossy intensity of law P tw-rec
B,C1,C2

on (C3
B ,F

⊗3
B ) recursively by

P tw-rec
B,C1,C2

(dY ) := [D = ∅][Y1 = Y2]P thin
B,C1∪C2

(d(Y1, Y3))

+ [D 6= ∅]P tw-zone
B,C1,C2

(d(Y ∩D))P tw-rec
B\D,Y1∩D,Y2∩D(d(Y \D)) . (6.1b)

The idea behind the recursive construction of P tw-rec is as follows: The sets F1 and F2

describe the parts of the domain forbidden by the respective boundary conditions. If one
can construct the disagreement coupling on D, then recursion takes care of the rest.

If D = ∅, a dominating coupling with an identification of the two hard-sphere PPs is
already a disagreement coupling. Since there are no disagreeing points, no connection
to the disagreeing boundary is needed. For 1 ≤ i ≤ 2, let C ′i := Ci ∩ R(B). Hence,
C ′1 4 C ′2 = ∅ and C ′1 ∪ C ′2 = C ′1 = C ′2.

If D 6= ∅, then the partition {D0, D1, D2} comes into play. Points of ξ1 and ξ2 can only
lie in D1 and D2 respectively. Independent projections of a dominating coupling take
care of that. This also connects the disagreeing points to the boundary for free. On D0,
an independent Poisson PP of intensity λ ensures that there is a Poisson PP on all of D.
This is the “twist”.

The event of connecting disagreement with the boundary in F⊗2
B is

DC1,C2

B := {Y ∈ C2
B | ∀x ∈ Y1 4 Y2 : x

in Y14Y2←−−−−→C1 4 C2} . (6.2)

Proposition 6.2. The boundary conditions of P tw-zone
B,C1,C2

may be restricted to CR(B). The
law P tw-zone

B,C1,C2
is jointly measurable in (C1, C2) and has the right marginals

∀ 1 ≤ i ≤ 2 : P tw-zone
B,C1,C2

(ξi = dY ) = Phs
B,Ci

(ξD = dY ) , (6.3a)

P tw-zone
B,C1,C2

(ξ3 = dY ) = Ppoi
D (dY ) . (6.3b)

It also has the useful properties

∀ 1 ≤ i ≤ 2 : P tw-zone
B,C1,C2

(ξi ⊆ Di) = 1 , (6.3c)

P tw-zone
B,C1,C2

(ξ1 ∩ ξ2 = ∅) = 1 , (6.3d)

∀ 1 ≤ i ≤ 2 : P tw-zone
B,C1,C2

(ξi ⊆ ξ3) = 1 , (6.3e)

P tw-zone
B,C1,C2

((ξ1, ξ2) ∈ DC1,C2

D ) = 1 . (6.3f)

Proof. The freedom to restrict the boundary conditions to CR(B) follows from the same
property of P thin

B,. in Theorem 5.3. The measurability in the boundary conditions fol-

low from the same properties of the law Ppoi
B and P thin

B,. in Theorem 5.3 and the other
measurable indicator terms in construction (6.1a).

The Poisson marginal (6.3b) is a straightforward integration over (6.1a). The hard-
sphere marginals (6.3a) use the hard-core exclusion together with the properties of the
partition {D0, D1, D2} in addition to integration.

Properties (6.3c) and (6.3d) follows directly from the [Yi ⊆ Di] terms. Property (6.3e)
follows from the fact that P thin

D1,C1
and P thin

D2,C2
are dominating couplings (5.10c). Prop-

erty (6.3f) follows trivially from the definition of D1 and D2 and (6.3c).
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Proposition 6.3. The boundary conditions of P tw-rec
B,C1,C2

may be restricted to CR(B). The
coupling P tw-rec

B,C1,C2
is well-defined and jointly measurable in (C1, C2). Its marginals are

∀ 1 ≤ i ≤ 2 : P tw-rec
B,C1,C2

(ξi = dY ) = Phs
B,Ci

(dY ) , (6.4a)

P tw-rec
B,C1,C2

(ξ3 = dY ) = Ppoi
B (dY ) . (6.4b)

It has the crucial properties

P tw-rec
B,C1,C2

(ξ1 ∪ ξ2 ⊆ ξ3) = 1 , (6.4c)

and
P tw-rec
B,C1,C2

((ξ1, ξ2) ∈ DC1,C2

B ) = 1 . (6.4d)

Proof. The first point is to check the termination of the recursion in (6.1b). For B ∈ Bb,
let s(B) := sup{|C| |C ∈ CB ,H(C) = 1}. Let τ := diam(B) + R. For all x, y ∈ B,
S(x) is contained in the cube y + [−τ, τ ]d. Putting spheres of radius R on a R/

√
d

spaced d-dimensional integer grid within this cube covers the cube and implies that
s(B) ≤ (2

√
dτ/R)d. Assume that there have been n recursion steps (6.1b). This implies

that there is a sequence (x1, . . . , xn) of points of B such that

∀ 1 ≤ i ≤ n− 1 : ||xi − xi+1|| ≤ R
∀ 1 ≤ i < j ≤ n with j − i ≥ 2 : ||xi − xj || > R .

It follows that H({xi | 1 ≤ i ≤ n, i odd}) = 1 and b(n+ 1)/2c ≤ s(B). Hence, the recursion
terminates after at most 2s(B) steps.

The freedom to restrict the boundary conditions to CR(B) follows from the same prop-
erty of P thin

B,. in Theorem 5.3, P tw-zone
B\D,.,. in Proposition 6.2 and itself. The measurability in

the boundary conditions follow from the same properties of the law P thin
B,. in Theorem 5.3,

P tw-zone
B\D,.,. in Proposition 6.2, the other measurable indicator terms in (6.1a) and itself.

The marginals (6.4a) and (6.4b) follow directly by integrating out over the marginals
and (6.3a) and (6.3b) respectively. The proof of (6.4a) use the DLR condition (5.6).

The property (6.4c) follows directly from the [Y1 = Y2] identification and the dom-
inating property of P thin

B,∅ (5.10c) in the D = ∅ case. In the D 6= ∅ case, it follows
from (6.3c), (6.3d) and (6.3e) and itself recursively.

Property (6.4d) is trivial in theD = ∅ case and follows from (6.3f) and itself recursively
in the D 6= ∅ case. Step (?) of the following proof of (6.4d) in the non-trivial D 6= ∅ case
demonstrates the need for the measurability of the coupling in the boundary conditions.

P tw-rec
B,C1,C2

((ξ1, ξ2) ∈ DC1,C2

B )

≥ P tw-rec
B,C1,C2

((ξ1
D, ξ

2
D) ∈ DC1,C2

D , (ξ1 \D, ξ2 \D) ∈ Dξ
1
D,ξ

2
D

B\D )

(6.1b)
=

∫
DC1,C2

D

∫
DY1,Y2

B\D

P tw-rec
B\D,Y1,Y2

((ξ1, ξ2) = dZ)P tw-zone
B,C1,C2

((ξ1, ξ2) = dY )

(?)
=

∫
DC1,C2

D

P tw-rec
B\D,Y1,Y2

((ξ1, ξ2) ∈ DY1,Y2

B\D )P tw-zone
B,C1,C2

((ξ1, ξ2) = dY )

(6.4d)
= P tw-zone

B,C1,C2
((ξ1, ξ2) ∈ DC1,C2

D )

(6.3f)
= 1 .
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