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Abstract

We study the stochastic wave equation with multiplicative noise and singular drift:

∂tu(t, x) = ∆u(t, x) + u−α(t, x) + g(u(t, x))Ẇ (t, x)

where x lies in the circle R/JZ and u(0, x) > 0. We show that
(i) If 0 < α < 1 then with positive probability, u(t, x) = 0 for some (t, x).
(ii) If α > 3 then with probability one, u(t, x) 6= 0 for all (t, x).
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1 Introduction

One of the classic questions about stochastic processes is whether they can hit a
given set. That is, for a process Xt taking values in a space S, and for A ⊂ S, do we have

P(Xt ∈ A for some t) > 0.

For example, consider the Bessel process Rt with parameter n, which satisfies

dR =
n− 1

2R
dt+ dW

where W (t) is a one-dimensional Brownian motion and we assume that R0 > 0. It is well
known that if we allow n to take nonnegative real values, then Rt can hit 0 iff n < 2.
For Markov processes such as Rt, harmonic functions and potential theory are powerful
tools which have led to rather complete answers to such questions; see [6] or most other
books in Markov processes.
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Can the wave SPDE hit zero?

For stochastic partial differential equations (SPDE), potential theory becomes less
tractible due to the infinite-dimensional state space of solutions, and hitting questions
have not been as thoroughly studied. To be specific, solutions u(t, x) usually depend on
a time parameter t and a spatial parameter x. So for a fixed time t, the solution u(t, x)

is a function of x, and the state space of the process is an infinite dimensional function
space.

Nonetheless, hitting questions have been studied for certain SPDE, see [2, 3, 4, 7, 11]
among others. These papers deal with the stochastic heat and wave equations either
with no drift or with well behaved drift.

As for SPDE analogues of the Bessel process, the only results known to the authors
are in Mueller [8] and Mueller and Pardoux [9]. Here we assume that u(t, x) is scalar
valued, and as before t > 0. But now we let x lie in the unit circle [0, 1] with endpoints
identified. We also assume that u(0, x) is continuous and strictly positive. Here and
throughout the paper we write Ẇ (t, x) for two-parameter white noise. Suppose u satisfies
the following SPDE.

∂tu(t, x) = ∆u(t, x) + u−α(t, x) + g(u(t, x))Ẇ (t, x)

where there exist constants 0 < c0 < C0 < ∞ for which c0 ≤ g(u) ≤ C0 for all values
of u. Let τ be the first time at which u hits 0, and let τ = ∞ if u does not hit 0. Then
P(τ <∞) > 0 if α < 3, see [8] Corollary 1.1. Also, P(τ <∞) = 0 if α > 3, see Theorem 1
of [MP99].

The situation for vector-valued solutions u(t, x) of the stochastic heat equation is
unclear. Indeed, the curve x → u(t, x) may wind around 0, and perhaps then u will
contract to 0 in cases where it would ordinarily stay away from 0.

The purpose of this paper is to study hitting question for the stochastic wave equation
with scalar solutions and with strong drift. As is well known, there are crucial differences
between the heat and wave equations. For example, the heat equation satisfies a
maximum principle while the wave equation does not. The same holds for the comparison
principle, which states that if the stochastic heat equation has two solutions with the
first solution initially larger than the second, then the first solution will almost surely
remain larger than the second as time goes on. So while certain arguments from the
heat equation case carry over, new ideas are required.

Here is the setup for our problem. Again, we let t ≥ 0, and x lies in the circle

I = [0, J ]

with endpoints identified. We study scalar-valued solutions u(t, x) to the following
equation.

∂2
t u(t, x) = ∆u(t, x) + u−α(t, x) + g(u(t, x)) ˙W (t, x) (1.1)

u(0, x) = u0(x)

∂tu(0, x) = u1(x).

As usual, u and our two-parameter white noise Ẇ depend on a random parameter ω
which we suppress. As for x taking values in higher-dimensional spaces, it is well known
that (1.1) is well-posed only in one spatial dimensions. Indeed, in two or more spatial
dimensions we would expect that the solution u only exists as a generalized function,
but then it is hard to give meaning to nonlinear terms such as u−α or g(u).

Next, we define the first time that u hits 0. Let

τ∞ = inf
{
t > 0 : inf

0≤s<t
inf
x∈I

u(t, x) = 0
}
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Can the wave SPDE hit zero?

and let τ∞ =∞ if the set in the above definition is empty.
Before stating our main theorems, we give some assumptions.

Assumptions

(i) u0 is Hölder continuous of order 1/2 on I.

(ii) There exist constants 0 < c0 < C0 <∞ such that c0 ≤ u0(x) ≤ C0 for all x ∈ I.

(iii) u1 is Hölder continuous of order 1/2 on I and hence bounded.

(iv) There exist constants 0 < cg < Cg <∞ such that cg ≤ g(y) ≤ Cg for all y ∈ R.

Here are our main theorems.

Theorem 1.1. Suppose that u(t, x) satisfies (1.1), and that the above assumptions hold.
Then α > 3 implies

P(τ∞ <∞) = 0.

That is, u does not hit 0.

Theorem 1.2. Suppose that u(t, x) satisfies (1.1), and that above assumptions hold.
Then 0 < α < 1 implies

P(τ∞ <∞) > 0.

That is, u can hit 0.

Here is the plan for the paper. In Section 2 we give a rigorous formulation of (1.1);
in particular, the solution is only defined up to the first time t that u(t, x) = 0 for some
x, since u−α(t, x) blows up there. The same is true for the stochastic heat equation
discussed earlier. In Section 3 we prove Theorem 1.1, and in Section 4 we prove Theorem
1.2.

Note the gap between α < 1 and α > 3. Since there is no comparison principle for
the wave equation, we cannot be certain that there exists a critical value α0 such that u
can hit 0 for α < α0 but not for α > α0. We strongly believe in the existence of such a
critical value, but we leave the existence and identification of α0 as an open problem.

2 Technicalities

2.1 Rigorous formulation of the wave SPDE

For the most part we follow Walsh [13] although we could also use the formulation
found in Da Prato and Zazbczyk [1].

First we recall the definition the one-dimensional wave kernel on x ∈ R.

S(t, x) =
1

2
1(|x| ≤ t)

See [5] for this classical material. If we regard S(t, x) as a Schwartz distribution, then
for t ≥ 0 we can write

∂tS(t, x) =
1

2
δ(x− t) +

1

2
δ(x+ t).

From now on, we interpret such expressions as Schwartz distributions.
Now we switch to the circle x ∈ I, as defined earlier. It is also a classical result that

for x ∈ I, the wave kernel SI and its time derivative are given by

SI(t, x) =
∑
n∈Z

S(t, x+ nJ)

∂tSI(t, x) =
1

2

∑
n∈Z

(
δ(nJ + x− t) + δ(nJ + x+ t)

)
.
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Can the wave SPDE hit zero?

Again, we regard ∂tSI as a Schwartz distribution.
Let w(t, x) be the solution of the linear deterministic wave equation on x ∈ I, with

the same initial data as u. That is,

∂2
tw(t, x) = ∆w(t, x)

w(0, x) = u0(x)

∂tw(0, x) = u1(x)

with periodic boundary conditions, so that

w(t, x) =

∫ J

0

(
∂tSI(t, x− y)u0(y) + SI(t, x− y)u1(y)

)
dy

=
1

2

∫ J

0

(
u0(x− t− y) + u0(x+ t− y) + SI(t, x− y)u1(y)

)
dy

where expressions such as x−y and x−t−y are interpreted using arithmetic modulo J. We
note that by Assumptions (i) and (iii), we can conclude that w(t, x) is Hölder continuous
of order 1/2 in (t, x) jointly.

Using Duhamel’s principle, if u−α and g(u(s, y))Ẇ were smooth, we could write

u(t, x) =w(t, x) +

∫ t

0

∫ J

0

SI(t− s, x− y)u(s, y)−αdyds (2.1)

+

∫ t

0

∫ J

0

SI(t− s, x− y)g(u(s, y))W (dyds).

If u−α had no singularities, we could use this mild form to give rigorous meaning to
(1.1), where we define final double integral using Walsh’s theory of martingale measures,
see [13]. One could also use the Hilbert space theory given in Da Prato and Zabczyk [1].

To deal with the singularity of u−α, we use truncation and then take the limit as the
truncation is removed. For N = 1, 2, . . . define uN (t, x) as the solution of

uN (t, x) =w(t, x) +

∫ t

0

∫ J

0

SI(t− s, x− y)
[
uN (s, y) ∨ (1/N)

]−α
dyds

+

∫ t

0

∫ J

0

SI(t− s, x− y)g(uN (s, y))W (dyds). (2.2)

Here a ∨ b = max(a, b). Note that if α > 0, then [u ∨ (1/N)]−α is a Lipschitz function of u.
It is well known that SPDE such as (2.2) with Lipschitz coefficients have unique strong
solutions valid for all time, see [13], Chapter III. It follows for each N = 1, 2, . . . that (2.2)
has a unique strong solution uN valid for all t ≥ 0, x ∈ [0, J ].

Now let
τN = inf

{
t > 0 : inf

x∈[0,J]
uN (t, x) ≤ 1/N

}
.

From the definition, we see that almost surely

uN1
(t, x) = uN2

(t, x)

for all t ∈ [0, τN1 ∧ τN2) and x ∈ I. Here a∧ b = min(a, b). It also follows that τ1 ≤ τ2 ≤ · · ·
and so we can almost surely define

τ = sup
N
τN .

We allow the possibility that τ =∞. Note that this definition of τ is consistent with the
definition given in the introduction.
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So, for t < τ and x ∈ I, we can define

u(t, x) = lim
N→∞

uN (t, x)

since for t < τ and x ∈ I the sequence u1(t, x), u2(t, x), . . . does not vary with N after a
finite number of terms. It follows that u(t, x) satisfies (2.1) for 0 ≤ t < τ .

Finally, we define u(t, x) for all times t by defining

u(t, x) = ∆

for t ≥ τ . Here ∆ is a cemetary state.

2.2 Multi-parameter Girsanov theorem

The proof of Theorem 1.2 is based on Girsanov’s theorem for two-parameter white
noise. This approach was used earlier in Mueller and Pardoux [9] for the stochastic heat
equation, but we need to do some work to adapt the argument to the stochastic wave
equation. Girsanov’s theorem will allow us to remove the drift from our equation (1.1),
at least up to time τ . If this Girsanov transformation gives us an absolutely continuous
change of probability measure, then we only need to verify that the stochastic wave
equation (1.1) without the drift has a positive probability of hitting 0.

Assume that our white noise Ẇ (t, x) and hence also u(t, x) is defined on a probability
space (Ω,F ,P). As in Walsh [13], we define Ẇ (t, x) in terms of a random set function
W (A,ω) on measurable sets A ⊂ [0,∞)× I. Let (Ft)t≥0 be the filtration defined by

Ft = σ(W (A) : A ⊂ [0, t]× I).

Nualart and Pardoux [10] give the following version of Girsanov’s theorem.

Theorem 2.1. Let T > 0 be a given constant, and define the probability measure PT

to be P restricted to sets in FT . Suppose that W is a space-time white noise random
measure on [0, T ]×R with respect to PT , and that h(t, x) is a predictable process such
that the exponential process

Eh(t) = exp

(∫ t

0

∫
R

h(s, y)W (dyds)− 1

2

∫ t

0

∫
R

h(s, y)2dyds

)
is a martingale for t ∈ [0, T ]. Then the measure

W̃ (dxdt) = W (dxdt)− h(t, x) dxdt (2.3)

is a space-time white noise random measure on [0, T ]×R with respect to the probability
measure QT , where QT and PT are mutually absolutely continuous and

dQT = Eh(T ) dPT . (2.4)

We recall Novikov’s sufficient condition for Eh(t) to be a martingale.

Proposition 2.2. Let h(t, x) be a predictable process with respect to the filtration
(Ft)t∈[0,T ]. If

E

[
exp

(
1

2

∫ T

0

∫
R

h(s, y)2dyds

)]
<∞ (2.5)

then Eh(t) is a uniformly integrable Ft-martingale for 0 ≤ t ≤ T .
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2.3 Hölder continuity of the stochastic convolution

For an almost surely bounded predictable process ρ(t, x), we define the stochastic
convolution as follows.

Nρ(t, x) =

∫ t

0

∫ J

0

SI(t− s, x− y)ρ(s, y)W (dyds).

Note that the double integral in (2.1) is equal to Ng(u)(t, x) for t < τ . We conveniently
define g(∆) = 0, so that Ng(u)(t, x) is defined for all time.

The proofs of both main theorems depend on the Hölder continuity of Ng(u)(t, x).
Although such results are common in the SPDE literature, unfortunately we could not
find the exact result we needed. So for completeness, we state it here.

Theorem 2.3. Let ρ(t, x) be an almost surely bounded predictable process. For any
T > 0 and β < 1/2, there exists a random variable Y with finite expectation, with E|Y |
depending only on β and T , such that

|Nρ(t+ h, x+ k)−Nρ(t, x)| ≤ Y
(
hβ + kβ

)
(2.6)

almost surely for all h, k where t, t+ h ∈ [0, T ].

We will prove Theorem 2.3 in the appendix.

3 Proof of Theorem 1.1

3.1 Outline and preliminaries

We write the mild solution to (1.1) in the following form:

u(t, x) = Vu(t, x) +Du(t, x) +Nu(t, x) (3.1)

where

Vu(t, x) =
1

2

(
u0(x+ t) + u0(x− t)

)
+

∫ J

0

u1(y)SI(t, x− y)dy

Du(t, x) =

∫ t

0

∫ J

0

u(s, y)−αSI(t− s, x− y)dyds

Nu(t, x) =

∫ t

0

∫ J

0

g(u(s, y))SI(t− s, x− y)W (dyds).

We will prove Theorem 1.1 by contradiction. First, we assume that τ < ∞ with
positive probability. Then, on the sample paths where this is the case (i.e., all u(ω) such
that τ(ω) <∞), we go backwards in time from where u hits zero. The upward drift term
Du(t, x) will then push downwards, since we are going backwards in time. We show
that this downward push must overwhelm the modulus of continuity of the Nu(t, x) term,
implying the existence of another time τ1 < τ such that u hits zero at τ1. However, this
contradicts the minimality of τ , thus proving the theorem.

3.2 A regularity lemma

Let A = {τ <∞}. By assumption, P(A) > 0. We then show the following:

Lemma 3.1. On the event A, Vu(t, x) +Nu(t, x) is almost surely β-Hölder continuous on
[0, τ)× [0, J ] for any β < 1/2. The Hölder constant is a random variable depending only
on β and ω.
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Proof. Let β < 1/2 be given. Then by (2.6) we know that Nu(t, x) is almost surely β-
Hölder continuous on [0, τ)× [0, J ], with random Hölder constant Y depending only on β
and τ . Since u1 is continuous on I, the Riemann integral∫ J

0

u1(y)SI(t, x− y)dy =

∫ x+t

x−t
u1(y)dy

is jointly differentiable (and thus β-Hölder continuous) on (t, x) ∈ [0, τ)× [0, J ] as well.
Finally, from assumption, u0 is β-Hölder continuous on [0, J ], so it follows that 1

2 (u0(x+

t) + u0(x− t)) is continuous as well.
Thus Vu(t, x) +Nu(t, x) is almost surely β-Hölder continuous on [0, τ)× [0, J ]. As the

Hölder constant of Vu depends only on u0 and u1, the Hölder constant of Vu + Nu is a
random variable depending only on β.

3.3 The backwards light cone

Given (t, x) ∈ R+ ×R, define the backwards light cone as

L(t, x) = {(s, y) : |x− y| < t− s} .

Note that the light cone cannot include points (s, y) for which s > t. It follows that
Du(t, x) can be rewritten as

Du(t, x) =

∫ t

0

∫ J

0

u(s, y)−αSI(t− s, x− y)dyds

=

∫ t

0

∫
R

u (s, y∗)
−α

S(t− s, x− y)dyds

=

∫∫
L(t,x)

u (s, y∗)
−α

dyds

(3.2)

where
y∗ = y mod J. (3.3)

and y∗ ∈ [0, J ].

Lemma 3.2. Let (t, x) ∈ [0, τ)× [0, J ]. Then for any (s, y) ∈ L(t, x), we have

Du(s, y)−Du(t, x) < 0.

Proof. Since u(s, y) > 0 on [0, τ), using (3.2) the result follows from the fact that L(s, y) (
L(t, x).

3.4 Theorem 1.1, conclusion

Since α > 3 by assumption, define ε ∈ (0, 1/2) sufficiently small such that

3− α
2

+ ε(α+ 1) < 0.

Using Lemma 3.1, on the event A we define Y to be a (random) 1/2 − ε Hölder
constant of Vu(t, x) +Nu(t, x), depending only on ε. By our choice of ε, the exponent of R
in the expression

πY −1−α

2α+2
R

3−α
2 +ε(α+1)

is negative. Hence, on A we can pick a sufficiently small random R > 0, depending on ε
and Y , such that both

πY −1−α

2α+2
R

3−α
2 +ε(α+1) > 1 and R <

τ

2
. (3.4)

EJP 24 (2019), paper 14.
Page 7/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP279
http://www.imstat.org/ejp/


Can the wave SPDE hit zero?

Finally, on A we pick a random δ > 0 sufficiently small such that both

δ < min

(
inf

x∈[0,J]
u0(x), Y R

1
2−ε
)

(3.5)

and

τδ = inf

{
t > 0 : inf

x∈[0,J]
u(t, x) < δ

}
>
τ

2
, (3.6)

which is possible since since u(t, x) is continuous in t for t < τ . Here, τ δ need not
be a stopping time. Note that τδ is the first time that u(t, x) reaches δ, and that by
continuity of u(t, x) in x, there exists some xδ ∈ [0, J ] such that u (τδ, xδ) = δ. We define
the differences

∆V (t, x) = Vu(t, x)− Vu (τδ, xδ)

∆D(t, x) = Du(t, x)−Du (τδ, xδ)

∆N(t, x) = Nu(t, x)−Nu (τδ, xδ)

and for all (t, x) ∈ L(τδ, xδ), we decompose

u(t, x) = u(t, x)− u (τδ, xδ) + δ

= ∆V (t, x) + ∆D(t, x) + ∆N(t, x) + δ.
(3.7)

We recall that by construction,

∆V (t, x) + ∆N(t, x) < Y |(t, x)− (τδ, xδ)|1/2−ε (3.8)

almost surely on A with E [Y ; A] <∞. From Lemma 3.2, we find that

∆D(t, x) < 0

almost surely. Hence, for all (t, x) ∈ L (τδ, xδ) we obtain the bound

u(t, x) = ∆V (t, x) + ∆D(t, x) + ∆N(t, x) + δ

< ∆V (t, x) + ∆N(t, x) + δ

< Y |(t, x)− (τδ, xδ)|1/2−ε + δ

(3.9)

almost surely on A. We define the sector

BR = {(t, x) ∈ L (τδ, xδ) : |(τδ, xδ)− (t, x)| ≤ R} ,

noting from (3.4) and (3.6) that t > 0 on BR. We then denote the curved part of the
boundary of BR by

∂BR = {(t, x) ∈ BR : |(τδ, xδ)− (t, x)| = R} .

Then for all (t, x) ∈ ∂BR, using (3.2), (3.9), and (3.5) we find that

∆D(t, x) = −
∫∫

L(τδ,xδ)\L(t,x)

u (s, y∗)
−α

dyds

≤ −
∫∫

BR

u (s, y∗)
−α

dyds

≤ − |BR|
(
Y R

1
2−ε + δ

)−α
< − |BR|

(
2Y R

1
2−ε
)−α

= − πR
2

2α+2
Y −αR−α( 1

2−ε)

= −πY
−α

2α+2
R2−( 1

2−ε)α

(3.10)
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on the event A. Recall that on ∂BR, |(t, x)− (τδ, xδ)| = R. Hence from (3.7), (3.8), and
(3.10) we find that for all (t, x) ∈ ∂BR,

u(t, x) < Y R
1
2−ε − πY −α

2α+2
R2−( 1

2−ε)α

= Y R
1
2−ε

(
1− πY −1−α

2α+2
R2−( 1

2−ε)α−( 1
2−ε)

)
= Y R

1
2−ε

(
1− πY −1−α

2α+2
R

3−α
2 +ε(α+1)

) (3.11)

almost surely on A. From (3.4) and (3.11) it then follows that u(t, x) < 0 for all (t, x) ∈
∂BR, almost surely on A.

Since P(A) > 0 by assumption, the event that u(t, x) < 0 for all (t, x) ∈ ∂BR occurs
with positive probability. However, since R > 0, we know that t < τδ < τ for all
(t, x) ∈ ∂BR, which is a contradiction, since τ is defined to be the first hitting time for
u(t, x) ≤ 0. Hence we conclude that P(A) = 0.

This finishes the proof of theorem 1.1.

4 Proof of Theorem 1.2

4.1 Equation without the drift

Now we use Proposition 2.2 to prove Theorem 1.2. Consider the stochastic wave
equation with initial conditions identical to (1.1) but without drift:

∂2
t v(t, x) = ∆v(t, x) + g(v(t, x)) ˙W (t, x) (4.1)

v(0, x) = u0(x)

∂tv(0, x) = u1(x).

Here x ∈ [0, J ], as before. Since there are no singular terms in (4.1), we can give this
equation rigorous meaning using the mild form:

v(t, x) = w(t, x) +

∫ t

0

∫ J

0

SI(t− s, x− y)g(v(s, y))W (dyds). (4.2)

where w(t, x) is as before, the solution to the deterministic wave equation.
First we verify that v(t, x) can hit 0.

Lemma 4.1. Suppose that v(t, x) is a solution to (4.2). Then

P(v(t, x) = 0 for some t > 0, x ∈ [0, J ]) > 0.

Proof. Let V (t) =
∫ J

0
v(t, x)dx. By the almost sure continuity of v(t, x) (see [13]) Chapter

III, it suffices to show that

P
(
V (t) < 0

)
> 0. (4.3)

Since
∫ J

0
SI(t, x − y)dy = t by the definition of the one-dimensional wave kernel, and

since
∫ J

0
1
2

(
u0(x+ t) + u0(x− t)

)
dx =

∫ J
0
u0(x)dx,

V (t) =

∫ J

0

u0(x)dx+ t

∫ J

0

u1(x)dx+

∫ t

0

∫ J

0

(t− s)g(v(s, y))W (dyds).

Here we have used the stochastic Fubini theorem (see [13], Theorem 2.6) to change the
order of integration in the double integral. Let us define Nv(t) as the double integral:
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Nv(t) =

∫ t

0

∫ J

0

(t− s)g(v(s, y))W (dyds).

The question would be easy if g ≡ 1, as Nv(t) would be a Gaussian variable, with a
positive probability of taking values below any desired level. Since this is not necessarily
the case, we use another Girsanov transformation to bound Nv(t) by a Gaussian process.

Fix t > 0. Choose K sufficiently large so that

cgJKt
2

2
−
∫ J

0

u0(x)dx− t
∫ J

0

u1(x)dx > 0. (4.4)

Using Theorem 2.1, we define W̃ as a P̃ white noise, where P and P̃ are equivalent and

W (dyds) = W̃ (dyds)−Kdyds.

Decompose Nv(t) = N
(1)
v (t)−N (2)

v (t), where

N (1)
v (t) =

∫ t

0

∫ J

0

(t− s)g(v(s, y))W̃ (dyds)

N (2)
v (t) =

∫ t

0

∫ J

0

(t− s)g(v(s, y))Kdyds.

Since g(v(s, y)) is bounded below by cg > 0, we have:

N (2)
v (t) ≥ cgJKt

2

2
.

Hence to show (4.3), it suffices to prove that

P

(
N (1)
v (t) <

cgJKt
2

2
−
∫ J

0

u0(x)dx− t
∫ J

0

u1(x)dx

)
> 0

and since P and P̃ are equivalent, we can show instead that

P̃

(
N (1)
v (t) <

cgJKt
2

2
−
∫ J

0

u0(x)dx− t
∫ J

0

u1(x)dx

)
> 0. (4.5)

We define the process

Mt(r) =

∫ r

0

∫ J

0

(t− s)g(v(s, y))W̃ (dyds).

Since g is bounded, Mt(r) is an Fr-martingale in r, for r ≤ t. Hence, from Theorem V.1.6
in Revuz and Yor [12], there exists a one-dimensional standard Brownian motion B such
that Mt(r) = B (τ(r)), where the time change τ(r) is given by the predictable process:

τ(r) =

∫ r

0

∫ J

0

(t− s)2g2(v(s, y))dyds

≤ C2
g

∫ r

0

∫ J

0

(t− s)2dyds

=
C2
gJ

3
t3 −

C2
gJ

3
(t− r)3.

Then let

L =
C2
gJ

3
t3
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so we have τ(t) ≤ L. Using this, we find that:

N (1)
v (t) = Mt(t) = B (τ(t)) ≤ sup

0≤q≤L
B(q).

Due to (4.4), we can use the reflection principle to find that

P̃

(
sup

0≤q≤L
B(q) ≥ cgJKt

2

2
−
∫ J

0

u0(x)dx− t
∫ J

0

u1(x)dx

)

≤ 2P̃

(
B(L) ≥ cgJKt

2

2
−
∫ J

0

u0(x)dx− t
∫ J

0

u1(x)dx

)
< 1 (since B(L) ∼ N (0, L))

from which (4.5) follows, and the proof of Lemma 4.1 is complete.

4.2 Removing the drift term

To finish the proof of Theorem 1.2, it suffices to show that up to the first time τ that u
and v hit 0, these two processes induce equivalent probability measures on the canonical
paths consisting of continuous functions f(t, x) on [0, τ(f)]× [0, J ].

Given a (possibly random) function f : [0,∞)× [0, J ]→ R, define the hitting times

τ (f) = inf

{
t > 0 : inf

x∈[0,J]
f(t, x) ≤ 0

}
α(f)
m = inf

{
t > 0 :

∫ t

0

∫ J

0

f(s, x)−2αdxds > m

}
and for a constant T > 0, let

Tm(f) = τ (f) ∧ α(f)
m ∧ T.

Then define the truncated function fTm(f) by:

fTm(f)(t, x) = f(t, x)1{t≤Tm(f)}.

Let P
Tm(u)
u , P

Tm(v)
v be the measures on path space C ([0,∞)× [0, J ],R) induced by

uTm(u)(t, x), vTm(v)(t, x) respectively, and let

h(r) =

{
r−α

g(r) if r 6= 0

0 if r = 0.
(4.6)

We then obtain the following Girsanov transformation:

Lemma 4.2. For each m ∈ N, the measures P
Tm(u)
u and P

Tm(v)
v are equivalent, with

dP
Tm(u)
u

dP
Tm(v)
v

= exp

(∫ Tm(v)

0

∫ J

0

h (v(t, x))W (dxdt)− 1

2

∫ Tm(v)

0

∫ J

0

h (v(t, x))
2
dxdt

)
.

Proof. First, we note that h(vTm(v)(t, x)) satisfies the Novikov condition given in (2.5).
Then, define the probability measure QTm(v) by the derivative

dQTm(v)

dP
Tm(v)
v

= exp

(∫ T

0

∫ J

0

h
(
vTm(v)(t, x)

)
W (dxdt)− 1

2

∫ T

0

∫ J

0

h
(
vTm(v)(t, x)

)2

dxdt

)
= exp

(∫ Tm(v)

0

∫ J

0

h (v(t, x))W (dxdt)− 1

2

∫ Tm(v)

0

∫ J

0

h (v(t, x))
2
dxdt

)
.
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Then, from Theorem 2.1, it follows that

W̃ (dxdt) = W (dxdt)− h
(
vTm(v)(t, x)

)
dxdt

is a space-time white noise random measure under QTm(v). Note that QTm(v) is the
measure on C ([0,∞)× [0, J ],R) induced by fTm(f)(t, x) where f(t, x) satisfies

f(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

∫ J

0

u1(y)SI(t, x− y)dy

+

∫ t

0

∫ J

0

g(f(s, y))SI(t− s, x− y)W (dyds)

=
1

2
(u0(x+ t) + u0(x− t)) +

∫ J

0

u1(y)SI(t, x− y)dy

+

∫ t

0

∫ J

0

f(s, y)−αSI(t− s, x− y)dxdt

+

∫ t

0

∫ J

0

g(f(s, y))SI(t− s, x− y)W̃ (dyds).

where the last term is a Walsh integral with respect to the underlying measure QTm(v).
However, these are just the paths of uTm(u)(t, x), so the measure QTm(v) = P

Tm(u)
u . Then

Lemma 4.2 follows.

Now we wish to apply Lemma 4.2 with h as defined in (4.6). This depends on the
finiteness of αm(f) for some m. Thus 1.2 follows from the following lemma, which we
prove by using the regularity of the stochastic wave equation.

Lemma 4.3. For any constant T > 0,∫ τ(v)∧T

0

∫ J

0

v(t, x)−2αdxdt <∞ (4.7)

almost surely.

4.3 Proof of Lemma 4.3

For this entire section, we let v(t, x) be as given in (4.2).

4.3.1 A rectangular grid

For each K > 0 define the event:

A(K) :=

{
sup

(t,x)∈[0,T ]×[0,J]

v(t, x) ≤ K

}
. (4.8)

Since (t, x) 7→ v(t, x) is almost surely continuous, the above supremum is almost surely
finite, so

lim
K→∞

P {A(K)} = 1.

We split the interval (0,K] into dyadic subintervals

(0,K] =

∞⋃
n=0

(
2−n−1K, 2−nK

]
(4.9)
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and observe that on the event A(K),∫ τ(v)∧T

0

∫ J

0

v(t, x)−2αdxdt

=

∞∑
n=0

[∫ τ(v)∧T

0

∫ J

0

v(t, x)−2α1{2−n−1K<v(t,x)≤2−nK}dxdt

]

≤
∞∑
n=0

[
22α(n+1)K−2α

∫ τ(v)∧T

0

∫ J

0

1{2−n−1K<v(t,x)≤2−nK}dxdt

]

=

∞∑
n=0

[
22α(n+1)K−2α

× µ
({

(t, x) ∈
[
0, τ (v) ∧ T

]
× [0, J ] : 2−n−1K < v(t, x) ≤ 2−nK

}) ]

(4.10)

where µ denotes Lebesgue measure.
Define a constant ε > 0 such that

0 < 2ε < 1− α

and for each n ∈ N, consider the rectangle

Dn = {(t, x) ∈ [0, λn]× [0, 2λn]} (4.11)

where
λn = 2−(1−2ε)n. (4.12)

As far as the optimality of this choice of λn, the real issue is why the same factor applies
to both t and x. This is because the stochastic wave equation with white noise has the
same regularity in both t and x, namely it is Hölder 1/2− ε. So we do not believe that
the result for α < 1 can be improved by better choosing λn.

Next, for each (t, x) ∈ Dn, define the grids of points:

Γn(t, x) =

[
[0, T ]× [0, J ]

]⋂ ⋃
k,`∈N

(
t+ kλn, x+ 2`λn

)
Γn(t, x) =

[[
0, τ (v)

]
× [0, J ]

]⋂
Γn(t, x).

Let # denote the number of points in a set, and define the strip

Jn =
{

(t, x) ∈ [0, λn]× [0, J ] : 2−n−1K < v(t, x) ≤ 2−nK
}
.

Then we have

µ
({

(t, x) ∈
[
0, τ (v) ∧ T

]
× [0, J ] : 2−n−1K < v(t, x) ≤ 2−nK

})
(4.13)

≤
∫∫

Dn

#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}
dxdt+ µ (Jn) .

Since v(t, x) is continuous on [0, T ] × [0, J ] and infx∈[0,J] u0(x) > 0, we have that
µ (Jn) = 0 for sufficiently large random n. Hence,

∞∑
n=0

[
22α(n+1)K−2αµ (Jn)

]
<∞ (4.14)

almost surely. We now place a bound on

#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}

in the upcoming lemmas.
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4.3.2 The shifted equation

Let (t, x) be an arbitrary point in Dn, as defined in (4.11), and let θ be the time shift
operator, defined by θsW (dxdt) = W (dxd(t+ s)).

Then for given (s, y) ∈ Γn(t, x), define

s−n = s− λn.

Now, we take the approach of considering W as a cylindrical Wiener process, as de-
scribed in [1]. Furthermore, by Theorem 9.15 on page 256 of Da Prato and Zabczyk [1],
there is a version of our solution Φt which is a strong Markov process with respect to
the Brownian filtration (Ft)t≥0.

Using the strong Markov property of solutions, we restart the equation at time s−n :

v(s, y) =
1

2

(
v
(
s−n , y + λn

)
+ v

(
s−n , y − λn

))
+

∫ J

0

SI (λn, y − z)
∂v

∂t

(
s−n , z

)
dz (4.15)

+

∫ λn

0

∫ J

0

SI (λn − r, y − z) g
(
v
(
s−n + r, z

))
θs−nW (dzdr).

Here, ∂v∂t is regarded as a Schwartz distribution.

We analyze (4.15) term by term. Decompose

v(s, y) = Vn(s, y) +Nn(s, y) + En(s, y)

where

Vn(s, y) =
1

2

(
v
(
s−n , y + λn

)
+ v

(
s−n , y − λn

))
+

∫ J

0

SI (λn, y − z)
∂v

∂t

(
s−n , z

)
dz

Nn(s, y) =

∫ λn

0

∫
{|z−y|≤λn}

SI (λn − r, y − z) g(v(s−n , y))θs−nW (dzdr)

En(s, y) = −Nn(s, y) +

∫ λn

0

∫ J

0

SI(λn − r, y − z)g(v(s−n + r, z))θs−nW (dzdr).

More specifically,

• First, we take Vn to be the first two terms, representing the contribution to v(s, y)

from the shifted initial conditions (both position and velocity).

• Next, we realize the stochastic term as the sum of a conditionally Gaussian term
and an error term. The former is the stochastic term integrated over the light
cone contained in the square {(s, y) +Dn}, with the diffusion coefficient g frozen
at v(s−n , y). We call this term the noise term, Nn.

• Finally, as mentioned above the error term En is the difference between the
stochastic term of v(s, y) minus the noise term defined above.

As alluded to above, the noise term can be rewritten as:

Nn(s, y) = g(v(s−n , y))

∫ λn

0

∫
{|z−y|≤λn}

SI (λn − r, y − z) θs−nW (dzdr)

= g(v(s−n , y))cnZ

(4.16)
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where c2n is the quadratic variation of the above double integral and Z is a standard
normal random variable. Moreover, for sufficiently small λn relative to J , we have:

c2n =

∫ λn

0

∫
{|z−y|≤λn}

S2
I (r, y − z)dzdr

=
λ2
n

4
= 2−2(1−2ε)n−2.

(4.17)

4.3.3 A regularity lemma

Now, we find bounds for En and Nn by using Hölder continuity of v. Define the events

Bn =

{
sup

(s,y)∈Γn(t,x)

|En(s, y)| ≤ 2−n

}

Cn =

{
sup

(s,y)∈Γn(t,x)

|Nn(s, y)| ≤ 2−(1−3ε)n

}
An = A(K) ∩Bn ∩Cn.

Then we assert the following:

Lemma 4.4.
∑∞
n=1 P (Bc

n) <∞ and
∑∞
n=1 P (Cc

n) <∞.

To prove this lemma, we first establish a bound on the error term En. Recall its
definition:

En = −Nn(s, y) +

∫ λn

0

∫ J

0

SI (λn − r, y − z) g(v(s−n + r, z))θs−nW (dzdr)

= −
∫ λn

0

∫
{|z−y|≤λn}

SI (λn − r, y − z) g(v(s−n , y))θs−nW (dzdr)

+

∫ λn

0

∫ J

0

SI (λn − r, y − z) g(v(s−n + r, z))θs−nW (dzdr)

Note that in the integrals above, SI(λn−r, y−z) = 0 outside of the light cone |z−y| ≤ λn.
Thus, we restrict the domain of integration of z:

En =−
∫ λn

0

∫
{|z−y|≤λn}

SI (λn − r, y − z) g(v(s−n , y))θs−nW (dzdr)

+

∫ λn

0

∫
{|z−y|≤λn}

SI(λn − r, y − z)g(v(s−n + r, z))θs−nW (dzdr)

=

∫ λn

0

∫
{|z−y|≤λn}

SI (λn − r, y − z)

×
[
g(v(s−n + r, z))− g(v(s−n , y))

]
θs−nW (dzdr)

We define the rectangle

∆n(s, y) = {r ∈ R+, z ∈ [0, J ] : |r − s| ≤ λn, |z − y| ≤ λn}

and let p be a positive integer. Then it follows that

E
[
E2p
n

]
= E

(∫ λn

0

∫
{|z−y|≤λn}

SI (λn − r, y − z)

×
[
g(v(s−n + r, z))− g(v(s−n , y))

]
θs−nW (dzdr)

)2p
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and since the integrand above is continuous in λn, we can use the Burkholder-Davis-
Gundy inequality to obtain:

E
[
E2p
n

]
.p E

(∫ s−n+λn

s−n

∫
{|z−y|≤λn}

S2
I

(
λn −

(
r − s−n

)
, y − z

)
×
[
g(v(r, z))− g(v(s−n , y))

]2
dzdr

)p

.p E

(∫ s

s−n

∫
{|z−y|≤λn}

S2
I (s− r, y − z)

×
[
g(v(r, z))− g(v(s−n , y))

]2
dzdr

)p
.

As usual, the notation a(x) .p b(x) means that a(x) ≤ Cpb(x).
Since g is Lipschitz and since (s−n , y) ∈ ∆n(s, y),

|g(v(r, z))− g(v(s−n , y))|2 ≤ L2
g

∣∣v(r, z)− v
(
s−n , y

)∣∣2
≤ L2

g

(
2 |v(r, z)− v(s, y)|2 + 2

∣∣v(s, y)− v
(
s−n , y

)∣∣2)
≤ 4L2

g sup
(r,z)∈∆n(s,y)

|v(r, z)− v(s, y)|2

With this bound, we get:

E
[
E2p
n

]
. E

[
sup

(r,z)∈∆n(s,y)

[
|v(r, z)− v(s, y)|2p

]]
(4.18)

×

(∫ s

s−n

∫
{|z−y|≤λn}

S2
I (s− r, y − z) dzdr

)p
.

Recall that v(s, y) is almost surely β-Hölder continuous for any β < 1
2 . Setting

β = 1
2 −

1
2p , we obtain

E

[
sup

(r,z)∈∆n(s,y)

[
|v(r, z)− v(s, y)|2p

]]
(4.19)

.g,p sup
(r,z)∈∆n(s,y)

(
|r − s|

1
2−

1
2p + |z − y|

1
2−

1
2p

)2p

.g,p

(
λ

1
2−

1
2p

n

)2p

= λp−1
n = 2−(1−2ε)n(p−1).

Recalling (4.12), we then bound the integral:(∫ λn

0

∫
{|z−y|≤λn}

S2
I (r, y − z)dzdr

)p
=

(
1

4

∫ λn

0

∫
{|z−y|≤λn}

1{|y−z|<r}dzdr

)p
(4.20)

. λ2p
n

. 2−2(1−2ε)np

so by (4.18), (4.19), and (4.20), we obtain a bound on the error term:

E
[
E2p
n

]
.g,p 2−(1−2ε)n(3p−1). (4.21)
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Proof of Lemma 4.4. Recalling that # {Γn(t, x)} . λ−2
n = 2(2−4ε)n, we find:

P (Bc
n) = P

{
sup

(s,y)∈Γn(t,x)

|En(s, y)| > 2−n

}
≤

∑
(s,y)∈Γn(t,x)

P
{
|En(s, y)| > 2−n

}
. 2(2−4ε)n P

{
|En(s, y)| > 2−n

}
.

By Markov’s inequality, we can continue as follows,

P (Bc
n) . 2(2−4ε)n+2np E

[
E2p
n

]
after which we use (4.21) to obtain the bound:

P (Bc
n) . 2(3−6ε)n−(1−6ε)np.

Thus, the summation
∑∞
n=1 P (Bc

n) converges when p > 3−6ε
1−6ε .

With a similar decomposition, we obtain:

P (Cc
n) . 2(4−4ε)n P

{
|Nn(s, y)| > 2−(1−3ε)n

}
.

Recalling (4.16) and (4.17), this implies:

P (Cc
n) . 2(4−4ε)n P

{∣∣g (v (s−n , y))Z∣∣ > 2(1−2ε)n2−(1−3ε)n
}

. 2(4−4ε)n P
{
|Z| > C−1

g 2εn
}

where Z is a standard normal random variable. Now, we use a standard tail estimate for
the normal (often called the Chernoff bound) to conclude

P
{
|Z| > C−1

g 2εn
}
≤ 2 exp

(
−C−2

g 22εn−1
)

and it follows that
∑∞
n=1 P (Cc

n) converges.

4.3.4 A counting lemma

Lemma 4.5. For each K > 0 there exists a constant cK such that for every n ∈ N and
(t, x) ∈ Dn,

E
[
#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}

; An

]
≤ cK .

The proof of Lemma 4.5 will require several preliminary steps.
We fix (t, x) and order the points in Γn(t, x) lexicographically, calling the ith point

(si, yi) for some i ∈ I(t, x) = {1, 2, . . . ,#{Γn(t, x)}} - i.e., if i < j then si ≤ sj and if
si = sj , then x ≤ xi < xj mod J . For given (t, x), we define the set ∆n(s, y) as follows:

∆n(s, y) =

{
[0, s−n ]× I y = x

([0, s−n ]× I)
⋃

([s−n , s]× [x− λn, y − λn]) y 6= x

where the interval [x− λn, y − λn] on I is taken modulo J , wrapping around whenever
x− λn > y − λn. (Note that this is not the same as the previously defined ∆n(s, y)).

Let Fni be the σ-algebra generated by Ẇ in the set ∆n (si, yi). Then Vn (si, yi) is
Fni -measurable for all i ∈ N. Recall from (4.16) that

Nn (si, yi) = g
(
v
(

(si)
−
n , yi

))
cnZi (4.22)
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where cn = 2−(1−2ε)n−1 and Zi ∼ N (0, 1) is Fni+1-measurable but independent of Fni .
Let Pn

i denote the conditional probability with respect to Fni and let δ > 1 be a
constant depending only on K. Define

vn(s, y) = Vn(s, y) +Nn(s, y).

We now prove the following lemma:

Lemma 4.6. There exists dK > 0 such that for all i ∈ I(t, x),

Pn
i

[
vn (si, yi) ≤ −2−n

∣∣∣ vn (si, yi) ≤ 2−n(K + 1)
]
≥ dK (4.23)

almost surely on the event {Vn(si, yi) ≤ δ2−(1−ε)n}.

Proof. From the definition of conditional probability, the left hand side of (4.23) is:

H := Pn
i

[
vn (si, yi) ≤ −2−n

∣∣∣ vn (si, yi) ≤ 2−n(K + 1)
]

=
Pn
i {vn (si, yi) ≤ −2−n}

Pn
i {vn (si, yi) ≤ 2−n(K + 1)}

=
Pn
i {Nn (si, yi) ≤ −2−n − Vn (si, yi)}

Pn
i {Nn (si, yi) ≤ 2−n(K + 1)− Vn (si, yi)}

.

Using (4.22), we find that

H =
Pn
i

{
g
(
v
(

(si)
−
n , yi

))
cnZi ≤ −2−n − Vn (si, yi)

}
Pn
i

{
g
(
v
(

(si)
−
n , yi

))
cnZi ≤ 2−n(K + 1)− Vn (si, yi)

}
and using (4.17), we find that

H =
Pn
i

{
g
(
v
(

(si)
−
n , yi

))
Zi ≤ −21−2εn − 21+(1−2ε)nVn (si, yi)

}
Pn
i

{
g
(
v
(

(si)
−
n , yi

))
Zi ≤ 21−2εn(K + 1)− 21+(1−2ε)nVn (si, yi)

} .
Then define ρn,i = 2g(v((si)

−
n , yi))

−1. Note that ρn,i is almost surely bounded above by
2Cg and below by 2c−1

g > 0, both uniformly in n and i. Plugging this into the above
equation, we find:

H =
Pn
i

{
Zi ≤ −ρn,i

(
2−2εn + 2(1−2ε)nVn (si, yi)

)}
Pn
i

{
Zi ≤ −ρn,i

(
−2−2εn(K + 1) + 2(1−2ε)nVn (si, yi)

)} . (4.24)

Now we examine H in two cases. The first case is on the event{
−2−2εn(K + 1) + 2(1−2ε)nVn (si, yi) ≤ 0

}
. (4.25)

Since the denominator in (4.24) is less than or equal to 1, we can bound H below by its
numerator:

H ≥ Pn
i

{
Zi ≤ −ρn,i

(
2−2εn + 2(1−2ε)nVn (si, yi)

)}
.

Using the decomposition

2−2εn + 2(1−2ε)nVn (si, yi)

=
(
2−2εn(K + 2)

)
+
(
−2−2εn(K + 1) + 2(1−2ε)nVn (si, yi)

)
≤
(
2−2εn(K + 2)

)
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and the assumption in (4.25), we find

H ≥ Pn
i

{
Zi ≤ −ρn,i2−2εn(K + 2)

}
. (4.26)

Since ρn,i ≤ 2Cg for all n, we note that for all K > 0, ρn,i2−2εn(K + 2)→ 0 as n→∞. So
for sufficiently large n (depending on K), H ≥ 1/3. Hence in the case given by (4.26),
Lemma 4.6 follows.

The second case is on the event{
−2−2εn(K + 1) + 2(1−2ε)nVn (si, yi) > 0

}
. (4.27)

Here, we use the following inequality from Lemma 8 of Mueller and Pardoux [9]: For
a, b > 0 and Z a standard normal random variable,

P{Z > a}
P{Z > a+ b}

≤ 1

2P{Z > 1}
∨
(

1 +

√
e

1− e−1
(a+ b)beab+

b2

2

)
.

Let a = ρn,i(−2−2εn(K + 1) + 2(1−2ε)nVn(si, yi)) and b = ρn,i2
−2εn(K + 2). Recalling that

from our given conditions, Vn(si, yi) ≤ δ2−(1−ε)n almost surely, we find that:

(a+ b)b = ρ2
n,i

(
2−2εn + 2(1−2ε)nVn (si, yi)

)
(K + 2)2−2εn

≤ ρ2
n,i

(
2−2εn + 2−2εnδ

)
(K + 2)2−2εn

= ρ2
n,i(δ + 1)(K + 2)2−4εn

≤ ρ2
n,i(δ + 1)(K + 2)

and (
a+

b

2

)
b = ρ2

n,i

(
−(0.5K)2−2εn + 2(1−2ε)nVn (si, yi)

)
(K + 2)2−2εn

≤ ρ2
n,i

(
−(0.5K)2−2εn + 2−2εnδ

)
(K + 2)2−2εn

= ρ2
n,i(δ − 0.5K)(K + 2)2−4εn

≤ ρ2
n,i(δ − 0.5)(K + 2) (recalling that K > 1)

almost surely. Using these results with (4.24), we find:

H =
P{Z ≤ −(a+ b)}

P{Z ≤ −a}

=
P{Z > a+ b}

P{Z > a}

≥ (2P{Z > 1}) ∧
(

1 +

√
e

1− e−1
(a+ b)beab+

b2

2

)−1

≥ (2P{Z > 1}) ∧
(

1 +

√
e

1− e−1
ρ2
n,i(δ + 1)(K + 2)eρ

2
n,i(δ−0.5)(K+2)

)−1

.

Since ρn,i is almost surely uniformly bounded away from 0 in n and i, there exists cg,δ > 0

such that ρ2
n,i ≥ 4cg,δ. So:

(
1 +

√
e

1− e−1
ρ2
n,i(δ + 1)(K + 2)eρ

2
n,i(δ−0.5)(K+2)

)−1

≥ cg,δ
(
c−1
g,δ +

√
e

1− e−1
(δ + 1)(K + 2)ecg,δ(δ−0.5)(K+2)

)−1
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and since δ depends only on K, the right hand side above is bounded below by some
γK,g > 0. Then H is bounded above by

dK = 2P{Z > 1} ∧ γK,g > 0

in the case given by (4.27) as well. Hence Lemma 4.6 follows in both cases.

Proof of Lemma 4.5. Define

ξn = E
[
#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}

; An

]
.

From the definitions of An and Γ, it follows that ξn is bounded by:

ξn ≤ E
[
#
{

(s, y) ∈ Γn(t, x) :0 < v(s, y) ≤ 2−nK,

|En(s, y)| ≤ 2−n, |Nn(s, y)| ≤ 2−2(1−3ε)n
}]
.

Recall that by definition, vn = Vn(s, y) +Nn(s, y) = v(s, y)−En(s, y). Thus, we obtain the
bound

ξn ≤ E
[
#
{

(s, y) ∈ Γn(t, x) :− 2−n < vn(s, y) ≤ 2−n(K + 1),

|En(s, y)| ≤ 2−n, |Nn(s, y)| ≤ 2−2(1−3ε)n
}]
.

Note that if Vn(s, y) + Nn(s, y) ≤ 2−n(K + 1) and |Nn(s, y)| ≤ 2−2(1−3ε)n, then for some
δ > 1 depending on K, ε we have Vn(s, y) ≤ δ2−(1−ε)n. So we can write:

ξn ≤ E
[
#
{

(s, y) ∈ Γn(t, x) : −2−n < vn(s, y) ≤ 2−n(K + 1), Vn(s, y) ≤ δ2−(1−ε)n
}]
.

Let {σn(k)}k∈N be the sequence of indices i ∈ I, in lexicographical order, such that
both vn(si, yi) ≤ 2−n(K + 1) and Vn(si, yi) ≤ δ2−(1−ε)n.

Out of the set of points on Γn such that vn ≤ 2−n(K + 1), one looks at the points
where vn < −2−n, which would force v to be negative. Thus we define the event

Dk =
{
vn
(
sσn(k), yσn(k)

)
≤ −2−n

}
and for k ∈ N, we define the indicator random variable

Ik = 1Dk
.

From Lemma 4.6, it is clear that

P {I1 = 1} ≥ dK

and moreover, since Vi and Ni are Fnj -measurable for all i < j, we can also use Lemma
4.6 to find that

P
[
Ik = 1

∣∣∣ I1, . . . , Ik−1

]
≥ dK

for k > 1. Finally, let

σn = inf {k; Ik = 1} .

Since v(s, y) ≥ 0 for all (s, y) ∈ Γn, it follows that ξn ≤ Eσn.
Note that the Ik’s are not independent. We couple {Ik} with a sequence of inde-

pendent random variables {Yk} as follows: Let {Uk}k≥1 be a sequence of mutually
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independent random variables that are globally independent of the Ik’s and have uniform
law on [0, 1]. Then define

Yk =

0 if Ik = 0 or Uk > dK/P
[
Ik = 1

∣∣∣ I1, . . . , Ik−1

]
1 if Ik = 1 and Uk ≤ dK/P

[
Ik = 1

∣∣∣ I1, . . . , Ik−1

]
for k ≥ 1. Then clearly,

Yk ≤ Ik

and for k > 1,

P
[
Yk = 1

∣∣∣ Y1, . . . , Yk−1

]
= P

[
Yk = 1

∣∣∣ I1, . . . , Ik−1

]
= dK

so {Yk} is a sequence of i.i.d. random variables. Let σ̃ = inf {k;Yk = 1}. Then

σn = 1st k such that Ik = 1

σ̃ = 1st k such that Yk = 1

and since Yk ≤ Ik, it follows that σn ≤ σ̃. So

Eσn ≤ Eσ̃ = d−1
K .

4.4 Lemma 4.3, conclusion

Finally, we cite a measure-theoretic result related to the Borel-Cantelli Lemma:

Lemma 4.7. Let {Xn} be a sequence of [0,∞)-valued random variables, and {Fn} be a
sequence of events, such that both:

∞∑
n=0

P (Fcn) <∞

∞∑
n=0

E [Xn; Fn] <∞

Then
∑∞
n=0Xn <∞ almost surely.

Proof. Let F = {
∑∞
n=0Xn = +∞}. Then on the event F ∩ (lim inf Fn), we have∑∞

n=0Xn1Fn = +∞. So from the second condition, we get P(F ∩ lim inf Fn) = 0. How-
ever, from the first condition and Borel-Cantelli, we find:

P (lim sup Fcn) = 0⇒ P (lim inf Fn) = 1

Implying that P(F) = 0, which is our desired result.

Proof of Lemma 4.3. From equations (4.10) and (4.13), we have:

1A(K)

∫ τ(v)∧T

0

∫
I

v(t, x)−2α dxdt

≤ 1A(K)

∞∑
n=0

[
22α(n+1)K−2α

× µ
({

(t, x) ∈
[
0, τ (v) ∧ T

]
× I : 2−n−1K < v(t, x) ≤ 2−nK

}) ]
.
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Now consider the above expression µ(· · · ). First, we can bound this expression above by
dropping the inequality 2−n−1K < v(t, x), which enlarges the set under consideration.
Secondly, we note that ⋃

(t,x)∈Dn

Γn(t, x)

covers the entire (t, x)-plane, because Γn(t, x) consists of the corners of rectangles which
are translations of Dn, further translated by (t, x). So we can continue as follows.

1A(K)

∫ τ(v)∧T

0

∫
I

v(t, x)−2α dxdt

≤ 1A(K)

∞∑
n=0

[
22α(n+1)K−2α

∫∫
Dn

#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}
dxdt

]
+ 1A(K)

∞∑
n=0

[
22α(n+1)K−2α µ (Jn)

]
.

Now consider the summation of expectations

∞∑
n=0

E

[
1A(K) 22α(n+1)K−2α

∫∫
Dn

#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}
dxdt;Bn ∩ Cn

]

=

∞∑
n=0

E

[
22α(n+1)K−2α

∫∫
Dn

#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}
dxdt;An

]

Recalling that α < 1, and that Dn was defined in (4.11), we note that:

∫∫
Dn

dxdt = 2−(2−4ε)n+1

so using Lemma 4.5, we find:

∞∑
n=0

E

[
22α(n+1)K−2α

∫∫
Dn

#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}
dxdt;An

]

=

∞∑
n=0

22α(n+1)K−2α

∫∫
Dn

E
[
#
{

(s, y) ∈ Γn(t, x) : v(s, y) ≤ 2−nK
}

;An
]
dxdt

≤
∞∑
n=0

22α(n+1)K−2αcK

∫∫
Dn

dxdt

=

∞∑
n=0

cKK
−2α22α+12(2α−2+4ε)n

and since α < 1− 2ε, the summation converges. Thus from using Lemma 4.4, Lemma
4.7, and (4.14), we have

1A(K)

∫ τ(v)∧T

0

∫ J

0

v(t, x)−2αdxdt <∞ (4.28)
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almost surely. Observe that (4.8) and (4.28) imply (4.7) since∫ τ(v)∧T

0

∫
I

v(t, x)−2αdxdt

= 1A(K)

∫ τ(v)∧T

0

∫
I

v(t, x)−2αdxdt+ 1A(K)c

∫ τ(v)∧T

0

∫
I

v(t, x)−2αdxdt

≤ 1A(K)

∫ τ(v)∧T

0

∫
I

v(t, x)−2αdxdt+

∫ τ(v)∧T

0

∫
I

K−2αdxdt

<∞

almost surely. Indeed, on A(K)c one knows that v(t, x) > K for (t, x) ∈ [0, T ]× [0, J ], so
v−2α(t, x) ≤ K−2α in this situation.

A Proof of Theorem 2.3

Proof. For the remainder of this section we will simply write N(t, x) instead of Nρ(t, x).
Fix T > 0 and consider the space and time differences, given respectively by |N(t, x+

k)−N(t, x)| and |N(t+ h, x)−N(t, x)|. Without loss of generality, let h, k ∈ [0, J2 ].

A.1 Space difference

To bound N(t, x+ k)−N(t, x) we first write

∆p
k = E

[
|N(t, x+ k)−N(t, x)|p

]
= E

[∣∣∣∣∣
∫ t

0

∫ J

0

ρ(s, y)
(
SI(t− s, x+ k − y)− SI(t− s, x− y)

)
W (dyds)

∣∣∣∣∣
p]

and note that for all r, the following stochastic integral is a martingale over t:∫ t

0

∫ J

0

ρ(s, y)
(
SI(r − s, x+ k − y)− SI(r − s, x− y)

)
W (dyds).

We fix p > 2 and use Burkholder’s inequality to find a constant Cp such that

E

[∣∣∣∣∣
∫ t

0

∫ J

0

ρ(s, y) (SI(r − s, x+ k − y)− SI(r − s, x− y))W (dyds)

∣∣∣∣∣
p]

≤ CpE

[∣∣∣∣∫ t

0

∫
S

|ρ(s, y)|2 |SI(r − s, x+ k − y)− SI(r − s, x− y)|2 dyds
∣∣∣∣p/2

]
for all r. As Cp does not depend on r, we can set r = t to obtain

∆p
k ≤ CpE

∣∣∣∣∣
∫ t

0

∫ J

0

|ρ(s, y)|2 |SI(t− s, x+ k − y)− SI(t− s, x− y)|2 dyds

∣∣∣∣∣
p/2
 .

Now we use Hölder’s Inequality with exponents p
2 and p

p−2 :

∆p
k ≤Cp

(
E

∫ t

0

∫ J

0

ρ(v(s, y)pdyds

)

×

[∫ t

0

∫ J

0

|SI(t− s, x+ k − y)− SI(t− s, x− y)|2p/(p−2)
dyds

]p/2−1

.
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Since ρ is almost surely bounded, the expectation E
∫ t

0

∫
S
ρ(s, y)pdyds is bounded by a

constant depending on T and p. So we obtain:

∆p
k .p,T

[∫ t

0

∫ J

0

|SI(t− s, x+ k − y)− SI(t− s, x− y)|2p/(p−2)
dyds

]p/2−1

=

[∫ t

0

∫ J

0

|SI(s, x+ k − y)− SI(s, x− y)|2p/(p−2)
dyds

]p/2−1

=

∫ t

0

∫ J

0

∣∣∣∣∣∑
m∈Z

1

2
1{|x+k−y+mJ|<s} −

∑
m∈Z

1

2
1{|x−y+mJ|<s}

∣∣∣∣∣
2p/(p−2)

dyds

p/2−1

=
1

2p

∫ t

0

∫ J

0

∣∣∣∣∣∑
m∈Z

(
1{|x+k−y+mJ|<s} − 1{|x−y+mJ|<s}

)∣∣∣∣∣
2p/(p−2)

dyds

p/2−1

.

Here and in the next few estimates, the infinite sum over m ∈ Z is really finite, because
the indicator functions will be zero for all but finitely many values of m.

We use the inequality
(∑N

n=1 an

)p
.p,N

∑N
n=1 a

p
n to get:

∆p
k .p,T

1

2p

[∫ t

0

∫ J

0

∑
m∈Z

∣∣1{|x+k−y+mJ|<s} − 1{|x−y+mJ|<s}
∣∣2p/(p−2)

dyds

]p/2−1

=
1

2p

[∫ t

0

∫ J

0

∑
m∈Z

∣∣1{|x+k−y+mJ|<s} − 1{|x−y+mJ|<s}
∣∣ dyds]p/2−1

=
1

2p

[∫ t

0

∫
R

∣∣1{|x+k−y|<s} − 1{|x−y|<s}
∣∣ dyds]p/2−1

≤ 1

2p
(2tk)

p/2−1 .p,T k
p/2−1.

A.2 Time difference

As in the last section, we can use Burkholder’s inequality to find:

E
[
|N(t+ h, x)−N(t, x)|p

]
≤ CpE

∣∣∣∣∣
∫ t

0

∫ J

0

|ρ(s, y)|2 |SI(t+ h− s, x− y)− SI(t− s, x− y)|2 dyds

∣∣∣∣∣
p/2


+ CpE

∣∣∣∣∣
∫ t+h

t

∫ J

0

|ρ(s, y)|2 |SI(t+ h− s, x− y)|2 dyds

∣∣∣∣∣
p/2
 .

The first term is handled like the space difference:

E

∣∣∣∣∣
∫ t

0

∫ J

0

|ρ(s, y)|2 |SI(t+ h− s, x− y)− SI(t− s, x− y)|2 dyds

∣∣∣∣∣
p/2


.p

(
E

∫ t

0

∫ J

0

ρ(s, y)pdyds

)

×

[∫ t

0

∫ J

0

|SI(t+ h− s, x− y)− SI(t− s, x− y)|2p/(p−2)
dyds

]p/2−1

.
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Using the inequality
(∑N

n=1 an

)p
.p,N

∑N
n=1 a

p
n, we can continue the above inequality

.p,T

[∫ t

0

∫ J

0

|SI(s+ h, x− y)− SI(s, x− y)|2p/(p−2)
dyds

]p/2−1

=

∫ t

0

∫ J

0

∣∣∣∣∣∑
m∈Z

1

2
1{|x−y+mJ|<s+h} −

∑
m∈Z

1

2
1{|x−y+mJ|<s}

∣∣∣∣∣
2p/(p−2)

dyds

p/2−1

.p
1

2p

[∫ t

0

∫
R

∣∣1{|x−y|<s+h} − 1{|x−y|<s}
∣∣ dyds]p/2−1

≤ 1

2p
(2th)

p/2−1 .p,T h
p/2−1.

For the second term, we start with Hölder’s inequality again:

E

∣∣∣∣∣
∫ t+h

t

∫ J

0

|ρ(s, y)|2 |SI(t+ h− s, x− y)|2 dyds

∣∣∣∣∣
p/2


≤ Cp

(
E

∫ t+h

t

∫ J

0

ρ(s, y)pdyds

)

×

[∫ t+h

t

∫ J

0

|SI(t+ h− s, x− y)|2p/(p−2)
dyds

]p/2−1

.

Using the inequality
(∑N

n=1 an

)p
.p,N

∑N
n=1 a

p
n one last time, we continue the inequality:

.p,T

[∫ t+h

t

∫ J

0

|G(t+ h− s, x− y)|2p/(p−2)
dyds

]p/2−1

=

[∫ h

0

∫ J

0

|SI(s, x− y)|2p/(p−2)
dyds

]p/2−1

=

[∫ h

0

∫ J

0

∣∣∣∣121{|x−y|<s}

∣∣∣∣2p/(p−2)

dyds

]p/2−1

=
1

2p

(
h2
)p/2−1

.p h
p/2−1.

A.3 Conclusion

Putting together the space and time differences, we obtain for h, k:

E [|N(t+ h, x+ k)−N(t, x)|p] .p,T hp/2−1 + kp/2−1

.p,T
(√

h2 + k2
)p/2−1

.

Finally, we recall Kolmogorov’s continuity theorem for multiparameter processes
[13], Corollary 1.2.

Theorem A.1 (Kolmogorov). Let R be a rectangle in Rn and {Xt, t ∈ R} be a real-valued
stochastic process. Suppose there exist a, b,K all positive such that for all s, t ∈ R

E |Xt −Xs|a ≤ K|t− s|n+b.

Then,
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1. X has a continuous realization;
2. there exist a constant C depending only on a, b, n and a random variable Y such

that with probability one,

|Xt −Xs| ≤ Y |t− s|b/a (∀) s, t ∈ R

and E [Y a] ≤ CK;
3. if E [|Xt|a] <∞ for some t ∈ R then

E

[
sup
t∈R
|Xt|a

]
<∞.

Setting a = p and b = p/2− 3, we obtain

|N(t+ h, x+ k)−N(t, x)| ≤ Y
(√

h2 + k2
)b/a

≤ Y
(
h1/2−3/p + k1/2−3/p

)
where E[Y ] <∞ and depends only on p and T . Then since β < 1/2, we can set p = 6

1−2β

and the conclusion follows.
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