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The non-linear sewing lemma I: weak formulation
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Abstract

We introduce a new framework to deal with rough differential equations based on
flows and their approximations. Our main result is to prove that measurable flows
exist under weak conditions, even if solutions to the corresponding rough differential
equations are not unique. We show that under additional conditions of the approxi-
mation, there exists a unique Lipschitz flow. Then, a perturbation formula is given.
Finally, we link our approach to the additive, multiplicative sewing lemmas and the
rough Euler scheme.

Keywords: rough paths; rough differential equations; non uniqueness of solutions; flow approxi-
mations; measurable flows; Lipschitz flows; sewing lemma.
AMS MSC 2010: 60H10; 54C65.
Submitted to EJP on February 27, 2018, final version accepted on May 2, 2019.

1 Introduction

1.1 Motivations

The theory of rough paths allows one to define the solution to a differential equation
of type

yt = a+

∫ t

0

f(ys) dxs, (1.1)

for a path x which is irregular, say α-Hölder continuous. Such an equation is then called
a Rough Differential Equation (RDE) [20,21,25]. The key point of this theory is to show
that such a solution can be defined provided that x is extended to a path x, called a rough
path, living in a larger space that depends on the integer part of 1/α. When α > 1/2,
no such extension is needed. This case is referred as the Young case, as the integrals
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are constructed in the sense given by L.C. Young [24,28]. Provided that one considers a
rough path, integrals and differential equations are natural extensions of ordinary ones.

The first proof of existence of a solution to (1.1) from T. Lyons relied on a fixed
point [25–27]. It was quickly shown that RDE shares the same properties as ordinary
differential equations, including the flow property. In [16], A.M. Davie gives an alternative
proof based on an Euler type approximation as well as counter-example to uniqueness.
More recently, I. Bailleul gave a direct construction through the flow property [3,4,6].

A flow in a metric space V is a family {ψt,s}0≤s≤t≤T of maps from V to V such that
ψt,s ◦ ψs,r = ψt,r for any 0 ≤ r ≤ s ≤ t ≤ T . When yt(s, a) is a family of solutions to
differential equations with ys(s, a) = a, the element ψt,s(a) can be seen as a map which
carries a to yt(s, a). Flows are related to dynamical systems. They differ from solutions.
One of their interest lies in their characterization as lipeomorphims (Lipschitz functions
with a Lipschitz inverse), diffeomorphisms...

In this article, we develop a generic framework to construct flows from approxima-
tions. We do not focus on a particular form of the solutions, so that our construction is a
non-linear sewing lemma, modelled after the additive and multiplicative sewing lemmas
developed in [19,20,22,26].

In this first part, we study flows under weak conditions and prove existence of a
measurable flow even when the solutions of RDE are not necessarily unique. This is
based on a selection theorem [11] due to J.E. Cardona and L. Kapitanski. Such a result is
new in the literature where existence of flows was only proved under stronger regularity
conditions (the many approaches are summarized in [15]). Besides, our approach also
contains the additive and multiplicative sewing lemmas [13,19]. The rough equivalent
of the Duhamel formula for solving linear RDE [14] with a perturbative terms follows
directly from our construction.

In a second part [9], we provide conditions for uniqueness and continuity. Besides,
we show that our construction encompass many of the previous approaches or results:
A.M. Davie [16], I. Bailleul [2,3,5] and P. Friz & N. Victoir [21].

Our starting point in the world of classical analysis is the product formula which
relates how the iterated product of an approximation of a flow converge to the flow [1,12].
It is important both from the theoretical and numerical point of view.

On a Banach space V, let us consider a family (ε, a) ∈ R+ × V 7→ Φ(ε, a), called an
algorithm of class C1 in (ε, a) such that Φ(0, a) = a. The parameter ε is related to the
quality of the approximation.

The algorithm Φ is consistent with a vector field f when

f(a) =
∂Φ

∂ε
(0, a), ∀a ∈ V. (1.2)

For a consider algorithm, when φt(a) is the solution to φt(a) = a+
∫ t

0
f(φs(a)) ds,

Φ(t/n,Φ(t/n, · · ·Φ(t/n, a)))︸ ︷︷ ︸
n times

converges to φt(a) as n→∞. (1.3)

Eq. (1.3) is called the product formula.
The Euler scheme for solving ODE is the prototypical example of such behavior. Set

Φ(ε, a) := a+ f(a)ε so that (1.2) holds. In this case, (1.3) expresses the convergence of
the Euler scheme.

Using the product formula, one recovers easily the proof of Lie’s theorem on matrices:
If A is a matrix, then exp(tA) is the solution to Ẏt = AYt with Y0 = Id and then

exp(tA) = lim
n→∞

(
Id +

t

n
A

)n
.
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For two matrices A and B, exp(t(A+B)) is given by

exp(t(A+B)) = lim
n→∞

(
exp

(
tA

n

)
exp

(
tB

n

))n
.

To prove the later statement, we consider Φ(ε, a) = exp(εA) exp(εB)a and we verify that
∂εΦ(0, a) = (A+B)a for any matrix a.

For unbounded operators, it is also related to Chernoff and Trotter’s results on the
approximation of semi-groups [18,29]. The product formula also justifies the construction
of some splitting schemes [8].

In this article, we consider as an algorithm a family {φt,s}0≤s≤t≤T of functions from V

to V which is close to the identity map in short time and such that φt,s ◦ φs,r is close
to φt,r for any time s ≤ r ≤ t. For a path x of finite p-variation, 1 ≤ p < 2 with values
in Rd and a smooth enough function f : Rm → L(Rd,Rm), such an example is given by
φt,s(a) = a+ f(a)xs,t.

We then study the behavior of the composition φπ of the φti+1,ti along a partition
π = {ti}i=0,...,n. Clearly, as the mesh of the partition π goes to 0, the limit, when it exists
is a candidate to be a flow. In the example given above, it will be the flow associated
to the family of Young differential equations yt(a) = a +

∫ t
0
f(ys(a)) dxs, which means

according to A.M. Davie [16] that

|yt(a)− φt,s(ys(a))| ≤ L(a)$(ωs,t). (1.4)

We show that measurable flows may exist for Young or Rough Differential Equations
even when several paths satisfying (1.4) exist.

In [9,10], we exhibit a condition on almost flow that ensure existence of Lipschitz
flows. Such an almost flow is called a stable almost flow. Besides, we study further the
connection between almost flows and solutions in the sense of (1.4). In particular, when
an almost flow is stable, solutions exist and are unique. Stronger convergence rate of
numerical approximations, as well as continuity results are then given.

In order to present our main results, we introduce some necessary notations as well
as some central notions such as galaxies.

1.2 Notations, definitions and concepts

The following notations and hypotheses will be constantly used throughout all this
article.

1.2.1 Hölder and Lipschitz continuous functions

Let V and W be two metric spaces. The space of continuous functions from V to W is
denoted by C(V,W).

Let d (resp. d′) be a distance on V (resp. W). For γ ∈ (0, 1], we say that a function
f : V→W is γ-Hölder if

‖f‖γ := sup
a,b∈V,
a6=b

d′(f(a), f(b))

d(a, b)γ
< +∞.

If γ = 1 we say that f is Lipschitz. We then set ‖f‖Lip := ‖f‖1.
For any integer r ≥ 0 and γ ∈ (0, 1], we denote by Cr+γ(V,W) the subspace of

functions from V to W whose derivatives dkf of order k ≤ r are continuous and such
that drf is γ-Hölder.

We denote by Cr+γb (V,W) the subset of Cr+γ(V,W) of bounded functions with bounded
derivatives up to order r.
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1.2.2 Controls and remainders

From now, V is a topological, complete metric space with a distance d. A distinguished
point of V is denoted by 0.

We fix γ ∈ (0, 1]. Let Nγ : V → [1,+∞) be a γ-Hölder continuous function with
constant ‖N‖γ . The index γ in Nγ refers to its regularity. If Nγ is Lipschitz continuous
(γ = 1), then we simply write N .

Let us fix a time horizon T . We write T := [0, T ] as well as

T+
2 := {(s, t) ∈ T2 | s ≤ t} and T+

3 := {(r, s, t) ∈ T3 | r ≤ s ≤ t}. (1.5)

A control ω : T+
2 → R+ is a super-additive family, i.e.,

ωr,s + ωs,t ≤ ωr,t, ∀(r, s, t) ∈ T+
3

with ωs,s = 0 for all s ∈ T, and for any δ > 0, there exists ε > 0 such that ωs,t < δ

whenever 0 ≤ s ≤ t ≤ s+ ε. A typical example of a control is ωs,t = C|t− s| for a constant
C ≥ 0.

For p ≥ 1, we say that a path x ∈ C(T,V) is a path of finite p-variation controlled by ω
if

‖x‖p := sup
(s,t)∈T+

2 ,
s6=t

d(xs, xt)

ω
1/p
s,t

< +∞.

A remainder is a function $ : R+ → R+ which is continuous, increasing and such
that for some 0 < κ < 1,

2$

(
δ

2

)
≤ κ$(δ), ∀δ > 0. (1.6)

A typical example for a remainder is $(δ) = δθ for any θ > 1.
We consider that δ : R+ → R+ is a non-decreasing function with limT→0 δT = 0.
Finally, let η : R+ → R+ be a continuous, increasing function such that for all

(s, t) ∈ T+
2 ,

η(ωs,t)$(ωs,t)
γ ≤ δT$(ωs,t). (1.7)

Partitions of T are customary denoted by π = {ti}i=0,...,n. The mesh |π| of a partition

π is |π| := maxi=0,...,n(ti+1 − ti). The discrete simplices π+
2 and π+

3 are defined similarly
to T+

2 and T+
3 in (1.5).

1.2.3 Galaxies

Notation 1.1. We denote by F(V) the set of functions {φt,s}(s,t)∈T+
2

from V to V which

are continuous in (s, t), i.e. for any a ∈ V, the map (s, t) ∈ T+
2 7→ φt,s(a) is continuous.

Notation 1.2 (Iterated products). For any φ ∈ F(V), any partition π of T and any
(s, t) ∈ T+

2 , we write

φπt,s := φt,tj ◦ φtj ,tj−1
◦ · · · ◦ φti+1,ti ◦ φti,s, (1.8)

where [ti, tj ] is the biggest interval of such kind contained in [s, t] ⊂ T (possibly, ti = tj).
If no such interval exists, then φπt,s = φt,s.

Clearly, for any partition, φπ ∈ F(V). A trivial but important remark is that from the
very construction,

φπt,r = φπt,s ◦ φπs,r for any s ∈ π, r ≤ s ≤ t. (1.9)
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In particular, {φπt,s}(s,t)∈π2
+

enjoys a (semi-)flow property when the times are restricted to

the elements of π.
The article is mainly devoted to study the possible limits of φπ as the mesh of π

decreases to 0.

Notation 1.3. From a distance d on V, we define the distance ∆Nγ on the space of
functions from V to V by

∆Nγ (f, g) := sup
a∈V

d(f(a), g(a))

Nγ(a)
,

where Nγ is defined in Section 1.2.
This distance is extended on F(V) by

∆Nγ ,$(φ, ψ) := sup
(s,t)∈T+

2
s6=t

∆Nγ (φt,s, ψt,s)

$(ωs,t)
,

where ω, $ are defined in Section 1.2. The distance ∆Nγ ,$ may take infinite values.

If d is a distance for which (V, d) is complete, then (C(V,V),∆N ) and (F(V),∆N,$)

are complete.

Definition 1.4 (Galaxy). We define the equivalence relation ∼ on F(V) by φ ∼ ψ if and
only if there exists a constant C such that

d(φt,s(a), ψt,s(a)) ≤ CNγ(a)$(ωs,t), ∀a ∈ V, ∀(s, t) ∈ T+
2 .

In other words, φ ∼ ψ if and only if ∆Nγ ,$(φ, ψ) < +∞. Each quotient class of F(V)/ ∼
is called a galaxy, which contains elements of F(V) which are at finite distance from
each others.

1.3 Summary of the main results

The galaxies partition the space F(V). Each galaxy may contain two classes of
elements on which we focus on this article:

1. The flows, that is the families of maps ψ : V→ V which satisfy

ψt,r = ψt,s ◦ ψs,r, ∀(r, s, t) ∈ T+
3 , (1.10)

or equivalently, ψπ = ψ (See (1.8)) for any partition π.

2. The almost flows which we see as time-inhomogeneous algorithms. Besides some
conditions on the continuity and the growth given in Definition 2.1 below, an almost
flow φ is close to a flow with the difference that

d(φt,s ◦ φs,r(a), φt,r(a)) ≤ Nγ(a)$(ωr,t), ∀(r, s, t) ∈ T+
3 , a ∈ V,

for a suitable function Nγ : V→ [1,+∞).

Along with an almost flow φ comes the notion of manifold of D-solutions, that is a
family y := {yt(a)}t≥0, a∈V of paths such that

d(yt(a), φt,s(ys(a))) ≤ C$(ωs,t), ∀(s, t) ∈ T+
2 . (1.11)

Each path y(a) that satisfies (1.11) is called a D-solution. This definition expands
naturally the one introduced by A.M. Davie in [16].

Clearly, a manifold of D-solutions associated to an almost flow φ is also associated to
any almost flow in the same galaxy as φ. Besides, if a flow ψ exists in the same galaxy
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as φ, then zt(a) = ψt,0(a) defines a manifold of D-solutions z. Flows are more constrained
objects than solutions as (1.10) implies some compatibility conditions, while it is possible
to create new D-solutions by splicing two different ones. As it will be shown in [9],
uniqueness of manifold of D-solutions is strongly related to existence of a flow.

Given an almost flow φ, it is natural to study the limit of the net {φπ}π as the mesh of
π decreases to 0. Any limit will be a good candidate to be a flow.

Our first main result (Theorem 2.5) asserts that for any almost flow φ in a galaxy G,
any iterated map φπ belongs to G whatever the partition π although the map φπ is not
necessarily an almost flow. More precisely, one controls ∆Nγ ,$(φπ, φ) uniformly in the
partition π.

An immediate corollary is that any possible limit of {φπ}π as the mesh of the partition
decreases to 0 also belongs to G.

Our second main result (Theorem 3.10) is that when the underlying Banach space V

is finite-dimensional, there exists at least one measurable flow in a galaxy containing
an almost flow, even when several manifolds of D-solutions may exist. Our proof uses a
recent result of J.E. Cardona and L. Kapitanski [11] on selection theorems.

Our third result is to give conditions ensuring the existence of at most one flow in a
galaxy. A sufficient condition is given for the galaxy G contains a Lipschitz flow ψ. In this
case, {φπ}π converges to ψ whatever the almost flow φ in G. The rate of convergence is
also quantified.

Finally, we apply our results to the additive, multiplicative sewing lemmas [19] as
well as to the algorithms proposed by A.M. Davie in [16] to show existence of measurable
flows even without uniqueness. In the sequel [9], we study in details the properties of
Lipschitz flows and give some conditions on almost Lipschitz flows to generate them.
In addition, we also apply our results to other approximations of RDE, namely the one
proposed by P. Friz & N. Victoir [21] and the one proposed by I. Bailleul [3] by using
perturbation arguments.

1.4 Outline

We show in Section 2 that a uniform control of the iterated product of approximation
of flows with respect to the subdivision. In Section 3, we prove our main result: the
existence of a measurable flow under weak conditions of regularity. Then, in Section 4
we show the existence and uniqueness of a Lipschitz flow under stronger assumptions.
Moreover, we give a rate of the convergence of the iterated product to the flow. In
Section 5, we show that additive perturbations preserve the convergence of iterated
products of approximations of flows. Finally, we recover in Section 6 the additive [26],
multiplicative [14,19] and Davie’s sewing lemmas [16].

2 A uniform control over almost flows

In this section, we define almost flows which serve as approximations. The properties
of an almost flow φ are weaker than the minimal condition to obtain the convergence
of the iterated product φπ as the mesh of the partitions π decreases to 0. However,
we prove in Theorem 2.5 that we can control φπ uniformly over the partitions π. This
justifies our definition.

2.1 Definition of almost flows

Definition 2.1 (Almost flow). An element φ ∈ F(V) is an almost flow if for any (r, s, t) ∈
T+

3 , a ∈ V,

φt,t(a) = a, (2.1)
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d(φt,s(a), a) ≤ δTNγ(a), (2.2)

d(φt,s(a), φt,s(b)) ≤ (1 + δT )d(a, b) + η(ωs,t)d(a, b)γ , (2.3)

d(φt,s ◦ φs,r(a), φt,r(a)) ≤ Nγ(a)$(ωr,t). (2.4)

Remark 2.2. A family φ ∈ F(V) satisfying condition (2.3) with γ = 1 is said to be
quasi-contractive. This notion plays an important role in the fixed point theory [7].

Definition 2.3 (Iterated almost flow). For a partition π and an almost flow φ, we call φπ

an iterated almost flow, where φπ is the iterated product defined in (1.8).

Definition 2.4 (A flow). A flow ψ is a family of functions {ψt,s}(s,t)∈T+
2

from V to V (not

necessarily continuous in (s, t)) such that ψt,t(a) = a and ψt,s ◦ ψs,r(a) = ψt,r(a) for any
a ∈ V and (r, s, t) ∈ T+

3 .

In this paper, we consider almost flows which are continuous although flows may a
priori be discontinuous (See Theorem 3.10).

2.2 A uniform control on iterated almost flows

Before proving our main result in Section 3, we prove an important uniform control
over φπ.

Theorem 2.5. Let φ be an almost flow. Then there exists a time horizon T small enough
and constants LT ≥ 1 as well as KT ≥ 1 that decrease to 1 as T decreases to 0 such that

d(φπt,s(a), φt,s(a)) ≤ LTNγ(a)$(ωs,t), (2.5)

Nγ(φπt,s(a)) ≤ KTNγ(a), (2.6)

for any (s, t) ∈ T2
+, a ∈ V and any partition π of T. The choice of T , LT and KT depend

only on δ, $, ω, γ and ‖Nγ‖γ .

Remark 2.6. The distance d may be replaced by a pseudo-distance in the statement of
Theorem 2.5.

The proof of Theorem 2.5 is inspired by the one of the Claim in the proof of Lemma 2.4
in [16]. With respect to the one of A.M. Davie, we consider obtaining a uniform control
over a family of elements indexed by (s, t) ∈ T+

2 which are also parametrized by points
in V.

Definition 2.7 (Successive points / distance between two points). Let π be a partition of
[0, T ]. Two points s and t of π are said to be at distance k if there are exactly k− 1 points
between them in π. We write dπ(t, s) = k. Points at distance 1 are called successive
points in π.

Proof. For a ∈ V, (r, t) ∈ T+
2 and a partition π, we set

Ur,t(a) := d(φπt,r(a), φt,r(a)).

We now restrict ourselves to the case (r, t) ∈ π+
2 . To control Ur,t(a) in a way that does

not depend on π, we use an induction in the distance between r and t.
Our induction hypothesis is that there exist constants LT ≥ 0 and KT ≥ 1 independent

from the partition π such that for any (r, t) ∈ π+
2 at distance at most m ≥ 1,

Ur,t(a) ≤ LTNγ(a)$(ωr,t), (2.7)

Nγ(φπt,s(a)) ≤ KTNγ(a), (2.8)

with KT decreases to 1 at T goes to 0.
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The induction hypothesis is true for m = 0, since Ur,r(a) = 0 and Nγ(φπr,r(a)) = Nγ(a).
If r and t are successive points, φπt,r = φt,r so that Ur,t(a) = 0. Thus, (2.7) is true for

m = 1. With (2.2) and since Nγ(a)γ ≤ Nγ(a) as Nγ(a) ≥ 1 by hypothesis,

Nγ(φt,s(a)) ≤ Nγ(φt,s(a))−Nγ(a) +Nγ(a) ≤ ‖Nγ‖γd(φt,s(a), a)γ +Nγ(a)

≤ ‖Nγ‖γδγTNγ(a)γ +Nγ(a) ≤ (‖Nγ‖γδγT + 1)Nγ(a).

For m = 2, it is also true with LT = 1 as Ur,t(a) = d(φt,s ◦ φs,r(a), φt,r(a)) where s is
the point in the middle of r and t. This proves (2.7).

In addition, using (2.7),

Nγ(φπt,s(a)) ≤ ‖N‖γd(φπt,s(a), φt,s(a))γ +Nγ(φt,s(a))−Nγ(a) +Nγ(a)

≤ KTNγ(a) with KT := ‖Nγ‖γ$(ω0,T )γ + ‖Nγ‖γδγT + 1. (2.9)

Clearly, KT decreases to 1 at T decreases to 0. This proves (2.8) whenever (2.7), in
particular for m = 1.

Assume that (2.7)-(2.8) when the distance between r and t is smaller than m for some
m ≥ 2.

For s ∈ π, r ≤ s ≤ t, with (1.9),

Ur,t(a) ≤ d(φπt,s ◦ φπs,r(a), φt,s ◦ φπs,r(a))

+ d(φt,s ◦ φπs,r(a), φt,s ◦ φs,r(a)) + d(φt,s ◦ φs,r(a), φt,r(a)).

With (2.3) and (2.4),

Ur,t(a) ≤ Us,t(φπs,r(a)) + (1 + δT )Ur,s(a) + η(ωs,t)Ur,s(a)γ +Nγ(a)$(ωr,t). (2.10)

Using (2.10) on Us,t(φ
π
s,r(a)) by replacing (r, s, t) by (s, s′, t), where s and s′ are two

successive points of π leads to

Us,t(φ
π
s,r(a)) ≤ Us′,t(φπs′,r(a)) +Nγ(φπs,r(a))$(ωs,t)

since φs′,s ◦ φπs,r(a) = φπs′,r(a) and Us,s′(a) = 0.
With (2.7)-(2.8) and our hypothesis on η, again since Nγ ≥ 1 and s, s′ are at distance

less than m provided that s is at distance at most 2 from t,

Ur,t(a) ≤ Nγ(a) (KTLT$(ωs′,t) + (LT + δT (1 + LγT ))$(ωr,s) + (1 +KT )$(ωr,t)) . (2.11)

This inequality also holds true for r = s or s′ = t.
We proceed as in [16] to split π in “essentially” two parts. We set

s′ := min
{
τ ∈ π

∣∣∣ ωr,τ ≥ ωr,t
2

}
and s := max{τ ∈ π | τ < s′}.

Hence, s and s′ are successive points with r ≤ s < s′ ≤ t and ωr,s ≤ ωr,t/2. Besides, since
ω is super-additive, ωr,s′ + ωs′,t ≤ ωr,t. Therefore,

ωr,s ≤
ωr,t
2

and ωs′,t ≤
ωr,t
2
. (2.12)

With such a choice, since LT ≥ 1, (2.11) becomes with (1.6):

Ur,t(a) ≤
(
LT

KT + 1 + 2δT
2

κ + 1 +KT

)
Nγ(a)$(ωr,t).
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If T is small enough so that

α :=
1 +KT + 2δT

2
κ < 1 and LTα+ 1 +KT ≤ LT ,

then one may choose LT so that LTα+1+KT ≤ LT , that is LT ≥ max{1, (1+KT )/(1−α)}.
This choice ensures that Ur,t(a) ≤ LTNγ(a)$(ωr,t) when r and t are at distance m.
Condition (2.8) follows from (2.9) and (2.7).

The choice of T , KT and LT does not depend on π. In particular, d(φπt,s(a), φt,s(a)) ≤
LTNγ(a)$(ωs,t) becomes true for any (s, t) ∈ T+

2 (it is sufficient to add the points s and t
to π).

Corollary 2.8. Let φ be an almost flow and π be a partition of T. Then φπ ∼ φ (we have
not proved that φπ is itself an almost flow).

Notation 2.9. For an almost flow φ, let us denote by Sφ(s, a) the set of all the possible
limits of the net {φπ·,s(a)}π in (C([s, T ],V), ‖·‖∞) for nested partitions.

When V is a finite dimensional space with the norm |·|, Sφ(s, a) 6= ∅. We start with a
lemma which will be useful to prove some equi-continuity. We denote B̄(0, R) the closed
ball centered in 0 of radius R > 0.

Lemma 2.10. Let R > 0. We assume that V is a finite dimensional vector space and φ is
an almost flow. Then, for all ε > 0 there exists δ > 0 such that for all (s, t), (s′, t′) ∈ T+

2

with |t− t′|, |s− s′| < δ and a ∈ B̄(0, R),

|φt,s(a)− φt′,s′(a)| ≤ ε.

Proof. In all the proof (s, t), (s′, t′) ∈ T+
2 . For any a ∈ B̄(0, R), (s, t) ∈ T+

2 7→ φt,s(a) is
continuous, so uniformly continuous on the compact T+

2 . Let ε > 0, there is δa such that
for all |t− t′|, |s− s′| < δa,

|φt,s(a)− φt′,s′(a)| ≤ ε

3
. (2.13)

For a ρ > 0 with (2.3), for all b ∈ B(a, ρ),

|φt,s(a)− φt,s(b)| ≤ (1 + δT )ρ+ η(ω0,T )ργ ,

where B(a, ρ) denotes the open ball centred in a of radius ρ. We choose ρ(ε) > 0 such
that (1 + δT )ρ(ε) + η(ω0,T )ρ(ε)γ ≤ ε/3 to obtain for all b ∈ B(a, ρ(ε)),

|φt,s(a)− φt,s(b)| ≤
ε

3
. (2.14)

We note that
⋃
a∈B̄(0,R)B(a, ρ(ε)) is a covering of B̄(0, R) which is a compact of V.

There exist an integer N and a finite family of balls B(ai, ρ(ε)) for i ∈ {1, . . . , N} such
that B̄(0, R) ⊂

⋃
i∈{1,...,N}B(ai, ρ(ε)).

It follows that for all b ∈ B̄(0, R) there exists i ∈ {1, . . . , N} such that b ∈ B(ai, ρ(ε)).
From (2.13)-(2.14) there exists δai > 0 such that for all |t− t′|, |s− s′| < δai ,

|φt,s(b)− φt′,s′(b)| ≤ ε.

Taking δ := mini∈{1,...,N} δai , we obtain that for all |t− t′|, |s− s′| < δ and b ∈ B̄(0, R),

|φt,s(b)− φt′,s′(b)| ≤ ε,

which achieves the proof.
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The non-linear sewing lemma I: weak formulation

Proposition 2.11. Assume that V is finite-dimensional and that φ is an almost flow.
Then Sφ(r, a) is not empty for any (r, a) ∈ T×V.

Proof. Let us show for an almost flow φ, {φπ·,r(a)}π is equi-continuous and bounded. The
result is then a direct consequence of the Ascoli-Arzelà theorem.

Let (πn)n∈N be an increasing sequence of partitions of T such that |πn| → 0 when
n → +∞ and

⋃
n∈N πn dense in T. Let R > 0 and R′ := Nγ(R)(LT$(ω0,T ) + δT ) + R.

From Theorem 2.5, for any a ∈ B̄(0, R) and (s, t) ∈ T+
2 ,

|φπnt,s(a)| ≤ |φπnt,s(a)− φt,s(a)|+ |φt,s(a)− a|+ |a| ≤ Nγ(a)(LT$(ω0,T ) + δT ) + |a| ≤ R′.

Let (r, s, t) ∈ T+
3 and s, t ∈

⋃
n∈N πn, let ε > 0 and δ > 0 given by Lemma 2.10 for ε/2. For

|t− s| < δ, let m an integer such that s, t ∈ πm.

We differentiate two cases. Ifm ≤ n, then πm ⊂ πn, which implies that φπnt,r = φπnt,s◦φπns,r.
From Theorem 2.5 and Lemma 2.10, for all a ∈ B̄(0, R), for all |t− s| < δ

|φπnt,r(a)− φπns,r(a)| ≤ |φπnt,s ◦ φπns,r(a)− φπns,r(a)| ≤ ε

2
+ LTNγ(φπns,r(a))$(ωs,t).

Since, ωs,s = 0 and ω is continuous close to diagonal, there exists δ′ > 0 such that for
all |t− s| < δ′, LTNγ(φπns,r(a))$(ωs,t) < ε/2. Thus for all |t− s| < min (δ, δ′), it holds that
|φπnt,r(a)− φπns,r(a)| ≤ ε.

In the case m > n, let s−, s+ be successive points in πn such that [s, t] ⊂ [s−, s+].
Then, φπnt,r(a) = φt,s− ◦ φπns−,r(a) and φπns,r(a) = φs,s− ◦ φπns−,r(a). According to Lemma 2.10,
for |t− s| < δ with s, t ∈ πm, and all a ∈ B̄(0, R),

|φπnt,r(a)− φπns,r(a)| = |φt,s− ◦ φπns−,r(a)− φs,s− ◦ φπns−,r(a)| ≤ ε. (2.15)

By continuity of t 7→ φπnt,r(a), and density of
⋃
m∈N πm in T, we obtain (2.15) for all

(s, t) ∈ T+
2 with r ≤ s and |t − s| < δ. This proves that {t 7→ φπnt,r(a)}n is uniformly

equi-continuous for all a ∈ V. We conclude the proof with the Ascoli-Arzelà theorem.

3 The non-linear sewing lemma

We now show that in the finite dimensional case, we can build a flow from φπ using a
selection principle [11]. In this section, we consider that almost flows φ are defined for
T := [0,+∞).

Definition 3.1 (Solution in the sense of Davie or D-solution). For an almost flow φ, a
time r ∈ T and a point a ∈ V, a solution in the sense of Davie (or a D-solution) is a path
y ∈ C(S,V) with S = [r, r + T ] ⊂ T such that

d(yt, φt,s(ys)) ≤ KNγ(a)$(ωs,t), ∀(s, t) ∈ S2
+, (3.1)

where K ≥ 0 is a constant.

Remark 3.2. Our definition of D-solutions extends the one of Davie in [16] to a metric
space V and a general almost flow φ.

Remark 3.3. When φ is only an almost flow, it is not guaranteed that a D-solution exists
or is unique. When Sφ(r, a) 6= ∅ (see Notation 2.9), we prove below in Lemma 3.14 that a
D-solution exists. However, even if for all (r, a) ∈ T×V, Sφ(r, a) 6= ∅ this does not imply
the existence of families of solutions {ψ·,r(a)}r∈T,a∈V which satisfies the flow property.

Notation 3.4. We denote Ω(r, a) the set of continuous paths such that y ∈ C(S,V) verifies
yr = a. We denote by GKφ (r, a) the set of paths in Ω(r, a) verifying (3.1) for the constant K.
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The non-linear sewing lemma I: weak formulation

Definition 3.5 (Splicing of paths). For r ≤ s, let us consider y(r, a) ∈ Ω(r, a) and z(s, b) ∈
Ω(s, b) with b = ys(r, a). Their splicing is

(y ./s z)t(r, a) =

{
yt(r, a) if t ≤ s,
zt(s, ys(r, a)) if t ≥ s.

We restate here, the definition of a family of abstract integral local funnels (Defini-
tion 2 in [11]), which leads to the existence of a measurable flow.

Definition 3.6. A family F (r, a) with r ∈ [0,+∞), a ∈ V, will be called a family of
abstract local integral funnels with terminal time T (r, a) ∈ (0,+∞) if

H0 The map (r, a) ∈ [0,+∞)×V 7→ T (r, a) is lower semi-continuous in the sense that if
(rn, an)→ (r, a), then T (r, a) ≤ lim infn T (rn, an).

H1 Every set F (r, a) is a non-empty compact in the space C([r, r + T (r, a)],V) and every
path y(r, a) ∈ F (r, a) is a continuous map from [r, r + T (r, a)] to V with yr(r, a) = a.

H2 For all r ≥ 0, the map a ∈ V 7→ F (r, a) is measurable in the sense that for any closed
subset K ⊂ C([0, 1],V), {a ∈ V | F̃ (r, a)

⋂
K 6= ∅} is Borel, where F̃ (r, a) is the set of

re-parametrizations of paths of F (r, a) on [0, 1].

H3 If y(r, a) ∈ F (r, a) and τ < T (r, a), then T (r + τ, yr+τ (r, a)) ≥ T (r, a) − τ and t ∈
[r + τ, r + τ + T (r + τ, yr+τ (r, a))] 7→ yt(r, a) belongs to F (r + τ, yr+τ (r, a)).

H4 If y(r, a) ∈ F (r, a) and τ < T (r, a), and z ∈ F (r + τ, yt+τ (r, a)) then the spliced path
(Definition 3.5) x := y ./r+τ z belongs to F (r, a).

Definition 3.7 (Lipschitz almost flow). A Lipschitz almost flow is an almost flow for
which (2.3) is satisfied with η = 0, and Nγ = N1 = N is Lipschitz continuous.

A flow is constructed by assigning to each point of the space a particular D-solution,
in a sense which is compatible.

Hypothesis 3.8. Let V be a finite dimensional vector space. Let φ := {φt,s}0≤s≤t<+∞
be a Lipschitz almost flow (Definition 3.7) with N bounded. We fix a time horizon T > 0

such that κ(1 + δT ) < 1.

Remark 3.9. When N bounded, we can choose KT = 1 and LT = 2/(1 − κ(1 + δT ))

where KT and LT are the constants of Theorem 2.5.

The main theorem of this paper is the following one.

Theorem 3.10 (Non-linear sewing lemma, weak formulation). Under Hypothesis 3.8,
there exists ψ ∈ F(V) in the same galaxy as φ satisfying the flow property and such that
ψt,s is Borel measurable for any (s, t) ∈ T2

+.

Remark 3.11. Proving such a result with a general Banach space V is false as even
existence of solutions to ordinary differential equations may fail [17,23].

Remark 3.12. To prove Theorem 3.10, we show that (GLT (r, a))r∈[0,+∞),a∈V is a family
of abstract local integral funnels in the sense of Definition 3.6. Then, we use Theorem 2

of [11].

Lemmas 3.13-3.18 prove that GLT (r, a) is a family of local abstract funnels in the
sense of the Definition 2 in [11]. Then we apply Theorem 2 in [11] to obtain the above
theorem.

Lemma 3.13. Under Hypothesis 3.8, the terminal time T (r, a) := T is independent of
the starting time r and the starting point a. In particular, H0 holds for F = GLTφ .
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The non-linear sewing lemma I: weak formulation

Proof. It is sufficient to notice that the constants κ and δT do not depend on a ∈ V

neither on r.

We recall that Sφ(r, a) is defined in Notation 2.9. Our first result is that when
Sφ(r, a) 6= ∅, then there exists at least one D-solution in GLTφ (r, a).

Lemma 3.14. Assume that K ≥ KTLT in Definition 3.1, where KT and LT are constants
in Theorem 2.5. For any (r, a) ∈ T×V, Sφ(r, a) ⊂ GKφ (r, a) for an almost flow φ (note that
Sφ(r, a) may be empty).

Proof. If y ∈ Sφ(r, a) when Sφ(r, a) 6= ∅, then there exists a sequence {πk}k∈N of parti-
tions such that yt = limφπkt,r(a) uniformly in t ∈ [r, T ]. We note that yr = a. For k ∈ N and
sk ∈ πk, with (1.9) and Theorem 2.5,

d(φπkt,r(a), φt,sk ◦ φπksk,r(a)) = d(φπkt,sk ◦ φ
πk
sk,r

(a), φt,sk ◦ φπksk,r(a))

≤ LTNγ(φπksk,r(a))$(ωsk,t)

≤ LTKTNγ(a)$(ωsk,t). (3.2)

Moreover, fixing s ∈ [r, T ] and using (2.2),

d(φt,sk ◦ φπksk,r(a), φt,s(ys(a)))

≤ d(φt,sk ◦ φπksk,r(a), φt,sk ◦ ys(a)) + d(φt,sk ◦ ys(a), φt,s ◦ ys(a))

≤ (1 + δT )d(φπksk,r(a), ys(a)) + η(ω0,T )d(φπksk,r(a), ys(a))γ

+ d(φt,sk ◦ ys(a), φt,s ◦ ys(a)). (3.3)

Choosing {sk}k∈N so that sk decreases to s and passing to the limit, we obtain with (3.3)
that φt,sk ◦ φπksk,r(a) converges uniformly to φt,s ◦ ys(a). Thus, when k → +∞, (3.2) shows
that y is a D-solution.

Lemma 3.15. Under Hypothesis 1, GLTφ (r, a) is a non-empty compact subset of the set
of paths y ∈ C(S,V) such that yr = a for any r ∈ T and a ∈ V. It shows that H1 holds for
F := GLTφ .

Proof. It follows directly from Proposition 2.11 and Lemma 3.14 (with KT = 1 and
K = LT ) that GKφ (r, a) is not empty. Now, if {yk}k is a sequence in GKφ (r, a) then {yk}k
is equi-continuous with the same argument as in the proof of Proposition 2.11. The
subsequence of {yk}k converges in GKφ (r, a) because a ∈ V 7→ φt,s(a) is continuous for

any (s, t) ∈ T+
2 .

Let us denote G̃LTφ (r, a), the set of paths y ∈ GLTφ (r, a) reparametrised on [0, 1] as
t ∈ [0, 1] 7→ ỹt := yr+t(T−r).

Lemma 3.16. Let us assume Hypothesis 3.8. Let r ≥ 0, for any closed subset K ⊂
C([0, 1],V), the set S′(r) := {a ∈ V | G̃LTφ (r, a)

⋂
K 6= ∅} is closed in V, in particular it is a

Borel set in V. It shows that H2 holds for F = GLTφ .

Proof. Let {ak}k∈N be a convergent sequence of S′(r). For each k ∈ N, we choose a path
ỹk ∈ G̃LTφ (r, ak)

⋂
K (which is not empty by definition). Then, for every s, t ∈ [0, 1], s ≤ t,

d(ỹkt , ỹ
k
s ) ≤ d(ỹkt , φt̃,s̃(ỹ

k
s )) + d(φt̃,s̃(ỹ

k
s ), ỹks ) ≤ [LT$(ωs̃,t̃) + δt̃−s̃]‖N‖∞, (3.4)

where t̃ := r + t(T − r) and s̃ := r + s(T − r). Since t̃− s̃ goes to zero when t− s→ 0, it
follows that {t ∈ [0, 1] 7→ ỹkt }k∈N is equi-continuous.
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The sequence {ak}k∈N converges, so it is bounded by a constant A ≥ 0. Applying (3.4)
between s = 0 and t, we get |ỹkt | ≤ (LT$(ω0,1) + δT )‖N‖∞ + A, which proves that
t ∈ [0, 1] 7→ yk is uniformly bounded.

By Ascoli-Arzelà theorem, there is a convergent subsequence {ỹki}i∈N in (C([0, 1],V),

‖·‖∞) to a path y. This path belongs to K since K is closed. Because φt,s is continuous,
ỹ ∈ G̃LTφ (r, a). Hence S′(r) is closed and then Borel.

The proof of the next lemma is an immediate consequence of the definition of D-
solutions.

Lemma 3.17. If t ∈ [r, r + T ] 7→ yt(r, a) belongs to GLTφ (r, a), then for any r′ ≥ 0, its

restriction t ∈ [r + r′, r + r′ + T ] 7→ yt(r, a) belongs to GLTφ (r + r′, yr+r′(r, a)). It shows

that H3 holds for F = GLTφ .

Lemma 3.18. We assume that Hypothesis 3.8 hold. For r′ ≥ 0, if y ∈ GLTφ (r, a) and

z ∈ GLTφ (r + r′, yr+r′(r, a)), then y ./r+r′ z ∈ GLTφ (r, a). It shows that H4 holds for

F := GLTφ

Proof. Let us write x := y ./s z where s := r + r′ and Uτ,t := d(xt, φt,τ (xτ )) for τ ≤ t. On
the one hand, for any r ≤ τ ≤ s ≤ t with (3.1), (2.3) and (2.4),

Uτ,t ≤ d(xt, φt,s(xs)) + d(φt,s(xs), φt,s ◦ φs,τ (xτ )) + d(φt,s ◦ φs,τ (xτ ), φt,τ (xτ ))

≤ ‖N‖∞(2 + δT )LT$(ωτ,t). (3.5)

On the other hand, for s ≤ τ ≤ t or τ ≤ t ≤ s with (3.1)

Uτ,t ≤ ‖N‖∞LT$(ωτ,t). (3.6)

Thus, combining (3.5) and (3.6), for any r ≤ τ ≤ t ≤ T ,

Uτ,t ≤ ‖N‖∞(2 + δT )LT$(ωτ,t).

Besides, for any r ≤ τ ≤ u ≤ t ≤ T with (2.3) and (2.4),

Uτ,t ≤ Uu,t + (1 + δT )Uτ,u + ‖N‖∞$(ωτ,t). (3.7)

Let λ ∈ (0, 1) such that $λ satisfies (1.6) with κλ := 21−λκλ < 1. Let T (λ) > 0

be a real number such that κλ(1 + δT (λ)) < 1. For any, two successive points τ, t of a
subdivision π,

Uτ,t ≤ DLT (π, λ)$λ(ωτ,t), (3.8)

where DLT (π, λ) := ‖N‖∞(2 + δT )LT supτ,t successive points of π$
1−λ(ωτ,t).

Let us show by induction over the distance m between points τ and t in π ∩ [0, T (λ)]

that

Uτ,t ≤ ALT (π, λ)$λ(ωτ,t), (3.9)

where

ALT (π, λ) :=
DLT (π, λ)(1 + δT (λ)) + 2‖N‖∞$λ(ω0,T (λ))

1− κλ(1 + δT (λ))
.

When m = 0, Uτ,τ = 0 so that (3.9) holds. For m = 1, τ and t are successive points then
(3.9) holds with (3.8). Now, we assume that (3.9) holds for any two points at distance m.
Let τ and t be two points at distance m+ 1 in π ∩ [0, T (λ)]. Since ω is super-additive, one
may choose two successive points s and s′ in π with τ < s < s′ < t such that ωτ,s ≤ ωτ,t/2
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and ωs′,t ≤ ωτ,t/2, as in the proof of Theorem 2.5. Then, by applying (3.7) between
(τ, s, s′) and (s, s′, t) we obtain,

Uτ,t ≤ Us,t + (1 + δT (λ))Uτ,s + ‖N‖∞$1−λ(ω0,T (λ))$
λ(ωτ,t)

≤ Us′,t + (1 + δT (λ))Us,s′ + (1 + δT (λ))Uτ,s + 2‖N‖∞$1−λ(ω0,T (λ))$
λ(ωτ,t)

≤ [ALT (π, λ)κλ(1 + δT (λ)) + (1 + δT (λ))DLT (π, λ) + 2‖N‖∞$1−λ(ω0,T (λ))]$
λ(ωτ,t)

≤ ALT (π, λ)$λ(ωτ,t),

with our choice of ALT (π, λ). This concludes the induction, so (3.9) holds for any
τ, t ∈ π ∩ [0, T (λ)]2.

Clearly, DLT (π, λ)→ 0 when the mesh of π goes to zero. Then, ALT (π, λ)→ A(λ) :=

2‖N‖∞$λ(ω0,T (λ))/(1− κλ(1 + δT (λ))) when the mesh of π goes to zero.
By continuity of (τ, t) 7→ Uτ,t, considering finer and finer partitions leads to Uτ,t ≤

A(λ)$λ(ωτ,t) for any r ≤ τ ≤ t ≤ T (λ).
Finally, choosing T (λ) so that T (λ) increases to T defined in Hypothesis 3.8 when λ

goes to 1, we conclude that for any r ≤ τ ≤ t ≤ T ,

Uτ,t ≤ ‖N‖∞LT$(ωτ,t),

where LT is defined in Hypothesis 3.8. This proves that z ∈ GLTφ (r, a).

Proof of Theorem 3.10. Lemma 3.13-3.18 prove that conditions H0-H4 of Definition 3.6
hold for F = GLTφ . This means that GLT (r, a) is a family of abstract local integral funnels.
We apply Theorem 1 in [11]. For any (r, a) ∈ T × V, there exists a measurable map
a 7→ (t 7→ ψt,r(a)) with respect to the Borel subsets of C0(T,V) with the property that
ψr,r(a) = a and ψt,s ◦ ψs,r(a) = ψt,r(a), t ≥ r.

4 Lipschitz flows

A Lipschitz almost flow which has the flow property is said to be a Lipschitz flow. We
recast the definition.

Definition 4.1 (Lipschitz flow). A flow ψ ∈ F(V) is said to be a Lipschitz flow if for any
(s, t) ∈ T+

2 , ψt,s is Lipschitz in space with ‖ψt,s‖Lip ≤ 1 + δT .

In this section, we consider galaxies that contain a Lipschitz flow.
We prove that such a Lipschitz flow ψ is the only possible flow in the galaxy (The-

orem 4.5), and that the iterated almost flow φπ of any almost flow φ converges to ψ

(Theorem 4.2). We also characterize the rate of convergence (Theorem 4.3).
Let us choose λ ∈ (0, 1) such that $λ satisfies the same properties as $ up to

changing κ to κλ := 21−λκλ, provided κλ < 1. This is possible as soon as λ > 1/(1 −
log2(κ)) with (1.6).

Clearly, if for ψ, χ ∈ F(V), ∆N,$(ψ, χ) < +∞, then

∆N,$λ(ψ, χ) ≤ ∆N,$(ψ, χ)$1−λ(ω0,T ) < +∞, (4.1)

where $ is defined by (1.6). Hence, the galaxies remain the same when $ is changed
to $λ. We define

Θ(π) := sup
dπ(s,s′)=1

$1−λ(ωs,s′). (4.2)

Theorem 4.2. Let φ be an almost flow such that ‖φπ‖Lip ≤ 1+δT whatever the partition π,
we say that φ satisfies the uniform Lipschitz (UL) condition. Then there exists a Lipschitz
flow ζ ∈ F(V) with ‖ζs,t‖Lip ≤ 1 + δT such that {φπ} converges to ζ as |π| → 0.
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Theorem 4.3. Let φ be an almost flow and ψ be a Lipschitz flow with ψ ∼ φ. Then there
exists a constant K that depends only on λ, ∆N,$(φ, ψ), κ and T (assumed to be small
enough) so that

∆N,$λ(ψ, φπ) ≤ KΘ(π).

In particular, {φπ}π converges to ψ as |π| → 0.

Remark 4.4. In [9,10], we develop the notion of stable almost flow around a necessary
condition for an almost flow to be associated to a Lipschitz flow. Under such a condition,
a stronger rate of convergence may be achieved (see [10]) by taking

Θ(π) := sup
dπ(s,s′)=1

$(ωs,s′)/ωs,s′ .

Theorem 4.5 (Uniqueness of Lipschitz flows). If ψ is a Lipschitz flow and χ is a flow (not
necessarily Lipschitz a priori) in the same galaxy as ψ, that is χ ∼ ψ, then χ = ψ.

Hypothesis 4.6. Let us fix a partition π. We consider ψ and χ in F(V) such that ψ ∼ χ
and for any (r, s, t) ∈ π3

+,

‖ψt,s‖Lip ≤ 1 + δT , (4.3)

N(χt,s(a)) ≤ (1 + δT )N(a), ∀a ∈ V, (4.4)

∆N (ψt,s ◦ ψs,r, ψt,r) ≤ βψ$(ωr,t) and ∆N (χt,s ◦ χs,r, χt,r) ≤ βχ$(ωr,t), (4.5)

for some constant βχ, βφ ≥ 0.

Remark 4.7. In Hypothesis 4.6, the role of ψ and χ are not exchangeable: ψ is assumed
to be Lipschitz, there is no such requirement on χ. The reason of this dissymmetry lies
in (4.8).

Remark 4.8. If ψ is a Lipschitz almost flow and χ is an almost flow, then (ψ, χ) satisfies
Hypothesis 4.6 for any partition π. The condition (4.4) is a particular case of (2.6).

We choose λ and T so that

1

1− log2(κ)
< λ < 1 and 3δT + δ3

T < 2
1− κλ
κλ

.

We define (recall that Θ(π) is given by (4.2)),

ρT := $(ω0,T )1−λ,

γ(π) := sup
dπ(s,s′)=1

∆N (ψ, χ)

$λ(ωs,s′)
≤ ∆N,$λ(ψ, χ)Θ(π),

β(π) := (2 + 3δT + δ2
T )(βψ + βχ)ρT + (1 + δT )2γ(π) ≥ γ(π),

and L(π) :=
2β(π)

2− κλ(2 + 3δT + δ2
T )
≥ γ(π).

Here, Θ(π) and thus γ(π) converge to zero when the mesh of π tends to zero.

Lemma 4.9. Let φ, χ ∈ F(V) and π be satisfying Hypothesis 4.6. With the above choice
of λ and T , it holds that

d(φt,r(a), χt,r(a)) ≤ L(π ∪ {t, r})N(a)$λ(ωr,t), ∀(r, t) ∈ T2
+. (4.6)

Proof. We set Fr,t := ∆N (ψt,r, χt,r), where ∆N is defined in Notation 1.3. From Defini-
tion 1.4, Fr,t ≤ ∆N,$(ψ, χ)$(ωr,t) < +∞ since ψ ∼ χ.

In particular, for (r, s, t) ∈ π3
+, with (4.4) in Hypothesis 4.6,

d(ψt,s ◦ χs,r(a), χt,s ◦ χs,r(a)) ≤ Fs,tN(χs,r(a)) ≤ (1 + δT )N(a)Fs,t. (4.7)
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The non-linear sewing lemma I: weak formulation

For any (r, s, t) ∈ π+
3 , the fact that φ, χ are almost flow combined with (4.3)-(4.5)

and (4.7) imply that for any a ∈ V,

d(ψt,r(a), χt,r(a))

≤ d(ψt,s ◦ ψs,r(a), ψt,s ◦ χs,r(a)) + d(ψt,s ◦ χs,r(a), χt,s ◦ χs,r(a)) + (βφ + βχ)N(a)$(ωr,t)

≤ (1 + δT )N(a)Fr,s + (1 + δT )N(a)Fs,t + (βχ + βφ)N(a)$(ωr,t). (4.8)

Thus, dividing by N(a),

Fr,t ≤ (1 + δT )(Fr,s + Fs,t) + (βχ + βψ)ρT$
λ(ωr,t). (4.9)

We proceed by induction. Our hypothesis is that

Fr,t ≤ L(π)$λ(ωr,t),∀(r, t) ∈ π+
2 , at distance at most m. (4.10)

When m = 0, Fr,r = 0 since ψr,r(a) = χr,r(a) = a for any a ∈ V. Thus (2.7) is true for
m = 0. When m = 1, r and t are successive points. From the very definition of γ(π),

Fr,t ≤ γ(π)$λ(ωr,t). (4.11)

The induction hypothesis (2.7) is true for m = 1 since L(π) ≥ γ(π).
Assume that the induction hypothesis is true at some level m ≥ 1. Let (r, s, t) ∈ π+

3

with r < s < t and dπ(r, t) = m+ 1. Let s′ be such that s and s′ are successive points in π
(possibly, s′ = t). Clearly, dπ(r, s) ≤ m and dπ(s′, t) ≤ m. Using (4.9) to decompose Fs,t
using s′ and using (4.11),

Fr,t ≤ (1 + δT )Fr,s + (1 + δT )2Fs′,t + (1 + δT )2γ(π)$λ(ωs,s′)

+ (2 + 3δT + δ2
T )(βψ + βχ)ρT$

λ(ωr,t)

≤ (1 + δT )Fr,s + (1 + δT )2Fs′,t + β(π)$λ(ωr,t).

With the induction hypothesis, since r and s (resp. s′ and t) are at distance at most m,

Fr,t ≤ L(π)(1 + δT )$λ(ωr,s) + L(π)(1 + δT )2$λ(ωs′,t) + β(π)$λ(ωr,t).

Choosing s and s′ to satisfy (2.12), our choice of L(π) and (1.6) imply that

Fr,t ≤
(
L(π)

2 + 3δT + δ2
T

2
κλ + β(π)

)
$λ(ωr,t) ≤ L(π)$λ(ωr,t).

The induction hypothesis (4.10) is then true at level m + 1, and then whatever the
distance between the points of the partition.

Finally, (4.6) is obtained by replacing π by π ∪ {r, t}.

Proof Theorem 4.2. Let σ and π be two partitions with π ⊂ σ. We set ψ :=φσ and χ :=φπ.
With Theorem 2.5,

∆N,$(φσ, φπ) ≤ ∆N,$(φσ, φ) + ∆N,$(φπ, φ) ≤ 2LT .

With (4.1), ∆N,$λ(ψ, χ) ≤ 2LT ρT , so that {∆N,$λ(ψ, χ)}π,σ is bounded.
Again with Theorem 2.5, (ψ, χ) satisfies Hypothesis 4.6 for the subdivision π (up to

changing δT ) with βψ = βχ = 0.
Hence, L(π) = Cγ(π) where

C :=
2(1 + δT )2

(2− κλ(2 + 3δT + δ2
T )
. (4.12)
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The non-linear sewing lemma I: weak formulation

We may then rewrite (4.6) as

d(φσt,r(a), φπt,r(a)) ≤ Cγ(π ∪ {r, t})N(a)$λ(ωr,t). (4.13)

Since γ(π) decreases to 0 as |π| decreases to 0 and |π∪{r, t}| ≤ |π|, it is easily shown that
{φπt,s}π forms a Cauchy net with respect to the nested partitions. Then, it does converges
to a limit ζs,t(a). By Theorem 4.9 and the continuity of N , N(ζs,r) ≤ KTN(a). From the
UL condition, a 7→ ζt,s(a) is Lipschitz continuous with ‖ζt,s‖Lip ≤ 1 + δT .

Moreover ζ does not depend on the subdivision π. Indeed, if π̃ is another subdivision,
we obtain with (4.13), that {φπ̃}π̃ converges to ζ when |π̃| → 0.

Finally, if if {πk}k≥0 is a family of nested partitions, and (r, s, t) ∈ T+
3 ,

φ
πk∪{s}
t,r = φπkt,s ◦ φπks,r.

Because |πk ∪ {s}| ≤ |πk| and (4.13), φπk∪{s} converges to ζ when k → +∞. Moreover,
for any a ∈ V,

d(ζt,s ◦ ζs,r(a), φπkt,s ◦ φπks,r(a))

≤ d(ζt,s ◦ ζs,r(a), φπkt,s ◦ ζs,r(a)) + d(φπkt,s ◦ ζs,r(a), φπkt,s ◦ φπks,r(a))

≤ Cγ(πk ∪ {r, t})N(ζs,r(a))$λ(ωr,t) + (1 + δT )d(ζs,r(a), φπks,r(a))

≤ Cγ(πk ∪ {r, t})(1 +KT )N(a)$(ωr,t),

because N(ζs,r(a)) ≤ KTN(a). So, {φπkt,s ◦ φπks,r}πk converges uniformly to ζt,s ◦ ζs,r when
m→ +∞. Then, the flow property ζt,s ◦ ζs,r = ζt,r holds.

Proof Theorem 4.3. For a partition π, the pair (ψ, φπ) satisfies Hypothesis 4.6 for the
subdivision π with βψ = βχ = 0. As in the proof of Theorem 4.2 (we have assumed for
convenience that ∆N,$(φ, ψ) ≤ LT ),

∆N,$λ(ψ, φπ) ≤ Cγ(π) ≤ 2CLT ρTΘ(π)

for C given by (4.12). This proves the result.

Proof Theorem 4.5. For any partition π, ψ and χ satisfy Hypothesis 4.6 with βψ = βχ = 0.
Thus,

∆N,$λ(ψ, χ) ≤ Cγ(π)

with C given by (4.12). As γ(π) decreases to 0 when |π| decreases to 0, we obtain
that ψ = χ.

Corollary 4.10. Let ψ and χ be two almost flows with ψ ∼ χ and ψ be Lipschitz. Then
for T small enough (in function of some λ < 1, κ and δ)

∆N,$(ψ, χ) ≤ 2(2 + 3δT + δ2
T )(βψ + βχ)

2− κλ(2 + 3δT + δ2
T )

.

Proof. With Remark 4.8, (ψ, χ) satisfies Hypothesis 4.6. Letting the mesh of the partition
decreasing to 0 as the in proof of Theorem 4.5, and then letting λ increasing to 1 leads
to the result.
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5 Perturbations

In this section, we consider the construction of an almost flow by perturbations of
existing ones. We assume that V is a Banach space.

Let φ ∈ F(V) be an almost flow with respect to a function Nγ such that Nγ(a) ≥
Nγ(0) ≥ 1.

Notation 5.1. For φ ∈ F(V) when V is a Banach space, we write

φt,s,r(a) := φt,s(φs,r(a))− φt,r(a).

Definition 5.2. Let ε ∈ F(V) such that for any (s, t) ∈ T+
2 , a, b ∈ V,

εt,t ≡ 0, (5.1)

|εt,s(a)| ≤ λNγ(a)$(ωs,t), (5.2)

|εt,s(b)− εt,s(a)| ≤ η(ωs,t)|b− a|γ , (5.3)

for some λ ≥ 0. We say that ε is a perturbation.

Proposition 5.3. If φ ∈ F(V) is an almost flow and ε ∈ F(V) is a perturbation, then
ψ := φ+ ε is an almost flow. Besides, ψ ∼ φ.

Proof. Let (r, s, t) ∈ T+
3 and a, b ∈ V. From (5.1), (2.1) is satisfied. With δ′T := δT +

λ$(ω0,T ), (2.2) is also true. In addition, with (5.3),

|ψt,s(b)− ψt,s(a)| ≤ (1 + δT )|b− a|+ 2η(ωs,t)|b− a|γ .

Thus, ψ satisfies (2.3).
To show (2.4), we write

ψt,s,r(a) = φt,s ◦ ψs,r(a) + εt,s ◦ ψs,r(a)− φt,r(a)− εt,s(a)

= φt,s,r(a)︸ ︷︷ ︸
Ir,s,t

+φt,s ◦ (φs,r + εs,r)(a)− φt,s ◦ φs,r(a)︸ ︷︷ ︸
IIr,s,t

+ εt,s ◦ (φs,r(a) + εs,r(a))− εt,s ◦ φs,r(a)︸ ︷︷ ︸
IIIr,s,t

+ εt,s ◦ φs,r(a)− εt,s(a)︸ ︷︷ ︸
IVr,s,t

. (5.4)

We control the first term with (2.4), |Ir,s,t| ≤ Nγ(a)$(ωr,t). For the second one, we use
(1.7), (2.3) and (5.2),

|IIr,s,t| ≤ (1 + δT )|εs,r(a)|+ η(ωs,r)|εs,r|γ

≤ (1 + δT )λNγ(a)$(ωr,s) + η(ωs,t)λ
γNγ

γ (a)$(ωr,s)
γ

≤ [1 + (1 + λγ)δT ]Nγ(a)$(ωr,t),

because Nγ(a) ≥ 1 implies that Nγ
γ (a) ≤ Nγ(a) for γ ∈ (0, 1).

With (5.2) and (5.3), we obtain for the third term,

|IIIr,s,t| ≤ η(ωs,t)|εs,r(a)|γ ≤ λγNγ(a)γη(ωs,t)$(ωr,s)
γ ≤ λγNγ(a)δT$(ωs,t),

where the last inequality comes from (1.7). And for the last term, we use (2.6) and (5.2),

|IVr,s,t| ≤ |εt,s ◦ φs,r(a)|+ |εt,s(a)| ≤ (Nγ(φs,r) +Nγ(a))λ$(ωs,t)

≤ (KT + 1)Nγ(a)λ$(ωs,t).

Thus, combining estimations for each four terms of (5.4), we obtain (2.4) which proves
that ψ is an almost flow.

Besides,
|ψt,s(a)− φt,s(a)| = |εt,s(a)| ≤ λNγ(a)$(ωs,t),

which proves that ψ ∼ φ and concludes the proof.
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6 Applications

On this section, we show that our framework covers former different sewing lemmas.

6.1 The additive sewing lemma

The additive sewing lemma is the key to construct the Young integral [28] and the
rough integral [22,26].

We consider that V is a Banach space with a norm |·|. The distance d is d(a, b) := |b−a|.
Definition 6.1 (Almost additive functional). A family {αs,t}(s,t)∈T+

2
is an almost additive

functional if

αr,s,t := αr,s + αs,t − αr,t satisfies |αr,s,t| ≤ $(ωr,t), ∀(r, s, t) ∈ T+
3 .

It is an additive functional if αr,s,t = 0 for any (r, s, t) ∈ T+
3 .

Proposition 6.2 (The additive sewing lemma [19, 25]). If {αs,t}(s,t)∈T+
2

is an almost

additive functional with |αs,t| ≤ δT , there exists an additive functional {γs,t}(s,t)∈T+
2

which is unique in the sense that for any constant C ≥ 0 and any additive functional
{βs,t}(s,t)∈T+

2
, |βs,t − αs,t| ≤ C$(ωs,t) implies that β = γ.

Proof. Clearly, φt,s(a) = a+αs,t is an almost flow which satisfies the UL condition. Hence
the result.

6.2 The multiplicative sewing lemma

Here we recover the results of [14,19,26]. We consider now that the metric space V

has a monoid structure: there exists a product ab ∈ V of two elements a, b ∈ V. We also
assume that there exists a Lipschitz function N : V→ [1,+∞) such that

d(ac, bc) ≤ N(c)d(a, b) and d(ca, cb) ≤ N(c)d(a, b) for all a, b, c ∈ V.

Definition 6.3. A family {αs,t}(s,t)∈T+
2

is said to be an almost multiplicative functional if

d(αr,sαs,t, αr,t) ≤ $(ωr,t), ∀(r, s, t) ∈ T3
+.

It is a multiplicative functional if αr,sαs,t = αr,t.

Proposition 6.4 (The multiplicative sewing lemma [19]). If {αs,t}(s,t)∈T2
+

is an almost

multiplicative functional then there exists a unique multiplicative functional {γs,t}(s,t)∈T2
+

such that any other multiplicative functional {γs,t}(s,t)∈T2
+

such that d(βs,t, αs,t) ≤
C$(ωs,t) for any (s, t) ∈ T2

+ satisfies β = γ.

Proof. For this, it is sufficient to consider φt,s(a) = aαs,t which is an almost flow which
satisfies the UL condition.

Remark 6.5. Actually, as for the additive sewing lemma (which is itself a subcase of
the multiplicative sewing lemma), we have a stronger statement: No (non-linear) flow
satisfies d(ψt,s(a), aαs,t) ≤ C$(ωs,t) except {a 7→ aβs,t}(s,t)∈T2

+
which is constructed as

the limit of the products of the αs,t over smaller and smaller intervals.

6.3 The multiplicative sewing lemma in a Banach algebra

Consider now that V has a Banach algebra structure with a norm |·| such that
|ab| ≤ |a| × |b| and a unit element 1 (the product of two elements is still denoted by ab).

A typical example is the Banach algebra of bounded operators over a Banach space X.
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This situation fits in the multiplicative sewing lemma with d(a, b) = |a − b| and
N(a) = |a|, a, b ∈ V. As seen in [14], we have many more properties: continuity,
existence of an inverse, Dyson formula, Duhamel principle, ...

In particular, this framework is well suited for considering linear differential equations
of type

yt,s = a+

∫ t

s

yr,s dαr, a ∈ V, t ≥ s ≥ 0

for an operator valued path α : T+
2 → V. If α is γ-Hölder with γ > 1/2, then φt,s(a) =

a(1+αs,t) defines an almost flow which satisfies the condition UL (at the price of imposing
some conditions on α, this could be extended to γ < 1/2).

Defining an “affine flow” φt,s(a) = a(1 + αs,t) + βs,t where both α and β are γ-Hölder
with γ > 1/2, the associated flow ψ is such that ψt,s(a) is solution to the perturbed
equation

ψt,s(a) = a+

∫ t

s

ψr,s(a) dαr + βs,t.

This gives an alternative construction to the one of [14] where a backward integral
between β and α was defined in the style of the Duhamel formula. All these results are
extended to the rough case 1/3 < γ ≤ 1/2.

Example 6.6 (Lyons extension theorem). With the tensor product ⊗ as product and a
suitable norm, for any integer k, the tensor algebra

Tk(X) :=R⊕X⊕X⊗2 ⊕ · · · ⊕X⊗k

is a Banach algebra. Chen series of iterated integrals (and then rough paths) take their
values in some space Tk(X). The Lyons extension theorem states that any rough path x

of finite p-variation with values in Tk(X) for some k ≥ bpc is uniquely extended to a rough
path with values in T`(X) for any ` ≥ k, which leads to the concept of signature [25,26].
This follows a 7→ a⊗ xs,t as an almost flow which satisfies the UL condition (see also [19]
and also [14]).

6.4 Rough differential equation

Now, we show that our construction is related to the one of A.M. Davie [16]. The
main idea of Davie was to construct solutions as paths y : T→ V that satisfies (3.1) for a
suitable “algorithm” φt,s of the solution between s and t. Solutions passing through a at
0 are then constructed as limit of using {φπt,0(a)}π (See Proposition 2.11). The algorithm
φt,s is given by a truncated Taylor expansion of the solution of (1.1). The number of
terms to consider in the Taylor expansion depends directly on the regularity of x. In the
Young case one term is needed whereas in the rough case two terms are required.

In this section, we show that the algorithms provided in [16] are almost flows under
the same regularity on the vector field f and the path x. Not only we recover existence
of D-solutions, but we also show that measurable flows exist when the vector fields f
are C1

b (Young case) or C2
b (rough case) in situation in which non-uniqueness of solutions

is known to hold, again due to [16], unless f is of class C1+γ
b (Young case) or C2+γ

b (rough
case).

Here U and V are two Banach spaces, where we use the same notation |·| for their
norms. We denote by L(U,V) the continuous linear maps from U to V. Let f be a
map from V to L(U,V). If f is regular, we denote its Fréchet derivative in a ∈ V,
df(a) ∈ L(V,L(U, V )).

Moreover, for any a ∈W and (r, s, t) ∈ T+
3 , we set φt,s,r(a) := φt,s ◦ φs,r(a)− φt,r(a).
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6.4.1 Almost flow in the Young case

Let x : T→ U be a path of finite p-variation controlled by ω with 1 ≤ p < 2.
We define a family (φt,s)(s,t)∈T+

2
in F(V) such that for all a ∈ V and (s, t) ∈ T+

2 ,

φt,s(a) := a+ f(a)xs,t, (6.1)

where xs,t := xt − xs.
Proposition 6.7. Assume that f ∈ Cγ(V,L(U, V )), with 1 + γ > p. Then φ is an almost
flow.

Proof. We check that assumptions of Definition 2.1 hold. Let (r, s, t) be in T+
3 and let a, b

be in V. First, φt,t(a) = a because xt,t = 0. Second,

|φt,s(a)− a| ≤ |f(a)| · |xs,t| ≤ |f(a)| · ‖x‖pω1/p
s,t ,

which proves (2.2). Third,

|φt,s(a)− φt,s(b)| ≤ |a− b|+ |f(a)− f(b)||xs,t| ≤ |a− b|+ ‖f‖γ‖x‖pω1/p
s,t |a− b|γ ,

which proves (2.3). It remains to prove (2.4). Since

φt,s,r(a) = f(φs,r(a))xs,t − f(a)xs,t,

we obtain

|φt,s,r(a)| ≤ ‖f‖γ‖x‖pω1/p
s,t |φs,r(a)− a|γ ≤ ‖f‖γ |f(a)|γ‖x‖2pω

(1+γ)/p
r,t

≤ ‖f‖γ(1 + |f(a)|)‖x‖2pω
(1+γ)/p
r,t .

Setting $(ωr,t) := ω
(1+γ)/p
r,t , η(ωs,t) := ‖f‖γ‖x‖pω1/p

s,t and

Nγ(a) := (1 + |f(a)|)
(
‖x‖p + ‖f‖γ‖x‖2p

)
,

it proves that φ is an almost flow.
This concludes the proof.

Let ψ be a flow in the same galaxy as the almost flow φ. For any a ∈ V and any
(r, t) ∈ T2

+, we set
yt(r, a) := ψt,r(a) so that yr(r, a) = a.

Clearly, (r, a) 7→ (t ∈ [r, T ] 7→ yt(r, a)) is a family of continuous paths which satisfies

|yt(r, a)− φt,r(ys(r, a))| ≤ CNγ(ys(r, a))ω
2/p
s,t , ∀(s, t) ∈ T2

+, ∀a ∈ V

since yt(r, a) = ψt,s(ys(r, a)). Besides, s ∈ [r, T ] 7→ Nγ(ys(r, a)) is bounded. Therefore,
with our choice of the almost flow φ, ψ·,r(a) = y(r, a) is a solution in the sense defined by

A.M. Davie [16] for the Young differential equation zt = a+
∫ t
r
f(zs) dxs. Even if several

solutions may exist for a given (r, a), the flow corresponds to a particular choice of a
family of solutions which is constructed thanks to a selection principle. This family of
solution is stable under splicing (see Definition 3.5).

Corollary 6.8. We assume that V is a finite-dimensional vector space and f is in
C1

b(V,L(U,V)). Then there exists a flow ψ ∈ F(V) in the same galaxy as φ such that ψt,s
is Borel measurable for any (s, t) ∈ T2

+.

Remark 6.9. When f ∈ Cγb , several D-solutions to the Young differential equation
y = a+

∫ ·
0
f(ys(a)) dxs may exist (Example 1 in [16]). Uniqueness arises when f ∈ C1+γ

b

with 1 + γ > p. Hence, a measurable flow may exist even when several D-solution may
exist.

Proof. According to Proposition 6.7, φ is an almost flow. Here γ = 1, so φ is Lipschitz.
Then, we conclude the proof in applying Theorem 3.10 to φ.
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6.4.2 Almost flow in the rough case

When the regularity of x is weaker than in the Young case, we need more terms in the
Taylor expansion to obtain an almost flow.

Let T2(U) :=R⊕U⊕ (U⊗U) be the truncated tensor algebra (with addition + and
tensor product ⊗). A distance is defined on the subset of elements of T2(U) on the form
a = 1 + a1 + a2 with ai ∈ U⊗i by d(a, b) = |a−1 ⊗ b| where |·| is a norm on T2(U) such that
|a⊗ b| ≤ |a| · |b| for any a, b ∈ U.

Let x = (1,x1,x2) be a rough path with values in T2(U) of finite p-variation, 2 ≤ p < 3,
controlled by ω (see e.g., [20,25] for a complete definition).

We define a family (φt,s)(s,t)∈T+
2

in F(V) such that for all a ∈ V and (s, t) ∈ T+
2 ,

φt,s(a) := a+ f(a)x1
s,t + df(a) · f(a)x2

s,t. (6.2)

Proposition 6.10. Assume that f ∈ C1+γ
b (V,L(U,V)), with 2 + γ > p. Then φ is an

almost flow.

Proof. We check that the assumptions of Definition 2.1 hold. The proofs of (2.1), (2.2)
and (2.3) are very similar to the ones in the proof of Proposition 6.7. The computation to
show (2.4) is a bit more involved.

Indeed, for any a ∈ V, (r, s, t) ∈ T+
3 ,

φt,s,r(a) =− f(a)x1
s,t + f(φs,r(a))x1

s,t − df(a) · f(a)(x2
s,t + x1

r,s ⊗ x1
s,t)

+ df(φs,r) · f(φs,r(a))x2
s,t

=[f(φs,t(a))− f(a)− df(a) · f(a)x1
r,s]⊗ x1

s,t

+ [ df(φs,r(a)) · f(φs,r(a))− df(a) · f(a)]x2
s,t

= f(φs,t(a))− f(a)− df(a) · (φs,r(a)− a)︸ ︷︷ ︸
Ir,s,t

+ df(a) · f(a)x2
r,s ⊗ x1

s,t︸ ︷︷ ︸
IIr,s,t

+ [ df(φs,t(a)) · f(φs,r(a))− df(a) · f(a)]x2
s,t︸ ︷︷ ︸

IIIr,s,t

.

For the first term,

|Ir,s,t| ≤ ‖df‖γ‖x1‖pω1/p
s,t |φs,r(a)− a|1+γ

≤ ‖df‖γ‖x1‖pω1/p
s,t [‖f‖∞‖x1‖p + ‖df · f‖∞‖x2‖ p

2
ω

1/p
0,T ]1+γω(1+γ)/p

r,s .

For the two last terms,

|IIr,s,t| ≤ ‖ df · f‖∞‖x1‖p‖x2‖ p
2
ω

3/p
r,t ≤ ‖df · f‖∞‖x1‖p‖x2‖ p

2
ω

(1−γ)/p
0,T ω

(2+γ)/p
r,t

and

|IIIr,s,t| ≤ ‖x2‖ p
2
ω

2/p
r,t [‖df‖γ‖f‖∞|φs,r(a)− a|γ + ‖ df‖∞‖f‖Lip|φs,r(a)− a|] ≤ Cω3/p

r,t ,

where C is a constant which depends on f , df , ω, γ, x. It proves that φ is a Lipschitz
almost flow.

This concludes the proof.

As for the Young case, any flow ψ in the same galaxy as the almost flow φ given by
(6.2) gives rise to a family of solutions to the RDE zt = a+

∫ t
0
f(zs) dxs.

Corollary 6.11. We assume that V is a finite-dimensional vector space and f is in
C2

b(V,L(U,V)). Then there exists a flow ψ ∈ F(V) in the same galaxy as φ such that ψt,s
is Borel measurable for any (s, t) ∈ T2

+.
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Remark 6.12. When f ∈ C1+γ
b , several D-solutions to the RDE y = a +

∫ ·
0
f(ys(a)) dxs

may exist (Example 2 in [16]). Uniqueness requires f to be (2 + γ)-Hölder continuous
with 2 + γ > p. Hence, Corollary 6.11 shows that a measurable flow exists even when
several D-solutions may exist.

Proof. According to Proposition 6.10, φ is an almost flow. Here γ = 1, so φ is Lipschitz.
Then, we conclude the proof in applying Theorem 3.10 to φ.
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