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Optimizing the drift in a diffusive search for a random
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Abstract

Let a ∈ R denote an unknown stationary target with a known distribution µ ∈ P(R),
the space of probability measures on R. A diffusive searcher X(·) sets out from the
origin to locate the target. The time to locate the target is Ta = inf{t ≥ 0 : X(t) = a}.
The searcher has a given constant diffusion rate D > 0, but its drift b can be set by
the search designer from a natural admissible class Dµ of drifts. Thus, the diffusive

searcher is a Markov process generated by the operator L = D
2
d2

dx2
+ b(x) d

dx
. For a

given drift b, the expected time of the search is∫
R

(E
(b)
0 Ta)µ(da). (0.1)

Our aim is to minimize this expected search time over all admissible drifts b ∈ Dµ.
For measures µ that satisfy a certain balance condition between their restriction to
the positive axis and their restriction to the negative axis, a condition satisfied, in
particular, by all symmetric measures, we can give a complete answer to the problem.
We calculate the above infimum explicitly, we classify the measures for which the
infimum is attained, and in the case that it is attained, we calculate the minimizing
drift explicitly. For measures that do not satisfy the balance condition, we obtain
partial results.
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1 Introduction and statement of results

A number of recent papers have considered a stochastic search model for a stationary
target a ∈ Rd, which might be random and have a known distribution attached to it,
whereby a searcher sets off from a fixed point, say the origin, and performs Brownian
motion with diffusion constant D. The searcher is also armed with a (possibly space
dependent) exponential resetting time, so that if it has failed to locate the target by
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Optimizing drift in diffusive search for random target

that time, then it begins its search anew from the origin. One may be interested in
several statistics, the most important one being the expected time to locate the target.
(In dimension one, the target is considered “located” when the process hits the point
a, while in dimensions two and higher, one chooses an ε > 0 and the target is said
to be “located” when the process hits the ε-ball centered at a.) Without the resetting,
this expected time is infinite. When the rate of the exponential clock is constant, the
expected time to locate the target is finite; furthermore, this jump-Brownian motion
process possesses an invariant probability density, call it ν. See, for example, [1, 2, 3, 9].
For related models, see [4, 6, 7] as well as the references in all of the above articles.

It is well known that the Brownian motion with diffusion constant D and with drift
D
2
∇ν
ν , that is the diffusion process generated by D

2 ∆ + D
2
∇ν
ν · ∇, also has invariant

probability density ν. In [3], for the case of constant resetting rate in one dimension, it
was shown that the expected time to locate a target at the deterministic point a ∈ R for
the jump-Brownian motion process is less than the expected time for the corresponding
(non-jumping) diffusion process with the same invariant measure (generated by D

2
d2

dx2 +
D
2
ν′

ν
d
dx ) to locate the target. The above is partial motivation for the problem we consider

in this paper; we believe it is also of some independent interest.
Let a ∈ R denote an unknown stationary target with a known distribution µ ∈ P(R),

the space of probability measures on R. A diffusive searcher X(·) sets out from the
origin to locate the target. The time to locate the target is Ta = inf{t ≥ 0 : X(t) = a}. We
assume that the diffusive searcher has a given constant diffusion rate D > 0, but that
its drift b can be set by the search designer from a natural admissible class Dµ of drifts,
which we define below. Thus, the searcher is a Markov diffusion process generated by
the operator L = D

2
d2

dx2 + b(x) d
dx . We will denote probabilities and expectations with

respect to X(·) by P (b)
0 and E(b)

0 . For a given drift b, the expected time of the search is∫
R

(E
(b)
0 Ta)µ(da). (1.1)

Our aim is to minimize this expected search time over all admissible drifts b ∈ Dµ. We
note that this same problem was recently considered in the physics literature [5]; for
more on this, see Remark 1 after Theorem 1.3.

We now discuss the influence of the drift, which will lead us to the definition of
the admissible class Dµ of drifts. In order to avoid trivialities, we will assume that the
support of µ has a non-empty intersection with both open half-lines. (Otherwise, if say, µ
is supported in [0,∞), then

∫
R

(E
(b)
0 Ta)µ(da) is a decreasing function of the drift b and

converges to 0 as the drift converges pointwise to +∞.) For convenience only, we will
assume that the origin is not an atom of the distribution µ. We write µ in the form

µ = (1− p)µ− + pµ+, where p ∈ (0, 1), µ− is a probability measure on (−∞, 0)

and µ+ is a probability measure on (0,∞).
(1.2)

Define
A−(µ) = inf{x ∈ (−∞, 0) : µ−

(
(−∞, x]

)
> 0},

A+(µ) = sup{x ∈ (0,∞) : µ+

(
[x,∞)

)
> 0}.

(1.3)

If A−(µ) > −∞ (A+(µ) < ∞), then there is no point in searching to the left of A−(µ)

(to the right of A+(µ)). If A−(µ) > −∞ (A+(µ) <∞) and the diffusion can reach A−(µ)

(A+(µ)), then we consider the diffusion with reflecting boundary at A−(µ) (A+(µ)). In
terms of the generator L, the reflecting boundary at A−(µ) (A+(µ)) is equivalent to
imposing the Neumann boundary condition u′(A−(µ)) = 0 (u′(A+(µ)) = 0). (At least
heuristically, the reflecting boundary at A−(µ) (A+(µ)) may be thought of as imposing a
drift of +∞ on (−∞, A−(µ)) (−∞ on (A+(µ),∞)), so we include the boundary condition
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Optimizing drift in diffusive search for random target

as part of our drift condition below.) The above discussion leads us to define the following
condition on the drift b:

i. b is piecewise continuous and locally bounded on (A−(µ), A+(µ)).

Also, if A−(µ) > −∞ is an atom for µ, then b is locally bounded on [A−(µ), A+(µ)),

and if A+(µ) <∞ is an atom for µ, then b is locally bounded on (A−(µ), A+(µ)].

ii. If A−(µ) > −∞ (A+(µ) <∞) and the diffusion can reach A−(µ) (A+(µ)),

then the diffusion is reflected at A−(µ) (A+(µ)).
(1.4)

Remark. In particular, if µ has atoms at both A−(µ) and A+(µ), then the drifts satisfying
(1.4) are bounded on (A−(µ), A+(µ)).

As is well-known, the expected hitting time E(b)
0 Ta is finite for all a ∈ (A−(µ), A+(µ))

if and only if the diffusion X(·) is positive recurrent. Positive recurrence for drifts
satisfying (1.4) is equivalent to the condition∫ A+(µ)

A−(µ)

dx exp(
2

D

∫ x

0

b(y)dy) <∞. (1.5)

(See [8].) We can now define the class of admissible drifts.

The Class Dµ of Admissible Drifts:

Dµ is the class of drifts b

satisfying (1.4) and (1.5).
(1.6)

Let
µ−(x) = µ−((−∞, x)), for x ≤ 0, µ+(x) = µ+((x,∞)), for x ≥ 0, (1.7)

denote the tails of µ− and µ+.

We begin with the following result.

Theorem 1.1. Let the target distribution µ satisfy µ = (1− p)µ− + pµ+ as in (1.2), let
A−(µ) and A+(µ) be as in (1.3) and let µ−(x) and µ+(x) be as in (1.7). Let the class

of admissible drifts Dµ be as in (1.6). If
∫ 0

−∞ µ
1
2
−(x)dx = ∞ and

∫∞
0
µ

1
2
+(x)dx = ∞, then∫

R
(E

(b)
0 Ta)µ(da) =∞, for all b ∈ Dµ.

Remark. Note of course that
∫∞

0
µ

1
2
+(x)dx =

∫ A+(µ)

0
µ

1
2
+(x)dx and

∫ 0

−∞ µ
1
2
−(x)dx =∫ 0

A−(µ)
µ

1
2
−(x)dx, and that the first integral (second integral) is always finite if A+(µ) <∞

(A−(µ) > −∞).

The following simple proposition gives a sufficient moment condition for integrals of
the above type to be finite.

Proposition 1.2. Let ν be a probability measure on (0,∞) and let ν(x) = ν((x,∞)).
If
∫∞

0
x2| log x|1+εν(dx) < ∞, for some ε > 0, then

∫∞
0
ν

1
2 (x)dx < ∞. The condi-

tion
∫∞

0
x2| log x|1−εν(dx) < ∞, for all ε ∈ (0, 1), is not sufficient for the finiteness

of
∫∞

0
ν

1
2 (x)dx.

Proof. For ε > 0, ∫ ∞
0

ν
1
2 (x)dx ≤ 2 + C

(∫ ∞
2

x| log x|1+ε ν(x)
) 1

2

,

where C =
( ∫∞

2
1

x| log x|1+ε dx
) 1

2 < ∞. An integration by parts shows that the integral

on the right hand side above is finite if
∫∞

0
x2(| log x|)1+εν(dx) < ∞. This proves the
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Optimizing drift in diffusive search for random target

first claim in the proposition. For the second claim, let ν be a distribution that satisfies
ν(x) = 1

x2(| log x|)2 , for x ≥ 2. Then
∫∞

0
x2| log x|1−εν(dx) < ∞, for all ε ∈ (0, 1), but∫∞

0
ν

1
2 (x)dx =∞.

In the case that
∫ 0

−∞ µ
1
2
−(x)dx and

∫∞
0
µ

1
2
+(x)dx are finite, the following condition on

the target distribution µ will play a seminal role.

Square Root Balance Condition. The target distribution µ = (1− p)µ− + pµ+ is such

that the integrals
∫∞

0
µ

1
2
+(x)dx and

∫ 0

−∞ µ
1
2
−(x)dx are finite and satisfy

∫∞
0
µ

1
2
+(x)dx∫ 0

−∞ µ
1
2
−(x)dx

=
(1− p) log(1− p)

p log p
. (1.8)

Remark. A symmetric target distribution (the case in which µ+(x) = µ−(−x), for x ∈
(0,∞), and p = 1

2 ) always satisfies the square root balance condition.

When the target distribution satisfies the square root balance condition, we can give
a complete answer to the optimization problem.

Theorem 1.3. Let the target distribution µ satisfy µ = (1− p)µ− + pµ+ as in (1.2), let
A−(µ) and A+(µ) be as in (1.3) and let µ−(x) and µ+(x) be as in (1.7). Let the class of
admissible drifts Dµ be as in (1.6). Assume also that the target distribution µ satisfies
the square root balance condition (1.8). Then
i.

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) =

2

D

( 1− p
| log p|

(

∫ 0

−∞
µ

1
2
−(x)dx)2 +

p

| log(1− p)|
(

∫ ∞
0

µ
1
2
+(x)dx)2

)
.

(1.9)

In particular, in the case of a symmetric target distribution,

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) =

2

D log 2
(

∫ ∞
0

µ
1
2
+(x)dx)2. (1.10)

ii. The infimum in (i) is attained if and only if the restriction of µ to (A−(µ), A+(µ)) is
absolutely continuous with a piecewise continuous, locally bounded density. (µ may
possess an atom at A−(µ) and/or at A+(µ).) This infimim is attained uniquely at the drift

b0(x) =


D
(

1
4

µ−
′(x)

µ−(x) −
| log p|

2
∫ 0
−∞ µ

1
2
−(y)dy

µ
1
2
−(x)

)
, A−(µ) < x < 0;

D
(

1
4

µ+
′(x)

µ+(x) + | log(1−p)|

2
∫∞
0
µ

1
2
+ (y)dy

µ
1
2
+(x)

)
, 0 < x < A+(µ).

(1.11)

If
∫
A−(µ)

µ
− 1

2
− (x)dx =∞ (

∫
A+(µ)

µ
− 1

2
+ (x)dx =∞), then this drift prevents the diffusionX(·)

from reaching A−(µ)
(
A+(µ)

)
. Otherwise the diffusion X(·) can reach A−(µ)

(
A+(µ)

)
,

and consequently the diffusion is considered with reflection at A−(µ) (A+(µ)).
iii. For those µ for which the infimum in (i) is not attained, the infimum is approached by
a sequence {bn}∞n=1 of drifts, with bn given by (1.11) with µ = (1− p)µ− + pµ+ replaced
by µn = (1− p)µ−;n + pµ+;n, where µn satisfies the square root balance condition (1.8),
is of the type described in (ii) and converges weakly to µ.

Remark 1. After this paper was competed and placed on the Mathematics ArXiv, I
was directed to [5] by one of its coauthors. That paper, which appears in the physics
literature, treats the same problem considered here. In particular, in the case that µ is
symmetric and possesses a density, the authors found that b0 from (1.11) (with p = 1

2 and

EJP 24 (2019), paper 82.
Page 4/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP335
http://www.imstat.org/ejp/


Optimizing drift in diffusive search for random target

µ+(x) = µ−(−x)) is a critical point of the map b→
∫
R

(E
(b)
0 Ta)µ(da), and they calculated

the corresponding expected search time, obtaining the expression on the righthand side
of (1.10). They stated that this search time is optimal.

Remark 2. Let

EV(µ−) :=

∫ 0

−∞
xµ−(dx), EV(µ+) :=

∫ ∞
0

xµ+(dx)

denote respectively the expected values of random variables distributed according to
µ− and according to µ+. Since |EV(µ−)| =

∫ 0

−∞ µ−(x)dx and EV(µ+) =
∫∞

0
µ+(x)dx, it

follows from part (i) of the theorem that

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) ≥ 2

D

( 1− p
| log p|

(EV(µ−))2 +
p

| log(1− p)|
(EV(µ+))2

)
,

with equality if and only if µ− and µ+ are the degenerate probability measures δA−(µ) and
δA+(µ) respectively. In particular, in the case that the target distribution µ is symmetric,
then AvgDist(µ) := EV(µ+) is the expected distance of the target to the origin, and

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) ≥ 2

D log 2
(AvgDist(µ))2, (1.12)

with equality if and only if the target distribution is µ = 1
2δ−A+ 1

2δA, where A = −A−(µ) =

A+(µ). In Section 2, it is shown that for a number of families of symmetric distributions,

the ratio of infb∈Dµ
∫
R

(E
(b)
0 Ta)µ(da) to (AvgDist(µ))2 is constant within each family, that

is, independent of the particular parameter.

Remark 3. Note that in part (ii), if µ+ does not have an atom at A+(µ) and has a density
that vanishes at least to order one there, then µ+ vanishes there at least to order

two. Thus,
∫
A+(µ)

µ
− 1

2
+ (x)dx = ∞, and the diffusion with optimal drift b0 cannot reach

A+(µ). However, if µ+ has an atom at A+(µ), or if it doesn’t have an atom at A+(µ) and

its density vanishes there to order less than one, then
∫
A+(µ)

µ
− 1

2
+ (x)dx < ∞, and the

diffusion with optimal drift can reach A+(µ). The same considerations hold at A−(µ).

Remark 4. For sufficiently nice target distributions µ = (1− p)µ− + pµ+ with A−(µ) =

−∞ and A+(µ) =∞, one can choose a drift b = bµ so that the diffusion process has µ as
its invariant measure. This drift, non-optimal for our problem, will be

bµ(x) :=


D
2

µ̄′′−(x)

µ̄′−(x) , x < 0;

D
2

µ̄′′+(x)

µ̄′+(x) , x > 0.

It is known that
∫
R

(E
(bµ)
0 Ta)µ(da) =

∫
R

(E
(bµ)
x Ta)µ(da), for all x ∈ R, and this constant

value, which will be finite if and only if ±∞ are both entrance boundaries for the diffusion,
is called Kemeny’s constant [10].

In Section 2 we illustrate Theorem 1.3 with a number of examples.

We now turn to the case that the target distribution does not satisfy the square root
balance condition (1.8). Here we have only partial results.

Theorem 1.4. Let the target distribution µ satisfy µ = (1− p)µ− + pµ+ as in (1.2), let
A−(µ) and A+(µ) be as in (1.3) and let µ−(x) and µ+(x) be as in (1.7). Let the class of
admissible drifts Dµ be as in (1.6). Assume also that the target distribution does not

satisfy the square root balance condition (1.8), but that
∫∞

0
µ

1
2
+(x)dx and

∫ 0

−∞ µ
1
2
−(x)dx

are finite. Then
i. infb∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) is not attained.
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Optimizing drift in diffusive search for random target

ii. If µ restricted to (A−(µ), A+(µ)) is absolutely continuous with a piecewise continuous,
locally bounded density on (A−(µ), A+(µ)) (µ may possess an atom at A−(µ) and/or at
A+(µ)), then

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) <

2

D

( 1− p
| log p|

( ∫ 0

−∞
µ

1
2
−(x)dx

)2
+

p

| log(1− p)|
( ∫ ∞

0

µ
1
2
+(x)dx

)2)−
2

D

( 1− p
| log p|

∫ 0

−∞
µ

1
2
−(x)dx− p

| log(1− p)|

∫ ∞
0

µ
1
2
+(x)dx

)2

,

(1.13)

and
∫
R

(E
(b)
0 Ta)µ(da) is equal to the righthand side of (1.13) when b is given by (1.11).

Remark 1. Note that the expression on the third line of (1.13) would be zero if the
square root balance condition held, in which case the right hand side of (1.13) would be
equal to the right hand side of (1.9). The right hand side of (1.13) can also be written as

2

D

1− p
| log p|

(1− 1− p
| log p|

)
(∫ 0

−∞
µ

1
2
−(x)dx

)2

+

2

D

p

| log(1− p)|
(1− p

| log(1− p)|
)
(∫ ∞

0

µ
1
2
+(x)dx

)2

+

4

D

p(1− p)
| log(1− p)|| log p|

(∫ 0

−∞
µ

1
2
−(x)dx

)(∫ ∞
0

µ
1
2
+(x)dx

)
.

It is easy to check that the coefficients of
( ∫ 0

−∞ µ
1
2
−(x)dx

)2
and

( ∫∞
0
µ

1
2
+(x)dx

)2
in the

above expression are positive.

The above results suggest two open problems.

Open Problem 1. In the case that the square root balance condition fails, calculate
infb∈Dµ

∫
R

(E
(b)
0 Ta)µ(da).

Open Problem 2. Is infb∈Dµ
∫
R

(E
(b)
0 Ta)µ(da) necessarily infinite in the case that one

out of
∫ 0

−∞ µ
1
2
−(x)dx and

∫∞
0
µ

1
2
+(x)dx is infinite and the other is finite? If not, what can

be said about infb∈Dµ
∫
R

(E
(b)
0 Ta)µ(da)?

It is natural to wonder about the corresponding problem in higher dimensions. Let
the unknown stationary target a ∈ Rd be distributed according to a known distribution
µ ∈ P(Rd), the space of probability measures on Rd. Consider a diffusion process X(·)
starting at 0 and generated by D

2 ∆ + b(x) · ∇, and denote probabilities and expectations

with respect to this process by P (b)
0 and E

(b)
0 . Let ε > 0 and define τa;ε = inf{t ≥ 0 :

|X(t) − a| ≤ ε} One then wants to minimize
∫
R

(E
(b)
0 τa;ε)µ(da) over a natural class of

admissible drifts. In the two-dimensional case, resolve the drift into radial and angular
components, r and θ, and write b(x) ·∇ = b rad(r, θ) ∂∂r +b ang(r, θ) 1

r
∂
∂θ . It is intuitively clear

that if we let b rad(r, θ) depend only on r and let b ang(r, θ) be equal to a constant b ang, then

for |a| − ε > 0, the quantity lim b ang→∞E
(b)
0 τε will just be equal to the expected hitting

time of |a| − ε for the one-dimensional radial diffusion started from 0+ and generated

by d2

dr2 + 1
r
d
dr + b rad(r) ddr . And this latter hitting time converges to 0 as the drift brad(r)

converges pointwise to∞. Thus, in order to obtain something interesting, a restriction
must be placed on the angular drift. Such a limitation doesn’t seem to occur in higher
dimensions. In any case, perhaps a good starting point would be to consider the class of
radial drifts. Our intuition is that the higher the dimension, the more strongly toward the
origin will point an optimal or near-optimal radial drift, since the higher the dimension,
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Optimizing drift in diffusive search for random target

the more space there is to search at each fixed radius. Of course, the great difficulty
with the multi-dimensional case is that there isn’t an explicit formula for E(b)

0 τa;ε.

We conclude this introductory section with a sketch of our method of approach to
the variational problem, infb∈Dµ

∫
R

(E
(b)
0 Ta)µ(da), since it has a certain novelty to it. To

proceed, we need the following proposition.

Proposition 1.5. Let µ ∈ P(R), and let b ∈ Dµ, where Dµ is the class of admissible
drifts as in (1.6). Then

E
(b)
0 Ta =

{
2
D

∫ 0

a
dx exp(−

∫ x
0

2
D b(y)dy)

∫ A+(µ)

x
dz exp(

∫ z
0

2
D b(t)dt), A−(µ) ≤ a < 0;

2
D

∫ a
0
dx exp(−

∫ x
0

2
D b(y)dy)

∫ x
A−(µ)

dz exp(
∫ z

0
2
D b(t)dt), 0 < a ≤ A+(µ).

(1.14)

Remark. The explicit formula for the hitting time in Proposition 1.5 is of course not new,
but since we need it for a variety of situations—including the case in which the drift can
blow up at the boundary, and including the case of reflection at the boundary, we will
present its proof in Section 5.

In light of Proposition 1.5, for µ = (1− p)µ− + pµ+, we have

D

2

∫
R

(E
(b)
0 Ta)µ(da) =

(1− p)
∫ 0

A−(µ)

µ−(da)
[ ∫ 0

a

dx exp(−
∫ x

0

2

D
b(y)dy)

∫ A+(µ)

x

dz exp(

∫ z

0

2

D
b(t)dt)

]
+

p

∫ A+(µ)

0

µ+(da)
[ ∫ a

0

dx exp(−
∫ x

0

2

D
b(y)dy)

∫ x

A−(µ)

dz exp(

∫ z

0

2

D
b(t)dt)

]
,

(1.15)

and after a Reimann-Stieltjes integration by parts, we obtain

D

2

∫
R

(E
(b)
0 Ta)µ(da) =

(1− p)
∫ 0

A−(µ)

daµ−(a)
[

exp(−
∫ a

0

2

D
b(y)dy)

∫ A+(µ)

a

dz exp(

∫ z

0

2

D
b(t)dt)

]
+

p

∫ A+(µ)

0

daµ+(a)
[

exp(−
∫ a

0

2

D
b(y)dy)

∫ a

A−(µ)

dz exp(

∫ z

0

2

D
b(t)dt)

]
.

(1.16)

In the case that A+(µ) < ∞ (A−(µ) > −∞), the passage from (1.15) to (1.16) is true

even if µ+ (µ−) has an atom at A+(µ) (A−(µ)), or if
∫ A+(µ)

0
dx exp(−

∫ x
0

2
D b(y)dy) = ∞

(
∫ 0

A−(µ)
dx exp(−

∫ x
0

2
D b(y)dy) = ∞). This is because in (1.7), µ+(x) (µ−(x)) has been

defined not to include µ+({x}) (µ−({x})). In the case that A+(µ) = ∞ (A−(µ) = −∞),
the passage from (1.15) to (1.16) is true for the following reason. (We explain it for
A+(µ) =∞.) We need to justify having ignored in the integration by parts the possible
contribution

lim
A→∞

µ+(A)

∫ A

0

dx exp(−
∫ x

0

2

D
b(y)dy)

∫ x

A−(µ)

dz exp(

∫ z

0

2

D
b(t)dt). (1.17)

If the term
∫∞

0
daµ+(a)

[
exp(−

∫ a
0

2
D b(y)dy)

∫ a
A−(µ)

dz exp(
∫ z

0
2
D b(t)dt)

]
on the right hand

side of (1.16) is infinite, then nothing need be checked; thus, assume this integral is
finite. Then we need to show that (1.17) is equal to 0. Since limA→∞ µ+(A) = 0, (1.17) is
equal to

lim
A→∞

µ+(A)

∫ A

A0

dx exp(−
∫ x

0

2

D
b(y)dy)

∫ x

A−(µ)

dz exp(

∫ z

0

2

D
b(t)dt),
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for any fixed A0 > 0. We have

µ+(A)

∫ A

A0

dx exp(−
∫ x

0

2

D
b(y)dy)

∫ x

A−(µ)

dz exp(

∫ z

0

2

D
b(t)dt) ≤∫ A

A0

daµ+(a)
[

exp(−
∫ a

0

2

D
b(y)dy)

∫ a

A−(µ)

dz exp(

∫ z

0

2

D
b(t)dt)

]
:= δ(A0, A).

By the integrability assumption, limA0→∞ limA→∞ δ(A0, A) = 0. We conclude from the
above argument that (1.17) is indeed equal to 0.

We want to minimize the righthand side of (1.16) over b ∈ Dµ. There are two points
of view that one can take, and it turns out that both of them are essential. One point of
view is to consider the righthand side of (1.16) as a functional of b; we will call it G1:

G1(b) = (1− p)
∫ 0

A−(µ)

daµ−(a)
[

exp(−
∫ a

0

2

D
b(y)dy)

∫ A+(µ)

a

dz exp(

∫ z

0

2

D
b(t)dt)

]
+

p

∫ A+(µ)

0

daµ+(a)
[

exp(−
∫ a

0

2

D
b(y)dy)

∫ a

A−(µ)

dz exp(

∫ z

0

2

D
b(t)dt)

]
. (1.18)

For the other point of view, define the distribution function

F (x) =

∫ x
A−(µ)

dz exp(
∫ z

0
2
D b(t)dt)∫ A+(µ)

A−(µ)
dz exp(

∫ z
0

2
D b(t)dt)

, (1.19)

and let f(x) = F ′(x) denote its density. Then the righthand side of (1.16) can be thought
of as a functional of F ; we call it G2(F ). It is given by

G2(F ) = (1− p)
∫ 0

A−(µ)

µ−(a)
F (A+(µ))− F (a)

f(a)
da+ p

∫ A+(µ)

0

µ+(a)
F (a)

f(a)
da. (1.20)

Of course, F (A+(µ)) = 1, but it is useful to write it as we have done in order to exploit
the homogeneity. Indeed, note that now we can consider G2 to be a functional of
positive multiples of distribution functions of the type just described, and we have
G2(cF ) = G2(F ), for all c > 0. We denote the domain of the functional G2 by D(G2) and
specify it as follows:

D(G2) is the set of positive multiples of the class of distributions functions

F that can be written in the form (1.19), where b ∈ Dµ.
(1.21)

To search for critical points, the first point of view requires us to consider the
condition

0 = lim
ε→0

G1(b+ εβ)−G1(b)

ε
, (1.22)

for an appropriate wide class of drifts β. To isolate β in (1.22) requires numerous integra-
tion by parts. This eventually leads to an equation of the form (1−p)

∫ 0

A−(µ)
β(a)Ψ−(a)da+

p
∫ A+(µ)

0
β(a)Ψ+(a)da = 0, for all β, where Ψ− and Ψ+ are expressions involving b. Thus

Ψ−(a) = 0, for A−(µ) < a < 0, and Ψ+(a) ≡ 0, for 0 < a < A+(µ). However, we did not
find it tractable to solve these equations for b.

Since G2 is homogeneous of order zero, to search for critical points via the second
point of view we consider the condition

0 = lim
ε→0

G2(F + εQ)−G2(F )

ε
(1.23)
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(here ε takes on both positive and negative values), where Q is such that F + εQ belongs
to the domain D(G2) of G2. In fact, in order to ensure that we can interchange the order
of the integration and the differentiation when we calculate (1.23) with G2 given by
(1.20), and also in order to ensure that F + εQ is positive for small negative ε, we will
actually restrict ourselves to distribution functions Q with densities compactly supported
in
(
A−(µ), A+(µ)

)
. After integrating by parts several times to isolate the density q := Q′

of Q, we obtain an equation of the form

(1− p)
∫ 0

A−(µ)

q(a)Φ−(a)da+ p

∫ A+(µ)

0

q(a)Φ+(a)da = Σ(F, µ−, µ+),

where Φ− is an expression involving F, F ′ and µ−, Φ+ is an expression involving F, F ′

and µ+, and Σ is a constant involving F ′, µ− and µ+. Since q is a general compactly
supported density function, this leads to the equations (1− p)Φ−(a) = Σ(F, µ−, µ+), for
A−(µ) < a < 0 and pΦ+(a) = Σ(F, µ−, µ+), for 0 < a < A+(µ). These equations for F
turn out to be tractable. If µ satisfies the square root balance condition and is as in (ii) of
Theorem 1.3, then there is a unique solution F0 for which the corresponding b0 (obtained

via F ′′0 (x)
F ′0(x) =

f ′0
f0

(x) = 2
D b0(x)) is in Dµ; otherwise there is no solution, and thus there are

no critical points.

When G2 possesses a critical point F0, how do we show that in fact G2 attains its
global minimum uniquely at F0? (Or equivalently, how do we show that the global
minimum of G1 is attained uniquely at b0, where b0 corresponds to F0 via (1.19)?)
Uniqueness is immediate since there is only one critical point. Due to certain technical
obstacles, we can only show directly that F0 is the global minimum in the case of target
measures µ for which A−(µ) and A+(µ) are finite and are atoms of the measure. The
case of a general measure is obtained by approximating by measures as above. To prove
that the critical point F0 is the global minimum, it would be natural to take an arbitrary
admissible F and consider L2(t) := G2((1 − t)F0 + tF ). We would like to show that G2

is convex and that L′2(0) = 0, from which it would follow that the global minimum is
attained at F0. However, we see no way to prove that G2 is convex. On the other hand, it
is very easy to show that G1 is convex.

Proposition 1.6. For all target distributions µ, the set Dµ is convex and the functional
G1 on Dµ is convex.

The above result does not require that the target measure be of the special type
mentioned above. However, we require this restriction to prove the following technical
result.

Proposition 1.7. Assume that A−(µ) and A+(µ) are finite, that µ has atoms at both
A−(µ) and A+(µ), and that its restriction to (A−(µ), A+(µ)) is absolutely continuous
with a piecewise continuous, locally bounded density. Assume also that µ satisfies the
square root boundary condition (1.8) and let b0 be as in (1.11). Let b ∈ Dµ, and define
L1(t) = G1((1− t)b0 + tb), 0 ≤ t ≤ 1, where G1 is as in (1.18). Then L′1(0) = 0.

From the above two propositions, it follows immediately that when µ is as in Proposi-
tion 1.7, the critical point F0 is in fact the global minimum.

The rest of the paper is organized as follows. In Section 2, we illustrate Theorem 1.3
with a number of examples. The proof of Theorem 1.1 requires the result in Theorem
1.3-i, and the proof of Theorem 1.4 requires some of the proof of Theorem 1.3. Thus we
first prove Theorem 1.3 in Section 3, and then prove Theorems 1.1 and 1.4 in Section 4.
Of course, these result also depend on Propositions 1.5, 1.6 and 1.7. The first of these
propositions is proved in Section 5 and the next two are proved in Section 6.
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2 Some examples of Theorem 1.3

We give several examples to illustrate Theorem 1.3, restricting always to the case that
the target distribution µ is symmetric. Recall that in the symmetric case, the infimum
is given by (1.10). Recall also from Remark 2 after Theorem 1.3 that in the symmetric
case, the expected distance of the target is equal to

∫∞
0
µ+(dx), and has been denoted

by AvgDist(µ). Furthermore, by (1.12), the ratio D log 2
2

infb∈Dµ
∫
R

(E
(b)
0 Ta)µ(da)

(AvgDist(µ))2 is always
greater or equal to 1, with equality only in the case of the distributions in example I
below.

I. Symmetric Degenerate Distribution: µ = 1
2δ−A + 1

2δA, A > 0

We have µ+(x) = 1, x ∈ [0, A), and µ+(x) = 0, x ≥ A. Thus,

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) =

2

D log 2
A2 =

2

D log 2
(AvgDist(µ))2.

The infimum is attained at the anti-symmetric drift b0 satisfying

b0(x) =
D log 2

2A
, 0 < x < A.

Of course, the corresponding diffusion can reach ±A, so we impose reflection at ±A.

II. Symmetric Uniform Distribution: µ = U([−A,A]), A > 0

We have µ+(x) = 1 − x
A , x ∈ [0, A), and µ+(x) = 0, x > A. One has

∫∞
0
µ

1
2
+(x)dx =

1

A
1
2

∫ A
0

(A− x)
1
2 dx = 2

3A. Also, AvgDist(µ) = A
2 . Thus,

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) =

8

9D log 2
A2 =

16

9

2

D log 2
(AvgDist(µ))2.

The infimum is attained at the anti-symmetric drift b0 satisfying

b0(x) = D
[
− 1

4(A− x)
+

3 log 2

4A
(1− x

A
)

1
2

]
, x ∈ (0, A).

Despite the unbounded drift, the corresponding diffusion can reach ±A; thus we impose
reflection at ±A.

III. Symmetric Exponential Distribution: µ = 1
2Exp(λ) + 1

2

(
− Exp(λ)

)
, λ > 0

We have µ+(x) = e−λ, x > 0, and AvgDist(µ) = 1
λ . Thus,

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) =

8

Dλ2 log 2
= 4

2

D log 2
(AvgDist(µ))2.

The infimum is attained at the anti-symmetric drift b0 satisfying

b0(x) = D
(
− λ

4
+
λ

4
(log 2)e−

λ
2 x
)
, x > 0.

IV. Symmetric Gaussian Distribution: µ = N(0, σ2)

We have µ+(x) =
∫∞
x

exp(− y2

2σ2
)

√
2πσ

dy = 1− Φ( xσ ), where Φ(z) =
∫ z
−∞

exp(− y
2

2 )√
2π

dy. One has∫∞
0
µ

1
2
+(x)dx = σ

∫∞
0

(
1− Φ(z)

) 1
2 dz ≈ 0.9219σ. Also, AvgDist(µ) = σ√

2π
. Thus,

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) =

2σ2
( ∫∞

0

(
1− Φ(z)

) 1
2 dz
)2

D log 2
=

2π
( ∫ ∞

0

(
1− Φ(z)

) 1
2 dz
)2 2

D log 2
(AvgDist(µ))2 ≈ 5.340

2

D log 2
(AvgDist(µ))2.
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The infimum is attained at the anti-symmetric drift b0 satisfying

b0(x) = D
[
− 1

4

e−
x2

2σ2

√
2πσ(1− Φ( xσ ))

+
log 2

2σ
∫∞

0

(
1− Φ(z)

) 1
2 dz

(
1− Φ(

x

σ
)
) 1

2
]
, x > 0.

V. Symmetric Pareto Distribution: µ = 1
2Pareto(α,A0)+ 1

2 (−Pareto(α,A0)), where A0 > 0,
α > 2 and µ+ ∼ Pareto(α,A0) is given by µ+(x) = min(1, ( x

A0
)−α), x > 0.

One has
∫∞

0
µ

1
2
+(x)dx = A0 + 2

α−2 and AvgDist(µ) = A0 + 1
α−1 . Thus

inf
b∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) =

(α− 1

α− 2

)2(A0(α− 2) + 2

A0(α− 1) + 1

)2 2

D log 2
(AvgDist(µ))2.

The infimum is attained at the anti-symmetric drift b0 satisfying

b0(x) =

D
log 2

2(A0+ 2
α−2 )

, x ∈ (0, A0);

D
(
− α

4x + log 2
2(A0+ 2

α−2 )
( x
A0

)−
α
2

)
, x > A0.

Note that this drift is only piecewise continuous, because µ+ is only piecewise continu-
ously differentiable.

Remark 1. Note that the ratio D log 2
2

infb∈Dµ
∫
R

(E
(b)
0 Ta)µ(da)

(AvgDist(µ))2 is independent of the param-
eter for each of the families of distributions in examples I-IV above. For the family of
Pareto distributions in example V, for fixed A0, this ratio increases from 1+ to ∞ as α
decreases from∞ to 2+.

Remark 2. Note the asymptotic behavior as x → ∞ of the minimizing drift b0(x) in
examples III–V:
Exponential: limx→∞ b(x) = −λ4D;
Gaussian: b(x) ∼ − x

4σ2D;
Pareto: b(x) ∼ − α

4xD.

3 Proof of Theorem 1.3

We begin with the long proof of part (ii). The proofs of the other two parts use the
result of part (ii).

Proof of part (ii). Recalling (1.16)-(1.20) and recalling the definition of D(G2) from
(1.21), we search for critical points F ∈ D(G2) of the functional G2(F ). Without loss of
generality, we may assume that F is a distribution; that is, F (A+(µ)) = 1. Let Q denote
an arbitrary distribution function on (A−(µ), A+(µ)), with a density q that is continuous,
piecewise continuously differentiable and compactly supported in (A−(µ), A+(µ)). Then
F + εQ belongs to the domain D(G2) for all ε with sufficiently small absolute value. To
prove this, one needs to find a bε ∈ Dµ, the class of admissible drifts, such that

F (x) + εQ(x)

1 + ε
=

∫ x
A−(µ)

dz exp(
∫ z

0
2
D bε(t)dt)∫ A+(µ)

A−(µ)
dz exp(

∫ z
0

2
D bε(t)dt)

.

This can be solved directly for bε by differentiating, taking logarithms and then differen-
tiating again. (The conditions above on q are dictated by the conditions on bε ∈ Dµ.)

We call F a critical point if (1.23) holds for all such Q. A necessary condition for
infb∈Dµ

∫
R

(E
(b)
0 Ta)µ(da) to be attained at some particular b is that the corresponding

F (via (1.19)) is critical for G2. Indeed, if F is not critical, then for some ε with small
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absolute value, we will have G2(F + εQ) < G2(F ), or equivalently,
∫
R

(E
(b)
0 Ta)µ(da) =

G1(b) > G1(bε) =
∫
R

(E
(bε)
0 Ta)µ(da).

Now F will be critical, that is, (1.23) will hold for all such Q, if and only if

(1− p)
∫ 0

A−(µ)

µ−(a)
(1−Q(a)

f(a)
− (1− F (a))q(a)

f2(a)

)
da+

p

∫ A+(µ)

0

µ+(a)
(Q(a)

f(a)
− F (a)q(a)

f2(a)

)
da = 0,

(3.1)

for all such Q. Integration by parts gives∫ 0

A−(µ)

µ−(a)
Q(a)

f(a)
da =

∫ 0

A−(µ)

q(a)
( ∫ 0

a

µ−(x)

f(x)
dx
)
da (3.2)

and ∫ A+(µ)

0

µ+(a)
Q(a)

f(a)
da = −

∫ A+(µ)

0

q(a)
( ∫ a

0

µ+(x)

f(x)
dx
)
da+

∫ A+(µ)

0

µ+(a)

f(a)
da. (3.3)

Substituting (3.2) and (3.3) into (3.1) gives

(1− p)
∫ 0

A−(µ)

q(a)
[
−
∫ 0

a

µ−(x)

f(x)
dx−

µ−(a)(1− F (a))

f2(a)

]
da+

p

∫ A+(µ)

0

q(a)
[
−
∫ a

0

µ+(x)

f(x)
dx−

µ+(a)F (a)

f2(a)

]
+

(1− p)
∫ 0

A−(µ)

µ−(a)

f(a)
da+ p

∫ A+(µ)

0

µ+(a)

f(a)
da = 0.

(3.4)

Now (3.4) will hold for all densities q of the type described above if and only if∫ 0

a

µ−(x)

f(x)
dx+

µ−(a)(1− F (a))

f2(a)
=

∫ 0

A−(µ)

µ−(x)

f(x)
dx+

p

1− p

∫ A+(µ)

0

µ+(x)

f(x)
dx,

a ∈ (A−(µ), 0);∫ a

0

µ+(x)

f(x)
dx+

µ+(a)F (a)

f2(a)
=

1− p
p

∫ 0

A−(µ)

µ−(x)

f(x)
dx+

∫ A+(µ)

0

µ+(x)

f(x)
dx,

a ∈ (0, A+(µ)).

(3.5)

Denoting by C the constant on the right hand side of the first equation above, we have

µ−(a) =
f2(a)

1− F (a)

(
C −

∫ 0

a

µ−(x)

f(x)
dx
)
, a ∈ (A−(µ), 0). (3.6)

From (1.19) and the fact that b ∈ Dµ, it follows that F is continuously differentiable
on (A−(µ), 0), and that f is continuous and piecewise continuously differentiable with
a locally bounded derivative on (A−(µ), 0). Thus, we deduce from (3.6) that µ− is
continuous and piecewise continuously differentiable with locally bounded derivative on
(A−(µ), 0). The same analysis shows that µ+ is continuous and piecewise continuously
differentiable with locally bounded derivative on (0, A+(µ)). We have thus shown that
a necessary condition for the existence of a critical point is that the restriction of µ to
(A−(µ), A+(µ)) is absolutely continuous with a density that is piecewise continuous and
locally bounded. In addition, µ might possibly possess an atom at A−(µ) and/or at A+(µ).

We now continue our analysis under the assumption that µ satisfies the above noted
necessary condition for a critical point. Then µ− and µ+ are continuous and piecewise
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continuously differentiable with a locally bounded derivative. In the analysis that
follows, we implicitly assume that µ− and µ+ are continuously differentiable. However
everything still goes through under the weaker assumption that they are continuous and
piecewise continuously differentiable with locally bounded derivative. (See example V in
Section 2 for a case where µ− and µ+ are only piecewise continuously differentiable.)
Differentiating (3.5) gives

2
µ−(a)

f(a)
+ 2

µ−(a)(1− F (a))f ′(a)

f3(a)
−
µ′−(a)(1− F (a))

f2(a)
= 0, a ∈ (A−(µ), 0);

− 2
µ+(a)

f(a)
+ 2

µ+(a)F (a)f ′(a)

f3(a)
−
µ′+(a)F (a)

f2(a)
= 0, a ∈ (0, A+(µ).

Multiplying through by f , and noting that f = F ′ and f ′ = F ′′, we can rewrite the above
equations as

2µ− + 2
µ−(1− F )F ′′

(F ′)2
−
µ′−(1− F )

F ′
= 0, on (A−(µ), 0);

− 2µ+ + 2
µ+FF

′′

(F ′)2
−
µ′+F

F ′
= 0 on (0, A+(µ).

(3.7)

Since ( F
F ′
)′

= 1− FF ′′

(F ′)2
and

(1− F
F

)′
= −1− (1− F )F ′′

(F ′)2
,

it follows that (3.7) is equivalent to

2
( 1− F

(1− F )′
)′

+
µ′−
µ−

1− F
(1− F )′

= 0 on (A−(µ), 0);

2
( F
F ′
)′

+
µ′+
µ+

F

F ′
= 0 on (0, A+(µ)).

(3.8)

We now work with the second equation in (3.8). Substituting H = F
F ′ , we obtain the

linear equation

2H ′ +
µ′+
µ+

H = 0.

Solving for H gives H = const.µ
− 1

2
− . Thus, F

′

F = const.µ
1
2
−, and solving for F gives

F (a) = exp(−k1

∫ A+(µ)

a

µ
1
2

+ (x)dx), a ∈ (0, A+(µ)), (3.9)

for some k1 > 0, and thus

f(a) = k1µ
1
2

+ (a) exp(−k1

∫ A+(µ)

a

µ
1
2

+ (x)dx), a ∈ (0, A+(µ)). (3.10)

Analyzing the first equation in (3.8) similarly, we arrive at

F (a) = 1− exp(−k2

∫ a

A−(µ)

µ
1
2
− (x)dx), a ∈ (A−(µ), 0). (3.11)

for some k2 > 0, and thus

f(a) = k2µ
1
2
− (a) exp(−k2

∫ a

A−(µ)

µ
1
2
− (x)dx), a ∈ (A−(µ), 0). (3.12)
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Optimizing drift in diffusive search for random target

Since F and f are continuous at a = 0, it follows from (3.9)-(3.12) that k1 and k2 must
satisfy

exp(−k1

∫ A+(µ)

0

µ
1
2

+ (a)da) + exp(−k2

∫ 0

A−(µ)

µ
1
2
− (a)da) = 1;

k1 exp(−k1

∫ A+(µ)

0

µ
1
2

+ (a)da) = k2 exp(−k2

∫ 0

A−(µ)

µ
1
2
− (a)da),

or equivalently,

exp(−k1

∫ A+(µ)

0

µ
1
2

+ (a)da) =
k2

k1 + k2
;

exp(−k2

∫ 0

A−(µ)

µ
1
2
− (a)da) =

k1

k1 + k2
.

(3.13)

When a function F , satisfying (3.9) and (3.11), with k1, k2 satisfying (3.13), is substituted
into the left hand sides of (3.5), it will render these expressions constant in a, since
F has been obtained by solving the differential equation obtained by setting to 0 the
derivative of the left hand side in each of the two equations in (3.5). However, in order to
conclude that such an F is indeed a critical point of G2, we still need to verify that (3.5)
holds. Since the left hand sides are constant in a, it suffices to verify these the equations
at a = 0 (actually as a → 0− for the first equation and as a → 0+ for the second one).
This yields the requirement

1− F (0)

f2(0)
=

∫ 0

A−(µ)

µ−(a)

f(a)
da+

p

1− p

∫ A+(µ)

0

µ+(a)

f(a)
da,

F (0)

f2(0)
=

1− p
p

∫ 0

A−(µ)

µ−(a)

f(a)
da+

∫ A+(µ)

0

µ+(a)

f(a)
da.

(3.14)

We now use (3.9)-(3.12) to write (3.14) exclusively in terms of µ+, µ−, k1, k2 and p. Using
(3.9)-(3.12), we have

F (0)

f2(0)
=

1

k2
1

exp(k1

∫ A+(µ)

0

µ
1
2

+ (a)da),

1− F (0)

f2(0)
=

1

k2
2

exp(k2

∫ 0

A−(µ)

µ
1
2
− (a)da).

(3.15)

Using (3.10), we have∫ A+(µ)

0

µ+(a)

f(a)
da =

1

k1

∫ A+(µ)

0

µ
1
2

+ (a) exp(k1

∫ A+(µ)

a

µ
1
2

+ (x)dx) =

1

k2
1

(
exp(k1

∫ A+(µ)

0

µ
1
2

+ (a)da)− 1
)
,

(3.16)

and similarly, using (3.12), we obtain∫ 0

A−(µ)

µ−(a)

f(a)
da =

1

k2
2

(
exp(k2

∫ 0

A−(µ)

µ
1
2
− (a)da)− 1

)
. (3.17)

From (3.15)-(3.17), the requirement in (3.14) can be written as

1− p
p

=
k2

2

k2
1

(
exp(k1

∫ A+(µ)

0

µ
1
2

+ (a)da)− 1
)
,

p

1− p
=
k2

1

k2
2

(
exp(k2

∫ 0

A+(µ)

µ
1
2
− (a)da)− 1

)
.

(3.18)
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Thus, we have shown that F is a critical point if and only if it satisfies (3.9) and (3.11),
where k1 and k2 satisfy (3.13) and (3.18). However, the pair k1, k2 is over-determined by
(3.13) and (3.18). From these two equations, it follows that

k1

k1 + k2
= p ;

k2

k1 + k2
= 1− p.

(3.19)

Substituting this back into (3.13) gives

exp(−k1

∫ A+(µ)

0

µ
1
2

+ (a)da) = 1− p;

exp(−k2

∫ 0

A−(µ)

µ
1
2
− (a)da) = p,

or equivalently

k1 =
| log(1− p)|∫ A+(µ)

0
µ

1
2

+ (a)da
and k2 =

| log p|∫ 0

A−(µ)
µ

1
2
− (a)da

. (3.20)

But (3.19) and (3.20) hold simultaneously if and only if µ satisfies the square root balance
condition (1.8).

We have now shown that if µ satisfies the square root balance condition and if the
restriction of µ to (A−(µ), A+(µ)) is absolutely continuous with a piecewise continuous,
locally bounded density, then G2 possesses a unique critical point, call it F0, while
otherwise G2 has no critical points. This critical point F0 is given by (3.9) and (3.11),
where k1, k2 are as in (3.19):

F0(a) = exp
(
− | log(1− p)|∫ A+(µ)

0
µ

1
2

+ (x)dx

∫ A+(µ)

a

µ
1
2

+ (x)dx
)
, a ∈ (0, A+(µ)),

F0(a) = 1− exp
(
− | log p|∫ 0

A−(µ)
µ

1
2
− (x)dx

∫ a

A−(µ)

µ
1
2
− (x)dx

)
, a ∈ (A−(µ), 0).

(3.21)

Recall that distributions F are connected to drifts b via (1.19); thus b = D
2
F ′′

F ′ = D
2
f ′

f .
Using this with (3.21), it follows that the drift b0 associated with F0 is given by (1.11).

We now show b0 constitutes the unique global minimum of G1. Uniqueness is immedi-
ate. Indeed, if b1 is also the global minimum, then F1 would be a critical point for G2,
where F1 corresponds to b1 via (1.19); however F0 is the unique critical point of G2.

We turn to showing that the global minimum occurs at b0. Recall that we are assum-
ing that the restriction of µ to (A−(µ), A+(µ)) is absolutely continuous with piecewise
continuous, locally bounded density. First assume that µ possesses atoms at A−(µ) and
A+(µ) as in Proposition 1.7. Let b ∈ Dµ, and define L1 as in Proposition 1.7. Then it
follows from that proposition and Proposition 1.6 that G1(b) ≥ G1(b0).

Now assume that µ possesses an atom at A−(µ) but not at A+(µ). (The cases in which
µ possesses an atom at A+(µ) but not at A−(µ), or in which µ possesses an atom neither
at A−(µ) nor at A+(µ) are treated similarly.) For each n ∈ N, approximate µ+ by µ+;n,
defined as follows. If A+(µ) <∞, let µ+,n restricted to (0, A+(µ)− 1

n ) coincide with µ+

restricted to (0, A+(µ)− 1
n ). Also, let µ+;n have an atom of mass µ+

(
A+(µ)− 1

n , A+(µ)
)

at A+(µ)− 1
n . If A+(µ) =∞, let µ+,n restricted to (0, n) coincide with µ+ restricted to

(0, n). Also, let µ+;n have an atom of mass µ+

(
(n,∞)

)
at n. Then µ+;n converges weakly

to µ+, and since the integrands are monotone, we have

lim
n→∞

∫ ∞
0

µ
1
2
+;n(x)dx =

∫ ∞
0

µ
1
2
+(x)dx. (3.22)
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Now define µn = (1− pn)µ− + pnµ+;n, where pn is defined so that µn satisfies the square
root balance condition (1.8). Note that according to the previous paragraph, µn is a
measure of the type for which the critical b, call it bn, is in fact the global minimum of
G1. It is given by (1.11), with µ+ replaced by µ+;n. Substituting this drift in (1.16), or
equivalently in (1.18), and performing the routine calculation gives

inf
b∈Dµn

∫
R

(E
(b)
0 Ta)µn(da) =

2

D

( 1− pn
| log pn|

(

∫ 0

−∞
µ

1
2
−(x)dx)2 +

pn
| log(1− pn)|

(

∫ ∞
0

µ
1
2
+;n(x)dx)2

)
.

(3.23)

By (3.22) and the fact that µ satisfies the square root balance condition, it follows that

lim
n→∞

pn = p. (3.24)

Since E(b)
0 Ta is an increasing function of a ∈ (0,∞), by the construction of µn we have∫

R

(E
(b)
0 T0)µ(da) ≥

∫
R

(E
(b)
0 T0)µn(da), for any drift b. (3.25)

The critical drift b0 that we have found is given by (1.11). Substituting this drift in (1.16)
and performing the routine calculation gives∫

R

(E
(b0)
0 Ta)µ(da) =

2

D

( 1− p
| log p|

(

∫ 0

−∞
µ

1
2
−(x)dx)2 +

p

| log(1− p)|
(

∫ ∞
0

µ
1
2
+(x)dx)2

)
.

(3.26)

From (3.22)-(3.26), we conclude that b0 is indeed the global minimum of G1.
To complete the proof of part (ii), it remains to prove the statements that follow (1.11).

The function u(a) =
∫ a

0
dx exp(− 2

D

∫ x
0
b0(t)dt) is harmonic for the diffusion generator

D
2
d2

dx2 + b0(x) d
dx . Thus, by Ito’s formula it follows that

P
(b0)
0 (τa1 < τa2) =

u0(0)− u0(a2)

u0(a1)− u0(a2)
, for A−(µ) < a1 < 0 < a2 < A+(µ).

Substituting for b0 above from (1.11), we have

u0(a) =


−
∫ 0

a
µ
− 1

2
− (x) exp

( | log p|∫ 0
−∞ µ

1
2
−(x)dx

∫ x
0
µ

1
2
−(y)dy

)
, A−(µ) < a < 0;∫ a

0
µ
− 1

2
+ (x) exp(− | log(1−p)|∫∞

0
µ

1
2
+ (x)dx

∫ x
0
µ

1
2
+(y)dy), 0 < a < A+(µ).

Then lima1→A−(µ)+ u0(a1) is infinite or finite depending on whether
∫
A−(µ)

µ−
1
2 (x)dx is

infinite or finite. In the former case, lima1→A−(µ)+ P
(b0)
0 (τa1 < τa2) is equal to 0, and in

the latter case it is positive. Thus, in the former case, the diffusion cannot reach A−(µ).
In the latter case, either the diffusion can reach A−(µ), or else with positive probability
the diffusion approaches A−(µ) as t→∞. But this latter scenario is ruled out since it

would mean that E(b0)
0 Ta =∞, for a ∈ (0, A+(µ)). The exact same argument holds with

regard to µ+ and A+(µ).

Proof of part (i). If µ is such that the infimum is attained, as specified in part (ii), then
substituting the optimal drift from (1.11) in (1.16), and performing the routine calculation
shows that (1.9) holds.
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Now assume that µ = (1 − p)µ− + pµ+ satisfies the square root balance condition
and is such that the infimum is not attained, as specified in part (ii). For each n ∈ N,
define measures µ+;n,+ and µ+;n,− on (0,∞) as follows. For k = 0, 1, · · · , let µ+;n,+, when
restricted to (k+1

n , k+2
n ), be uniform with total mass equal to µ+(( kn ,

k+1
n ]). For k = 2, · · · ,

let µ+;n,−, when restricted to (k−1
n , kn ), be uniform with total mass equal to µ+(( kn ,

k+1
n ]).

Also, let µ+;n,−, when restricted to (0, 1
n ), be uniform with total mass equal to µ+((0, 2

n ])

Define respectively µ−;n,+ and µ−;n,− in a parallel fashion for µ− as µ+;n,+ and µ+;n,−
were defined for µ+. Then µ+;n,+ and µ+;n,− both converge weakly to µ+, and µ−;n,+ and
µ−;n,− both converge weakly to µ−, as n→∞. Therefore, since all the integrands are
monotone, we have

lim
n→∞

∫ ∞
0

µ
1
2
+;n,+(x)dx = lim

n→∞

∫ ∞
0

µ
1
2
+;n,−(x)dx =

∫ ∞
0

µ
1
2
+(x)dx,

lim
n→∞

∫ 0

−∞
µ

1
2
−;n,+(x)dx = lim

n→∞

∫ 0

−∞
µ

1
2
−;n,−(x)dx =

∫ 0

−∞
µ

1
2
−(x)dx.

(3.27)

Now define
µ+,n = (1− p+,n)µ−;n,+ + p+,n µ+;n,+ ;

µ−,n = (1− p−,n)µ−;n,− + p−,n µ+;n,− ,

where p+,n and p−,n are defined so that µ+,n and µ−,n satisfy the square root balance
condition (1.8). By (3.27) and the fact that µ satisfies the square root balance condition,
it follows that

lim
n→∞

p+,n = lim
n→∞

p−,n = p. (3.28)

By part (ii), the measures µ+,n and µ−,n are of the type for which the infimum is attained;
let b+,n and b−,n denote the corresponding drifts for which the infimum is attained. Then

inf
b∈Dµ+,n

∫
R

(E
(b)
0 Ta)µ+,n(da) =

∫
R

(E
(b+,n)
0 Ta)µ+,n(da) =

2

D

( 1− p+,n

| log p+,n|
(

∫ 0

−∞
µ

1
2
−;n,+(x)dx)2 +

p+,n

| log(1− p+,n)|
(

∫ ∞
0

µ
1
2
+;n,+(x)dx)2

)
;

inf
b∈Dµ−,n

∫
R

(E
(b)
0 Ta)µ−,n(da) =

∫
R

(E
(b−,n)
0 Ta)µ−,n(da) =

2

D

( 1− p−,n
| log p−,n|

(

∫ 0

−∞
µ

1
2
−;n,−(x)dx)2 +

p−,n
| log(1− p−,n)|

(

∫ ∞
0

µ
1
2
+;n,−(x)dx)2

)
.

(3.29)

Since E
(b)
0 Ta is an increasing function of a ∈ (0,∞) and a decreasing function of a ∈

(−∞, 0), it follows from the construction that

∫∞
0

(E
(b)
0 Ta)µ+(da) ≤

∫∞
0

(E
(b)
0 Ta)µ+;n,+(da),∫∞

1
n

(E
(b)
0 Ta)µ+;n,−(da) ≤

∫∞
2
n

(E
(b)
0 Ta)µ+(da),∫ 0

−∞(E
(b)
0 Ta)µ−(da) ≤

∫ 0

−∞(E
(b)
0 Ta)µ−;n,+(da),∫ − 1

n

−∞ (E
(b)
0 Ta)µ−;n,−(da) ≤

∫ − 2
n

−∞ (E
(b)
0 Ta)µ−(da),

for any drift b. (3.30)

The proof of part (i) now follows from (3.27)-(3.30).

Proof of part (iii). In the proof of part (i) above, we proved the statement in part (iii) for
two particular sequences {bn}∞n=1; namely for what we called {b+,n}∞n=1 and {b−,n}∞n=1.
We leave it to the reader to do the routine analysis to show that the result holds more
generally as stated in part (iii).
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4 Proofs of Theorems 1.1 and 1.4

Proof of Theorem 1.1. For the proof of part (i) of Theorem 1.3, we constructed the
measures µ−,n = (1 − p−,n)µ−;n,− + p−,n µ+;n,−. For the proof here we consider the
measures

µ−,n,tr := (1− p−,n,tr)µ−;n,−,tr + p−,n,tr µ+;n,−,tr, (4.1)

where µ+;n,−,tr and µ−;n,−,tr are appropriately truncated versions of µ+;n,− and µ−;n,−,
and p−,n,tr is chosen so that µ−,n,tr satisfies the square root balance condition.

The truncated version, µ+;n,−,tr of µ+;n,−, is defined as follows. Let µ+;n,−,tr, restricted
to (0, n] coincide with µ+;n,− on (0, n], and let µ+;n,−,tr, restricted to (n, n+ 1

n ) be uniform
with total mass equal to µ+((n + 1

n ,∞)). The truncated version, µ−;n,−,tr of µ−;n,−, is
defined in the exact parallel fashion on (−∞, 0).

The measures µ−;n,−tr and µ+;n,−tr converge weakly to µ−;n and to µ+;n; thus,

lim
n→∞

∫ 0

−∞
µ

1
2
−;n,−,tr(x)dx =

∫ 0

−∞
µ

1
2
−(x)dx =∞;

lim
n→∞

∫ ∞
0

µ
1
2
+;n,−,tr(x)dx =

∫ ∞
0

µ
1
2
+(x)dx =∞.

(4.2)

By part (ii) of Theorem 1.1, the measure µ−,n,tr is of the type for which the infimum is
attained; let b−,n,tr denote the corresponding drift for which the infimum is attained.
Then

inf
b∈Dµ−,n,tr

∫
R

(E
(b)
0 Ta)µ−,n,tr(da) =

∫
R

(E
(b−,n,tr)
0 Ta)µ−,n,tr(da) =

2

D

( 1− p−,n,tr
| log p−,n,tr|

(

∫ 0

−∞
µ

1
2
−;n,−,tr(x)dx)2 +

p−,n,tr
| log(1− p−,n,tr)|

(

∫ ∞
0

µ
1
2
+;n,−,tr(x)dx)2

)
.

(4.3)

As in (3.30), we have{∫∞
1
n

(E
(b)
0 Ta)µ+;n,−,tr(da) ≤

∫∞
2
n

(E
(b)
0 Ta)µ+(da),∫ − 1

n

−∞ (E
(b)
0 Ta)µ−;n,−,tr(da) ≤

∫ − 2
n

−∞ (E
(b)
0 Ta)µ−(da),

for any drift b. (4.4)

In our construction, we have no control over p−,n,tr ∈ (0, 1). Note that

lim
p→1

1− p
| log p|

= lim
p→0

p

| log(1− p)|
= 1; lim

p→0

1− p
| log p|

= lim
p→1

p

| log(1− p)|
= 0.

Keeping this in mind, Theorem 1.1 now follows from (4.2)-(4.4).

Proof of Theorem 1.4. By assumption, µ does not satisfy the square root balance con-
dition. The proof of part (ii) of Theorem 1.3 revealed that in such a case, there are no
critical points. Thus, the infimum is not attained, proving part (i). For part (ii), one
substitutes the drift from (1.11) into (1.16) and performs a routine calculation. One
obtains the expression in Remark 1 after the statement of the theorem. A bit of algebra
converts this to the expression on the right hand side of (1.13). Thus, for this choice of
drift b,

∫
R

(E
(b)
0 Ta)µ(da) is given by the right hand side of (1.13), and now the inequality

in (1.13) follows from part (i).

5 Proof of Propostion 1.5

We will prove the proposition for a ∈ (0, A+(µ)); a similar proof holds for a ∈
(A−(µ), 0). First assume that A−(µ) > −∞ and that the diffusion cannot reach A−(µ);
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that is P0(TA−(µ) <∞) = 0. This is equivalent to∫ 0

A−(µ)

dx exp(− 2

D

∫ x

0

b(y)dy)

∫ 0

x

dy exp(
2

D

∫ y

0

b(z)dz) =∞. (5.1)

(See [8, Theorem 5.1.5], where this is referred to as the diffusion not exploding.) Since
(1.5) holds, (5.1) is equivalent to∫ 0

A−(µ)

dx exp(− 2

D

∫ x

0

b(y)dy) =∞. (5.2)

Since P0(TA−(µ) < ∞) = 0, we have E0Ta = limn→∞E0Ta ∧ TA−(µ)+ 1
n

. Define un(x) =

ExTa ∧ TA−(µ)+ 1
n

, for x ∈ [A−(µ) + 1
n , a]. By Ito’s formula, un solves the differential

equation
D

2
u′′n + b(x)u′n = −1, x ∈ (A−(µ) +

1

n
, a);

un(A−(µ+
1

n
)) = un(a) = 0.

(5.3)

Writing the differential equation in the form

D

2

(
exp

( ∫ x

a

2

D
b(y)dy

)
u′n(x)

)′
= − exp(

∫ x

a

2

D
b(y)dy),

integrating twice and using the boundary conditions, we obtain

un(x) = −u′n(a)

∫ x

a

dy exp(−
∫ y

a

2

D
b(t)dt)−

2

D

∫ a

x

dy exp(−
∫ y

a

2

D
b(t)dt)

∫ a

y

exp(

∫ z

a

2

D
b(t)dt),

(5.4)

where

u′n(a) = −
2
D

∫ a
A−(µ)+ 1

n
dy exp(−

∫ y
a

2
D b(t)dt)

∫ a
y
dz exp(

∫ z
a

2
D b(t)dt)∫ a

A−(µ)+ 1
n
dy exp(−

∫ y
a

2
D b(t)dt)

.

By (5.2),

lim
n→∞

u′n(a) = − 2

D

∫ a

A−(µ)

dz exp(
2

D

∫ z

a

b(t)dt). (5.5)

From (5.4) and (5.5) it follows that

E0Ta = lim
n→∞

un(0) =
2

D

∫ a

0

dx exp(−
∫ x

a

2

D
b(y)dy)

∫ x

A−(µ)

dz exp(

∫ z

a

2

D
b(t)dt).

The number a appearing twice as a lower limit of an integral on the right hand side
above can be changed to any other value without changing the value of the right hand
side. Changing a to 0 gives the formula for E0Ta appearing in the statement of the
proposition.

In the case that A−(µ) = −∞, the assumption (1.5) ensures that (5.2) holds. Then
(1.5) and (5.2) ensure that (5.1) holds. Thus, P0(T−∞ < ∞) = 0, and consequently,
E0Ta = limn→∞E0Ta ∧ T−n. One now proceeds as in the case treated above, replacing
A−(µ) + 1

n by −n.
In the case that A−(µ) > −∞ and that (5.1) does not hold, one has P0(TA−(µ) <

∞) > 0. In this case, we are considering the diffusion with reflection at A−(µ). Let
u(x) = ExTa. Then by Ito’s formula, u satisfies

D

2
u′′ + b(x)u′ = −1, x ∈ (A−(µ), a);

u′(A−(µ)) = u(a) = 0.
(5.6)
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Solving this similarly but more simply than we solved the above equations, we obtain
the formula for E0Ta appearing in the statement of the proposition. �

6 Proofs of Propositions 1.6 and 1.7

Proof of Proposition 1.6. We first show that the set Dµ is convex. Let b, β ∈ Dµ. We need
to show that (1− t)b+ tβ ∈ Dµ, for t ∈ (0, 1); that is, that (1− t)b+ tβ satisfies (1.4) and
(1.5). Now (1.4) holds trivially. For (1.5), we use Hölder’s inequality with p = 1

1−t and

q = 1
t to obtain∫ A+(µ)

A−(µ)

dx exp(
2

D

∫ x

0

(
(1− t)b+ tβ

)
(y)dy) ≤

( ∫ A+(µ)

A−(µ)

dx exp(
2

D

∫ x

0

b(y)dy)
)1−t( ∫ A+(µ)

A−(µ)

dx exp(
2

D

∫ x

0

β(y)dy)
)t
<∞.

We now prove that G1 is convex. Recall the definition of G1 from (1.18). We will show
that

H(b) := (1− p)
∫ 0

A−(µ)

daµ−(a)
[

exp(−
∫ a

0

2

D
b(y)dy)

∫ A+(µ)

a

dz exp(

∫ z

0

2

D
b(s)ds)

]
is convex. The same proof works for the second term in G1. We rewrite H as

H(b) = (1− p)
∫ 0

A−(µ)

daµ−(a)

∫ A+(µ)

a

dz exp(

∫ z

a

2

D
b(s)ds). (6.1)

It follows by the convexity of the function ex on all of R that

exp(

∫ z

a

2

D

(
(1− t)b+ tβ

)
(s)ds) ≤ (1− t) exp(

∫ z

a

2

D
b(s)ds)+

t exp(

∫ z

a

2

D
β(s)ds), 0 ≤ t ≤ 1.

(6.2)

Substituting (6.2) into (6.1) gives H
(
(1− t)b+ tβ) ≤ (1− t)H(b) + tH(β), for 0 ≤ t ≤ 1,

proving the convexity.

Proof of Proposition 1.7. Since we are assuming that µ has an atom at A−(µ) and
at A+(µ), if follows from the definition of D(µ) that any b ∈ D(µ) is bounded on
(A−(µ), A+(µ)) (as noted in the remark following (1.4)). Define

F̂ε(a) =

∫ a

A−(µ)

dz exp(

∫ z

0

2

D

(
(1− ε)b0 + εb

)
(t)dt) and f̂ε(a) = F̂ ′ε(a).

Recalling G1 from (1.18), and recalling that G2 from (1.20) has been defined for positive
multiples of distribution functions, we can write

G1

(
(1− ε)b0 + εb)

)
= (1− p)

∫ 0

A−(µ)

µ−(a)
F̂ε(A+(µ))− F̂ε(a)

f̂ε(a)
+

p

∫ A+(µ)

0

µ+(a)
F̂ε(a)

f̂ε(a)
= G2(F̂ε).

(6.3)

Also define

Q̂(a) = lim
ε→0+

F̂ε(a)− F̂0(a)

ε
=

∫ a

A−(µ)

dz
( ∫ z

0

2

D
(b− b0)(t)dt

)
exp(

∫ z

0

2

D
b0(t)dt);

q̂(a) = Q̂′(a).

(6.4)
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The second equality in the first line of (6.4) follows from the bounded convergence
theorem and the assumptions in the statement of the proposition. Using (6.3) and (6.4)
we have, similar to (3.1),

L′(0+) = lim
ε→0+

L1(ε)− L1(0)

ε
=

lim
ε→0+

G
(
(1− ε)b0 + εb)−G1(b0)

ε
= lim
ε→0+

G2(F̂ε)−G2(F̂0)

ε
=

(1− p)
∫ 0

A−(µ)

µ−(a)
( Q̂(A+(µ))− Q̂(a)

f0(a)
− (1− F0(a))q̂(a)

f2
0 (a)

)
da+

p

∫ A+(µ)

0

µ+(a)
( Q̂(a)

f0(a)
− F0(a)q̂(a)

f2
0 (a)

)
da.

(6.5)

The second equality above follows from the bounded convergence theorem and the
assumptions in the statement of the proposition.

We need to consider the cases Q̂(A+(µ)) 6= 0 and Q̂(A+(µ)) = 0 separately. First

consider the case Q̂(A+(µ)) 6= 0. Define Q̄(a) = Q̂(a)

Q̂(A+(µ))
and q̄(a) = Q̄′(a). Then the

right hand side of (6.5) will be equal to 0 if and only if

(1− p)
∫ 0

A−(µ)

µ−(a)
(1− Q̄(a)

f0(a)
− (1− F0(a))q̄(a)

f2
0 (a)

)
da+

p

∫ A+(µ)

0

µ+(a)
( Q̄(a)

f0(a)
− F0(a)q̄(a)

f2
0 (a)

)
da = 0.

(6.6)

Recall that since F0 is the critical point of G2, (3.1) holds with F0 and f0 substituted
for F and f . The only difference between (3.1), with F0 and f0 substituted for F and
f , and (6.6) is that Q̂ and q̂ appear in (6.6) while Q and q appear in (3.1), where Q

is a distribution function with compactly supported density q. However, the analysis
from (3.1) to (3.5) goes through just the same for Q̄, since Q̄(A+(µ)) = 1. (Neither
the monotonicity of Q nor the compact support of q was used there; only the fact that
Q(A+(µ)) = 1.) Thus, the right hand side of (6.5) is equal to 0, proving the proposition.

Now consider the case Q̂(A+(µ)) = 0. Because Q̂(A+(µ)) = 0, whereas in (3.1) one
had Q(A+(µ)) = 1, the analysis that showed that the left hand side of (3.1) is equal to
the left hand side of (3.4), when applied to the last two lines of (6.5), shows that

(1− p)
∫ 0

A−(µ)

µ−(a)
( Q̂(A+(µ))− Q̂(a)

f0(a)
− (1− F0(a))q̂(a)

f2
0 (a)

)
da+

p

∫ A+(µ)

0

µ+(a)
( Q̂(a)

f0(a)
− F0(a)q̂(a)

f2
0 (a)

)
da =

(1− p)
∫ 0

A−(µ)

q̂(a)
[
−
∫ 0

a

µ−(x)

f0(x)
dx−

µ−(a)(1− F0(a))

f2
0 (a)

]
da+

p

∫ A+(µ)

0

q̂(a)
[
−
∫ a

0

µ+(x)

f0(x)
dx−

µ+(a)F0(a)

f2
0 (a)

]
.

(6.7)

(The right hand side of (6.7) corresponds to the first two lines of (3.4). The two terms on
the third line of (3.4) do not appear now because Q̂(A+(µ)) = 0.) Because F0 is critical,
it follows from (3.5) that

(1− p)
[ ∫ 0

a

µ−(x)

f0(x)
dx+

µ−(a)(1− F0(a))

f2
0 (a)

]
= C1, a ∈ (A−(µ), 0);

p
[
−
∫ a

0

µ+(x)

f0(x)
dx−

µ+(a)F0(a)

f2
0 (a)

]
= C1, a ∈ (0, A+(µ)),

(6.8)
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where C1 = (1−p)
∫ 0

A−(µ)

µ−(a)

f0(a) da+p
∫ A+(µ)

0

µ+(a)

f0(a) da. Substituting (6.8) into the right hand

side of (6.7), we conclude that the right hand side of (6.7) is equal to C1

∫ 0

A−(µ)
q̂(a)da+

C1

∫ A+(µ)

0
q̂(a)da = C1

∫ A+(µ)

A−(µ)
q̂(a)da = C1Q̂(A+(µ)) = 0. Thus, the left hand side of (6.7),

which is the right hand side of (6.5), is equal to 0.
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