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Abstract

The boundary behavior of continuous-state branching processes with quadratic com-
petition is studied in whole generality. We first observe that despite competition,
explosion can occur for certain branching mechanisms. We obtain a necessary and
sufficient condition for∞ to be accessible in terms of the branching mechanism and
the competition parameter c > 0. We show that when∞ is inaccessible, it is always
an entrance boundary. In the case where∞ is accessible, explosion can occur either
by a single jump to∞ (the process at z jumps to∞ at rate λz for some λ > 0) or by
accumulation of large jumps over finite intervals. We construct a natural extension of
the minimal process and show that when∞ is accessible and 0 ≤ 2λ

c
< 1, the extended

process is reflected at∞. In the case 2λ
c
≥ 1, ∞ is an exit of the extended process.

When the branching mechanism is not the Laplace exponent of a subordinator, we
show that the process with reflection at ∞ gets extinct almost surely. Moreover
absorption at 0 is almost sure if and only if Grey’s condition is satisfied. When the
branching mechanism is the Laplace exponent of a subordinator, necessary and suffi-
cient conditions are given for a stationary distribution to exist. The Laplace transform
of the latter is provided. The study is based on classical time-change arguments
and on a new duality method relating logistic CSBPs with certain generalized Feller
diffusions.
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1 Introduction

Continuous-state branching processes (CSBPs for short) have been defined by Jiřina
[Jiř58] and Lamperti [Lam67a] for modelling the size of a random continuous popula-
tion whose individuals reproduce and die independently with the same law. Lamperti
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Logistic CSBPs: duality and reflection at infinity

[Lam67b] and Grimvall [Gri74] have shown that these processes arise as scaling limits
of Galton-Watson Markov chains. Their laws are characterised in terms of a Lévy-
Khintchine function Ψ (called a branching mechanism). A shortcoming of CSBPs for
modelling population lies in their degenerate longterm behavior. In the long run, a CSBP
either tends to 0 or to∞. On the event of extinction, the process can decay indefinitely
or be absorbed at 0 in finite time. Similarly, on the event of non-extinction, the CSBP can
grow indefinitely or be absorbed at∞ in finite time. The latter event is called explosion
and occurs typically when the process performs infinitely many large jumps in a finite
time with positive probability.

Since the sixties, several generalizations of CSBPs have been defined to overcome
various unrealistic properties of pure branching processes. Lambert [Lam05] has intro-
duced a generalization of these processes by incorporating pairwise interactions between
individuals. These processes, called logistic continuous-state branching processes, are
the random analogues of the logistic equation

dzt = γztdt−
c

2
z2
t dt, (1.1)

where, informally speaking, the Malthusian growth γztdt is replaced by the full dynamics
of a continuous-state branching process. For instance, when the mechanism Ψ of the
CSBP reduces to Ψ(z) = σ2

2 z
2 − γz, the process (Zt, t ≥ 0) is the logistic Feller diffusion

dZt = σ
√
ZtdBt + γZtdt−

c

2
Z2
t dt. (1.2)

The negative quadratic drift represents additional deaths occurring due to pairwise
fights among individuals. Intuitively, these fights can be interpreted as competition
(for resources for instance). We refer to Le, Pardoux and Wakolbinger [LPW13] and
Berestycki, Fittipaldi and Fontbona [BFF17] for a study of the competition at the level of
the genealogy. In a logistic CSBP, individuals and their progenies are not independent
of one another, and the branching property, from which all properties of CSBPs can be
deduced, is lost. One of the main reasons for interest in logistic CSBPs is to provide a
model of a population with possible self-limiting growth.

The objective of this article is to study these processes with most general mechanisms
and to understand precisely how the competition regulates the growth. We shall study
the nature of the boundaries 0 (extinction of the population) and ∞ (explosion of the
population). Throughout this article, we follow the terminology of Feller, introduced in
[Fel54], for classifying boundaries of a diffusion (see Section 2 for their meaning). The
state of the art is as follows. In the continuous case (1.2), Feller tests provide that∞ is
an entrance and 0 an exit. For a general mechanism Ψ, the logistic CSBP has (typically
unbounded) positive jumps and such general tests do not exist. Lambert in [Lam05]
has found a set of sufficient conditions on the mechanism Ψ for ∞ to be an entrance
boundary. Under these conditions, it is also shown in [Lam05] that the competition alone
has no impact on the extinction of the population. In other words, the boundary 0 is an
exit if and only if the branching mechanism Ψ satisfies Grey’s condition. The entrance
property from ∞ coincides with the notion of coming down from infinity observed in
many stochastic models. We refer for instance to Cattiaux et al. [CCL+09] and Li [Li18]
for recent related works and to Donnelly [Don91] for a classical result in coalescent
theory.

We shall choose a different path than [Lam05] and study directly the semigroup of
logistic CSBPs. A rather surprising first phenomenon is that the competition does not
always prevent explosion. Some reproduction laws have large enough tails for ∞ to
be accessible (meaning for explosion to occur). We provide a necessary and sufficient
condition for∞ to be inaccessible and show that under this condition the boundary∞ is
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an entrance. Since the competition pressure increases with the size of the population,
one may wonder if some compensation occurs near the boundary ∞ for a general
mechanism Ψ. The main contribution of this article is to answer the following question.
Is it possible for a logistic continuous-state branching process to leave and return to
∞ in finite time? We shall indeed see that the reproduction can be strong enough for
explosion to occur and the quadratic competition strong enough to instantaneously push
the population size back into [0,∞) after explosion. This phenomenon is captured by
the notion of regular instantaneous reflecting boundary. By reflecting, we mean here
that the Lebesgue measure of {t ≥ 0, Zt = ∞} is zero almost surely. The boundary is
instantaneous in the sense that starting from∞ the process enters immediately (0,∞).
Only in some cases, for which explosion is made by a single jump, the boundary ∞ is
an exit. We stress also that it may well occur that the population goes extinct after
exploding, so that∞ is not always recurrent.

In order to classify the boundaries as explained above, we need to define an extension
of the minimal process in [0,∞]. This requires in general a deep study of the minimal
semi-group. However, since processes with competition do not satisfy the branching
property, most arguments for CSBPs are not applicable. The resolvent of logistic CSBPs
is rather involved and we will not discuss all possibilities of extensions in this article but
only construct a natural one by approximation. We first establish a duality between non-
explosive logistic continuous-state branching processes and some generalizations of the
logistic Feller diffusion process (1.2). Namely we will show that when∞ is inaccessible
for the process (Zt, t ≥ 0), for any x ≥ 0, z ∈ [0,∞) and t ≥ 0,

Ez(e
−xZt) = Ex(e−zUt) (1.3)

where (Ut, t ≥ 0) is a solution to

dUt =
√
cUtdBt −Ψ(Ut)dt, U0 = x.

We shall see that the condition for ∞ to be inaccessible for (Zt, t ≥ 0) is precisely
given by Feller’s test for 0 to be an exit of (Ut, t ≥ 0). We stress that the SDE above
does not always have a unique solution as 0 can be regular for certain non-Lipschitz
mechanisms Ψ. It is precisely for such mechanisms that∞ will be regular for logistic
CSBPs. Heuristically, if (1.3) holds for some processes (Zt, t ≥ 0) and (Ut, t ≥ 0), then
the entrance boundaries of (Zt, t ≥ 0) will be classified in terms of exit boundaries
of (Ut, t ≥ 0). We refer to Cox and Rösler [CR84] and Liggett [Lig05] for a study of
boundaries by duality of semi-groups. The identity (1.3) provides a representation of the
semi-group of any non-explosive process with competition and will allow us to construct
an extended process over [0,∞] with∞ reflecting as a limit of non-explosive processes.
We highlight that this construction is different from the classical Itô’s concatenation
procedure for building recurrent extensions. In particular, our approach is not based on
a measure theoretical description of the excursions from∞ but on a direct description
of the extended semi-group.

A very similar phenomenon of reflection at∞ has been recently observed by Kypri-
anou et al. [KPRS17] for a certain exchangeable fragmentation-coalescence process
(EFC process). We shall observe the same phase transition between the reflecting
boundary case and the exit boundary one. We highlight that contrary to the process
studied in [KPRS17], a logistic CSBP can reach∞ by accumulation of large jumps over
a finite interval of time. Discrete logistic branching processes are closely related to
the number of fragments in some EFC processes, see Berestycki [Ber04] and Lambert
[Lam05]. We refer also to Bertoin and Kortchemski [BK16, Section 5.3].

The duality (1.3) has been observed in a spatial context for the branching mecha-
nism Ψ(u) = σ2

2 u
2 − γu by Horridge and Tribe [HT04] for the logistic SPDE, see also
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Hutzenthaler and Wakolbinger [HW07]. Lastly, other competition mechanisms than the
quadratic drift have been studied. We refer for instance to the monograph of Pardoux
[Par16] and Ba and Pardoux [BP15] for some generalisations of the logistic Feller diffu-
sions. It is worth noticing that the relation (1.3) does not hold for general competition
mechanims.

The paper is organised as follows. In Section 2, we recall some known facts about
CSBPs and define minimal logistic CSBPs through a martingale problem. We state our
main results in Section 3 and provide some examples. In Section 4, we show how to
solve the martingale problem by time-changing an Ornstein-Uhlenbeck type process.
Some first properties of the minimal process, such as a criterion for its explosion, are
derived from this time-change. In Section 5, we gather the possible behaviors of the
diffusion (Ut, t ≥ 0) at its boundaries. Then, in Section 6, we deal with the entrance
property at∞ of non-explosive logistic CSBPs. Explosive ones are studied in Sectio 7,
where we define and study an extension of the minimal process with∞ either regular
or exit. Lastly, in the Appendix, we provide the calculations needed for classifying the
boundaries of (Ut, t ≥ 0) according to Ψ and the parameter c.

2 Preliminaries

As we will use Feller’s terminology repeatedly, we briefly recall how to classify boundaries.
Consider a process valued in an interval [a, b] with a, b ∈ R̄ and a < b,

- the boundary b is said to be accessible if there is a positive probability that it will
be reached in finite time (the process can enter into b). If b is accessible, then
either the process cannot get out from b and the boundary b is said to be an exit or
the process can get out from b and the boundary b is called a regular boundary.

- If the boundary b is inaccessible, then either the process cannot get out from b,
and the boundary b is said to be natural or the process can get out from b and the
boundary b is said to be an entrance.

Notation. We denote by [0,∞] the extended half-line and by Cb([0,∞]) to be the space
of continuous real-valued functions defined over [0,∞]. Since [0,∞] is compact, any
function f ∈ Cb([0,∞]) is bounded. We set D([0,∞]) the space of càdlàg functions from
R+ to [0,∞]. For any interval I ⊂ R, we denote by C2

c (I) the space of continuous
functions over I with compact support that have continuous first two derivatives.

We recall the definition and some basic properties of continuous-state branching
processes without competition. Most of the sequel can be found in Chapter 12 of
Kyprianou’s book [Kyp14]. A CSBP is a Feller process (Xt, t ≥ 0) valued in [0,∞]

satisfying the branching property: for any z, z′ ≥ 0, t ≥ 0 and x > 0

Ez+z′ [e
−xXt ] = Ez[e

−xXt ]Ez′ [e
−xXt ].

The branching and Markov properties ensure the existence of a map (x, t) 7→ ut(x) such
that for all x > 0 and all t, s ≥ 0, ut(x) ∈ (0,∞),

Ez[e
−xXt ] = e−zut(x) and us+t(x) = us ◦ ut(x). (2.1)

Silverstein in [Sil68, Theorem 4, page 1046] has shown that the map t 7→ ut(x) is the
unique solution to a non-linear ordinary differential equation

d

dt
ut(x) = −Ψ(ut(x)) for all x ∈ (0,∞) (2.2)

where Ψ is a Lévy-Khintchine function of the form

Ψ(z) = −λ+
σ2

2
z2 + γz +

∫ +∞

0

(
e−zx − 1 + zx1{x≤1}

)
π(dx) (2.3)
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with λ ≥ 0, γ ∈ R, σ ≥ 0, and π a Borel measure supported on R+ satisfying∫ +∞

0

(1 ∧ x2)π(dx) < +∞.

Note that Ψ(z) = logE[e−zY1 ] for any z ≥ 0, where (Yt, t ≥ 0) is a spectrally positive Lévy
process sent to∞ at rate λ ≥ 0. The function Ψ is thus convex, infinitely differentiable
on (0,∞), with Ψ(0) = −λ and Ψ′(0+) ∈ [−∞,∞). Further, −Ψ is the Laplace exponent
of subordinator if and only if for any z > 0, Ψ(z) < 0. In such a case, Ψ has the form

Ψ(z) = −λ− δz −
∫ ∞

0

(1− e−zx)π(dx) (2.4)

where
∫∞

0
(1 ∧ x)π(dx) < ∞ and δ ≥ 0 is a drift parameter. We refer for instance to

[Kyp14, Section 8.1] for these properties. Any branching mechanism is Lipschitz on
compact subsets of (0,∞) and thus the deterministic equation (2.2) admits a unique
solution.

As in [Sil68], we interpret the killing term with parameter λ as the possibility for the
CSBP to jump to∞ in finite time. Since for any t ≥ 0 and any x ∈ (0,∞), ut(x) ∈ (0,∞),
according to the semi-group equation (2.1),∞ and 0 are either natural or exit boundaries.
Grey [Gre74] classifies further the boundaries∞ and 0 of a CSBP as follows.

- The boundary∞ is accessible if and only if
∫

0+
du
|Ψ(u)| < +∞.

- The boundary 0 is accessible if and only if
∫∞ du

|Ψ(u)| <∞ (Grey’s condition).

The integral conditions above ensure respectively the existence of a non-degenerate
solution of (2.2) started from x = 0+ and x = ∞. It is important to note that λ = 0 is
necessary for∞ to be inaccessible but not sufficient. Indeed, the process can explode
continuously by having unbounded paths over finite time intervals. A basic example is
provided by the stable mechanism Ψ(z) = −zα for α ∈ (0, 1) which satisfies

∫
0+

du
|Ψ(u)| <

∞.
We now recall the long-term behavior of CSBPs. We refer to Theorem 12.5 in [Kyp14]

for the following classification. Denote by ρ the largest positive zero of Ψ, namely,
ρ := inf{x > 0,Ψ(x) ≥ 0}, with the convention inf ∅ =∞. For any z ∈ [0,∞],

Pz(Xt −→
t→∞

0) = e−zρ and Pz(Xt −→
t→∞

∞) = 1− e−zρ.

When −Ψ is the Laplace exponent of a subordinator, ρ =∞ and the process goes to∞
almost surely. Note also that there is a constant d > 0 such that for any large enough
u, −Ψ(u)

u ≤ d and thus
∫∞ du

|Ψ(u)| = ∞. When −Ψ is not the Laplace exponent of a

subordinator, Ψ(u) > 0 for any large enough u, ρ < ∞ and the process goes to 0 with
positive probability. If moreover

∫∞ du
Ψ(u) = ∞ then Xt −→

t→∞
0 with positive probability

albeit Xt > 0 for all t ≥ 0 almost surely. In the latter case, we say that 0 is attracting.
A classical construction of a CSBP with mechanism Ψ is by time-changing the spec-

trally positive Lévy process (Yt, t ≥ 0) (whose Laplace exponent is −Ψ) with the inverse
of an additive functional. See for instance Lamperti [Lam67a], Caballero, Lambert and
Uribe-Bravo [CLUB09]. In particular, the sample paths of a càdlàg CSBP have no nega-
tive jumps and are non-decreasing when −Ψ is the Laplace exponent of a subordinator.
This time-change leads to the following form for the generator of (Xt, t ≥ 0). For any
f ∈ C2

c ((0,∞)) 1

G f(z) := −λzf(z) +
σ2

2
zf ′′(z)− γzf ′(z) + z

∫ ∞
0

(f(z + u)− f(z)− u1[0,1](u)f ′(z))π(du).

1the space of twice continuously differentiable functions vanishing outside a compact subset of (0,∞).
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To incorporate quadratic competition, one considers an additional negative quadratic
drift in the generator above and set

L f(z) := G f(z)− c

2
z2f ′(z). (2.5)

Definition 2.1. A minimal logistic continuous-state branching process is a càdlàg
Markov process (Zmin

t , t ≥ 0) on [0,∞] with 0 and∞ absorbing, satisfying the following
martingale problem (MP). For any function f ∈ C2

c ((0,∞)), the process

t ∈ [0, ζ) 7→ f(Zmin
t )−

∫ t

0

L f(Zmin
s ) ds (2.6)

is a martingale, with ζ := inf{t ≥ 0;Zmin
t /∈ (0,∞)}.

By definition the minimal process remains at the boundary once it has reached it. In
particular, by setting ζ∞ := inf{t ≥ 0, Zmin

t =∞}, on the event {ζ = ζ∞}, we have that
Zmin
t =∞ for any t ≥ ζ∞. As already observed by Lambert [Lam05], one way to construct

a minimal logistic CSBP is by time-changing an Ornstein-Uhlenbeck type process. The
problem of explosion is not discussed in [Lam05] and we shall give out some details in
Section 4.

In the sequel, we say that a Markov process (Zt, t ≥ 0) extends the minimal process

if (Zt, t ≥ 0) takes its values in [0,∞] and (Zt∧ζ∞ , t ≥ 0)
L
= (Zmin

t , t ≥ 0). Note that
elementary return processes restarting after explosion from states in (0,∞) are ruled
out from our study. We will only be interested in the existence of a continuous extension
(Zt, t ≥ 0), for which Zt −→ ∞, almost surely, as t → ζ∞+. Moreover, the boundary
∞ will be said to be instantaneous if P∞(T = 0) = 1 with T := inf{t > 0, Zt < ∞} and
reflecting, if P∞(Zt =∞) = 0 for any t > 0, (equivalently the set {t > 0, Zt =∞} has a
Lebesgue measure zero).

As explained in the introduction, the semi-group of logistic CSBPs will be represented
in terms of a certain diffusion. For any mechanism Ψ of the form (2.3), we call Ψ-
generalized Feller diffusion, the minimal diffusion (Ut, t < τ) solving

dUt =
√
cUtdBt −Ψ(Ut)dt, U0 = x (2.7)

where (Bt, t ≥ 0) is a Brownian motion and τ := inf{t;Ut /∈ (0,∞)}. As u 7→
√
u is 1/2-

Hölder and Ψ is locally Lipschitz, standard results (see e.g. [RY99, Section 3, Chapter
IX]) ensure the existence and uniqueness of a strong solution to Equation (2.7) up to
time τ . Note that when c = 0, the SDE (2.7) coincides with the ODE (2.2) and that (1.3)
coincides with (2.1).

3 Main results

Theorem 3.1 (Accessibility of ∞). Assume c > 0. The boundary ∞ is inaccessible for
(Zmin

t , t ≥ 0) if and only if

E :=

∫ θ

0

1

x
exp

(
2

c

∫ θ

x

Ψ(u)

u
du

)
dx =∞, for some (and then for all) θ > 0.

Remark 3.2. Note that when λ > 0,
∫ θ

0
x

2λ
c −1dx <∞, Ψ(u) −→

u→0+
Ψ(0+) = −λ and thus

E <∞. We shall see however that λ > 0 is not necessary for∞ to be accessible.

Theorem 3.1 is established in Section 4. The next three theorems introduce extensions
in [0,∞] of the minimal process. The usual convention 0 · ∞ = ∞ · 0 = 0 is taken. In
particular, note that e−0.z = 1 for all z ∈ [0,∞]. We first establish that if∞ is inaccessible
then it is an entrance boundary.
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Theorem 3.3 (Infinity as entrance boundary). Assume E = ∞. The Markov process
(Zmin

t , t ≥ 0) can be extended in [0,∞] to a Feller process (Zt, t ≥ 0) with ∞ as an
entrance boundary. The boundary 0 is an exit of the diffusion (Ut, t ≥ 0) solution to (2.7),
and the semi-group of (Zt, t ≥ 0) satisfies for all t ≥ 0, all z ∈ [0,∞], all x ∈ [0,∞)

Ez(e
−xZt) = Ex(e−zUt).

The proof of Theorem 3.3 is in Section 6 and relies on a duality at the level of
generators between the minimal logistic CSBP with branching mechanism Ψ and the
Ψ-generalized Feller diffusion, see the forthcoming Lemma 5.1.

In the sequel, we focus on the case E < ∞, for which ∞ is accessible. We will
construct extensions of the minimal process as limits of non-explosive logistic CSBPs.
For any Lévy measure π and any x ≥ 0, set π̄(x) := π([x,∞)). Given Ψ of the form (2.3)
and k ≥ 1, set πk := π|(0,k) + (π̄(k) + λ)δk and define a branching mechanism Ψk by

Ψk(z) :=
σ2

2
z2 + γz +

∫ ∞
0

(
e−zx − 1 + zx1x∈(0,1)

)
πk(dx).

Plainly, for any k ≥ 1, |Ψ′k(0+)| <∞ and thus Ek :=
∫ θ

0
1
x exp

(
2
c

∫ θ
x

Ψk(u)
u du

)
dx =∞. By

Theorem 3.1, the minimal logistic CSBP with mechanism Ψk does not explode. Theorem
3.3 ensures the existence of a càdlàg logistic CSBP, (Z

(k)
t , t ≥ 0), with mechanism Ψk and

∞ as entrance boundary.
We will show that the sequence of processes (Z

(k)
t , t ≥ 0) converges towards a process

(Zt, t ≥ 0) with∞ either regular or exit. The boundary will be regular, instantaneous and
reflecting when 0 ≤ 2λ

c < 1, and an exit when 2λ
c ≥ 1.

Theorem 3.4 (Infinity as regular reflecting boundary). Assume E < ∞ and 0 ≤ 2λ
c < 1.

The sequence of processes (Z
(k)
t , t ≥ 0) converges weakly in D([0,∞]) towards a Feller

process (Zt, t ≥ 0), extending (Zmin
t , t ≥ 0), with∞ regular instantaneous reflecting. The

semi-group of (Zt, t ≥ 0) satisfies for all t ≥ 0, all z ∈ [0,∞] and x ∈ [0,∞),

Ez(e
−xZt) = Ex(e−zU

0
t )

where (U0
t , t ≥ 0) is solution to (2.7) with 0 regular absorbing.

Theorem 3.5 (Infinity as exit boundary). Assume 2λ
c ≥ 1 (so that E <∞). The sequence

of processes (Z
(k)
t , t ≥ 0) converges weakly in D([0,∞]) towards a Feller process (Zt, t ≥

0), extending (Zmin
t , t ≥ 0), with∞ an exit. The boundary 0 is an entrance of the diffusion

(Ut, t ≥ 0) solution to (2.7) and the semi-group of (Zt, t ≥ 0) satisfies for all t ≥ 0, all
z ∈ [0,∞] and x ∈ (0,∞),

Ez(e
−xZt) = Ex(e−zUt).

The proof of Theorem 3.4 and Theorem 3.5 can be found in Section 7. It relies
on uniform convergence of semi-groups and generators for the sequence of processes
(Z

(k)
t , t ≥ 0).
In the next statements, (Zt, t ≥ 0) refers to the extended logistic CSBP valued in

[0,∞], as defined above, whose boundary∞ is either an entrance, regular reflecting, or
an exit. The following corollary classifies the boundary 0.

Corollary 3.6 (Zero as exit or natural boundary).

i) Assume
∫∞ dz

|Ψ(z)| <∞ then 0 is an exit boundary of (Zt, t ≥ 0) and∞ is an entrance

boundary of (Ut, t ≥ 0).

ii) Assume
∫∞ dz

|Ψ(z)| =∞ then 0 is a natural boundary of (Zt, t ≥ 0) and∞ is a natural

boundary of (Ut, t ≥ 0).
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x

E <∞, λ = 0 2λ/c ≥ 1t t tt

Zt ZtZt Zt(a) (b) (c) (d)

E =∞ 0 < 2λ/c < 1

Figure 1: Symbolic representation of the four behaviors at∞.

Table 1: Boundaries of Z and boundaries of U .

Boundary of Z Boundary of U
∞ entrance 0 exit

∞ regular reflecting 0 regular absorbing
∞ exit 0 entrance
0 exit ∞ entrance

0 natural ∞ natural

The boundary behaviors found in Theorems 3.3, 3.4 and 3.5 and Corollary 3.6 are
summarized in Table 1.

When −Ψ is the Laplace exponent of a subordinator (hence the associated CSBP
has non-decreasing sample paths) and the boundary ∞ is regular or entrance, the
logistic CSBP may have a stationary distribution. The next theorem yields a necessary
and sufficient condition for a stationary distribution to exist and provides its Laplace
transform.

Theorem 3.7 (Stationarity). Assume Ψ(z) < 0 for all z > 0, and write Ψ in the form (2.4)

Ψ(z) = −λ− δz −
∫ ∞

0

(1− e−zu)π(du)

with λ ≥ 0, δ ≥ 0 and
∫∞

0
(1 ∧ u)π(du) <∞. Assume 0 ≤ 2λ

c < 1 and define the condition
(A) as follows

(A) : (δ = 0 and π̄(0) + λ ≤ c/2).

- If (A) is satisfied then (Zt, t ≥ 0) converges in probability to 0.

- If (A) is not satisfied then (Zt, t ≥ 0) converges in law towards the distribution
supported on ( 2δ

c ,∞) whose Laplace transform is

L : x ∈ R+ 7→ E[e−xZ∞ ] :=

∫∞
x

exp
(∫ y

θ
2Ψ(z)
cz dz

)
dy∫∞

0
exp

(∫ y
θ

2Ψ(z)
cz dz

)
dy
. (3.1)

Remark 3.8. Note that the formula (3.1) does not depend on θ. Moreover, the condition
in Theorem 3.7 for the existence of a non-degenerate stationary distribution can be
rephrased as follows. The condition (A) is not satisfied if and only if at least one of the
following holds

lim
u→∞

Ψ(u)
u = −δ 6= 0, π((0, 1)) =∞, π̄(0) + λ > c

2 .

EJP 24 (2019), paper 33.
Page 8/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP299
http://www.imstat.org/ejp/


Logistic CSBPs: duality and reflection at infinity

This already appears with λ = 0 and a moment assumption in [Lam05, Theorem 3.4].
One can easily see from the Laplace transform that λ = 0 and

∫∞
log(x)π(dx) < ∞

are necessary and sufficient conditions for the stationary distribution to admit a first
moment.

The next theorem completes Theorem 3.7 by classifying the long-term behavior of
the logistic CSBP when −Ψ is not the Laplace exponent of a subordinator or when the
boundary ∞ is an exit. When ∞ is regular reflecting or an entrance and −Ψ is not
the Laplace exponent of a subordinator, the extended process (Zt, t ≥ 0) gets extinct
almost surely. When∞ is an exit and −Ψ is the Laplace exponent of a subordinator, the
process gets absorbed at∞ almost surely. Lastly, if −Ψ is not the Laplace exponent of a
subordinator then the process, with∞ exit, has a positive probability of extinction.

Theorem 3.9 (Long-term behaviors). Consider (Zt, t ≥ 0) started from z ∈ (0,∞).

1) If 0 ≤ 2λ
c < 1 and Ψ(z) ≥ 0 for some z > 0 then

1-1) If
∫∞ du

Ψ(u) =∞, then Zt > 0 for any t ≥ 0 a.s. and Zt −→
t→∞

0 a.s.

1-2) If
∫∞ du

Ψ(u) < ∞, then (Zt, t ≥ 0) will be absorbed at 0 in finite time almost
surely.

2) If 2λ
c ≥ 1 and Ψ(z) < 0 for all z > 0 then (Zt, t ≥ 0) will be absorbed at∞ in finite

time almost surely.

3) If 2λ
c ≥ 1 and Ψ(z) ≥ 0 for some z > 0 then

Pz(Zt −→
t→∞

0) =

∫∞
0
e−zu 1

u exp
(
−
∫ u
θ

2Ψ(v)
cv dv

)
du∫∞

0
1
u exp

(
−
∫ u
θ

2Ψ(v)
cv dv

)
du

∈ (0, 1)

and for any t ≥ 0, Zt > 0 Pz-almost surely if and only if
∫∞ du

Ψ(u) =∞.

E =∞ t t tt

Zt ZtZt Zt

∫∞ 1
Ψ <∞

E =∞∫∞ 1
Ψ =∞

0 ≤ 2λ
c < 1 0 ≤ 2λ

c < 1

E <∞∫∞ 1
Ψ <∞

E <∞∫∞ 1
Ψ =∞

Figure 2: Symbolic representation of the two possible behaviors at 0 in the non-
subordinator case with∞ entrance or reflecting.

The proofs of Corollary 3.6, Theorems 3.7 and 3.9 are handled separately in Section 6.2
and Section 7 according to E =∞ or E <∞, respectively.

We provide now several examples for which different behaviors at infinity occur.

Example 3.10. Consider α ∈ (0, 2], α 6= 1 and Ψ(z) = (α − 1)zα. Since
∫

0
|Ψ(z)|
z dz < ∞,

we have that E =∞ and∞ is an entrance boundary (case (a) in Figure 1). For any t ≥ 0,
z ∈ [0,∞] and x ∈ [0,∞)

Ez(e
−xZt) = Ex(e−zUt) with dUt =

√
cUtdBt + (1− α)Uαt dt, U0 = x,

the boundary 0 of (Ut, t ≥ 0) being an exit. As recalled in Section 2, when α ∈ (0, 1),
the CSBP without competition explodes, so that here competition prevents explosion.
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Logistic CSBPs: duality and reflection at infinity

Moreover, when α ∈ (0, 1), condition (A) is not satisfied and a computation from (3.1)
yields

L : x 7→ Γ(1/α, cαx
α)

Γ(1/α)

with cα = 2
c

1−α
α and Γ(1/α, x) :=

∫∞
x
e−tt1/α−1dt for any x ≥ 0, is the incomplete Gamma

function.

Example 3.11. Let λ > 0 and Ψ(x) = −λ for all x ≥ 0.

i) If 2λ
c < 1 then∞ is regular reflecting (case (c) in Figure 1). For any t ≥ 0, z ∈ [0,∞]

and x ∈ [0,∞)

Ez(e
−xZt) = Ex(e−zU

0
t ) with dU0

t =
√
cU0

t dBt + λdt, U0
0 = x,

the boundary 0 of (U0
t , t ≥ 0) being regular absorbing.

ii) If 2λ
c ≥ 1 then ∞ is an exit (case (d) in Figure 1). For any t ≥ 0, z ∈ [0,∞] and

x ∈ (0,∞)

Ez(e
−xZt) = Ex(e−zUt) with dUt =

√
cUtdBt + λdt, U0 = x,

the boundary 0 of (Ut, t ≥ 0) being an entrance.

Remark 3.12. Roughly speaking, the latter example can be seen as the continuous-state
analogue of the number of fragments in a fast-fragmentation-coalescence process as
defined in [KPRS17]. Note in particular that the same phase transition between ∞
reflecting and exit boundary occurs. However, contrary to the process in [KPRS17], the
process (Zt, t ≥ 0) has no stationary distribution over (0,∞) as condition (A) is satisfied
when 2λ

c < 1.

The conditions
∫

0
|Ψ(x)|
x dx < ∞ and λ > 0 are not necessary for having respectively

E =∞ and E <∞. The following proposition, whose proof can be found at the beginning
of the Appendix, allows us to construct explicit Lévy measures for which∞ is regular or
entrance.

Proposition 3.13. Assume λ = 0, the integrals
∫

0
|Ψ(u)|
u du and

∫∞
log(u)π(du) have the

same nature. In particular
∫∞

log(u)π(du) <∞ implies E =∞. Set

E ′ :=

∫ θ

0

1

x
exp

(
−2

c

∫ ∞
1

e−xv
π̄(v)

v
dv

)
dx

then E <∞ if and only if E ′ <∞. Moreover there exists a universal2 constant κ > 0 and
C1, C2 two non-negative constants such that

C1

∫ θ

0

1

x
exp

(
−2κ

c

∫ 1/x

1

π̄(u)

u
du

)
dx ≤ E ≤ C2

∫ θ

0

1

x
exp

(
− 2

cκ

∫ 1/x

1

π̄(u)

u
du

)
dx.

Proposition 3.13 and a Tauberian theorem (see e.g Theorem 5.13 in [Kyp14]), yields
the following example with λ = 0. Note that a phase transition occurs between entrance
and regular.

Example 3.14. Consider λ = 0, σ ≥ 0, γ ∈ R and set π(du) = α
u(log u)β+11{u≥e}du for

some α > 0, β > 0.

i) If β > 1 or β = 1 and 2α
c ≤ 1 then E =∞ and∞ is an entrance boundary (case (a)

in Figure 1).

2in the sense that it does not depend on the Lévy measure π
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Logistic CSBPs: duality and reflection at infinity

ii) If β = 1 and 2α
c > 1 then E <∞ and∞ is a regular reflecting boundary (case (b) in

Figure 1).

iii) If β ∈ (0, 1), then E <∞ and∞ is a regular reflecting boundary (case (b) in Figure
1).

If Ψ is in the form (7) with δ = 0 then the process has a stationary distribution if and only
if π̄(0) = α

β >
c
2 .

4 Minimal process and time-change

We will prove in this section that the martingale problem (MP) for the minimal
logistic CSBP is well-posed. We study then the event of extinction and explosion of the
minimal process. In particular Theorem 3.1 follows from the forthcoming Lemma 4.5.
As described in [Lam05, Definition 3.2], one way to construct a logistic CSBP is to start
from an Ornstein-Uhlenbeck type process and to time change it in Lamperti’s manner.
The problem of explosion was not addressed in [Lam05] and lies at the heart of our
study. We provide therefore some details. We start by recalling some known results
about Ornstein-Uhlenbeck type processes. Consider (Yt, t ≥ 0) a spectrally positive Lévy
process with Laplace exponent −Ψ, killed at∞ at an independent exponential random
variable eλ with parameter λ := −Ψ(0) ≥ 0. Set (Rt, t ≥ 0) the process satisfying

Rt = z + Yt −
c

2

∫ t

0

Rsds. (4.1)

There is a unique process (Rt, t ≥ 0) satisfying (4.1), see Sato [Sat13, Chapter 3, Section
17 page 104]. By definition it is called an Ornstein-Uhlenbeck type process with Lévy
process (Yt, t ≥ 0) and parameter c/2. The process (Rt, t ≥ 0) can be written as follows

Rt = ze−
c
2 t +

∫ t

0

e−
c
2 (t−s)dYs. (4.2)

Unkilled Ornstein-Uhlenbeck type processes have been deeply studied by Hadjiev
[Had85], Sato and Yamazato [SY84] and Shiga [Shi90]. From Lemma 17.1 in Sato
[Sat13], one has for any θ > 0 and any s ≥ 0

Ez(e
−θRs) = exp

(
−θe− c2 sz +

∫ s

0

Ψ(e−
c
2uθ)du

)
. (4.3)

In particular, by letting θ to 0, we see that the process (Rt, t ≥ 0) will never reach∞ in
finite time if it is not killed. In the unkilled case, it is shown in [Shi90] that if (Yt, t ≥ 0) is
not a subordinator then the process (Rt, t ≥ 0) is irreducible in R. Namely, for any a ∈ R,
if σa := inf{t ≥ 0, Rt ≤ a} then Pz(σa <∞) > 0 for any z > 0. On the other hand, if −Ψ

is the Laplace exponent of a subordinator with drift δ ≥ 0, then the process (Rt, t ≥ 0) is
irreducible in ( 2δ

c ,∞). Moreover, the process can be positive recurrent, null-recurrent or
transient. [Shi90, Theorem 1.1] states that (Rt, t ≥ 0) is recurrent (in a pointwise sense)
if E =∞ and transient if E <∞, where we recall

E =

∫ θ

0

1

x
exp

(
2

c

∫ θ

x

Ψ(u)

u
du

)
dx.

If λ = −Ψ(0) > 0, then one can easily see that E <∞, so that explosion by a single jump
can be seen as a particular case of transience.

We work in the sequel with the process (Rt, t ≥ 0) stopped on first entry into (−∞, 0).
For any a ∈ [0,∞), define σa := inf{t ≥ 0, Rt ≤ a}. Since R has no negative jumps,
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Logistic CSBPs: duality and reflection at infinity

σa = inf{t ≥ 0, Rt < a} a.s. Define the additive functional,

t 7→ θt :=

∫ t∧σ0

0

ds

Rs
∈ [0,∞].

We first check that for any t < σ0, θt <∞ a.s. Note that (σ1/n, n ≥ 1) increases towards
σ0 almost surely as n goes to∞ and for any t < σ0, there exists a large enough n such
that t < σ1/n almost surely. Therefore, inf

s≤t
Rs ≥ inf

s≤σ1/n

Rs ≥ 1/n a.s. and θt ≤ nt <∞ a.s.

Define now the right-inverse of (θt, t ≥ 0)

t 7→ Ct := inf{u ≥ 0 : θu > t} ∈ [0,∞].

The Lamperti time-change of the stopped process (Rt, t ≥ 0) is the process (Zmin
t , t ≥ 0)

defined by

Zmin
t =


RCt 0 ≤ t < θ∞

0 t ≥ θ∞ and σ0 <∞
∞ t ≥ θ∞ and σ0 =∞.

A first consequence of this definition is that the process (Zmin
t , t ≥ 0) hits its boundaries

if and only if θ∞ <∞. Recall ζ∞ and set ζ0 := inf{t ≥ 0, Zmin
t = 0}. On the one hand, if

σ0 <∞ then ζ∞ =∞ and ζ0 = θ∞ =
∫ σ0

0
ds
Rs

. On the other hand, if σ0 =∞ then ζ0 =∞
and ζ∞ = θ∞ =

∫∞
0

ds
Rs

. Note that if λ > 0, then Rs = ∞ for any s ≥ eλ and the last
integral is finite.

Recall (2.6) and the martingale problem (MP) defining the minimal logistic CSBP.

Lemma 4.1. The process (Zmin
t , t ≥ 0) is a minimal logistic continuous-state branching

process.

Proof. Notice first that if the process (Zmin
t , t ≥ 0), as defined above, hits 0 or∞, then it

is absorbed. Denote by L Y the generator of the (possibly killed) Lévy process (Yt, t ≥ 0)

and L R the generator of (Rt, t ≥ 0), which acts on C2
c ([0,∞)) as follows

L Rf(z) = L Y f(z)− c

2
zf ′(z).

By Itô’s formula (or by applying [SY84, Theorem 3.1]), one can see that the process(
f(Rt)−

∫ t
0

L Rf(Rs)ds, t ≥ 0
)

is a local martingale. By definition of the time-change,

for any t ∈ [0, θ∞),
∫ Ct

0
ds
Rs

= t and then Ct =
∫ t

0
Zmin
s ds. A (continuous) time-change of a

local martingale remains a local martingale, see e.g [RY99, Proposition V.1.5]. Hence

t ∈ [0, θ∞) 7→ f(RCt)−
∫ Ct

0

L Rf(Rs)ds = f(Zmin
t )−

∫ t

0

Zmin
s L Rf(Zmin

s )ds

is a local martingale. By definition, for any z ≥ 0, L f(z) = zL Rf(z) and since f has
compact support, L f is bounded. Therefore the above local martingale has paths which
are bounded on time-intervals [0, t], so that it is a true martingale and (Zmin

t , t ≥ 0) solves
(MP).

Lemma 4.2. There exists a unique minimal logistic CSBP.

Proof. We have seen above how to construct a solution to the martingale problem. Only
uniqueness has to be justified. Consider any solution (Zt, t < ζ) to the martingale
problem (MP). Set Ct :=

∫ t
0
Zsds for t < ζ and Ct := Cζ for all t ≥ ζ. Let θt := inf{s ≥

0 : Cs > t} and Rt := Zθt for any time t ∈ [0, Cζ). By definition, RCt = Zt and thus
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Cζ = inf{t ≥ 0;Rt /∈ (0,∞)}. As in Lemma 4.1, but in the opposite direction, one
sees that the process (Rt, t < Cζ) solves the same martingale problem as an Ornstein-
Uhlenbeck type process (with parameters Ψ̃ = Ψ + λ and c/2) stopped on first entry into
(−∞, 0). The Ornstein-Uhlenbeck type process is uniquely defined in law (see [Sat13,
Chapter 3, section 17] where existence and pathwise uniqueness of the solution to (4.1)
are established). Moreover, one can readily check that Ct = inf{s ≥ 0,

∫ s
0

du
Ru

> t}, which
entails that the law of (Zt, t ≥ 0) is uniquely determined by the law of (Rt, t ≥ 0).

We now gather some path properties of minimal logistic CSBPs obtained directly by
time-change.

Lemma 4.3. Assume that −Ψ is not the Laplace exponent of a subordinator. If E =∞,
then for any z > 0

Pz(Z
min
t −→

t→∞
0) = 1,

If E <∞, then

Pz(Z
min
t −→

t→∞
0) =

∫∞
0

1
xe
−zx−

∫ x
θ

2Ψ(y)
cy dydx∫∞

0
1
xe
−

∫ x
θ

2Ψ(y)
cy dydx

∈ (0, 1). (4.4)

Proof. By construction, {Zmin
t −→

t→∞
0} = {σ0 < ∞} with σ0 := inf{t ≥ 0, Rt ≤ 0}.

According to Patie [Pat05, Proposition 3], for any z > a ≥ 0 and µ > 0

Ez[e
−µσa ] =

∫∞
0
x

2µ
c −1e−zx−

∫ x
θ

2Ψ(y)
cy dydx∫∞

0
x

2µ
c −1e−ax−

∫ x
θ

2Ψ(y)
cy dydx

. (4.5)

For the sake of completeness, a short proof of (4.5) is provided at the end of the Appendix.
We show now that if E =∞, then for any z ∈ (0,∞), Pz(σ0 <∞) = 1. For any µ ≥ 0, set

gµ(x) := x
2µ
c −1e−

∫ x
θ

2Ψ(y)
cy dy.

We first check that for any µ ≥ 0 and any a > 0,
∫∞
a
gµ(x)dx <∞. By assumption −Ψ is

not the Laplace exponent of a subordinator, so there exists b ∈ (a,∞) such that for all
u ≥ b, Ψ(u) ≥ Ψ(b) > µ. Then, for some constant C,∫ ∞

b

gµ(x)dx = C

∫ ∞
b

x
2µ
c −1e−

∫ x
b

2Ψ(u)
cu dudx ≤ C

∫ ∞
b

x
2µ
c −1e−

∫ x
b

2Ψ(b)
cu dudx

≤ C
∫ ∞
b

x−(
2Ψ(b)
c − 2µ

c )−1dx <∞

and
∫∞
a
gµ(x)dx =

∫ b
a
gµ(x)dx+

∫∞
b
gµ(x)dx <∞. By (4.5),

Ez[e
−µσ0 ] =

∫∞
0
e−zxgµ(x)dx∫∞
0
gµ(x)dx

≥
∫ a

0
e−zxgµ(x)dx∫ a

0
gµ(x)dx+

∫∞
a
gµ(x)dx

≥ e−az 1

1 +
∫∞
a
gµ(x)dx∫ a

0
gµ(x)dx

. (4.6)

For any µ ≤ c
4 , and x ≥ a, gµ(x) = x

2µ
c −1g0(x) ≤ a−1/2g0(x). By Lebesgue’s theorem

lim
µ→0

∫∞
a
gµ(x)dx =

∫∞
a
g0(x)dx <∞. For any a ∈ (0, 1] and any x ∈ (0, a), gµ(x) increases

towards g0(x) as µ goes to 0. An application of the monotone convergence theorem
yields that lim

µ→0

∫ a
0
gµ(x)dx =

∫ a
0
g0(x)dx, which is infinite since by assumption E = ∞.

Therefore, ∫∞
a
gµ(x)dx∫ a

0
gµ(x)dx

−→
µ→0

0
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and the inequality (4.6) entails Pz(σ0 <∞) ≥ e−az for any a ∈ (0, 1]. One concludes that
Pz(σ0 <∞) = 1. Similar arguments show that if E <∞, then

Pz(σ0 <∞) = lim
µ→0

Ez[e
−µσ0 ] =

∫∞
0
x−1e−zx−

∫ x
θ

2Ψ(y)
cy dydx∫∞

0
x−1e−

∫ x
θ

2Ψ(y)
cy dydx

∈ (0, 1).

The time-change allows one to get directly some interesting identities. Here we give
the Laplace transform of the so-called total progeny.

Lemma 4.4. Assume that −Ψ is not the Laplace exponent of a subordinator. Set ζa :=

inf{t ≥ 0;Zmin
t ≤ a}. For any z > a ≥ 0 and µ > 0, one has

Ez[e
−µ

∫ ζa
0

Zmin
s ds] =

∫∞
0
x

2µ
c −1e−zx−

∫ x
θ

2Ψ(y)
cy dydx∫∞

0
x

2µ
c −1e−ax−

∫ x
θ

2Ψ(y)
cy dydx

.

Proof. By the time-change transformation from (Rt, t ≥ 0) to (Zmin
t , t ≥ 0), we have that

σa =
∫ ζa

0
Zmin
s ds a.s and the statement follows directly by (4.5).

The next lemma establishes Theorem 3.1.

Lemma 4.5 (Explosion). The minimal process explodes with positive probability if and
only if E <∞.

Proof. On the event {σ0 <∞}, (Zmin
t , t ≥ 0) converges towards 0 almost surely and thus

does not explode. We then focus on the event {σ0 =∞}. If λ > 0 then explosion is trivial.
Assume now λ = 0. By construction, the process (Zmin

t , t ≥ 0) explodes if and only if∫∞ 1
Rs

ds <∞.
Assume first E = ∞. Recall that [Shi90, Theorem 1.1] ensures that the process

(Rt, t ≥ 0) is recurrent. Let a > 0 and b0 := 0, consider the stopping times an := inf{t >
bn−1, Rt ≤ a} and bn := inf{t > an, Rt > 2a} for any n ≥ 1. By recurrence, for any n ≥ 1,
an <∞ and bn <∞ almost surely. We see that∫ ∞

0

ds

Rs
≥
∑
n≥1

∫ bn

an

1

Rs
ds ≥

∑
n≥1

bn − an
2a

.

By the Markov property, the random variables (bn − an, n ≥ 1) are i.i.d and positive.
Plainly

Ez[e
−

∫∞
0

ds
Rs , σ0 =∞] ≤ Ez[e−

1
a

∑
n≥1(bn−an)] = 0.

Therefore θ∞ =∞. Hence, Zmin
t <∞ for all t > 0 and∞ is inaccessible.

Consider now the case E <∞, the unstopped process (Rt, t ≥ 0) is transient, and the
event {σ0 = ∞} has positive probability. We check that the integral

∫∞
0

1
Rs

ds is finite
almost surely on the event {σ0 =∞}. Recall the Laplace transform (4.3), one has

Ez(e
−θRs) = exp

(
−θe− c2 sz +

∫ s

0

Ψ(e−
c
2uθ)du

)
.

By the change of variables v = e−
c
2uθ, we get

∫ s
0

Ψ(e−
c
2uθ)du =

∫ θ
θe−

2
c
s

2Ψ(v)
cv dv, therefore

Ez(e
−θRs) = exp

(
−θe− c2 sz +

∫ θ

θe−
c
2
s

2Ψ(v)

cv
dv

)

and the same change of variables x = θe−
c
2 s provides,∫ ∞

0

Ez(e
−θRs)ds =

2

c

∫ θ

0

1

x
exp

(
−xz +

∫ θ

x

2Ψ(v)

cv
dv

)
dx.
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Since E <∞, the last integral is finite for any θ > 0. Let b > 0. By Tonelli, one has∫ ∞
0

Ez

(
1− e−bRs

Rs
, σ0 =∞

)
ds =

∫ b

0

∫ ∞
0

Ez(e
−θRs , σ0 =∞)dsdθ

≤
∫ b

0

∫ ∞
0

Ez(e
−θRs)dsdθ

=
2

c

∫ b

0

dθ

∫ θ

0

1

x
exp

(
−xz +

∫ θ

x

2Ψ(v)

cv
dv

)
dx. (4.7)

The upper bound is finite since θ ∈ (0, b) 7→
∫ θ

0
1
xe

∫ θ
x

2Ψ(v)
cv dvdx is bounded. Thus

Ez

(∫ ∞
0

1− e−bRs
Rs

ds, σ0 =∞
)
<∞.

We deduce then that on the event {σ0 = ∞},
∫∞

0
1−e−bRs

Rs
ds < ∞ a.s. Since E < ∞,

Rs −→
s→∞

∞ a.s on the event {σ0 =∞} and 1−e−bRs
Rs

∼
s→∞

1
Rs

a.s. Therefore

Pz

(∫ ∞
0

ds

Rs
<∞|σ0 =∞

)
= 1,

and the process (Zmin
t , t ≥ 0) explodes.

We have seen in Lemma 4.3 that extinction occurs with positive probability when
E < ∞ and −Ψ is not the Laplace exponent of a subordinator. Therefore, there is a
positive probability for the process to not explode. We see now that explosion is almost
sure in the subordinator case.

Lemma 4.6. When E < ∞, explosion is almost sure if and only if −Ψ is the Laplace
exponent of a subordinator.

Proof. We have seen in the proof of Lemma 4.5 that when E < ∞, the following two
events coincide

{ζ∞ =∞} = {σ0 <∞}.

In the non-subordinator case, one has Pz(σ0 = ∞) < 1 since the unstopped process
(Rt, t ≥ 0) is irreducible in (−∞,∞]. Assume that −Ψ is the Laplace exponent of a
subordinator with drift δ ≥ 0 (possibly killed at rate λ). We show that σ0 = ∞ a.s.
Let (Yt, t ≥ 0) denote the subordinator with Laplace exponent −Ψ. Since Yt ≥ z + δt

for all t ≥ 0 Pz-a.s, a comparison argument in (4.1) entails that Rt ≥ rt for all t ≥ 0,
Pz-a.s, with (rt, t ≥ 0) the solution to drt = δdt − c

2rtdt with r0 = z. We deduce that
Rt ≥ e−

c
2 tz + 2δ

c (1− e− c2 t) > 0 for all t ≥ 0, Pz-a.s. This entails Pz(σ0 =∞) = 1 for any
z > 0.

Remark 4.7. When−Ψ is the Laplace exponent of a subordinator, the Ornstein-Uhlenbeck
type process is irreducible in ( 2δ

c ,∞). Namely, for any z ∈ ( 2δ
c ,∞), the process starting

from z hits any value in ( 2δ
c ,∞) with positive probability. Since (Zmin

t , 0 ≤ t < ζ∞) is
obtained by time-change of (Rt, t ≥ 0), it is therefore also irreducible in ( 2δ

c ,∞).

When λ > 0, the process has a positive probability to explode by a jump and one
may wonder if it can explode continuously. We show in the next lemma that this is not
possible. In other words, the two types of explosion (continuous and by a jump) cannot
occur for a given process.

Lemma 4.8. If λ > 0, then the minimal process always explodes by a jump to∞.
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Logistic CSBPs: duality and reflection at infinity

Proof. Let (Zmin
t , t ≥ 0) be a minimal logistic CSBP with λ > 0. By the time-change,

(Rt, t ≥ 0) := (Zmin
θt

, t ≥ 0) is an Ornstein-Uhlenbeck type process killed at some exponen-
tial random variable eλ and stopped at its first entry in (−∞, 0). Since for any s < eλ,
Rs < ∞, we have that Zmin

t = RCt < ∞ for any t < θeλ . Therefore, the process cannot
explode before θeλ and on the event {σ0 =∞}, explosion is made by a single jump which
occurs at time θeλ =

∫ eλ
0

ds
Rs

.

Remark 4.9. We have seen that when the Ornstein-Uhlenbeck type process (Rt, t ≥ 0) is
transient, the logistic CSBP explodes. Therefore, a logistic CSBP cannot grow indefinitely
without exploding. This is a striking difference with CSBPs where indefinite growth with
no explosion can occur when the Lévy process (Yt, t ≥ 0) drifts “slowly” towards∞.

5 Ψ-generalized Feller diffusions

Consider a branching mechanism Ψ as in (2.3). Recall that by Ψ-generalized Feller
diffusion, we mean the diffusion (Ut, t < τ) with τ := inf{t ≥ 0;Ut /∈ (0,∞)} solution to
the sde

Ut = x+

∫ t

0

√
cUsdBs −

∫ t

0

Ψ(Us)ds (5.1)

where (Bt, t ≥ 0) is a Brownian motion. For all x ∈ [0,∞) and z ∈ [0,∞), set

ex(z) := e−xz.

The following observation is our starting point in the study of logistic continuous-state
branching processes by duality.

Lemma 5.1 (Generator duality). For all x ∈ [0,∞) and z ∈ [0,∞),

L ex(z) = Ψ(x)zex(z) +
c

2
xz2ex(z) = A ez(x) (5.2)

with

A f(x) :=
c

2
xf ′′(x)−Ψ(x)f ′(x). (5.3)

Proof. Recall L in (2.5). One can readily check that for all x and z in [0,∞),

L ex(z) = Ψ(x)zex(z) +
c

2
xz2ex(z) = −Ψ(x)

∂ez(x)

∂x
+
c

2
x
∂2ez(x)

∂x2
.

Intuitively, integrating each side in (5.2) should provide a duality at the level of semi-
groups of the form:

Ez

(
e−xZ

min
t

)
= Ex

(
e−zUt

)
.

The study of the boundaries 0 and ∞ of (Ut, t ≥ 0) would then provide the nature
of boundaries ∞ and 0 of (Zmin

t , t ≥ 0). However, there is not a unique semi-group
associated with A as several boundary conditions are possible. Some precautions are
then needed while showing the above duality.

We gather in the sequel, the boundary conditions of the diffusion. The proofs of the
following statements are rather technical and postponed until the Appendix.

Lemma 5.2 (Boundaries). The boundaries 0 and ∞ of the diffusion with generator A
are classified as follows:

1) The boundary 0 is an exit if E =
∫ θ

0
1
x exp

(
2
c

∫ θ
x

Ψ(u)
u du

)
dx = ∞, regular if E < ∞

and 0 ≤ 2λ
c < 1, and an entrance if 2λ

c ≥ 1.
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Logistic CSBPs: duality and reflection at infinity

2) The boundary∞ is inaccessible. It is an entrance boundary if
∫∞ dx

|Ψ(x)| <∞ and a

natural one if
∫∞ dx

|Ψ(x)| =∞.

When E <∞, the boundary 0 is regular and there are several possibilities for extending
the minimal diffusion after τ . In the next lemma, we denote by (U0

t , t ≥ 0) the diffusion
(5.1) with 0 either regular absorbing (if E < ∞) or exit (if E = ∞). This diffusion may
have different long-term behaviors according to the branching mechanism Ψ. We classify
these behaviors, stating in particular necessary and sufficient conditions over Ψ for the
process to escape to∞ with positive probability.

Lemma 5.3 (Exit law from (0,∞)). Assume 0 ≤ 2λ
c < 1.

1) Assume there exists z > 0, such that Ψ(z) ≥ 0 (i.e -Ψ is not the Laplace exponent of
a subordinator), then for all x ≥ 0,

Px( lim
t→∞

U0
t = 0) = 1.

2) Assume Ψ is of the form

Ψ(v) = −λ− δv −
∫ ∞

0

(1− e−vu)π(du)

with δ ≥ 0 and
∫∞

0
(1 ∧ u)π(du) <∞. Recall the condition

(A) δ = 0 and π̄(0) + λ ≤ c/2

i) If (A) is satisfied then for all x ≥ 0, Px( lim
t→∞

U0
t = 0) = 1.

ii) If (A) is not satisfied then for all x ≥ 0,

Px( lim
t→∞

U0
t = 0) = 1− Px( lim

t→∞
U0
t =∞) =

∫∞
x

exp
(∫ y

θ
2Ψ(z)
cz dz

)
dy∫ +∞

0
exp

(∫ y
θ

2Ψ(z)
cz dz

)
dy
.

6 Infinity as an entrance boundary

In all this section, we assume E =∞ (and thus λ = 0). Recall from Lemma 4.5 that it
ensures the inaccessibility of ∞ for the process (Zmin

t , t ≥ 0) and from Lemma 5.2-(1)
that 0 is an exit for the Ψ-generalized Feller diffusion. In Section 6.1, we proceed to
prove Theorem 3.3. It will follow from Lemma 6.1 and Lemma 6.3. In Section 6.2, we
establish Corollary 3.6, Theorem 3.7 and Theorem 3.9 in the case E =∞.

6.1 Duality and entrance law

The boundary 0 being an exit, there is no ambiguity at the boundary, and we simply
call (Ut, t ≥ 0) the Ψ-generalized Feller diffusion solution to (5.1).

Lemma 6.1 (Duality lemma). Assume E = ∞. For all z ∈ [0,∞) and x ∈ (0,∞), the
following duality holds

Ez[e
−xZmin

t ] = Ex[e−zUt ].

Proof. Recall (Rt, t ≥ 0) the Ornstein-Uhlenbeck type process. For any x > 0, by Itô’s
formula, one sees that the process(

e−xRt −
∫ t

0

L Rex(Rs)ds, t ≥ 0

)
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is a local martingale. Recall t 7→ Ct, the process

(MZmin

t , t ≥ 0) :=

(
e−xZ

min
t −

∫ t

0

L ex(Zmin
s )ds, t ≥ 0

)
,

satisfies (MZmin

t , t ≥ 0) = (MR
Ct
, t ≥ 0) and is therefore a local martingale. Since x > 0,

we have that z 7→ L ex(z) is bounded and thus (MZmin

t , t ≥ 0) is a martingale. Consider
now (Ut, t ≥ 0) a Ψ-generalized Feller diffusion independent of (Zmin

t , t ≥ 0). Similarly,
by applying Itô’s formula, we have that for any z ∈ [0,∞),

(MU
t , t ≥ 0) :=

(
e−zUt −

∫ t

0

A ez(Us)ds, t ≥ 0

)
is a martingale. Recall the generator duality in Lemma 5.1, A ez(x) = L ex(z) and set
g(z, x) := L ex(z). We apply Ethier-Kurtz’s duality result [EK86, Corollary 4.15 page
196] (in their notation α = β = 0, τ = ∞, σ = τε) to the process (Zmin

t , t ≥ 0) and the
stopped process (Ut∧τε , t ≥ 0) at time τε := inf{t ≥ 0, Ut ≤ ε}. For the corollary to be
applicable, an integrability condition, called (4.50) in [EK86] is required. We will verify
this condition after and shall see the role played by τε. We obtain, for x ≥ ε

Ez[e
−xZmin

t ]− Ex[e−zUt∧τε ] =

∫ t

0

E
[
1t−s>τεg(Zmin

s , U(t−s)∧τε)
]

ds

= E

[∫ t−τε∧t

0

L eε(Z
min
s )ds

]
.

Since the process t 7→ e−εZ
min
t −

∫ t
0

L eε(Z
min
s )ds is a martingale and τε is independent of

(Zmin
t , t ≥ 0), we see from the last equality that

Ex[e−zUt∧τε ]− Ez[e−xZ
min
t ] = −E

[∫ t−τε∧t

0

L eε(Z
min
s )ds

]
= e−εz − Ez[e−εZ

min
t−t∧τε ].

By letting ε to 0, τε −→
ε→0

τ0 a.s and the last equality provides

Ex[e−zUt∧τε ]− Ez[e−xZ
min
t ] −→

ε→0
1− Pz(Zmin

t−t∧τ0 <∞).

By Lemma 4.5, we know that under the condition E =∞ the process (Zmin
t , t ≥ 0) does

not explode. Therefore the limit above is 0 and Ez[e−xZ
min
t ] = Ex[e−zUt∧τ0 ] for all x > 0

and z ∈ [0,∞). On the other hand, by Lemma 5.2, under the condition E = ∞, 0 is an
exit of the diffusion and thus

Ez[e
−xZmin

t ] = Ex[e−zUt ].

It remains to verify the technical condition (4.50) in Ethier-Kurtz [EK86] page 192.
Namely, for any T > 0 and ε > 0 fixed, we need to show that the random variables
sups,t≤T exp

(
−Us∧τεZmin

t

)
and

sup
s,t≤T

|g(Zmin
t , Us∧τε)|, where g(z, u) = Ψ(u)ze−uz +

c

2
uz2e−uz

are integrable. Since sups,t≤T exp
(
−Us∧τεZmin

t

)
is clearly bounded by 1, we only need

to focus on sups,t≤T |g(Zmin
t , Us∧τε)|. The stopping time τε will play an important role at

this stage. For any mechanism Ψ, if u ≥ ε > 0, then |Ψ(u)| ≤ bεu2 for some bε > 0. Recall
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x ≥ ε > 0. Since for all s ≥ 0, Us∧τε ≥ ε a.s. under Px, uz2e−uz ≤ 2
u and ze−εz ≤ 1

ε for any
u > 0 and z > 0, we have that

|g(Zmin
t , Us∧τε)| = |Ψ(Us∧τε)Z

min
t e−Us∧τεZ

min
t +

c

2
Us∧τε(Z

min
t )2e−Ut∧τεZ

min
t |

≤ bεU2
s∧τεZ

min
t e−Us∧τεZ

min
t +

c

2
Us∧τε(Z

min
t )2e−Us∧τεZ

min
t

≤ bεU2
s∧τεZ

min
t e−εZ

min
t +

c

Us∧τε

≤ bε
ε
U2
s∧τε +

c

ε
.

We now argue by comparison in order to show that sups≤T U
2
s∧τε is integrable. Since

Ψ is convex and Ψ(0) ≤ 0, the map u 7→ Ψ(u)
u is nondecreasing and when u ≥ ε, we

have Ψ(u) ≥ Ψ(ε)
ε u ≥ −γεu for some γε > 0. Recall that Ψ is locally Lipschitz on (0,∞).

Applying the results of [RY99, Section 3, Chapter IX], one can then construct, with the
same Brownian motion (Bt, t ≥ 0), the process (Ut, t ≥ 0) as a strong solution to (5.1)
with 0 exit and the process (Vt, t ≥ 0) as a strong solution to

dVt =
√
cVtdBt + γεVtdt, V0 = x.

Both processes are adapted to the natural filtration of (Bt, t ≥ 0). Applying the compar-
ison theorem [RY99, Theorem IX.3.7] up to the stopping time τε, one has that almost
surely for any 0 ≤ s ≤ τε, Us ≤ Vs. Note that (Vt, t ≥ 0) is a supercritical Feller diffusion
with branching mechanism Φ(u) = c

2u
2 + γεu. It is easily checked that for any t ≥ 0,

Vt has a second moment. Moreover, the process (Vs, s ≥ 0) is a submartingale and by
Doob’s inequality

Ex

[
sup
s≤T

V 2
s

]
≤ 4Ex[V 2

T ] <∞.

Since for any ε > 0, sup
s≤T∧τε

U2
s ≤ sup

s≤T
V 2
s , the proof is complete.

Let
(
Pmin
t , t ≥ 0

)
be the semigroup of (Zmin

t , t ≥ 0). Lemma 4.5 ensures that when
E = ∞, ∞ is inaccessible. To see that ∞ is an entrance boundary, we show in the
following lemmas how to define a Feller semigroup coinciding with

(
Pmin
t , t ≥ 0

)
over

[0,∞), with an entrance law from∞.

Lemma 6.2. For any t > 0, x 7→ Px(Ut = 0) is the Laplace transform of a certain
probability measure ηt over [0,∞). Moreover ηt → η0 := δ∞ weakly as t→ 0.

Proof. By taking limits as z →∞ in the duality formula in Lemma 6.1, one has:

lim
z→∞

Ez

(
e−xZ

min
t

)
= lim
z→∞

Ex
(
e−zUt

)
= Px(Ut = 0) .

Since 0 is an exit thanks to the assumption E = ∞, Px(Ut = 0) = Px(τ0 ≤ t) > 0.
Moreover, lim

x→0
Px(τ0 ≤ t) = P0+(τ0 ≤ t) = 1. Therefore, by Lévy’s continuity theorem,

x 7→ Px(τ0 ≤ t) is the Laplace transform of a certain probability measure ηt on [0,∞). This
measure ηt is the weak limit of the law of Zmin

t under Pz as z →∞. By continuity of the
paths of (Ut, t ≥ 0), if x > 0, then lim

t→0
Px(Ut = 0) = 0, and if x = 0 then lim

t→0
Px(Ut = 0) = 1.

This entails that ηt → δ∞ weakly as t→ 0.

From now on, we will work with the following definition of ex over [0,∞]. For
any x > 0, ex(z) = e−xz for all z ∈ [0,∞] and e0(z) = 1 for all z ∈ [0,∞]. Note that
e0+(z) := lim

x→0x>0
ex(z) = 1{z<∞}.
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Lemma 6.3. For any function f ∈ Cb([0,∞]) and any t ≥ 0, set Ptf(z) := Pmin
t f(z) for

any z ∈ [0,∞) and Ptf(∞) :=
∫∞

0
f(u)ηt(du). This defines a Feller semigroup (Pt, t ≥ 0)

over [0,∞]. Furthermore, if (Zt, t ≥ 0) is a càdlàg Markov process with semigroup
(Pt, t ≥ 0), and T := inf{t > 0;Zt <∞}, then P∞(T = 0) = 1.

Proof. The subalgebra generated by the maps {ex(·), x ≥ 0} is separating [0,∞] (recall
that e0(z) = 1 for any z ∈ [0,∞]) and therefore by the Stone-Weierstrass theorem, is dense
in Cb([0,∞]) for the supremum norm. By Lemma 6.1, for any x ≥ 0, Ptex(z) = Ex[e−zUt ]

when z ∈ [0,∞). The map z 7→ Ptex(z) is therefore continuous on [0,∞). The continuity
at z = ∞ holds since according to Lemma 6.2, Ptex(∞) = lim

z→∞
Ptex(z). By Stone-

Weierstrass theorem, z 7→ Ptf(z) is continuous on [0,∞] with any f ∈ Cb([0,∞]). Hence
PtCb([0,∞]) ⊂ Cb([0,∞]). We show now that (Pt, t ≥ 0) is a semigroup. Since it coincides
with the semigroup (Pmin

t , t ≥ 0) on [0,∞), we have that for any s, t ≥ 0, any function
f ∈ Cb([0,∞]) and any z ∈ [0,∞) Pt+sf(z) = PtPsf(z). For z =∞, we have

Pt+sf(∞) = lim
z→∞

Pt+sf(z) = lim
z→∞

PtPsf(z) =

∫
Psf(y) ηt(dy) .

The last equality above holds since Psf ∈ Cb([0,∞]). This provides Pt+sf(∞) = PtPsf(∞).
It remains to justify the continuity of (Pt, t ≥ 0) at 0. That is to say Ptf(z) −→

t→0
f(z) for

any z ∈ [0,∞] and any f ∈ Cb([0,∞]). Since (Ut, t ≥ 0) is a diffusion (with continuous
paths), the map t 7→ Ptex(z) = Ex

(
e−zUt

)
is continuous, in particular continuous at 0.

Hence, t 7→ Ptf(z) is continuous at zero for any z ∈ [0,∞). For z = ∞, since ηt −→
t→0

δ∞

weakly, Ptf(∞) −→
t→0

f(∞). This entails the Feller property of (Pt, t ≥ 0) (see e.g. [RY99,

Section 2, Chapter III]), which ensures the existence of a Markov process (Zt, t ≥ 0)

with semigroup (Pt, t ≥ 0) and càdlàg paths. We show now that ∞ is instantaneous.
According to Lemma 6.2 for every t > 0, ηt is a probability measure over R+. Thus
P∞(T < t) = P∞(Zt <∞) = ηt(R+) = 1. Letting t to 0 provides P∞(T = 0) = 1.

The proof of Theorem 3.3 is obtained by combining Lemma 6.1 and Lemma 6.3.

We give in the next lemma an alternative proof for the property of entrance at ∞,
based on arguments that do not involve duality.

Lemma 6.4. Define ζa := inf{t ≥ 0;Zmin
t ≤ a} for any a ≥ 0. For any large enough

positive a, one has sup
z≥a

Ez(ζa) ≤ 4
ca .

Proof. Recall G the generator of a CSBP with mechanism Ψ. Let h(z) = 1
z . One has

G h(z) =
σ2

z2
+
γ

z
+

∫ ∞
0

z

(
1

z + h
− 1

z
+ 1{h≤1}h

1

z2

)
π(dh)

=
σ2

z2
+
γ

z
−
∫ ∞

1

h

z + h
π(dh) +

∫ 1

0

h

(
1

z
− 1

z + h

)
π(dh).

By Lebesgue’s theorem, G h(z) −→
z→∞

0. Since L h(z) = G h(z) + c
2 , there exists a > 0 such

that for all z ≥ a, L h(z) ≥ c
4 . Since by assumption, E = ∞, the process (Zmin

t , t ≥ 0)

does not explode and there exists a localizing sequence of stopping times (Tm,m ≥ 1)

such that Tm −→
m→∞

∞ almost surely and (Mt∧Tm , t ≥ 0) is a bounded martingale, where

Mt = h(Zmin
t )−

∫ t

0

L h(Zmin
s )ds.
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By the optional stopping theorem, Ez[Mζa∧Tm ] = h(z) and we obtain, letting m to∞

Ez[h(Zmin
ζa )]− h(z) =

1

a
− 1

z
= Ez

[∫ ζa

0

L h(Zmin
s )ds

]
≥ c

4
Ez(ζa).

We conclude that Ez(ζa) ≤ 4
c

(
1
a −

1
z

)
for any z ≥ a. The entrance property can be

deduced by following the proof of Kallenberg [Kal02, Theorem 23.13].

6.2 Longterm behavior and stationarity

We now show Corollary 3.6, Theorem 3.7 and Theorem 3.9 in the case E =∞.

Lemma 6.5 (Corollary 3.6: 0 as exit or natural boundary). Let ζ0 := inf{t > 0;Zt = 0}. If∫∞ du
Ψ(u) <∞ then for any z ≥ 0, Pz(ζ0 <∞) > 0 and 0 is an exit. If

∫∞ du
Ψ(u) =∞ then

for any z > 0, Pz(ζ0 =∞) = 1 and 0 is natural.

Proof. By Lemma 6.1 and Lemma 6.3, for all z ∈ [0,∞] and x ∈ (0,∞),

Ez[e
−xZt ] = Ex[e−zUt ].

According to Lemma 5.2-2), for any t ≥ 0, Ut <∞, Px-almost surely. Therefore

lim
z→0+

Ez[e
−xZt ] = Px(Ut <∞) = 1

and 0 is either an exit or a natural boundary. For any z > 0,

Pz(ζ0 ≤ t) = lim
x→∞

Ez[e
−xZt ] = lim

x→∞
Ex[e−zUt ] = E∞[e−zUt ]. (6.1)

Therefore Pz(ζ0 ≤ t) > 0 if and only if E∞[e−zUt ] > 0. By Lemma 5.2-2),∞ is an entrance
boundary of the diffusion (Ut, t ≥ 0) if and only if

∫∞ du
Ψ(u) <∞.

Lemma 6.6 (Theorem 3.7: stationarity). If the assumption (A) (with λ = 0) is not
satisfied then for all x ≥ 0

Ez
(
e−xZt

)
−→
t→∞

L(x) :=

∫∞
x

exp
(∫ y

θ
2Ψ(z)
cz dz

)
dy∫∞

0
exp

(∫ y
θ

2Ψ(z)
cz dz

)
dy
.

Moreover L is the Laplace transform of a probability measure supported on ( 2δ
c ,∞),

where δ = − lim
u→∞

Ψ(u)
u . If the assumption (A) is satisfied then for all x ≥ 0,

Ez
(
e−xZt

)
−→
t→∞

1.

Proof. According to Lemma 5.3, (Ut, t ≥ 0) converges almost surely towards either 0 or
∞ as t goes to∞. Thus, for any z ∈ (0,∞] and x ≥ 0,

Ez(e
−xZt) = Ex(e−zUt1{ lim

t→∞
Ut=0} + e−zUt1{ lim

t→∞
Ut=∞}) −→t→∞ Px( lim

t→∞
Ut = 0).

A direct application of Lemma 5.3 provides the two stated convergences. The map L is
clearly continuous at 0 and by Lévy’s continuity theorem, L is the Laplace transform of
a certain probability measure. The support of the stationary measure is ( 2δ

c ,∞) since
(Zmin

t , t ≥ 0) is irreducible in ( 2δ
c ,∞), see the Remark below Lemma 4.6.

The next Lemma establishes part 1) of Theorem 3.9 under the additional condition
E =∞. We get the same part proved under E <∞ in the next section.
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Logistic CSBPs: duality and reflection at infinity

Lemma 6.7. Assume Ψ(z) ≥ 0 for some z > 0 then

1) If
∫∞ du

Ψ(u) =∞, then Zt > 0 for any t ≥ 0 a.s. and Zt −→
t→∞

0 a.s.

2) If
∫∞ du

Ψ(u) <∞, then (Zt, t ≥ 0) gets absorbed at 0 in finite time almost surely.

Proof. Note first that Lemma 4.3 ensures that Zt −→
t→∞

0 a.s. If
∫∞ dz

Ψ(z) = ∞, we have

seen in Lemma 6.5 that 0 is inaccessible. Assume now
∫∞ dz

Ψ(z) < ∞, then by Lemma

5.3-1) and (6.1), we have Pz(ζ0 ≤ t) = E∞(e−zUt) −→
t→∞

1, thus Pz(ζ0 <∞) = 1.

7 Infinity as regular reflecting or exit boundary

In this section, we assume E < ∞. Recall that we have seen in Lemma 5.2 that if
0 ≤ 2λ/c < 1 then 0 is a regular boundary of the diffusion (5.1) and if 2λ/c ≥ 1, then 0 is
an entrance boundary. We will prove Theorems 3.4 and 3.5. The proof of Theorem 3.4 is
obtained by combining Lemmas 7.2, 7.4, 7.5. Theorem 3.5 follows from Lemmas 7.3, 7.4
and 7.6.

Recall Ψk the branching mechanism associated to the triplet (σ, γ, πk) with πk(du) =

π|(0,k)(du) + (π̄(k) + λ)δk, that is

Ψk(x) =
σ2

2
x2 − γx+

∫
(0,k)

(
e−xu − 1 + xu1u∈(0,1)

)
π(du) + (e−xk − 1)(π̄(k) + λ).

Note that for all k ≥ 0, |Ψ′k(0+)| <∞ and for all x > 0, Ψk(x) −→
k→∞

Ψ(x). The main idea

is to study the logistic CSBP (Z
(k)
t , t ≥ 0) with mechanism Ψk through its dual diffusion,

say (U
(k)
t , t ≥ 0), by invoking Lemma 6.1. We start by studying the sequence of diffusion

processes (U
(k)
t , t ≥ 0) as k goes to ∞. Recall that when 0 ≤ 2λ/c < 1, we denote by

(U0
t , t ≥ 0) the diffusion (5.1) with 0 regular absorbing.

Lemma 7.1. For any k ≥ 0, denote (U
(k)
t , t ≥ 0) the unique solution to

dU
(k)
t =

√
cU

(k)
t dBt −Ψk(U

(k)
t )dt. (7.1)

There exists a probability space on which, with probability 1:

U
(k)
t ≤ U (k+1)

t , for all k ≥ 1 and t ≥ 0.

1) If 0 ≤ 2λ
c < 1, then as k goes to ∞, the sequence of processes (U

(k)
t , t ≥ 0) con-

verges pointwise almost surely towards a process (U
(∞)
t , t ≥ 0) with the same law

as (U0
t , t ≥ 0) the solution to (5.1) absorbed at 0.

2) If 2λ
c ≥ 1, then as k goes to∞, the sequence of processes (U

(k)
t , t ≥ 0) converges

almost surely towards a process (U
(∞)
t , t ≥ 0) with the same law as (Ut, t ≥ 0) the

solution to (5.1) with 0 entrance.

Proof. One first checks that for any k ≥ 0 and x ≥ 0, Ψk(x) ≥ Ψk+1(x). Plainly

Ψk+1(x)−Ψk(x)

=

∫
[k,k+1)

(e−xu − 1)π(du) + (e−x(k+1) − 1)(π̄(k + 1) + λ)− (e−xk − 1)(π̄(k) + λ)

≤ (e−xk − 1)(π̄(k)− π̄(k + 1)) + (e−x(k+1) − 1)(π̄(k + 1) + λ)− (e−xk − 1)(π̄(k) + λ)

= (e−x(k+1) − e−xk)(π̄(k + 1) + λ) ≤ 0.
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Since |Ψ′k(0+)| <∞ for any k ≥ 0, the branching mechanisms Ψk are locally Lipschitz
on [0,∞) and therefore by applying the comparison theorem for SDEs ([RY99, Theorem
IX.3.7]), one has on some probability space

Px

(
U

(k+1)
t ≥ U (k)

t for all t ≥ 0 and all k ≥ 0
)

= 1.

The existence of the limiting process (U
(∞)
t , t ≥ 0) (in a pointwise sense) is ensured

by monotonicity. We now establish 1) and 2). Set τk := inf{t ≥ 0, U
(k)
t /∈ (0,∞)} and

τ∞ := inf{t ≥ 0, U
(∞)
t /∈ (0,∞)}. Let A (k) be the generator of (U

(k)
t , t ≥ 0) and recall

A defined in (5.3). The diffusive part in A (k) and A are the same, therefore for any
g ∈ C2

c ((0,∞)):

||A (k)g −A g||∞ = sup
x∈[0,∞)

|(Ψ(x)−Ψk(x))g′(x)|

= sup
x∈[0,∞)

∣∣∣∣∣
(
−λ+

∫
[k,∞]

(e−xu − 1)π(du) + (1− e−xk)(π̄(k) + λ)

)
g′(x)

∣∣∣∣∣
≤ 2 sup

x∈[0,∞)

|e−xkπ̄(k)g′(x)|+λ sup
x∈[0,∞)

|e−xkg′(x)|.

Note that g′ has compact support in (0,∞). Since for all k ≥ 1, π̄(k) ≤ π̄(1) and for
any x > 0, lim

k→∞
e−xk = 0, we have that ||A (k)g − A g||∞ −→

k→∞
0. Hence, for large

enough k ≥ 1, ||A (k)g||∞ ≤ 1 + ||A g||∞ and since U
(k)
s −→

k→∞
U

(∞)
s a.s. for any s ≥ 0,

A (k)g(U
(k)
s ) −→

k→∞
A g(U

(∞)
s ) a.s. for any s ≥ 0. Let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ s < t and

f1, · · · , fn some bounded and continuous functions. Since (U
(k)
t , t ≥ 0) solves (7.1), then

the process

t ∈ [0, τk) 7→ g(U
(k)
t )−

∫ t

0

A (k)g(U (k)
s )ds

is a martingale. By applying Lebesgue’s theorem, we have that

Ez

[(
g(U

(∞)
t )− g(U (∞)

s )−
∫ t

s

A g(U (∞)
r )dr

) n∏
i=1

fi(U
(∞)
ti )

]

= lim
k→∞

Ez

[(
g(U

(k)
t )− g(U (k)

s )−
∫ t

s

A (k)g(U (k)
r )dr

) n∏
i=1

fi(U
(k)
ti )

]
= 0.

This shows that for any function g ∈ C2
c ((0,∞)), the process

t ∈ [0, τ∞) 7→ g(U
(∞)
t )−

∫ t

0

A g(U (∞)
s )ds

is a martingale. The process (U
(∞)
t , t < τ∞) solves the same martingale problem as

(Ut, t < τ). The latter problem being well-posed (see for instance [Dur96, Section 6.1,

Theorem 1.6]), (U
(∞)
t , t < τ∞) and (Ut, t < τ) have the same law.

It remains only to identify the behavior of the process (U
(∞)
t , t ≥ 0) after τ∞. Recall

that by Lemma 5.2, ∞ is inaccessible, so that τ∞ = inf{t ≥ 0, U
(∞)
t = 0} a.s. If 2λ

c ≥ 1

then 0 is an entrance, τ∞ =∞ a.s. and (U
(∞)
t , t ≥ 0) has the same law as (Ut, t ≥ 0). If

0 ≤ 2λ
c < 1, then 0 is regular or exit and τ∞ <∞ with positive probability. Let t ≥ 0. On

the event {τ∞ < ∞}, by pointwise almost sure convergence, U (∞)
t+τ∞ = lim

k→∞
U

(k)
t+τ∞ . By
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monotonicity τ∞ ≥ τk a.s. for all k ≥ 1, moreover 0 is an exit for (U
(k)
t , t ≥ 0) therefore

U
(k)
t+τ∞ = U

(k)

t+τk
= 0 and U

(∞)
t+τ∞ = 0 for any t ≥ 0. We conclude that (U

(∞)
t , t ≥ 0) is the

diffusion whose generator is A with 0 absorbing.

The next lemmas will provide proofs of Theorem 3.4 and Theorem 3.5. Recall that for
any k ≥ 1, (Z

(k)
t , t ≥ 0) denotes a logistic CSBP with mechanisms Ψk. These processes

satisfy Ek :=
∫ θ

0
1
x exp

(
2
c

∫ θ
x

Ψk(u)
u du

)
dx = ∞ (since |Ψ′k(0+)| < ∞) and all results of

Section 6 can be applied. According to Lemma 6.3, the processes (Z
(k)
t , t ≥ 0) have∞ as

entrance boundary and are Feller. In the sequel we work with their càdlàg versions.

Lemma 7.2. Assume E <∞ and 0 ≤ 2λ
c < 1, the sequence ((Z

(k)
t )t≥0, k ≥ 1) converges

weakly towards a càdlàg Feller process (Zt, t ≥ 0) valued in [0,∞] such that for all
z ∈ [0,∞], all t ≥ 0, and all x ∈ [0,∞)

Ez[e
−xZt ] = Ex[e−zU

0
t ]

where (U0
t , t ≥ 0) is the Ψ-generalized Feller diffusion satisfying (5.1) with 0 regular

absorbing.

Proof. Denote by (P
(k)
t , t ≥ 0) the semi-group of (Z

(k)
t , t ≥ 0) and (p

(k)
t (z, ·), z ∈ [0,∞], t ≥

0) its transition kernel. Let t ≥ 0 and z ∈ [0,∞] be fixed. For any k ≥ 1, by Lemma

6.1, one has for all x ≥ 0, P (k)
t ex(z) := Ez(e

−xZ(k)
t ) = Ex(e−zU

(k)
t ) where (U

(k)
t , t ≥ 0) is

defined in Lemma 7.1. By Lemma 7.1-1), for any t ≥ 0, U (k)
t converges almost surely

towards U (∞)
t as k goes to infinity, and (U

(∞)
t , k ≥ 1) has the same law as (U0

t , t ≥ 0).

Therefore lim
k→∞

Ez(e
−xZ(k)

t ) = Ex(e−zU
(∞)
t ) = Ex(e−zU

0
t ). Therefore p

(k)
t (z, ·) converges

weakly as k goes to∞ towards some probability pt(z, ·) over [0,∞] satisfying

Ptex(z) :=

∫
[0,∞]

e−xypt(z,dy) = Ex[e−zU
0
t ] for any z ∈ [0,∞),

Ptex(∞) :=

∫
[[0,∞]

e−xypt(∞,dy) = Px(U0
t = 0).

Since z ∈ [0,∞] 7→ Ptex(z) is continuous, then by Stone-Weierstrass theorem, Ptf is
continuous for any function f ∈ Cb([0,∞]). We stress that at this stage, we do not know
that (Pt, t ≥ 0) forms a semigroup.

We establish now that for any x ≥ 0, (P
(k)
t ex, k ≥ 1) converges uniformly towards

Ptex. For any x ≥ 0, define φk(x, t) := ||P (k)
t ex − Ptex||∞. Recall that U (k)

t ≤ U (∞)
t for any

t ≥ 0, Px-almost surely. Therefore, for any z ∈ [0,∞] and t ≥ 0,

Ex

[
e−zU

(k)
t − e−zU

(∞)
t

]
= Ex

[
(e−zU

(k)
t − e−zU

(∞)
t )1{U(k)

t <U
(∞)
t }

]
= Ex

[
(e−zU

(k)
t − e−zU

(∞)
t )1{0<U(k)

t <U
(∞)
t }

]
+ Ex

[
(e−zU

(k)
t − e−zU

(∞)
t )1{U(k)

t =0,U
(∞)
t >0}

]
≤ Ex

[
(e−zU

(k)
t − e−zU

(∞)
t )1{0<U(k)

t <U
(∞)
t }

]
+ Px(τk ≤ t < τ∞).

Since τk −→
k→∞

τ∞ a.s. then Px(τk ≤ t < τ∞) −→
k→∞

0. Now, for any x ≥ 0,

sup
z∈[0,∞]

Ex

[
(e−zU

(k)
t − e−zU

(∞)
t )1{0<U(k)

t <U
(∞)
t }

]
≤ Ex

[
sup

z∈[0,∞]

(
e−zU

(k)
t − e−zU

(∞)
t

)
1{0<U(k)

t <U
(∞)
t }

]
.
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The function z 7→ e−zU
(k)
t − e−zU

(∞)
t reaches its maximum at zk =

logU
(∞)
t −logU

(k)
t

U
(∞)
t −U(k)

t

. More-

over, on the event {0 < U
(k)
t < U

(∞)
t }, zkU (∞)

t −→
k→∞

1 and zkU
(k)
t −→

k→∞
1 almost surely,

thus by Lebesgue’s theorem

Ex

[
(e−zkU

(k)
t − e−zkU

(∞)
t )1{0<U(k)

t <U
(∞)
t }

]
−→
k→∞

0.

Hence, φk(x, t) −→
k→∞

0 and by Stone-Weierstrass theorem, for any f ∈ Cb([0,∞]) ||P (k)
t f −

Ptf ||∞ −→
k→∞

0.

As a first consequence of the uniform convergence, we show now that (Pt, t ≥ 0) is a
semigroup. Let s, t ≥ 0. Let g ∈ Cb([0,∞]) and (gk, k ≥ 1) such that gk −→

k→∞
g uniformly.

Then,

||P (k)
t gk − Ptg||∞ ≤ ||P (k)

t gk − P (k)
t g||∞ + ||P (k)

t g − Ptg||∞
≤ ||gk − g||∞ + ||P (k)

t g − Ptg||∞,

where we have used in the second inequality that P (k)
t is a contraction. The upper bound

goes to 0 as k goes to∞ by the uniform convergence. Let f ∈ Cb([0,∞]) and apply the

last convergence to gk := P
(k)
s f and g = Psf , one has, by the semigroup property of

(P
(k)
t , t ≥ 0).

Pt+sf = lim
k→∞

P
(k)
t+sf = lim

k→∞
P

(k)
t gk = PtPsf.

Therefore (Pt, t ≥ 0) is a semigroup on Cb([0,∞]). As in Lemma 6.3, we see that it is
continuous at 0.

Lastly, since the convergence of semigroups is uniform in Cb([0,∞]), one invokes

Theorem 2.5 page 167 in [EK86] to claim that the sequence of processes (Z
(k)
t , t ≥ 0)

converges weakly (in the Skorokhod topology) towards a càdlàg Markov process (Zt, t ≥
0) with semigroup (Pt, t ≥ 0).

Lemma 7.3. Assume 2λ
c ≥ 1, the sequence ((Z

(k)
t )t≥0, k ≥ 1) converges weakly towards

a càdlàg Feller process (Zt, t ≥ 0) valued in [0,∞] such that for all z ∈ [0,∞], all t ≥ 0,
and all x ∈ (0,∞)

Ez[e
−xZt ] = Ex[e−zUt ],

where (Ut, t ≥ 0) is the Ψ-generalized Feller diffusion (5.1) with 0 entrance.

Proof. The only difference with the proof of Lemma 7.2 lies in the fact that we have to
separate the cases x > 0 and x = 0, since 0 is an entrance boundary. By Lemma 7.1-2),
(U

(k)
t , t ≥ 0) converges towards (U

(∞)
t , t ≥ 0) in a pointwise sense Px-almost surely, for

any x > 0 and (U
(∞)
t , t ≥ 0) has the same law as the diffusion (Ut, t ≥ 0) solving (5.1)

with 0 entrance. The limiting semigroup is then given by Ptex(z) = Ex[e−zUt ] for any
z ∈ [0,∞] with x > 0. The case x = 0 is trivial since for any z ∈ [0,∞] and any k ≥ 1, one

has Ez[e−0.Z
(k)
t ] = E0[e−zU

(k)
t ] = 1 and so Pte0(z) = 1 for any z ∈ [0,∞]. The rest of the

proof is similar to the one above. By replacing τ∞ by ∞, since 0 is inaccessible, and
using the fact that Px(τk ≤ t) −→

k→∞
0 for any fixed t, we see that φk(x, t) −→

k→∞
0.

The next lemma ensures that both processes (Zt, t ≥ 0) defined above in Lemma 7.2 and
Lemma 7.3 are extensions of the minimal logistic CSBP.

Lemma 7.4 (Extension). The limiting processes (Zt, t ≥ 0) in Lemma 7.2 and Lemma
7.3 stopped at ζ∞ have the same law as (Zmin

t , t ≥ 0).
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Proof. By definition, on the event {ζ∞ < ∞}, the process (Zt∧ζ∞ , t ≥ 0) remains at
∞ after time ζ∞. Similarly, we see from the semigroup representation obtained in
Lemma 7.2 and Lemma 7.3, that if 0 is reached, then the process (Zt, t ≥ 0) remains at
0 afterwards. This holds also for the stopped process (Zt∧ζ∞ , t ≥ 0). It remains only to
see if (Zt∧ζ∞ , t ≥ 0) satisfies the martingale problem (MP). If this holds true, Lemma
4.2 will ensure that (Zt∧ζ∞ , t ≥ 0) has the same law as (Zmin

t , t ≥ 0). Denote by L (k) the

generator of (Z
(k)
t , t ≥ 0) as defined in Equation (2.5). For any function f ∈ C2

c ((0,∞)),
one has

||L (k)f −L f ||∞ = sup
z∈[0,∞)

∣∣∣∣f(z + k)(π̄(k) + λ)−
∫ ∞
k

f(z + u)π(du)

∣∣∣∣
≤ 2(π̄(k) + λ) sup

z∈[k,∞)

|f(z)| −→
k→∞

0.

For any z ∈ (0,∞) and any k ≥ 1, under Pz, the process(
f(Z

(k)
t )−

∫ t

0

L (k)f(Z(k)
s )ds, t ≥ 0

)
is a martingale. The convergence above being uniform, Lemma 5.1 page 196 in [EK86]
entails that the process (

f(Zt)−
∫ t

0

L f(Zs)ds, t ≥ 0

)
is a martingale. By [RY99, Corollary III.3.6], the latter process stopped at time ζ∞,(

f(Zt∧ζ∞)−
∫ t∧ζ∞

0

L f(Zs)ds, t ≥ 0

)

is a martingale. Now, since f has compact support, for any s ≥ ζ∞, Lf(Zs∧ζ∞) = 0 and
we have that for any t ≥ 0,∫ t

0

L f(Zs∧ζ∞)ds =

∫ t∧ζ∞

0

L f(Zs∧ζ∞)ds+

∫ t

t∧ζ∞
L f(Zs∧ζ∞)ds =

∫ t∧ζ∞

0

L f(Zs∧ζ∞)ds.

We deduce that for any f ∈ C2
c ((0,∞)), the process(

f(Zt∧ζ∞)−
∫ t

0

L f(Zs∧ζ∞)ds, t ≥ 0

)
is a martingale. Therefore the process (Zt∧ζ∞ , t ≥ 0) has the same law as (Zmin

t , t ≥ 0).
Note that by Lemma 4.5, since E <∞, (Zmin

t , t ≥ 0) explodes with a positive probability.
This ensures that∞ is accessible for the process (Zt, t ≥ 0).

Lemma 7.5 (Reflecting boundary). Assume E <∞ and 0 ≤ 2λ
c < 1. The boundary∞ of

the Feller process (Zt, t ≥ 0) is instantaneous regular reflecting. Moreover, P∞-almost
surely, (Zt, t ≥ 0) enters (0,∞) continuously.

Proof. Recall that we assume E <∞ and 2λ
c < 1. According to Lemma 7.4 and Lemma

4.5,∞ is accessible. Moreover, by applying Lemma 7.2 and Lemma 5.2, one has since
2λ
c < 1, for every t ≥ 0,

E∞[e−xZt ] = Px(U0
t = 0) = Px(τ0 ≤ t) > 0.

Thus,∞ is a regular boundary.
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We verify now that∞ is reflecting. Since (U0
t , t ≥ 0) has 0 regular absorbing,

Pz(Zt <∞) = lim
x→0x>0

Ez(e
−xZt) = lim

x→0x>0
Ex(e−zU

0
t ) = E0+(e−zU

0
t ) = 1.

This ensures that the Lebesgue measure of the set of times at which the process is at∞
is zero. In other words,∞ is reflecting.

We show now that ∞ is instantaneous. Let T = inf{t ≥ 0, Zt < ∞}. For any t > 0,
P∞(T ≤ t) ≥ P∞(Zt < ∞) = 1, then by letting t to 0, one has P∞(T = 0) = 1. By
right-continuity of (Zt, t ≥ 0), we have P∞(lim

t→0
Zt =∞) = 1.

Lemma 7.6 (Exit boundary). Assume 2λ
c ≥ 1. The boundary ∞ of the Feller process

(Zt, t ≥ 0) is an exit.

Proof. Firstly, by Lemma 7.4 and Lemma 4.5, we know that the process (Zt, t ≥ 0)

explodes with positive probability (note that λ > 0, so that by Lemma 4.8, on the event of
explosion, it will explode by a jump). Moreover, by Lemma 7.3, letting z →∞, we obtain
E∞[e−xZt ] = Px(Ut = 0) = 0 since 0 is an entrance boundary of U . Therefore, (Zt, t ≥ 0)

gets absorbed at∞.

The proof of Theorem 3.4 now follows by combining Lemmas 7.2, 7.4, 7.5. Theorem
3.5 follows from Lemmas 7.3, 7.4 and 7.6.

In order to understand the long-term behavior of the extended process (Zt, t ≥ 0),
we establish now Corollary 3.6, Theorem 3.7 and Theorem 3.9 in the case E <∞. The
arguments for Corollary 3.6 and Theorem 3.7 are exactly the same as those in Lemma
6.5 and Lemma 6.6 for the case E =∞ (but with λ ≥ 0). Indeed, according to Lemma 5.3,
the dual diffusion (U0

t , t ≥ 0) can leave the interval (0,∞) by∞ only when the condition
(A) is not satisfied. We show Theorem 3.9 in the case E < ∞. The next lemma shows
Theorem 3.9-1).

Lemma 7.7. Assume 0 ≤ 2λ
c < 1, E <∞ and Ψ(z) ≥ 0 for some z > 0, then Zt −→

t→∞
0 a.s.

If
∫∞ dz

Ψ(z) =∞ then Zt > 0 for all t ≥ 0 a.s (the boundary 0 is attracting). If
∫∞ dz

Ψ(z) <∞,

then for any z ∈ [0,∞], Pz(ζ0 <∞) = 1.

Proof. Let a > 0. Define ζ
(0)
∞ := 0, ζ(n)

a := inf{t > ζ
(n−1)
∞ ;Zt ≤ a} and ζ

(n)
∞ := inf{t >

ζ
(n)
a ;Zt =∞}. By Lemma 5.3-1), since −Ψ is not the Laplace exponent of a subordina-

tor, U0
t −→
t→∞

0 and by Lemma 7.2, Ez[e−xZt ] −→
t→∞

1. Therefore Zt −→
t→∞

0 in probability.

Since {Zt ≤ a} ⊂ {ζ(1)
a ≤ t} and Pz(Zt ≤ a) −→

t→∞
1, we have that ζ(1)

a < ∞ a.s. Ap-

plying the Markov property at ζ(n)
a , we see that the processes (Z

(t+ζ
(n)
a )∧ζ(n)

∞
, t ≥ 0)

are independent and with the same law as the minimal process starting from a. Set
En = {Z

(t+ζ
(n)
a )∧ζ(n)

∞
−→
t→∞

0} for any n ≥ 1. By Lemma 4.3, Pz(En) = Pa(σ0 <∞) > 0. By

independence, Pz (
⋂∞
n=1E

c
n) = 0 and therefore Zt −→

t→∞
0 a.s.

Assume
∫∞ dz

Ψ(z) = ∞, since ∞ is a natural boundary of (U0
t , t ≥ 0) therefore by

Lemma 7.2, Pz(ζ0 ≤ t) = E∞(e−zU
0
t ) = 0 for any t ≥ 0. Thus Zt > 0 for all t ≥ 0 a.s.

Now if
∫∞ dz

Ψ(z) < ∞, ∞ is an entrance of (U0
t , t ≥ 0) and by Lemma 7.2, Pz(ζ0 ≤ t) =

E∞(e−zU
0
t ) > 0. By Lemma 5.3-1), U0

t −→
t→∞

0 a.s and thus Pz(ζ0 ≤ t) −→
t→∞

Pz(ζ0 <∞) = 1.

This proves Theorem 3.9-1).

It remains to study the process when 2λ
c ≥ 1. The next lemma gives part 2) and part

3) of Theorem 3.9.

Lemma 7.8. Assume 2λ
c ≥ 1.

EJP 24 (2019), paper 33.
Page 27/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP299
http://www.imstat.org/ejp/


Logistic CSBPs: duality and reflection at infinity

1) If −Ψ is the Laplace exponent of a subordinator then the process is absorbed at∞
almost surely.

2) If −Ψ is not the Laplace exponent of a subordinator then the process tends to 0

with probability given by (4.4) and on the event of extinction, the process gets
absorbed at 0 if and only if

∫∞ du
Ψ(u) <∞.

Proof. By Lemma 7.6, the process (Zt, t ≥ 0) has 0 and ∞ as absorbing boundary. By
Lemma 7.4, it satisfies (MP), therefore (Zt, t ≥ 0) has the same law as (Zmin

t , t ≥ 0).
Proof of 1). Assume that −Ψ is the Laplace exponent of a subordinator, then by

Lemma 4.6, explosion is almost sure.
Proof of 2). If now −Ψ is not the Laplace exponent of a subordinator, then by Lemma

4.3

Pz(Zt −→
t→∞

0) = Pz(ζ∞ =∞) = Pz(σ0 <∞) > 0.

Similarly as in the proof of Lemma 6.5, Lemma 7.3 entails that Pz(ζ0 ≤ t) = E∞(e−xUt).
The latter is positive if and only if∞ is an entrance boundary for (Ut, t ≥ 0). Lemma 5.2-
2) ensures that this is the case if and only if

∫∞ dz
Ψ(z) <∞. Note that when

∫∞ dz
Ψ(z) <∞

then {ζ0 <∞} = {ζ∞ =∞} = {ζ0 < ζ∞}.

As mentioned in the introduction, our extension of the minimal process has been done
without using excursion theory. In particular, we have not discussed the existence of a
local time at∞. We end this article by showing that when∞ is regular reflecting, the
process immediately returns to∞ after leaving it. Such a boundary is said to be regular
for itself and standard theory, see for instance Bertoin [Ber96, Chapter IV], would then
ensure the existence of a local time.

Proposition 7.9. Assume E < ∞ and 0 ≤ 2λ
c < 1. Set S∞ := inf{t > 0;Zt = ∞}, then

P∞(S∞ = 0) = 1.

Proof. Assume E < ∞. Under Pz with z ∈ (0,∞), S∞ and ζ∞ have the same law. We
prove that Ez[S∞, S∞ < ∞] −→

z→∞
0. Recall that by Lemma 7.4, under Pz, the process

(Zt∧S∞ , t ≥ 0) has the same law as (Zmin
t , t ≥ 0) which, according to Section 4, can be

seen as a time-changed Ornstein-Uhlenbeck-type process starting from z, (R
(z)
s , s ≥ 0)

as given in (4.2). We have that

Ez[S∞, S∞ <∞] = E

[∫ ∞
0

ds

R
(z)
s

, σ0 =∞
]
.

Since E <∞, R(z)
s −→

s→∞
∞ and inf

s≥0
R

(z)
s > 0 a.s. on the event {σ0 =∞}. From (4.2) and a

direct comparison argument, we see that inf
s≥0

R
(z)
s ≥ inf

s≥0
R

(z′)
s almost surely for any z ≥ z′.

Assume first that −Ψ is not the Laplace exponent of a subordinator. Then letting µ to
0 and then z to∞ in (4.5) provides

Pz(σa <∞) = P(inf
s≥0

R(z)
s ≤ a) −→

z→∞
0.

Therefore inf
s≥0

R
(z)
s −→

z→∞
∞ almost surely. From the inequality (4.7), we see by applying

Lebesgue’s theorem that for any b > 0,

E

[∫ ∞
0

1− e−bR(z)
s

R
(z)
s

ds, σ0 =∞

]
−→
z→∞

0.
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Since

E

[∫ ∞
0

1− e−bR(z)
s

R
(z)
s

ds, σ0 =∞

]
≥ E

[(
1− e

−b inf
s≥0

R(z)
s

)∫ ∞
0

ds

R
(z)
s

, σ0 =∞
]

and inf
s≥0

R
(z)
s −→

z→∞
∞ almost surely, by applying Lebesgue’s theorem, we deduce that

E

[∫ ∞
0

ds

R
(z)
s

, σ0 =∞
]
−→
z→∞

0.

By the Markov inequality, Pz(S∞ > t, S∞ <∞) ≤ 1
tEz[S∞, S∞ <∞] and thus

Pz(S∞ > t, S∞ <∞) −→
z→∞

0. (7.2)

Let s > 0. By the Markov property at time s,

E∞
[
1{S∞>t+s}1{S∞<∞}

]
= E∞

[
E[1{S∞>t+s}1{S∞<∞}|Fs]

]
≤ E∞

[
EZs [1{S∞>t}1{S∞<∞}]

]
.

By right continuity, Zs −→
s→0+

∞ a.s under P∞, and by (7.2),

EZs [1{S∞>t}1{S∞<∞}] −→s→0+
0

a.s under P∞. By Lebesgue’s theorem, we conclude that P∞(S∞ > t, S∞ <∞) = 0 for
any t > 0.

We now verify that P∞(S∞ =∞) = 0. One has {S∞ =∞} = {σ0 <∞} under Pz for
any z ∈ [0,∞). By the Markov property,

P∞(S∞ =∞) = E∞(E(1{S∞=∞}|Fs)) = E∞(PZs(S∞ =∞)).

We see in Lemma 4.3 that Pz(σ0 < ∞) −→
z→∞

0. Since Zs −→
s→0
∞ P∞-a.s, we have that

P∞(S∞ =∞) = 0. This entails that for any t > 0,

P∞(S∞ > t, S∞ <∞) = P∞(S∞ > t) = 0

and thus P∞(S∞ = 0) = 1.

Assume now that −Ψ is the Laplace exponent of a subordinator and δ ≥ 0 is its
drift. One may argue by comparison as follows. Let b > δ and Ψ̃(q) := Ψ(q) + bq. Set

(R̃
(z)
s , s ≥ 0) the Ornstein-Uhlenbeck-type process associated with the Lévy process

Ỹt = Yt − bt. The function −Ψ̃ is not the Laplace exponent of a subordinator and one
has almost surely for any s and any z, R(z)

s ≥ R̃(z)
s . Applying the previous arguments to

(R̃
(z)
s , s ≥ 0) will provide P∞(S∞ = 0) = 1.

The last proposition leads to the natural question of characterizing the inverse local time.
A related question is to see if one can continue Table 1 to the case where the boundary
∞ of Z is regular absorbing. This requires us to work with the reflected diffusion and
seems to demand a deeper analysis of the duality at the level of generators.

EJP 24 (2019), paper 33.
Page 29/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP299
http://www.imstat.org/ejp/


Logistic CSBPs: duality and reflection at infinity

Appendix

Proof of Proposition 3.13. Recall

E =

∫ θ

0

1

x
exp

(
2

c

∫ θ

x

Ψ(u)

u
du

)
dx and E ′ =

∫ θ

0

1

x
exp

(
−2

c

∫ ∞
1

e−xv
π̄(v)

v
dv

)
dx.

From the Lévy-Khintchine form (2.3) of Ψ, one has for any u > 0,

Ψ(u)

u
= −

∫ ∞
0

e−uvπ̄(v ∨ 1)dv + γ +
σ2

2
u+

∫ 1

0

π((v, 1))(1− e−uv)dv (7.3)

where v ∨ 1 = max(v, 1). For any z > 0, set H(z) := −
∫ θ
z

Ψ(u)
u du. One can readily check

from the above expression that as z goes to 0,

H(z) =

∫ ∞
1

e−zv
π̄(v)

v
dv + εθ(z) + cθ

for some constant cθ and some function εθ such that εθ(z) −→
z→0

0. Observe first that∫
0

[Ψ(u)|
u du < ∞ if and only if

∫∞
1

π̄(v)
v dv < ∞. Tonelli’s theorem ensures that it is

equivalent to
∫∞

log(v)π(dv) < ∞. Since the term εθ(z) + cθ will not play any role in
the convergence of E , E and E ′ have the same nature. Without loss of generality, we
assume π((0, 1)) = 0, σ = 0 and γ = 0. Define Φ such that Φ(z)/z = H(z). The function Φ

is the Laplace exponent of a driftless subordinator with Lévy measure ν whose tail is
ν̄(v) = π̄(v)

v for all v ≥ 1. Recall from [Ber96, Chapter III, Proposition 1] that there exists
a universal constant κ > 0 such that

1

κ
I(1/z) ≤ Φ(z)/z ≤ κI(1/z),∀z > 0, where I(z) :=

∫ z

1

ν̄(r)dr.

Thus, we have

1

κ

∫ 1/z

1

π̄(u)

u
du ≤ H(z) ≤ κ

∫ 1/z

1

π̄(u)

u
du

Therefore∫ θ

0

1

x
exp

(
−2κ

c

∫ 1/x

1

π̄(u)

u
du

)
dx ≤ E ≤

∫ θ

0

1

x
exp

(
− 2

cκ

∫ 1/x

1

π̄(u)

u
du

)
dx.

We now study the boundaries of (Ut, t < τ) solution to (5.1) and establish the results
stated in Section 5. This is a regular3 diffusion in (0,∞). We apply Feller’s tests for
which we refer to Durrett’s book [Dur96, Chapter 6, Section 6.2 and 6.5]. Denote by s
the scale function of (Ut, t < τ) and by m the density of its speed measure. Fix θ ∈ (0,∞).
For any x ∈ (0,∞),

s(x) =

∫ x

θ

exp

(∫ y

θ

2Ψ(u)

cu
du

)
dy, m(x) =

2

cx
exp

(
−
∫ x

θ

2Ψ(u)

cu
du

)
.

Denote by M the antiderivative of m, M(z) =
∫ z
θ
m(x)dx. We establish Lemma 5.2 and

Lemma 5.3. Recall the basic analytical properties of the function Ψ mentioned in Section
2.

3in the sense irreducible
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Proof of Lemma 5.2-2. Feller’s tests imply that∞ is inaccessible if and only if

I∞ =

∫ ∞
θ

(s(∞)− s(x))m(x)dx =

∫ ∞
θ

2dx

cx

∫ ∞
x

exp

(∫ y

x

2Ψ(u)

cu
du

)
dy =∞

and an entrance boundary if and only if I∞ =∞ and

J∞ =

∫ ∞
θ

(M(∞)−M(z))s′(z)dz =

∫ ∞
θ

dz

∫ ∞
z

2

cx
exp

(
−
∫ x

z

2Ψ(u)

cu
du

)
dx <∞.

If −Ψ is not the Laplace exponent of a subordinator then there exists z0 ≥ 0, such that for
all u ≥ z0, Ψ(u) ≥ 0 and then I∞ =∞. If −Ψ is the Laplace exponent of a subordinator
then lim

z→∞
Ψ(z)/z =: d < 0. Therefore, for any ε > 0, there exists z0 such that if u ≥ z0

then Ψ(u)/u > d − ε. This entails: I∞ ≥
∫∞
θ

2e
d−ε
c
x

cx e−
d−ε
c xdx = ∞. The boundary ∞ is

therefore always inaccessible.
We show now that J∞ < ∞ if and only if

∫∞ du
|Ψ(u)| < ∞. Define Q(x) :=

∫ x
θ

2Ψ(u)
cu du,

one has

J∞ =

∫ ∞
θ

eQ(z)

∫ ∞
z

2e−Q(x)

cx
dxdz. (7.4)

Plainly if −Ψ is the Laplace exponent of a subordinator, Q(x) ≤ 0 for all x and J∞ =∞.
We focus on the non-subordinator case, in which Ψ(z) > 0 for large enough z. Assume∫∞ dz

Ψ(z) <∞. Note that Ψ is non-decreasing over (ρ,∞) where ρ is the largest zero of Ψ.

Moreover, since
∫∞ dz

Ψ(z) <∞, there exists v such that Ψ(v)
v ≥ 1. Since any mechanism Ψ

is convex and Ψ(0) ≤ 0, z 7→ Ψ(z)/z is non-decreasing, therefore for all z ≥ v, Ψ(z)
z ≥ 1

and Q(∞) =∞. For all z ≥ θ > ρ, by the mean value theorem there exists ξz ≥ z such
that ∫ ∞

z

2Ψ(x)

cx
e−Q(x) dx

Ψ(x)
=

1

Ψ(ξz)

[
−e−Q(x)

]x=∞

x=z
=

1

Ψ(ξz)
e−Q(z).

Thus

J∞ =

∫ ∞
θ

eQ(z)

∫ ∞
z

2

cx
e−Q(x)dxdz ≤

∫ ∞
θ

dz

Ψ(z)
<∞.

Conversely, assume J∞ < ∞. Let ϕ(z) = M(∞) − M(z) =
∫∞
z

2
cxe
−Q(x)dx, one has

J∞ = lim
b→∞

∫ b
θ
ϕ(z)eQ(z)dz. By integration by parts:

∫ b

θ

ϕ(z)eQ(z)dz =

∫ b

θ

ϕ(z)

Q′(z)
eQ(z)Q′(z)dz =

[
ϕ(z)

Q′(z)
eQ(z)

]b
θ

−
∫ b

θ

eQ(z)

(
ϕ(z)

Q′(z)

)′
dz.

Moreover,

(
ϕ(z)

Q′(z)

)′
=
ϕ′(z)Q′(z)− ϕ(z)Q′′(z)

Q′(z)2
=
− 2
cz e
−Q(z) 2Ψ(z)

cz − ϕ(z)
(

2Ψ(z)
cz

)′
(

2Ψ(z)
cz

)2

= −e
−Q(z)

Ψ(z)
−
ϕ(z)

(
2Ψ(z)
cz

)′
(

2Ψ(z)
cz

)2 ≤ −e
−Q(z)

Ψ(z)
.

The last inequality holds since
(

Ψ(z)
z

)′
≥ 0 and entails

∫ b

θ

ϕ(z)eQ(z)dz ≥
[
ϕ(z)

Q′(z)
eQ(z)

]b
θ

+

∫ b

θ

dz

Ψ(z)
. (7.5)
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We show now that ϕ(z)eQ(z) −→
z→∞

0. Let ε > 0 and choose a large enough such that

Ψ(u) ≥ Ψ(a) ≥ 1
ε for any u ≥ z ≥ a. One has −

∫ x
z

2
c

Ψ(u)
u du ≤ −2Ψ(a)

c ln(x/z) and thus

ϕ(z)eQ(z) =

∫ ∞
z

2

cx
e−

∫ x
z

2Ψ(u)
cu dudx

≤ 2

c
z

2Ψ(a)
c

∫ ∞
z

x−2Ψ(a)/c−1dx

=
1

Ψ(a)
≤ ε.

Provided that lim
z→∞

Q′(z) 6= 0, (7.5) gives∫ ∞
θ

dz

Ψ(z)
≤ J∞ +

ϕ(θ)

Q′(θ)
eQ(θ) <∞

and the proof is complete. We show now that if J∞ <∞ then lim
z→∞

Q′(z) 6= 0. Assume by

contradiction that for any ε > 0, there exists z0 such that Q′(z) = 2Ψ(z)
cz ≤ ε for all z ≥ z0.

Recall J∞ =
∫∞
θ

dz
∫∞
z

2
cx exp

(
−
∫ x
z

2Ψ(u)
cu du

)
dx, we get

J∞ ≥
2

c

∫ ∞
z0

dz

∫ ∞
z

1

x
e−

∫ x
z
εdudx =

2

c

∫ ∞
z0

eεzdz

∫ ∞
z

1

x
e−εxdx

=
2

c

∫ ∞
z0

dx

(∫ x

z0

dzeεz
)
e−εx

x
=

2

c

∫ ∞
z0

eεx − eεz0
ε

e−εx

x
dx

=
2

c

∫ ∞
z0

1− eε(z0−x)

εx
dx =∞.

Proof of Lemma 5.2-1. As in the previous Lemma, we apply Feller’s tests to study the
nature of the boundary 0. The boundary 0 is accessible if and only if

I0 :=

∫ θ

0

(s(x)− s(0))m(x)dx <∞

and the process can get out from the boundary 0 if and only if

J0 :=

∫
0

(M(z)−M(0))s′(z)dz <∞

where M(z) =
∫ z
m(x)dx. The boundary 0 is thus an exit boundary (respectively a

regular boundary) if I0 < ∞ and J0 = ∞ (respectively J0 < ∞). If I0 = ∞ and J0 < ∞
then 0 is an entrance boundary. We first show that I0 <∞ if and only if 0 ≤ 2λ

c < 1. This
will provide that 0 is accessible when 0 ≤ 2λ

c < 1. Since Ψ(0) = −λ and Ψ is continuous
at 0+, − 2

cΨ(z) −→
z→0+

2λ
c . Assume 2λ

c < 1, and let ε such that 2λ
c + ε < 1, there exists θ > 0

such that − 2
cΨ(z) ≤ 2λ

c + ε < 1 for all z ≤ θ. Therefore,

|s(0)| =
∫ θ

0

exp

(
−
∫ θ

y

2Ψ(z)

cz
dz

)
dy (7.6)

≤
∫ θ

0

exp

(∫ θ

y

2λ
c + ε

z
dz

)
dy

= cθ

∫ θ

0

dy

y
2λ
c +ε

<∞.
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We have

I0 =
2

c

∫ θ

0

dx

x

∫ x

0

exp

(
−
∫ x

y

2Ψ(z)

cz
dz

)
dy

≤ 2

c

∫ θ

0

dx

x

∫ x

0

exp

(∫ x

y

2λ/c+ ε

z
dz

)
dy

=
1

c

∫ θ

0

dx

x

∫ x

0

exp [(2λ/c+ ε) (ln(x)− ln(y))] dy

=
2

c

∫ θ

0

x
2λ
c +ε−1dx

∫ x

0

1

y
2λ
c +ε

dy =
2θ

c (1− (2λ/c+ ε))
<∞.

Therefore when 0 ≤ 2λ
c < 1 for all y ∈ R+ s.t. y 6= x, Px(τ0 < τy) > 0, where τy is the first

hitting time of y by the diffusion (Ut, t ≥ 0). Assume 2λ
c ≥ 1 and define Ψ̃(z) = λ+ Ψ(z).

Note that Ψ̃ is the mechanism of a CSBP with no killing term. One has

|s(0)| =
∫ θ

0

1

y2λ/c
exp

(
−
∫ θ

y

2Ψ̃(z)

cz
dz

)
dy.

If Ψ̃(z) ≥ 0 for all z ≥ 0, then lim
z→0

Ψ̃(z)
z = Ψ̃′(0) ≥ 0 and

∫ θ
y

2Ψ̃(z)
cz dz −→

y→0

∫ θ
0

2Ψ̃(z)
cz dz < ∞

thus |s(0)| =∞. If Ψ̃ is non-positive in a neighbourhood of 0 then |s(0)| ≥
∫ θ

0
dy

y2λ/c =∞,
which implies that 0 is inaccessible.

We study now J0. When 0 ≤ 2λ
c < 1, |s(0)| < ∞ and J0 has the same nature as

|M(0)| = c
2E . We deduce that 0 is an exit if E = ∞, regular if 0 ≤ 2λ

c < 1 and E < ∞.
Assume 2λ

c ≥ 1. One has

J0 =

∫ θ

0

dz

∫ z

0

2

cx
exp

(∫ z

x

2Ψ(u)

cu
du

)
dx =

2

c

∫ θ

0

dz

∫ z

0

1

x
e−

2λ
c

∫ z
x

du
u e

∫ z
x

2Ψ̃(u)
cu dudx

=
2

c

∫ θ

0

dz

z2λ/c

∫ z

0

x2λ/c−1e
∫ z
x

2Ψ̃(u)
cu dudx. (7.7)

If Ψ̃ is non-positive in a neighbourhood of 0, then

J0 ≤
2

c

∫ θ

0

dz

z2λ/c

∫ z

0

x2λ/c−1dx =
θ

λ
<∞.

If Ψ̃(z) ≥ 0 for all z ≥ 0, then lim
z→0

Ψ̃(z)/z ≥ 0 and then 0 ≤
∫ z
x

2Ψ̃(u)
cu du ≤

∫ θ
0

2Ψ̃(u)
cu du <∞,

which provides J0 <∞. We deduce that if 2λ
c ≥ 1, then 0 is an entrance.

Recall that (U0
t , t ≥ 0) denotes the Ψ-generalized Feller diffusion with 0 as an exit (if

E =∞) or a regular absorbing boundary (if E <∞ and 2λ
c < 1).

Proof of Lemma 5.3-1. By see [Dur96, Theorem 3.3 page 220], if s(∞) =∞ then τ∞ =∞
a.s. By assumption −Ψ is not the Laplace exponent of a subordinator, we see from (7.3)
that this entails d = lim inf

z→∞
Ψ(z)
z > 0. One has

s(∞) =

∫ ∞
exp

(∫ y

θ

2Ψ(z)

cz
dz

)
dy ≥

∫ ∞
exp

(
2d

c
y

)
dy =∞.

Thus, Px(τ0 < τ∞) = 1 for all x ≥ 0.
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Recall that if Ψ(z) ≤ 0 for all z ≥ 0, then Ψ is of the form (7):

Ψ(v) = −λ− δv −
∫ ∞

0

(1− e−vu)π(du)

with δ ≥ 0 and
∫∞

0
(1 ∧ u)π(du) < ∞. In this case, −Ψ is the Laplace exponent of a

subordinator. Recall the condition (A):

δ = 0 and π̄(0) + λ ≤ c/2. (A)

Proof of Lemma 5.3-2). We show i) and ii) simultaneously. We have seen in (7.6) that
|s(0)| <∞. If s(∞) <∞, then [Dur96, Theorem 3.3 page 220] ensures

Px(U0
t −→
t→+∞

0) =
s(∞)− s(x)

s(∞)− s(0)
.

Moreover if s(∞) = ∞ then Px(U0
t −→

t→+∞
0) = 1. We show that s(∞) = ∞ if and

only if (A) is satisfied. One has s(∞) =
∫∞
θ

exp
(∫ y

θ
2Ψ(z)
cz dz

)
dy. Note that Ψ(z)

z =

−λz − δ −
∫∞

0
e−zxπ̄(x)dx. We adapt the proof of Lambert [Lam05, Section 4.1]. We first

discuss the case of (A) not satisfied. This corresponds to assume that at least one of the
following conditions is satisfied:

δ > 0 or δ = 0, π̄(0) < +∞ and π̄(0) + λ > c/2 or δ = 0 and π̄(0) = +∞.

• Assume δ > 0. Since Ψ(z)
z −→

z→+∞
−δ, there exists y0 such that for all z ≥ y0,

2Ψ(z)
cz ≤ − 2δ

c + δ
c = − δc < 0. Therefore

s(∞) =

∫ ∞
θ

exp

(∫ y0

θ

2Ψ(z)

cz
dz +

∫ y

y0

2Ψ(z)

cz
dz

)
≤ cy0

∫ ∞
θ

exp

(
−
∫ y

y0

δ

c
dz

)
dy

= cy0e
δ
c y0

∫ ∞
θ

e−
δ
c ydy <∞

where cy0
= exp

(∫ y0

θ
2Ψ(z)
cz dz

)
.

• Assume δ = 0, π̄(0) < +∞ and π̄(0) + λ > c/2. By Tonelli, one has

−
∫ y

θ

2Ψ(z)

cz
dz =

2λ

c
ln
(y
θ

)
+

2

c

∫ y

θ

dz

(∫ ∞
0

e−zxπ̄(x)dx

)
(7.8)

=
2λ

c
ln
(y
θ

)
+

2

c

∫ ∞
0

e−θx − e−yx

x
π̄(x)dx. (7.9)

We will show that under the assumption π̄(0) <∞,

kθ(x) := lim
y→∞

[∫ ∞
0

e−θz − e−yz

z
π̄(z)dz −

∫ x

x/y

e−θz
π̄(z)

z
dz

]
exists and is finite.

(7.10)
Assume for now that (7.10) is proven. Since

∫ x
x/y

e−θz π̄(z)
z dz ≥ π̄(x)e−θx ln(y), there

exists y0 such that if y ≥ y0, then

−2

c

∫ y

θ

Ψ(z)

z
dz ≥ 2

c

(
kθ(x)− 1− λ ln(θ) + λ ln(y) +

∫ x

x/y

e−θz
π̄(z)

z
dz

)

≥ cθ(x) +
2

c
(λ+ π̄(x)e−θx) ln y.
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Choose x close enough to 0 such that λ+ π̄(x)e−θx > c/2. Therefore

s(∞) =

∫ ∞
θ

exp

(∫ y

θ

2Ψ(z)

cz
dz

)
dy

≤ Kθ,y0 +

∫ ∞
y0

exp

(
cθ(x)− 2

c
(λ+ π̄(x)e−θx) ln y

)
dy

= Kθ,y0
+Kθ,x

∫ ∞
θ

y−
2
c (λ+π̄(x)e−θx)dy <∞

where Kθ,y0
and Kθ,x are some constants.

• Assume that π̄(0) = +∞ and define πb(dx) by π̄b(x) = π̄(x ∨ b). For all b > 0 and
all x ≥ 0, π̄b(x) ≤ π̄(x). The measure πb is finite and one can choose b such that
π̄b(0) > c. One has for y large enough:∫ ∞

0

e−θx − e−yx

x
π̄(x)dx ≥

∫ ∞
0

e−θx − e−yx

x
π̄b(x)dx

Applying the same argument as above with λ = 0 and πb instead of π, one obtains
s(∞) <∞.

Assume now that condition (A) holds. Namely, δ = 0, π̄(0) < +∞ and π̄(0) + λ ≤ c/2. By
using (7.10), there exists y0 such that for y ≥ y0,

−
∫ y

θ

2Ψ(z)

cz
dz ≤ kθ(x) + 1 +

2λ

c
ln
(y
θ

)
+

2λ

c

∫ x

x/y

e−θz
π̄(z)

z
dz

≤ kθ(x) + 1− 2λ

c
ln(θ) +

2

c
(λ+ π̄(0)) ln(y).

Since π̄(0) + λ ≤ c/2,

s(∞) ≥ Kθ,y0
+Kθ,x

∫ ∞
θ

y−2(π̄(0)+λ)/cdy =∞.

We show now (7.10):∫ ∞
0

(
e−θz − e−yz

) π̄(z)

z
dz −

∫ x

x/y

e−θz
π̄(z)

z
dz

=

∫ x/y

0

(
e−θz − e−yz

) π̄(z)

z
dz −

∫ x

x/y

e−yz
π̄(z)

z
dz +

∫ ∞
x

(
e−θz − e−yz

) π̄(z)

z
dz

=

∫ x/y

0

(
e−θz − e−yz

) π̄(z)

z
dz︸ ︷︷ ︸

I1(x,y)

−
∫ xy

x

e−u
π̄(u/y)

u
du︸ ︷︷ ︸

I2(x,y)

+

∫ ∞
x

(
e−θz − e−yz

) π̄(z)

z
dz︸ ︷︷ ︸

I3(x,y)

.

By changing variable, one has I1(x, y) =
∫ x

0

(
e−θ

u
y − e−u

)
π̄(u/y)
u du. Since y 7→ π̄(u/y)

is non-decreasing and converges to π̄(0) as y goes to ∞, one can apply the monotone
convergence theorem, this provides

I1(x, y) −→
y→+∞

π̄(0)

∫ x

0

(1− e−u)
du

u
<∞.

The monotone convergence theorem readily applies to I2(x, y):

I2(x, y) −→
y→+∞

π̄(0)

∫ ∞
x

e−u

u
du <∞.
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By Lebesgue’s theorem, I3(x, y) =
∫∞
x

(
e−θz − e−yz

) π̄(z)
z dz −→

y→∞

∫∞
x

e−θzπ̄(z)
z dz < ∞.

Finally,

kθ(x) = π̄(0)

(∫ x

0

1− e−u

u
du+

∫ ∞
x

e−u

u
du

)
+

∫ ∞
x

e−θz
π̄(z)

z
dz <∞.

As formula (4.5) for the Laplace transform of the first entrance times of Ornstein-
Uhlenbeck-type processes with positive jumps has played an important role in our study,
we end this appendix by establishing it. We refer the reader to Patie [Pat05] in the
context of Ornstein-Uhlenbeck process with negative jumps. Recall (Rt, t ≥ 0) the
Ornstein-Uhlenbeck type process with parameters Ψ and c/2 as introduced in Section 4.
For any a ≥ 0, recall σa := inf{t ≥ 0, Rt ≤ a}.

Proof of formula (4.5). For any µ ≥ 0, recall gµ(x) = x
2µ
c −1e−

∫ x
θ

2Ψ(y)
cy dy. The function gµ

solves the following equation(
Ψ(x)− µ+

c

2

)
gµ(x) +

c

2
xg′µ(x) = 0 for all x ≥ 0.

We have seen in the proof of Lemma 4.3 that
∫∞
b
gµ(x)dx <∞ for any b > 0 and any µ ≥ 0.

We check now that if µ > 0 then
∫ b

0
gµ(x)dx < ∞. Note that either

∫ θ
0

Ψ(u)
u du = −∞ or∫ θ

0
Ψ(u)
u du ∈ (−∞,∞). In both cases, for any b > 0 there is a constant C > 0 such that∫ b

0
gµ(x)dx ≤ C

∫ b
0
x

2µ
c −1dx < ∞ since µ > 0. Thus, we have

∫∞
0
gµ(x)dx < ∞ for any

µ > 0.

Set fµ(z) :=
∫∞

0
e−xzgµ(x)dx for any z ≥ 0. This is a C2

0 decreasing function. For any
z ∈ (0,∞) and x ∈ (0,∞), LRex(z) = Ψ(x)ex(z) + c

2xzex(z). We now verify that fµ is an
eigenfunction of the generator LR:

LRfµ(z)− µfµ(z)

=

∫ ∞
0

gµ(x)
(
LRex(z)− µex(z)

)
dx

=

∫ ∞
0

(Ψ(x)− µ)e−xzgµ(x)dx+

∫ ∞
0

c

2
ze−xzxgµ(x)dx

=

∫ ∞
0

(Ψ(x)− µ)e−xzgµ(x)dx+
c

2

([
−e−xzxgµ(x)

]x=∞
x=0

+

∫ ∞
0

e−xz(gµ(x) + xg′µ(x))dx

)
=

∫ ∞
0

(
(Ψ(x)− µ+

c

2
)gµ(x) +

c

2
xg′µ(x)

)
e−xzdx = 0.

Itô’s formula entails that the process (e−µtfµ(Rt), t ≥ 0) is a local martingale. Since
(Rt, t ≥ 0) has no negative jumps, and the function fµ is decreasing, one has for any
t ≤ σa, Rt ≥ a and fµ(Rt) ≤ fµ(a) Pz-a.s, for all z ≥ a. Therefore, the process
(e−µ(t∧σa)fµ(Rt∧σa), t ≥ 0) is a bounded martingale, and by the optional stopping theorem,
one gets

Ez[e
−µσa ] =

fµ(z)

fµ(a)
.
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