

Electron. J. Probab. 24 (2019), no. 25, 1-2.
ISSN: 1083-6489 https://doi.org/10.1214/19-EJP291

Second Errata to "Processes on Unimodular Random Networks"*

David Aldous ${ }^{\dagger} \quad$ Russell Lyons ${ }^{\ddagger}$

Abstract

We correct a few more minor errors in our paper, Electron. J. Probab. 12, Paper 54 (2007), 1454-1508.

Keywords: amenability; equivalence relations; infinite graphs; percolation; quasi-transitive; random walks; transitivity; weak convergence; reversibility; trace; stochastic comparison; spanning forests; sofic groups. AMS MSC 2010: Primary 60C05, Secondary 60K99; 05C80. Submitted to EJP on November 2, 2018, final version accepted on March 6, 2019.

Our first set of errata, Electron. J. Probab. 22 (2017), paper no. 51, 4 pp., corrected several minor misstatements and several somewhat incorrect proofs. Here we correct a few more.
(i) In Section 2, the definition of canonical representative that was given to prove its existence is incomplete and incorrect. A correct proof of its existence follows.

Write \prec for the total order that was defined on locally finite, connected networks with vertex set \mathbb{N}, root 0 , and mark space $\mathbb{N}^{\mathbb{N}}$. Given a locally finite, connected, rooted network G and $r \geq 1$, let \mathcal{H}_{r} be the class of networks on \mathbb{N} with root 0 that are rootedisomorphic to G and whose vertices within distance r of 0 form an interval, $\left[0, N_{r}\right]$. Let $\mathcal{H}_{r}^{\mathrm{min}}$ be the subset of \mathcal{H}_{r} such that the network induced on $\left[0, N_{r}\right]$ is minimal for \prec (there are only finitely many possibilities for the induced network, so there is a unique minimum induced network). Then $\mathcal{H}_{r}^{\min } \supseteq \mathcal{H}_{r+1}^{\min }$ for all r by the definition of \prec. Hence, there is a unique element $H \in \bigcap_{r=1}^{\infty} \mathcal{H}_{r}^{\mathrm{min}}$: the network of H induced on [$0, N_{r}$] is determined by $\mathcal{H}_{r}^{\min }$. This network H is the desired canonical representative of G.
(ii) At the end of Question 2.5, the assertion that ν is not $\operatorname{Aut}(T)$-invariant is not always correct. Indeed, if the functions f_{a}, f_{b}, and f_{c} are constant, then ν is invariant. Nonetheless, ν is not invariant in any other case. To see this, suppose, without loss of generality, that f_{a} is not constant. Let e_{1} and e_{2} be two (distinct) edges that have the same Cayley label, a, and that are incident to a common third edge, e_{3}. Then under ν, precisely one of the following possibilities occurs:

[^0]- $X\left(e_{1}\right)$ and $Y\left(e_{2}\right)$ are not independent because $I_{e_{1}} \cap J_{e_{2}}=\left\{e_{3}\right\}$;
- $Y\left(e_{1}\right)$ and $X\left(e_{2}\right)$ are not independent because $J_{e_{1}} \cap I_{e_{2}}=\left\{e_{3}\right\}$; or
- $X\left(e_{1}\right)$ and $Y\left(e_{2}\right)$ are independent and $Y\left(e_{1}\right)$ and $X\left(e_{2}\right)$ are independent.

In each of these three cases, we can determine which edges form the sets $I_{e_{1}}, I_{e_{2}}, J_{e_{1}}$, and $J_{e_{2}}$, and therefore we can orient e_{1} and e_{2} towards ξ. This orients all edges labeled a, but such an orientation is not invariant under $\operatorname{Aut}(T)$.
(iii) When a map $\psi: \Xi \rightarrow \Xi$ is used to define a percolation on a given measure μ on \mathcal{G}_{*}, the notation $\mu \circ \psi^{-1}$ was used for the measure obtained by changing the marks according to ψ. It should have been explained that ψ induces a map on \mathcal{G}_{*} by applying ψ to all the marks of a network. Denote this induced map still by ψ in order to make the notation used meaningful. This occurs before Definition 6.4, in Definition 8.1, and later.
(iv) For Theorem 8.5, the proof that (ii) implies (iii) has a gap, because the bounded convergence theorem may not apply unless the vertex degrees are uniformly bounded. We do not know whether (ii) is equivalent to the others without such a boundedness assumption, but it can be strengthened to be equivalent: Namely, replace (8.4) by

$$
\lim _{n \rightarrow \infty} \int \sum_{x \in \mathrm{~V}(G)} \sum_{y \sim x}\left|\lambda_{n}(G, o, x)-\lambda_{n}(G, o, y)\right| d \mu(G, o)=0 .
$$

That is what is proved from (i) and what is used to prove (iii).
(v) In Theorem 8.13, $\iota_{\mathrm{E}}(G)$ was not defined for a graph, G; it means

$$
\iota_{\mathrm{E}}(G):=\inf \left\{\frac{|\{(x, y) ; x \in K, y \notin K,(x, y) \in \mathrm{E}\}|}{|K|} ; K \subset \mathrm{~V} \text { is finite }\right\} .
$$

Also, in (iii), μ should be assumed extremal.
(vi) In Example 9.6, \widehat{Z} should be defined as $1+(1 / 2) \overline{\operatorname{deg}}(\mu)+Z$.

[^0]: *Main article: https://doi.org/10.1214/EJP.v12-463.
 ${ }^{\dagger}$ University of Calif., Berkeley. E-mail: aldousdj@berkeley.edu
 ${ }^{\ddagger}$ Indiana University, Bloomington. E-mail: rdlyons@indiana.edu

