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Abstract

Branching Brownian motion (BBM) is a convenient representative of the class of log-
correlated random fields. Motivated by the conjectured criticality of the log-correlated
fields, we take the viewpoint of statistical physics on the BBM: We consider the
partition function of the field of energies given by the “positions” of the particles of the
complex-valued BBM. In such a complex BBM energy model, we allow for arbitrary
correlations between the real and imaginary parts of the energies. We identify the
fluctuations of the partition function. As a consequence, we get the full phase diagram
of the log-partition function. It turns out that the phase diagram is the same as for the
field of independent energies, i.e., Derrida’s random energy model (REM). Yet, the
fluctuations are different from those of the REM in all phases. All results are shown
for any correlation between the real and imaginary parts of the random energy.
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1 Introduction

Random energy models (REM) suggested by Derrida [12, 13] turned out to be an
instructive playground in the studies of strongly correlated random systems, see, e.g.,
the recent reviews [36, 26, 8]. In this paper, we focus on the complex-valued branching
Brownian Motion (BBM) energy model and show that this model lies exactly at the
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The phase diagram of the complex BBM energy model

borderline of the complex REM universality class. This means that the phase diagram of
the model is the same as in the complex REM, cf. Derrida [14] and [24]. However, the
fluctuations of the partition function of this model are already influenced by the strong
correlations and differ from those of the REM in all phases of the model, as we show in
this work and in [19].

The motivation to consider the complex-valued setup is multi-fold:

1. Critical phenomena. Lee and Yang [31] observed that phase transitions (=ana-
lyticity breaking of the log-partition function) occur at critical points due to the
accumulation of complex zeros of the partition function (viewed as a function of the
external field) around the critical points on the real line, as the size of the system
tends to infinity (=thermodynamic limit).

2. Quantum physics and interference phenomena. The formalism of quantum
physics is based on the sums (and integrals) of complex exponentials. This nat-
urally leads to cancellations between the magnitudes of the summands in the
partition function. This is a manifestation of the interference phenomenon, see,
e.g., Dobrinevski et al. [16].

3. Random matrix theory and the Riemann zeta function. The Riemann zeta
function is a central object of analytic number theory. Striking relationships
between statistical physics of random energy models and randomized versions
of the zeta function and characteristic polynomials of random matrices were
conjectured by Fyodorov et al. [17].

1.1 Branching Brownian motion

BBM viewed as a random energy model plays a special rôle. It turns out that BBM has
correlations which are exactly at the borderline between the regime of weak correlations
(REM universality class1) and the one of strong correlations2.

Before stating our results, let us briefly recall the construction of a BBM. Consider a
canonical continuous branching process: a continuous time Galton-Watson (GW) process
[5]. It starts with a single particle located at the origin at time zero. After an exponential
time of parameter one, this particle splits into k ∈ Z+ particles according to some
probability distribution (pk)k≥0 on Z+. Then, each of the new-born particles splits
independently at independent exponential (parameter 1) times again according to the
same (pk)k≥0, and so on. We assume that

∑∞
k=1 pk = 1.3 In addition, we assume that∑∞

k=1 kpk = 2 (i.e., the expected number of children per particle equals two). Besides,
we impose the finite second moment assumption:

K :=

∞∑
k=1

k(k − 1)pk <∞. (1.1)

We assume that at time t = 0, the GW process starts with just one particle.
For given t ≥ 0, we label the particles of the process as i1(t), . . . , in(t)(t), where n(t)

is the total number of particles at time t. Note that under the above assumptions, we
have E [n(t)] = et. For s ≤ t, we denote by ik(s, t) the unique ancestor of particle ik(t) at
time s. In general, there will be several indices k, l such that ik(s, t) = il(s, t). For s, r ≤ t,
define the time of the most recent common ancestor of particles ik(r, t) and il(s, t) as4

d(ik(r, t), il(s, t)) := sup{u ≤ s ∧ r : ik(u, t) = il(u, t)}. (1.2)

1= the same phase diagram as for the field of independent random energies.
2= different phase diagram comparing to the REM one, due to the strictly larger leading order of the

minimal energy than the one for the independent field of random energies.
3This implies that p0 = 0, so none of the particles ever dies.
4Note that d(·, ·) is not the distance to the most recent common ancestor of the particles but rather the

overlap between the particle trajectories.
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For t ≥ 0, the collection of all ancestors naturally induces the random tree

Tt := {ik(s, t) : 0 ≤ s ≤ t, 1 ≤ k ≤ n(t)} (1.3)

called the GW tree up to time t. We denote by FTt the σ-algebra generated by the GW
process up to time t.

In addition to the genealogical structure, the particles get a position in R. Specifically,
the first particle starts at the origin at time zero and performs Brownian motion until
the first time when the GW process branches. After branching, each new-born particle
independently performs Brownian motion (started at the branching location) until their
respective next branching times, and so on. We denote the positions of the n(t) particles
at time t ≥ 0 by x1(t), . . . , xn(t)(t).

We define BBM as a family of Gaussian processes,

xt := {x1(s, t), . . . , xn(t)(s, t) : s ≤ t} (1.4)

indexed by time horizon t ≥ 0. Note that conditionally on the underlying GW tree these
Gaussian processes have the following covariance

E
[
xk(s, t)xl(r, t) | FTt

]
= d(ik(s, t), il(r, t)), s, r ∈ [0, t], k, l ≤ n(t). (1.5)

In what follows, to lighten the notation, we will simply write xi(s) := xi(s, t), i ≤ n(t),
s ≤ t hoping that this will not cause confusion about the parameter t ≥ 0.

1.2 A model of complex-valued random energies

In this section, we introduce the complex BBM random energy model.
Let ρ ∈ [−1, 1]. For any t ∈ R+, let X(t) := (xk(t))k≤n(t) and Y (t) := (yk(t))k≤n(t) be

two BBMs with the same underlying GW tree such that, for k ≤ n(t),

Cov(xk(t), yk(t)) = ρt. (1.6)

In what follows, to lighten the notation, we sometimes drop the dependence of quantities
of interest on ρ. Note that

Y (t)
D
= ρX(t) +

√
1− ρ2Z(t), (1.7)

where “
D
=” denotes equality in distribution and Z(t) := (zi(t))i≤n(t) is a branching Brown-

ian motion independent from X(t) and with the same underlying GW process. Represen-
tation (1.7) allows us to handle arbitrary correlations by decomposing the process Y into
a part independent from X and a fully correlated one.

We define the partition function for the complex BBM energy model with correlation
ρ at inverse temperature β := σ + iτ ∈ C by

Xβ,ρ(t) :=

n(t)∑
k=1

eσxk(t)+iτyk(t). (1.8)

1.3 Notation

By L[·], L[· | ·], and =⇒ or wlim, we denote the law, conditional law, and weak
convergence respectively. By N (0, s2), s2 > 0, we denote the centred complex isotropic
Gaussian distribution with density

C 3 z 7→ e−|z/s|
2

πs2
∈ R+ (1.9)

w.r.t. the Lebesgue measure on C.
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Figure 1: Phase diagram of the REM and the BBM energy model. The grey curves are the level
lines of the limiting log-partition function, cf. (1.11). This paper deals with phases B1 and B3 and
the boundaries. For a treatment of phase B2, see [19].

1.4 Main results

Let us specify the three domains depicted on Figure 1 analytically:

B1 := C \B2 ∪B3, B2 := {σ + iτ ∈ C : 2σ2 > 1, |σ|+ |τ | >
√

2},
B3 := {σ + iτ ∈ C : 2σ2 < 1, σ2 + τ2 > 1}.

(1.10)

Remark 1.1. Some of our results will be stated under the binary branching assumption
(i.e., pk = 0 for all k > 2). Existence of all moments of the offspring distribution would
also suffice for all our results and will not require essential changes in the proofs.

Our first result states that the complex BBM energy model indeed has the phase
diagram depicted on Figure 1.

Theorem 1.2 (Phase diagram). For any ρ ∈ [−1, 1], and any β ∈ C, the complex BBM
energy model with binary branching has the same log-partition function and the phase
diagram (cf., Figure 1) as the complex REM, i.e.,

lim
t↑∞

1

t
logXβ,ρ(t) =


1 + 1

2 (σ2 − τ2), β ∈ B1,√
2|σ|, β ∈ B2,

1
2 + σ2, β ∈ B3

(1.11)

in probability.

See Section 5 for a proof.

Remark 1.3. 1. For a deterministic regular weighted tree (= directed polymer on a
tree), under the assumption of no correlations between the real and imaginary parts
of the complex random energies (i.e., case ρ = 0), formula (1.11) was obtained
by Derrida et al. [15]. Our derivation of Theorem 1.2 is based on the detailed
information on the fluctuations of the partition function (1.8) which we provide in
Section 1.5. The proof in [15] is more direct and does not reach the (CLT) precision
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which is provided in the following section. Moreover, the arguments in [15] seem
to crucially rely on the assumption ρ = 0.

2. It is natural to expect that the convergence in (1.11) also holds in L1, see [24,
Theorem 2.15] for a related result for the REM.

1.5 A class of martingales

In the centre of our analysis are the following martingales

Mσ,τ (t) := e
−t

(
1+2iρστ+σ2−τ2

2

)
Xβ,ρ(t) =

n(t)∑
k=1

e
−t

(
1+2iρστ+σ2−τ2

2

)
eσxk(t)+iτyk(t). (1.12)

We denote by (Ft)t∈R+
the natural filtration associated to (Mσ,τ (t))t∈R+

.
Note that, for β = σ ∈ [0, 1/

√
2), Mσ,0(t) coincides with the McKean martingale

introduced in [9], where it was proven that these martingales converge almost surely
and in L1 to a non-degenerate limit.

The next theorem states that for β ∈ B1 the martingalesMσ,τ (t) are in Lp for some
p > 1.

Theorem 1.4 (Lp martingale convergence in B1). For β = σ + iτ with β ∈ B1, |β| ≥ 1,

and any ρ ∈ [−1, 1],Mσ,τ (t) is a martingale with expectation 1 and it is in Lp for p ≤
√

2
σ .

Hence, the limit

lim
t↑∞
Mσ,τ (t) =:Mσ,τ (1.13)

exists a.s., in L1, and is non-degenerate.

See Section 2 for a proof.

Remark 1.5. For |β| < 1, and any ρ ∈ [−1, 1], it has been proven in [19, Proposition A.1]
thatMσ,τ (t) is L2-bounded.

On the boundary B1,2 between phases B1 and B2, i.e., on the set

B1,2 := B1 ∩B2 = {σ + iτ ∈ C : |σ| > 1/
√

2, |σ|+ |τ | =
√

2} (1.14)

a similar result still holds.

Theorem 1.6 (Lp martingale convergence on B1,2). For β ∈ B1,2 and any ρ ∈ [−1, 1],
we have thatMβ(t) is a Lp-bounded martingale, for any p <

√
2/σ with expectation 1.

Hence, the limit

lim
t↑∞
Mσ,τ (t) =:Mσ,τ (1.15)

exists a.s. in L1, and is non-degenerate.

See Section 4.4 for a proof.

Remark 1.7. Similar result for ρ = 0 has been obtained for the complex Gaussian
multiplicative chaos in [29, Theorem 3.11].

Remark 1.8 (Smoothing transforms). Note that the martingalesMσ,τ (t) satisfy a recur-
sive equation of the form

L [Mσ,τ (t+ r)] = L
[ n(r)∑
k=1

ak(r)M(k)
σ,τ (t)

]
, (1.16)

whereM(k)
σ,τ (t− r) are i.i.d. copies ofMσ,τ (t) and ak(r) ∈ C are some complex weights

independent fromM(k)
σ,τ (t− r), k ∈ N. If a limitMσ,τ as t ↑ ∞ ofMσ,τ (t+ r) exists, then
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it would have to satisfy the equation

L [Mσ,τ ] = L
[ n(r)∑
k=1

ak(r)M(k)
σ,τ

]
, (1.17)

whereM(k)
σ,τ are i.i.d. copies ofMσ,τ . This type of equation is called complex smoothing

transform. We refer to Meiners and Mentemeier [35] and Kolesko and Meiners [27] for
more details.

1.6 Conditional central limit theorems

The following three results cover the whole strip |σ| < 1/
√

2 and basically are “central
limit theorems” (CLTs) with random variance.

Theorem 1.9 (CLT with random variance for |σ| < 1/
√

2, β ∈ B1). Let β = σ + iτ with
|σ| < 1/

√
2 and ρ ∈ [−1, 1]. For β ∈ B1,

wlim
r↑∞

wlim
t↑∞
L
[
Mσ,τ (t+ r)−Mσ,τ (r)

er(1−σ2−τ2)

∣∣∣ Fr] = N (0, C1M2σ,0) , (1.18)

where C1 > 0 is some constant.

See Section 2 for a proof.

Remark 1.10. 1. The scaling on the l.h.s. of (1.18) does not depend on ρ.

2. The appearance of the random variance in Theorem 1.9 (and in the subsequent
ones) is in sharp contrast with the REM [24] and generalized REM [25], where
CLTs with deterministic variance hold for β in the strip |σ| < 1/

√
2.

3. For β ∈ R, a result resembling Theorem 1.9 was obtained by Iksanov and Kabluchko
in [20].

4. For a logarithmically correlated field of complex-valued random energies on a
Euclidean space without correlations between the real and imaginary parts of
the energy (i.e., case ρ = 0), a similar result was shown by Lacoin et al. [29,
Theorem 3.1].

Theorem 1.11 (CLT with random variance in B3). For β ∈ B3, ρ ∈ [−1, 1] and binary
branching,

L
[
Xβ,ρ(t)

et(1/2+σ2)

∣∣∣M2σ,0

]
=⇒
t↑∞
N (0, C2M2σ,0) , (1.19)

where C2 > 0 is some constant.

See Section 3.3 for a proof.

Remark 1.12. In case ρ = 0, a similar result has been obtained by Lacoin et al. [29,
Theorem 4.2].

A similar result also holds on the boundary between phases B1 and B3, i.e., on the set

B1,3 := B1 ∩B3 = {σ + iτ ∈ C : σ2 + τ2 = 1, |σ| < 1/
√

2}. (1.20)

Theorem 1.13 (CLT with random variance on B1,3). For β ∈ B1,3, ρ ∈ [−1, 1], and binary
branching,

L
[
Xβ,ρ(t)√
tet(1/2+σ2)

∣∣∣M2σ,0

]
=⇒
t↑∞
N (0, C3M2σ,0) , (1.21)

where C3 > 0 is some constant.

See Section 4.1 for a proof.
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Remark 1.14. For ρ = 0, a similar result for Gaussian multiplicative chaos was obtained
by Lacoin et al. [29, Theorem 4.2].

Recall that the behaviour of the partition function at β =
√

2 is determined by the
martingale M1,0(t), which is related to another martingale – the so-called derivative
martingale Z(t):

Z(t) :=

n(t)∑
i=1

(
√

2t− xk(t))e−
√

2(
√

2t−xk(t)). (1.22)

Lalley and Sellke proved in [30] that Z(t) converges a.s. as t→∞ to a non-trivial limit
Z which is a positive and a.s. finite random variable.

At the boundary,

B2,3 := B2 ∩B3 =
{
σ + iτ ∈ C : |σ| = 1/

√
2, |τ | ≥ 1/

√
2

}
, (1.23)

including the triple point

β1,2,3 := B1 ∩B2 ∩B3 = (1 + i)/
√

2, (1.24)

after appropriate rescaling, we have the following CLT with random variance.

Theorem 1.15 (CLT with random variance for |σ| = 1/
√

2). Let β = σ + iτ with |σ| = 1/
√

2

and ρ ∈ [−1, 1] and assume binary branching. Then:

(i) For τ > 1/
√

2,

wlim
r↑∞

wlim
t↑∞
L
[
r1/4 · Xβ,ρ(t+ r)

e(t+r)(1/2+σ2)

∣∣∣ Fr] = N

(
0, C2

√
2

π
Z

)
. (1.25)

(ii) For τ = 1/
√

2,

wlim
r↑∞

wlim
t↑∞
L
[
r1/4

√
t
· Xβ,ρ(t+ r)

e(t+r)(1/2+σ2)

∣∣∣ Fr] = N

(
0, C3

√
2

π
Z

)
. (1.26)

See Section 4.3 for a proof.

Remark 1.16. For ρ = 0, a similar result for Gaussian multiplicative chaos was obtained
by Lacoin et al. [29, Theorem 4.3].

1.7 Related research

Several models of of complex-valued random energy landscapes were considered in
the literature. We group them according to the strength of correlations.
Independent energies. Complex random energy model with independent Gaussian
energies has been suggested and analysed using heuristic arguments in the seminal
work of Derrida [14]. In [24], the results of [14] were confirmed rigorously via the
probabilistic analysis of fluctuations of the partition function. As a consequence of the
fluctuation results, it was shown in [24] that the limiting log-partition function is given
by (1.11) and does not depend on the correlation parameter ρ, cf. (1.6).
Logarithmic correlations. The BBM energy model is a particularly transparent repre-
sentative for a whole class of models with the so-called logarithmic correlation strength.

In [15], Derrida et al. considered a landscape of complex-valued random energies
attached to the leaves of a deterministic regular tree of fixed depth, as the depth tends
to infinity. Similarly to the locations of the BBM particles, the energies of the leaves
are generated as a sum of the independent complex-valued weights collected along the
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path connecting the root to a leaf. This can be seen as a mean-field model of directed
polymers with random complex weights on the regular tree. For this model, under the
assumption ρ = 0, the authors of [15] showed that the very same formula (1.11) holds for
the directed polymer without resorting to the more informative analysis of fluctuations
of the partition function.

Barral et al. [6, 7] studied complex Gaussian multiplicative cascades on the unit
interval. These works cover Phase I (cf. Fig. 1) via a martingale convergence result. In
Phase II, the authors show tightness of the properly rescaled partition function. The
model is constructed using a dyadic embedding of the binary tree into the unit interval.
This makes the model closely related to that of [15].

On Euclidean spaces in higher dimensions (d ≥ 2), under the assumption ρ = 0,
a random energy model on Euclidean spaces with logarithmic (w.r.t. the Euclidean
distance) correlations was studied by Lacoin et al. [29]. In [29], for this Gaussian
multiplicative chaos, the same phase diagram as on Figure 1 was identified. However,
only Phases I and III were treated in [29]. Maduale et al. [32] studied the complex
cascade model on a regular binary tree closely related to the models of [15, 6, 7]. On
the boundary between Phases I and II, [32] provides a modulus of continuity estimate
for the chaos. For a review on Gaussian multiplicative chaos, we refer to Rhodes and
Vargas [37]. Purely imaginary multiplicative chaos was studied by Junnila et al. [23].

Phase II was studied for the complex branching BBM energy model [33] in the case
ρ = 0. The case ρ 6= 0 was treated by the present authors in [19].

As mentioned in the remark below Theorem 1.6, the branching structure of the
BBM implies complex distributional equations (1.17), which are referred to as complex
smoothing transform. A detailed study on how solutions to such equations with complex
weights look like was recently done by Meiners and Mentemeier [35], see also the recent
paper by Kolesko and Meiners [27]. The case of real-valued scalar weights was treated
by Alsmeier and Meiners [2] and by Iksanov and Meiners [22].

Fluctuations of the so-called additive (Biggins’) martingale (which is nothing else
as the partition function) for a supercritical branching random walk were studied for
complex temperatures by Iksanov et al. [21]. In the real-valued case, fluctuations of the
derivative martingale for the BBM (cf., (1.22)) were identified by Maillard and Pain [34].

Hairer and Shen [18] studied the dynamical sine-Gordon model – a non-linear
parabolic SPDE in two spatial dimensions subject to additive space-time white noise.
In [18], it is shown that the corresponding Hairer’s regularity structure is related to the
complex multiplicative Gaussian chaos from [29].

Striking conjectures on the relationships of the log-correlated (complex) random
energy models with characteristic polynomials of random matrices, and the Riemann
zeta function were formulated by Fyodorov et al. [17]. Some of these conjectures have
been attacked in the mathematics literature, see, e.g., Arguin et al. [3, 4], and Saksman
and Webb [38].
General correlations. An approximation of the case of general correlations is the
so-called Generalized REM (GREM), see Derrida [13], and Bovier and Kurkova [10, 11].
Fluctuations of the complex-valued GREM were identified in [25], where an explicit
formula generalizing (1.11) for the log-partition function was derived as a consequence.
This formula reveals a much richer phase diagram than the one of the complex REM (cf.,
Figure 1).

1.8 Organization of the rest of the paper

The remainder of the paper is organized as follows. In Section 2, we prove Theo-
rems 1.4 and 1.9 concerning the behaviour of the partition function in Phase B1. In
Section 3, we treat Phase B3. We start with a second moment computation which is
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then (in the next subsection) generalised to a constrained higher moment computation.
Finally, in Section 3.3, we prove Theorem 1.11. The boundaries B1,3, B2,3 (Theorems 1.13
and 1.15) are proved in Section 4. Section 5 contains the proof of Theorem 1.2.

2 Proof of results for phase B1

We start by proving the martingale convergence ofMσ,τ (t).

Proof of Theorem 1.4. One readily checks thatMσ,τ (t) is a martingale with expectation

1. Next, we compute the
√

2
σ -moment ofMβ(t). To do this, first consider

E
[∣∣∣ n(t)∑
k=1

eσxk(t)+iτyk(t)
∣∣∣√2
σ
]

= E
[∣∣∣ n(t)∑
k=1

e(σ+iρτ)xk(t)+i
√

1−ρ2τzk(t)
∣∣∣√2
σ
]
, (2.1)

where we used Representation (1.7). The right-hand side of (2.1) is equal to

E
[(∣∣∣ n(t)∑

k=1

e(σ+iρτ)xk(t)+i
√

1−ρ2τzk(t)
∣∣∣2) 1√

2σ
]

= E
[( n(t)∑

k,j=1

eσ(xk(t)+xj(t))+iρτ(xk(t)−xj(t))+i
√

1−ρ2τ(zk(t)−zj(t))
) 1√

2σ
]
. (2.2)

By Jensen’s inequality for the conditional expectations, and because 1/
√

2σ < 1, for
σ > 1/

√
2, (2.2) is bounded from above by

E
[( n(t)∑

k,j=1

eσ(xk(t)+xj(t))+iρτ(xk(t)−xj(t))E
[
e
√

1−ρ2τ(zk(t)−zj(t))
]) 1√

2σ
]

= E
[( n(t)∑

k,j=1

eσ(xk(t)+xj(t))+iρτ(xk(t)−xj(t))e−(1−ρ2)τ2(t−qk,j)
) 1√

2σ
]
, (2.3)

where we set

qk,j := d(xk(t), xj(t)). (2.4)

Then, we can bound (2.2) from above by

E
[( btc∑

l=1

n(t)∑
k,j=1

1q(k,j)∈[l,l+1)e
2σ(xk(t)+xj(t))+iρτ(xk(t)−xj(t))e−(1−ρ2)τ2(t−qk,j)

) 1√
2σ
]

(2.5)

Denote by σ(l)
1 , . . . , σ

(l)
p ∈ (0, t) all branching times (before time t), and by n(l)

1 , . . . , n
(l)
p ∈

N the associated labels of particles which branched. We rewrite (2.5) as

E
[( btc∑

l=1

p∑
q=1

e
2σx

n
(l)
q

(σ(l)
q )

×
∑
k,j :

q(k,j)=σ(l)
q

e
σ(xk(t)+xj(t)−2x

n
(l)
q

(σ(l)
q ))+iρτ(xk(t)−xj(t))

e−(1−ρ2)τ2(t−qk,j)
) 1√

2σ
]
. (2.6)
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The phase diagram of the complex BBM energy model

By the branching property,

L
[
xk(t)− xj(t)

]
= L

[
x

(1)
k′ (t− qk,j)− x(2)

j′ (t− qk,j)
]
,

L
[
xk(t) + xj(t)− 2x

n
(l)
q

(σ(l)
q )
]

= L
[
x

(1)
k′ (t− qk,j) + x

(2)
j′ (t− qk,j)

]
,

(2.7)

where k′ and j′ are the labels of two BBM particles at time t− qk,j from two independent
copies X(1)(·) and X(2)(·) of a BBM. Using (2.7), we rewrite (2.6) as

E
[( btc∑

l=1

p∑
q=1

e
2σx

n
(l)
q

(σ(l)
q )−(1−ρ2)τ2(t−qk,j)

×
∑

k′≤n(1)(t−qk,j),
j′≤n(2)(t−qk,j)

e
iρτ

(
x
(1)

k′ (t−qk,j)−x(2)

j′ (t−qk,j)
)

+ e
iρτ

(
x
(2)

j′ (t−qk,j)−x(1)

k′ (t−qk,j)
)) 1√

2σ
]
. (2.8)

In what follows, we denote by E[· | σ(l)
q ] the conditional expectation given σ

(l)
q . Noting

that the term in (2.8) inside of the expectation is nonnegative, as it is a power of a
conditional expectation of an absolute value, we use again Jensen since 1/

√
2σ < 1, for

σ > 1/
√

2, we bound (2.8) from above by

E
[( btc∑

l=1

p∑
q=1

e
2σx

n
(l)
q

(σ(l)
q )−(1−ρ2)τ2(t−σ(l)

q )
×

E
[ ∑
k′≤n(1)(t−σ(l)

q ),

j′≤n(2)(t−σ(l)
q )

e
iρτ

(
x
(1)

k′ (t−σ(l)
q )−x(2)

j′ (t−σ(l)
q )

)
+ e

iρτ
(
x
(2)

j′ (t−qk,j)−x(1)

k′ (t−qk,j)
) ∣∣∣ σ(l)

q

]) 1√
2σ
]
.

(2.9)

Recall (1.1). Calculating the inner expectations in (2.9), gives

E
[ ∑
k′≤n(1)(t−σ(l)

q ),

j′≤n(2)(t−σ(l)
q )

e
iρτ

(
x
(1)

k′ (t−σ(l)
q )−x(2)

j′ (t−σ(l)
q )

)
+ e

iρτ
(
x
(2)

j′ (t−qk,j)−x(1)

k′ (t−qk,j)
) ∣∣∣ σ(l)

q

]

= Ke2(t−σ(l)
q )

∫ ∞
−∞

∫ ∞
−∞

dy dy′ e(σ+iτ)y+(σ−iτ)y′e
− y2+y′2

2(t−σ(l)q )
1

2π(t− σ(l)
q )

= Ke(σ2−ρ2τ2)(t−σ(l)
q )+2(t−σ(l)

q )

(2.10)

by completing the square. Hence, (2.9) is equal to

E
[( btc∑

l=1

p∑
q=1

e
2σx

n
(l)
q

(σ(l)
q )−(1−ρ2)τ2(t−σ(l)

q )
Ke(σ2−ρ2τ2)(t−σ(l)

q )+2(t−σ(l)
q )
) 1√

2σ
]
. (2.11)

Using again Jensen’s inequality (
∑

(. . .)
√

2σ ≤ (
∑

(. . .))
√

2σ since
√

2σ > 1), we bound
(2.11) from above by

E
[ btc∑
l=1

p∑
q=1

e

√
2x
n
(l)
q

(σ(l)
q )
K1/

√
2σe

(σ2−τ2+2)√
2σ

(t−σ(l)
q )
]
. (2.12)

Using the many-to-one formula, we obtain that (2.12) is equal to

K1/
√

2σ

∫ t

0

dq eqe
(σ2−τ2+2)(t−q)√

2σ

∫ ∞
−∞

dx e
√

2x− x22q 1√
2πq
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The phase diagram of the complex BBM energy model

= K1/
√

2σ

∫ t

0

dq e
(σ2−τ2+2)(t−q)√

2σ e2q, (2.13)

by computing the Gaussian integral. Using (2.13) and noticing that the normalization

factor in (1.12) is equal to e
−2t−(σ2−τ2)t√

2σ , we bound the
√

2
σ -moment ofMσ,τ (t) by

K

∫ t

0

dq e
(σ2−τ2+2)(t−q)−2t−(σ2−τ2)t√

2σ e2q = K

∫ t

0

dq e
(τ2−(σ−

√
2)2)q√

2σ . (2.14)

For |τ |+ |σ| <
√

2, the right-hand side of (2.14) is uniformly bounded by some constant C.
SinceMσ,τ (t) is bounded in Lp for some p > 1, the a.s. limit exists and the convergence
also holds in L1. Moreover, E[Mσ,τ (t)] = 1 and hence the limit is non-degenerate.

Next, we turn to proving the central limit theorem for σ < 1/
√

2.

Proof of Theorem 1.9. We start with the proof of (1.18). Let

ak(r) := e
−r

(
1+σ2

2 −τ
2
)
eσxk(r)+iτyk(r). (2.15)

Then, we can rewriteMσ,τ (t) as

Mσ,τ (t+ r) =

n(r)∑
k=1

ak(r)M(k)
σ,τ (t), (2.16)

where M(k)
σ,τ (t) are i.i.d. copies of Mσ,τ (t). Hence, conditional on Fr, Mσ,τ (t) can be

written as a sum of independent random variables. To prove a CLT, we want to use the
two-dimensional Lindeberg-Feller condition (conditional on Fr). First, we take the limit
t ↑ ∞. For σ < 1/

√
2 and β ∈ B1, we have σ2 + τ2 < 1. Then, by [19, Proposition A.1],

M(k)
σ,τ (t) is L2-bounded and

lim
t↑∞

E

[∣∣∣M(k)
σ,τ (t)

∣∣∣2] = C1 ≤ ∞ (2.17)

Hence, the a.s. limitMσ,τ exists in L2 and as t ↑ ∞ the right-hand side of (2.16) converges
a.s. to

Mσ,τ =

n(r)∑
k=1

ak(r)M(k)
σ,τ , (2.18)

whereM(k)
σ,τ are i.i.d. copies ofMσ,τ . To compute the variance of (2.18), consider

n(r)∑
k=1

E

[∣∣∣ak(r)M(k)
σ,τ

∣∣∣2 ∣∣∣ Fr] . (2.19)

Eq. (2.19) is equal to

n(r)∑
k=1

|ak(r)|2E
[∣∣∣M(k)

σ,τ

∣∣∣2] = C1

n(r)∑
k=1

|ak(r)|2, (2.20)

by (2.17). Now,

C1

n(r)∑
k=1

|ak(r)|2 = C1

n(r)∑
k=1

e
2σxk(r)−2r

(
1+σ2

2 −
τ2

2

)
= C1M2σ,0(r)e−r(1−(σ2+τ2)). (2.21)
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The phase diagram of the complex BBM energy model

Eq. (2.21) together with the extra rescaling in (1.18) yields

C1e(1−σ2−τ2)r

n(r)∑
k=1

|ak(r)|2 = C1M2σ,0(r), (2.22)

which converges to C1M2σ,0 a.s. as r ↑ ∞.

It remains to check the Lindeberg-Feller condition. We set

bk(r) := ak(r)e−(1−σ2−τ2)r. (2.23)

Let ε > 0 and consider

1

C1M2σ,0(r)

n(r)∑
i=1

E
[ ∣∣∣bk(r)

(
M(k)

σ,τ − 1
)∣∣∣2

× 1
{
|bk(r)

(
M(k)

σ,τ − 1
)
| > ε

√
C1M2σ,0(r)

} ∣∣∣ Fr]. (2.24)

We rewrite (2.24) as

1

C1M2σ,0(r)

n(r)∑
i=1

bk(r)b̄k(r)E
[ ∣∣∣(M(k)

σ,τ − 1
)∣∣∣2

× 1{|
(
M(k)

σ,τ − 1
)
|2 > ε2|bk(r)|−2C1M2σ,0(r)}

∣∣∣ Fr]. (2.25)

We consider the expectation in (2.25) for a fixed k, i.e.,

E

[∣∣∣(M(k)
σ,τ − 1

)∣∣∣2 1{|(M(k)
σ,τ − 1

)
|2 > ε2|bk(r)|−2C2

1M2σ,0(r)}
∣∣∣ Fr] . (2.26)

Using again that by [19, Proposition A.1]

E

[∣∣∣(M(k)
σ,τ − 1

)∣∣∣2] = C1 <∞, (2.27)

we have that (2.26) converges to zero as r ↑ ∞ if

|bk(r)|−2C1M2σ,0(r) −→
r↑∞
∞. (2.28)

Observe thatM2σ,0(r) is a L2-bounded martingale with mean one, if σ < 1/
√

2. Hence,
it converges a.s. and in L1. Consider

|bk(r)|−2 = e−2σxk(r)+2( 1
2 +σ2)r, (2.29)

since xk(r) <
√

2r a.s. (by Lalley-Selke argument in [30]). On this event, we have

|bk(r)|−2 ≥ e(−2
√

2σ+1+2σ2)r = e(1−
√

2σ)2r, (2.30)

which converges to infinity as r ↑ ∞. Hence, (2.28) holds a.s.

3 Proof of CLT for phase B3

In this section, we deal with phase B3 and prove Theorem 1.11.
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The phase diagram of the complex BBM energy model

3.1 Second moment computations

We start by controlling the second moment of

Nσ,τ (t) :=
Xβ,ρ(t)

et(1/2+σ2)
(3.1)

in Phase B3, and its appropriately rescaled version

N̂σ,τ (t) := t−1/2Nσ,τ (t) (3.2)

on the boundary B1,3.

Lemma 3.1. It holds:

(i) For β ∈ B3 or β ∈ B2,3 \ {(1 + i)/
√

2} and any ρ ∈ [−1, 1],

lim
t↑∞

E
[
|Nσ,τ (t)|2

]
= C2 <∞, (3.3)

for some positive constant 0 < C2 <∞5 .

(ii) For β ∈ B1,3 or β = 1√
2
(1 + i) and any ρ ∈ [−1, 1],

lim
t↑∞

E
[
|N̂σ,τ (t)|2

]
= C3 <∞, (3.4)

for some positive constant 0 < C3 <∞.

Proof. (i) We have

E
[
|Nσ,τ (t)|2

]
= e−2t(1/2+σ2)E

[ n(t)∑
k,l=1

eσ(xk(t)+xl(t))+iτ(yk(t)−yl(t))
]
. (3.5)

Using Representation (1.7), we rewrite the right-hand side of (3.5) as

e−2t(1/2+σ2)E
[ n(t)∑
k,l=1

eλ̄xl(t)+λxk(t)+iτ
√

1−ρ2(zk(t)−zl(t))
]
, (3.6)

where λ = σ + iρτ and (zk(t))k≤n(t) are the particles of a BBM on Tt that is independent
from X(t). By conditioning on FTt , we have that (3.6) is equal to

e−2t(1/2+σ2)E
[ n(t)∑
k,l=1

eλ̄xl(t)+λxk(t)e−(1−ρ2)τ2(t−d(xk(t),xl(t)))
]
. (3.7)

The expectation in (3.7) is equal to

K

∫ t

0

dq e2t−q−(1−ρ2)τ2(t−q)
∫ ∞
−∞

dx√
2πq

∫ ∞
−∞

dy√
2π(t− q)

×
∫ ∞
−∞

dy′√
2π(t− q)

e2σx+σ(y+y′)+iτρ(y−y′)e−
y2+y′2
2(t−q) e−x

2/2q. (3.8)

Computing first the integrals with respect to y and y′, we get that (3.8) is equal to

K

∫ t

0

dq e2t−q−(1−ρ2)τ2(t−q)+(σ2−ρ2τ2)(t−q)
∫ ∞
−∞

dx√
2πq

e2σxe−x
2/2q

5C2 depends on σ and τ but not on ρ. We do not make this dependence explicit in our notation.
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The phase diagram of the complex BBM energy model

= K

∫ t

0

dq e2t−q−τ2(t−q)+σ2(t−q)e2σ2q. (3.9)

Plugging (3.9) back into (3.7), we get that (3.7) is equal to

e−2t(1/2+σ2)K

∫ t

0

dq e2t−q−τ2(t−q)+σ2(t−q)e2σ2q

= K

∫ t

0

dq e(t−q)(1−τ2−σ2) = K

∫ t

0

dq′ eq
′(1−τ2−σ2)

=
K

1− τ2 − σ2

(
et(1−τ

2−σ2) − 1
)
. (3.10)

As t ↑ ∞, the term in (3.10) converges to K
τ2+σ2−1 , which we call C2 from now on.

(ii) Proceeding as in Part (i), we get that

E
[
|N̂σ,τ (t)|2

]
= t−1e−2t(1/2+σ2)E

[ n(t)∑
k,l=1

eλ̄xl(t)+λxk(t)e−(1−ρ2)τ2(t−d(xk(t),xl(t)))
]
. (3.11)

Plugging (3.9) into (3.11), we get that (3.11) is equal to

Kt−1

∫ t

0

dq e(t−q)(1−τ2−σ2) = Kt−1

∫ t

0

dq = K, (3.12)

since σ2 + τ2 = 1 in B1,3.

3.2 Constrained moments computation in B3

In this section, we continue our preparations for the proof of Theorem 1.11. These
consist of computing constrained moments. The following two Lemmata ensure that we
can introduce the desired constraint.

Lemma 3.2. Let β ∈ B3. Then for all ε > 0 and δ > 0, uniformly for all t large enough,
there exists A0 such that for all A > A0

P
{∣∣∣ n(t)∑

k=1

eσxk(t)+iτyk(t)−( 1
2 +σ2)t1{xk(t) > 2σt+A

√
t}
∣∣∣ > δ

}
< ε. (3.13)

Proof. Using a second moment Chebyshev inequality, we bound the probability in (3.13)
from above by

e−2t(1/2+σ2)E
[ n(t)∑
k,l=1

eσ(xk(t)+xl(t))+iτ(yk(t)−yl(t))1{xk(t), xl(t) > 2σt+A
√
t}
]
. (3.14)

Continuing as in the proof of Lemma 3.1, we rewrite (3.14) as

e−2t(1/2+σ2)E
[
e−(1−ρ2)τ2(t−d(xk(t),xl(t)))

n(t)∑
k,l=1

eλ̄xl(t)+λxk(t)1{xk(t), xl(t) > 2σt+A
√
t}
]
.

(3.15)
We rewrite the expectation in (3.15) as

K

∫ t

0

dq e2t−q−(1−ρ2)τ2(t−q)
∫ ∞
−∞

dx√
2πq

∫ ∞
2σt+A

√
t−x

dy√
2π(t− q)
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×
∫ ∞

2σt+A
√
t−x

dy′√
2π(t− q)

e2σx+A
√
t+σ(y+y′)+iτρ(y−y′)e−

y2+y′2
2(t−q) e−x

2/2q. (3.16)

Let 0 < r < t. By splitting the domain of integration with respect to q into two parts
{0 ≤ q ≤ t− r} ∪ {t− r < q ≤ t} we write (3.16) as (I) + (II). We can upper bound (I) by
(3.8).

K

∫ t−r

0

dq e2t−q−(1−ρ2)τ2(t−q)
∫ ∞
−∞

dx√
2πq

∫ ∞
2σt+A

√
t−x

dy√
2π(t− q)

×
∫ ∞

2σt+A
√
t−x

dy′√
2π(t− q)

e2σx+σ(y+y′)+iτρ(y−y′)e−
y2+y′2
2(t−q) e−x

2/2q. (3.17)

Observe that apart from the different domain of integration (with respect to q) (3.17)
coincides with (3.8). Performing the same manipulations as after (3.8) in the proof of
Lemma 3.1 we can upper bound (3.17) by

e−2t(1/2+σ2)K

∫ t−r

0

dq e2t−q−τ2(t−q)+σ2(t−q)e2σ2q, (3.18)

which can be made smaller then ε/2 by choosing r sufficiently large. Hence, it remains
to consider Term (II), respectively the integration domain q ∈ [t− r, t] in (3.16). For this
part the constrained x+ y > 2σt+A

√
t plays an important role. First, observe that for

q ≥ t− r, P(y > r) < e−r/2. To have x+ y > 2σt+A
√
t on the event {y < r}, it must hold

that x > 2σt+A
√
t− r. Hence, we can upper bound (II) by

e−r/2 +K

∫ t

t−r
dq e2t−q−(1−ρ2)τ2(t−q)

∫ ∞
−2σt+A

√
t−r

dx√
2πq

∫ ∞
−∞

dy√
2π(t− q)

×
∫ −∞
−∞

dy′√
2π(t− q)

e2σx+A
√
t+σ(y+y′)+iτρ(y−y′)e−

y2+y′2
2(t−q) e−x

2/2q. (3.19)

Computing the integral with respect to y and y′ in (3.19) we can upper boung (3.19) by

e−r/2+K

∫ t

t−r
dq e2t−q−(1−ρ2)τ2(t−q)+(σ2−ρ2τ2)(t−q)

∫ ∞
−2σt+A

√
t−r

dx√
2πq

e2σxe−x
2/2q. (3.20)

Using the Gaussian tail asymptotics to upper bound the integral with respect to x we
see that (3.20) can be made smaller than ε/2 by choosing r and A sufficiently large.

Lemma 3.3. Let β ∈ B3, ρ ∈ [−1, 1] and γ > 1
2 . Let A > 0. Then, for all ε > 0 and d > 0,

there exists r0 > 0 such that, for all r > r0, uniformly for all t sufficiently large,

P
{∣∣∣ n(t)∑

k=1

eσxk(t)+iτyk(t)−( 1
2 +σ2)t

× 1{xk(t) < 2σt+A
√
t,∃s ∈ [r, t] : xk(s) > 2σs+ sγ}

∣∣∣ > δ
}
< ε. (3.21)

Proof. We use again a second moment bound. Similarly to the proof of Lemma 3.2, we
bound the probability in (3.21) from above by

e−2t(1/2+σ2)E
[ n(t)∑
k,l=1

e−(1−ρ2)τ2(t−d(xk(t),xl(t)))eλ̄xl(t)+λxk(t)

× 1{xk(t), xl(t) < 2σt+A
√
t, ∃s ∈ [r, t] : xk(s) > 2σs+ sγ ,
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∃s′ ∈ [r, t] : xl(s
′) > 2σs′ + (s′)γ}

]
. (3.22)

By only keeping track of the path event for one of the particles, we get that (3.22) is
bounded from above by

e−2t(1/2+σ2)E
[ n(t)∑
k,l=1

e−(1−ρ2)τ2(t−d(xk(t),xl(t)))eλ̄xl(t)+λxk(t)

× 1{xk(t), xl(t) < 2σt+A
√
t ∃s ∈ [r, t] : xk(s) > 2σs+ sγ}

]
. (3.23)

We rewrite (3.23) as

K

∫ t

0

dq e2t−qe2t−q−(1−ρ2)τ2(t−q)E
[
eλ̄x1(t)+λ(x1(q)+x2(t−q))

×1{x1(t), x1(q) + x2(t− q) < 2σt+A
√
t, ∃s ∈ [r, t] : x1(s) > 2σs+ sγ}

]
,

(3.24)

where x1(·) is a standard Brownian motion and x2(t − q) is an independent N (0, t − q)
distributed random variable. As we are looking for an upper bound we can drop the
truncation with respect to x1(q) +x2(t− q) and then calculate of the expectation in (3.24)
with respect to x2(t− q). Hence, (3.24) is upper bounded by

K

∫ t

0

dq e2t−qe−
λ2

2(t−q) e2t−q−(1−ρ2)τ2(t−q)E
[
eλ̄x1(t)+λx1(q)

× 1{x1(t) < 2σt+A
√
t,∃s ∈ [r, t] : x1(s) > 2σs+ sγ}

]
. (3.25)

As in the proof of Lemma 3.2, we can first choose r1 large enough such that the above
integral from 0 to t − r1 is bounded by ε/3. Moreover, x1(t) = x1(q) + x̃(t − q), where
x̃(t− q) is normal distributed with mean zero and variance t− q that is independent from
x1(s) for s ≤ q. Then, for all R > R2,

P{|x̃(t− q)| > R} < ε

3
. (3.26)

Observe that the intersection of the event {x̃(t−q) > R} and the event in the indicator
in (3.25) is contained in the event

{x1(t) < 2σt+A
√
t,∃s ∈ [r, t] : x1(s) > 2σs+ sγ , x̃(t− q) > R}

⊂
{
∃s : x1(s)− s

q
x1(q) < sγ − (A

√
t−R)s

q

}
. (3.27)

Using that x1(s)− s
qx1(q) = ξ(s) is a Brownian bridge that is independent from x1(q) and

also from x̃(t− q), we bound (3.25) from above by

K

∫ t

0

dq e2t−qe−
λ2

2(t−q) e2t−q−(1−ρ2)τ2(t−q)E
[
eλ̄x1(t)+λx1(q)

]
× P

{
∃s ∈ [r, t− r] : ξ(s) > sγ − (A

√
t−R)s

q

}
. (3.28)

By the same computations as in (3.8) and (3.9), we can bound (3.28) from above by

C2P
{
∃s ∈ [r, t−R− r] : ξ(s) > sγ − (A

√
t−R)s

t−R

}
. (3.29)

It is a well known fact for Brownian bridges (see, e.g., [9, Lemma 2.3] for a precise
statement) that by choosing r sufficiently large (3.29) can be made as small as we want.
This finishes the proof of Lemma 3.3.

EJP 23 (2018), paper 127.
Page 16/27

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP245
http://www.imstat.org/ejp/


The phase diagram of the complex BBM energy model

Define

N c,A
σ,τ (t) :=

n(t)∑
k=1

e−t(1/2+σ2)eσxk(t)+iτyk(t)

× 1{xk(t) < 2σt+A
√
t, ∀s ∈ [r, t] : xk(s) ≤ 2σs+ sγ}. (3.30)

The following lemma provides the asymptotics for all moments of (3.30) in the t → ∞
limit.

Lemma 3.4 (Moment asymptotics). Consider a branching Brownian motion with binary
splitting. For β ∈ B3, for any A > 0

lim
t→∞

E
[∣∣N c,A

σ,τ (t)
∣∣2] = C2,A, (3.31)

with limA→∞ C2,A = C2 and, for k ∈ N, we have

lim
r↑∞

lim
t→∞

E
[∣∣N c,A

σ,τ (t)
∣∣2k | Fr] = k!(C2,AM2σ,0)k a.s. and in L1. (3.32)

Moreover, for k′ < k,

lim
r↑∞

lim
t→∞

E

[
N c,A
σ,τ (t)kN c,A

σ,τ (t)
k′ ∣∣ Fr] = 0 a.s. and in L1. (3.33)

Proof. We proceed by induction over k ∈ N. For k = 1, we observe that

1 = 1{xk(t) > 2σt+A
√
t}+ 1{xk(t) < 2σt+A

√
t, ∃s ∈ [r, t] : xk(s) ≤ 2σs+ sγ}

+ 1{xk(t) < 2σt+A
√
t, ∀s ∈ [r, t] : xk(s) ≤ 2σs+ sγ}. (3.34)

Plugging this decomposition of unity into (3.5) we can bound E
[
|Nσ,τ (t)|2

]
by

e−2t(1/2+σ2)E
[ n(t)∑
k,l=1

eσ(xk(t)+xl(t))+iτ(yk(t)−yl(t))
(
1{xk(t),xl(t)>2σt+A

√
t}

+ 21{xk(t) > 2σt+A
√
t, xl(t) < 2σt+A

√
t}

+ 1{xk(t), xl(t) < 2σt+A
√
t, ∃s ∈ [r, t] : xk(s) ≤ 2σs+ sγ}

+ 21{xk(t) < 2σt+A
√
t,∃s ∈ [r, t] : xk(s) ≤ 2σs+ sγ}

× 1{xl(t) < 2σt+A
√
t,∀s ∈ [r, t] : xl(s) ≤ 2σs+ sγ}

)]
+ E

[∣∣N c,A
σ,τ (t)

∣∣2]
=: (I) + (II) + (III) + (IV) + (V).

(3.35)

Note that Terms (I) and (III) can be made arbitrarily small by increasing A, resp. r by
computations as in the proofs of Lemmas 3.2 and 3.3, respectively.

Term (II) can be treated as (I) as for the bounds in (3.17) and below it suffices that
one of the two particle positions is >

√
2σt+A

√
t.

To control Term (IV), we upper bound it by

e−2t(1/2+σ2)E
[ n(t)∑
k,l=1

eσ(xk(t)+xl(t))+iτ(yk(t)−yl(t))21{xk(t) < 2σt+A
√
t,∃s ∈ [r, t] :

xk(s) ≤ 2σs+ sγ , xl(t) < 2σt+A
√
t}
]
. (3.36)
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The phase diagram of the complex BBM energy model

Observe that (3.36) coincides with (3.23). Following the argument after (3.23), we see
that (3.23) can be made arbitrarily small by increasing r.

Combining the bounds on the Terms (I), (II), (III) and (IV), the claim follows from
Lemma 3.1.

To bound the 2k-moment, we rewrite (3.32) as

1

2
E
[ ∑
l1,...,l2k≤n(t)

 2k∏
j=1

e−t(1/2+σ2)eσxlj (t)+iτylj (t) +

2k∏
j=1

e−t(1/2+σ2)eσxlj (t)−iτylj (t)


× 1{xlj (t) < 2σt+A

√
t,∀s ∈ [r, t] : xlj (s) ≤ 2σs+ sγ}

]
,

(3.37)

by grouping each summand together with its complex conjugate. For l1, . . . , l2k ≤ n(t),
we can find a matching using the following algorithm:

1. Choose the two labels j, j′ such that d(xlj , xlj′ ) is maximal. Call them l1 and lσ(1)

from know on.

2. Delete them.

3. Pick lj in the remaining set and match it with the remaining lj′ such that d(xlj , xlj′ )

is maximal. Iterate.

We refer to the above algorithm as ’optimal matching’. The pairs obtained in this way
we denote by (l1, lσ(1)), . . . , (lk, lσ(k)). We rewrite (3.37) as

1

2
E
[ ∑
l2,...,lk≤n(t)

( k∏
j=2

e−t(1+2σ2)e
σ
(
xlj (t)+xlσ(j) (t)

)
+iτ

(
ylj (t)+ylσ(j) (t)

)

× e−t(1+2σ2)e
σ(xl1 (t)+xlσ(1) (t))+iτ(yl1 (t)−ylσ(1) (t))

+

k∏
j=2

e−t(1+2σ2)e
σ
(
xlj (t)+xlσ(j) (t)

)
−iτ

(
ylj (t)+ylσ(j) (t)

)

× e−t(1+2σ2)e
σ(xl1 (t)+xlσ(1) (t))−iτ(yl1 (t)−ylσ(1) (t))

)
× 1{xlσ(j)(t), xlj (t) < 2σt+A

√
t,∀s ∈ [r, t] : xlσ(j)(s), xlj (s) ≤ 2σs+ sγ}

× 1{xlσ(1)(t), xl1(t) < 2σt+A
√
t, ∀s ∈ [r, t] : xlσ(1)(s), xl1(s) ≤ 2σs+ sγ}

]
.

(3.38)

Using (1.7), we can rewrite for j ∈ {1, σ(1)}

ylj (t) = ρylj (t) +
√

1− ρ2zlj (t), (3.39)

where (zk(t))k≤n(t) are particles of a BBM on the same Galton-Watson tree as (xk(t))k≤n(t)

but independent from it. Observe that using the requirement that d(xl1 , xlσ1 ) is chosen
maximal, we have

iτ(yl1(t)− ylσ(1)(t)) = i
√

1− ρ2τ
(
z1(t− d(xl1(t), xlσ1 (t)))− z2(t− d(xl1(t), xlσ1 (t))

)
+ iτρ

(
xl1(t)− xlσ(1)(t)

)
, (3.40)

where z1, z2 are two independentN (0, (t−d(xl1(t), xlσ1 (t))))-distributed random variables.
Plugging (3.40) into (3.38) and computing the expectation with respect to z1, z2 of the
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first summand (noting that the second is just its complex conjugate), we obtain

1

2
E
[ ∑
l2,...,lk≤n(t)

k∏
j=2

e−t(1+2σ2) exp
(
σ(xlj (t) + xlσ(j)(t)) + iτ(ylj (t) + ylσ(j)(t))

)
× 1{xlσ(j)(t), xlj (t) < 2σt+A

√
t, ∀s ∈ [r, t] : xlσ(j)(s), xlj (s) ≤ 2σs+ sγ}

× e
−t(1+2σ2)−τ2(1−ρ2)

(
t−d(xl1 ,xlσ(1) )

)
e

(σ+iτρ)xl1 (t)+(σ−iτρ)xlσ(1)

× 1{xlσ(1)(t), xl1(t) < 2σt+A
√
t,∀s ∈ [r, t] : xlσ(1)(s), xl1(s) ≤ 2σs+ sγ}

]
.

(3.41)

We decompose
xlσ(1)(t) = xl1d(xl1 , xlσ(1)) + x(1)(t− d(xl1 , xlσ(1)));

xl1(t) = xl1d(xl1 , xlσ(1)) + x(2)(t− d(xl1 , xlσ(1))),
(3.42)

where x(1), x(2) are two independent N (0, t− d(xl1 , xlσ(1)))-distributed random variables.
By Step one of our matching procedure, we can plug (3.41) into (3.42) and compute the
expectation with respect to x(1) and x(2), we obtain that (3.41) is bounded from above
by6

1

2
E
[ ∑
l2,...,lk≤n(t)

k∏
j=2

e−t(1+2σ2)e
σ
(
xlj (t)+xlσ(j) (t)

)
+iτ

(
ylj (t)+ylσ(j) (t)

)

× 1{xlσ(j)(t), xlj (t) < 2σt+A
√
t,∀s ∈ [r, t] : xlσ(j)(s), xlj (s) ≤ 2σs+ sγ}

× e
−t(1+2σ2)−τ2

(
t−d(xl1 ,xlσ(1) )

)
+σ2

(
t−d(xl1 ,xlσ(1) )

)
e

2σxl1d(xl1 ,xlσ(1) )

× 1{∀s ∈ [r, d(xl1 , xlσ(1))] : xlσ(1)(s), xl1(s) ≤ 2σs+ sγ}
]
.

(3.43)

We now introduce the event

Ar =
{
∃s ∈ [r, d(xl1 , xlσ(1))],∃j ∈ {2, . . . , k, σ(2), . . . , σ(k)} : d(xl1 , xlj ) = s

}
. (3.44)

We can rewrite (3.43) as

E [. . .× 1Ar ] + E
[
. . .× 1Acr

]
=: JAr + JAcr . (3.45)

We will prove that the first summand is of a smaller order than the second one. We need
the following lemma.

Lemma 3.5. Let x, y be N (0, q) distributed random variables. Then, for any m1,m2 ≥ 1

and constant C > 0,

E
[(

e(m1+2)σx+iτm2x + e(m1+2)σx−iτm2x
)
1{x < 2σq + Cqγ}

]
=

q→∞
o
(

e2σqE
[(

em1σx+iτm2x + em1σx−iτm2x
)
1{x < 2σq + Cqγ}

]
× E

[
e2σy1{y < 2σq + Cqγ}

] )
, (3.46)

and similarly

E
[(

e(m1+1)σx+iτ(m2+1)x + e(m1+1)σx−iτ(m2+1)x
)
1{x < 2σq + Cqγ}

]
=

q→∞
o
(

e2σqE
[(

em1σx+iτm2x + em1σx−iτm2x
)
1{x < 2σq + Cqγ}

]
× E

[(
e(σ+iτ)y + e(σ−iτ)y

)
1{y < 2σq + Cqγ}

] )
. (3.47)

6A corresponding lower bound also holds due to the second moment computation in Lemma 3.4.
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Proof. The l.h.s. in (3.46) is equal to∫ 2σq+Cqγ

−∞

dx√
2πq

e(m1+2)σx+iτm2xe−
x2

2q +

∫ 2σq+Cqγ

−∞

dx√
2πq

e(m1+2)σx−iτm2xe−
x2

2q . (3.48)

Making a change of variable y = (m1 + 2)σq + iτm2q + x in the first summand in (3.48)
and y = (m1 + 2)σq − iτm2q + x in the second summand in (3.48), we obtain that (3.48)
equals to

e((m1+2)σ+iτm2)2q/2

∫ −m1σq−iτm2q+Cq
γ

−∞

dy√
2πq

e−y
2/2q

+e((m1+2)σ−iτm2)2q/2

∫ −m1σq+iτm2q+Cq
γ

−∞

dy√
2πq

e−y
2/2q. (3.49)

For m1 ≥ 1, by the Gaussian tail asymptotics (as given in [24, Lemma 3.5]), (3.49) is
bounded from above by

Ce2m1σ
2q+2σq+m2

2τ
2qem1σCq

γ

, (3.50)

for some positive constant C. The expectation on the right hand side of (3.46) is equal to∫ 2σq+Cqγ

−∞

dx√
2πq

em1σx+iτm2xe−
x2

2q

∫ 2σq+Cqγ

−∞

dy√
2πq

e2σye−
y2

2q . (3.51)

If m1 > 2, (3.51) is by [24, Lemma 3.5] asymptotically equal to

1√
2π(m1 − 2)q

e2m1σ
2q−2σ2q+m2

2τ
2qe2σ2qe(m1−2)σCqγ . (3.52)

Comparing (3.52) with (3.50) yields the claim of Lemma (3.46). For m1 = 1 or m2 = 1,
we bound the integral in (3.51) by e(m1σ+iτm2)2q/2+2σ2q/2 + e(m1σ−iτm2)2q/2+2σ2q/2.

The proof of (3.47) follows along the same lines.

We continue the proof of Lemma 3.4. Consider JAr . Consider the skeleton generated
by the leaves l1, lσ(1), . . . , lk, lσ(k) of the Galton-Watson tree. By path(·) we denote the
unique path (= sequence of edges) leading from the given leaf “·” to the root of the tree.
To each edge in the Galton-Watson tree, we associate the following number

m(e) :=
∑

j∈{1,σ(1),...,k,σ(k)}

1e⊂path(lj)
. (3.53)

For k, j ∈ [n(t)], define (cf. Fig. 2)

length(xk(t), xj(t)) := d(x1(t), xk(t))− d(x1(t), xj(t)), t ∈ R+. (3.54)

Lemma 3.6. Consider the path of xl1(t). There exists lj∗ which satisfies the following
conditions

(i) m is constant between d(x1(t), xj∗−1(t)) and d(x1(t), xj∗(t)) and, moreover,

length(xli−1
, xli) > 2r. (3.55)

(ii)
∑j∗−1
i=1 length(xli−1

, xli) < (length(xlj∗−1
, xlj∗ ))γ , where length is defined in (3.54).
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Figure 2: Illustration of the notion of length(·, ·) as defined in (3.54)

Proof. Such a lj∗ exists for all t > t0(r) because there are at most 2k− 2 points, where m
it is allowed to change. Hence, there must be a time interval of length > 2r (for t large
enough) during which m does not change its value. Observe that if

j∗−1∑
i=1

length(xli−1
, xli) > (2r)γ , (3.56)

then only Condition (ii) on length(xlj∗−1
, xlj∗ ) needs to be checked. Assume that l1, . . . , lj

all do not satisfy (ii). Then,

j−1∑
i=1

length(xli−1
, xli) ≤ Cr(

1
γ )j . (3.57)

As i < 2k − 2 and the total time is equal to t, there must exist j such that

length(xlj−1
, xlj ) > Cr(

1
γ )j , for t > t0(r), (3.58)

where t0(r) is sufficiently large.

We call the value ofm on the path of xl1(t) between d(x1(t), xj∗−1(t)) and d(x1(t), xj∗(t))

m∗. Let us use the shortcut R = d(x1(t), xj∗−1(t)) and let

` = `(j∗, t) := length(xlj∗−1
(t), xlj∗ (t)). (3.59)

Then, on the time interval (R,R+ l), m takes the value m∗. Moreover, up to time R the
minimal particle is a.s. > −

√
2R. Hence,

xlj∗(R+ `)− xlj∗(R) < xlj∗(R+ `) +
√

2R. (3.60)

Since we compute an expectation conditional on xlj∗(R+ `) < 2σ(R+ `) + (R+ `)γ , we
obtain on this event

xlj∗(R+ `)− xlj∗(R) < 2σ(R+ `) + (R+ `)γ +
√

2R. (3.61)

Due to our choice of j∗, we have 2σR+
√

2R < C ′(`)γ for some positive constant C ′. By
taking the expectation with respect to xlj∗(R + `) − xlj∗(R) only, we can extract from
JA + JA the factor

E
[ (

e(m∗σ+iτm′)xlj∗ (R+`)−xlj∗ (R) + e(m∗σ−iτm′)xlj∗ (R+`)−xlj∗ (R)
)
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× 1{xlj∗(R+ `)− xlj∗(R) < 2σ`+ (C ′ + 1)(`)γ}
]
. (3.62)

By Lemma 3.5, (3.62) is

o
(

e2σ`E
[
e((m∗−2)σ+iτm′)xlj∗ (R+`)−xlj∗ (R)1{xlj∗(R+ `)− xlj∗(R) < 2σ`+ (C ′ + 1)(`)γ}

]
×E
[
e2σ(xlj∗ (R+`)−xlj∗ (R))1{xlj∗(R+ `)− xlj∗(R) < 2σ`+ (C ′ + 1)(`)γ}

] )
,

(3.63)
for l large (which by Assumption (i) on l corresponds to r large). Note that the quantity,
inside the brackets in (3.63), corresponds to the same expectation but where in the
underlying tree l1, lσ1 branched off before time R.

Iteratively, that leads to

JAr + JAr =
t,r→∞

o(JAcr + JAcr ). (3.64)

Since k was chosen arbitrary, we know that the main contribution to the 2k-th moment
comes from the term where l1, . . . , lk have split before time r for r large enough. We
condition on Fr and compute:

1

2
E
[ ∑
l1,l2,...,lk≤n(t)

( k∏
j=2

e−t(1+2σ2)e
σ(xlj (t)+xlσ(j) )+iτ(ylj (t)−ylσ(j) (t))

+

k∏
j=2

e−t(1+2σ2)e
σ(xlj (t)+xlσ(j) )−iτ(ylj (t)−ylσ(j) (t))

)
× 1{xlσ(j)(t), xlj (t) < 2σt+A

√
t,∀s ∈ [r, t] : xlσ(j) , xlj ≤ 2σs+ sγ}

× 1{ sup
j,j′≤k

d(lj , lj′) < r}
∣∣∣ Fr]

= E
[ ∑
l1,l2,...,lk≤n(t)

k∏
j=2

blj (r)blσ(j)(r)E

[((
(Nγ,A

σ,τ (t− r)
)(j))2

] ∣∣∣ Fr],

(3.65)

where blj (r) is defined in (2.23) and
(
Nγ,A
σ,τ (t− r)

)(j)
are i.i.d. copies of Nγ,A

σ,τ (t− r). By
our second moment computations (Case k = 1), as mentioned at the beginning of this
proof,

lim
t→∞

E

[((
(Nγ,A

σ,τ (t− r)
)(j))2

]
= C2,A. (3.66)

Moreover, by invariance under permutation (in the labelling procedure),

∑
l1,l2,...,lk≤n(t)

k∏
j=2

blj (r)blσ(j) = k!
( n(r)∑
k=1

e2σxk(r)−(1+2σ2)r
)k
. (3.67)

Observe that
∑n(r)
k=1 e2σxk(r)−(1+2σ2)r =M2σ,0(r) which converges almost surely toM2σ,0.

This proves(3.32).
The case k′ < k follows similarly. Take an optimal matching (according to the

procedure described below (3.37)) of the first k′ particles. The other particles will not be
matched. Take one l1 that has not been matched. Along its path, we can again find the
first macroscopic piece on which m(·) is constant. Applying Lemma 3.5, we get that the
contribution is the largest if maxj∈1,...,k′,1,...,k d(l1, lj) < R, for R large enough. Observe
that,

E
[ n(t)∑
k=1

eσxk(t)+iτzk(t)−( 1
2 +σ)t

∣∣∣ FR] =

n(R)∑
k=1

eσxk(R)+iτzk(R)−( 1
2 +σ)te(σ2−τ2+1−2σ2+i2τσ)(t−R)/2.

(3.68)
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Since in B3 it holds that 1− σ2 − τ2 < 0, the summands the r.h.s. of (3.68) converge to
zero as t ↑ ∞. This together with the argument in the even case implies Lemma 3.4.

3.3 Proof of Theorem 1.11

Proof of Theorem 1.11. Recall that the even (resp., odd) moments of the complex isotropic
distributionN (0, C2,AM2σ,0) coincide with the r.h.s. of (3.32) (resp., (3.33)). By Lemma 3.4,
conditionally on Fr, the moments ofN c,A

σ,τ (t) converge to the moments of aN (0, C2,AM2σ,0)

a.s. as t ↑ ∞ and then r ↑ ∞. Since the normal distribution is uniquely characterised
by its moments, this implies convergence in distribution. Moreover, by Lemma 3.2 and
Lemma 3.3,

wlim
A↑∞

wlim
t↑∞
L
[
Nσ,τ (t)−N c,A

σ,τ (t)
]

= δ0, (3.69)

and limA→∞ C2,A = C2. The claim of Theorem 1.11 follows.

4 The boundaries

In this section, we provide the proofs of Theorems 1.6, 1.13 and Proposition 1.15
describing the limiting fluctuations of the partition function on all boundaries between
the phases, i.e., on the 1D manifolds B1,2 = B1 ∩B2, B1,3 = B1 ∩B3, and B2,3 = B2 ∩B3.

4.1 The boundary between phases B1 and B3

Proof of Theorem 1.13. The proof of Theorem 1.13 works as in phase B3. Observe first
that

E

[
Xβ,ρ(t)√
tet(1/2+σ2)

]
=

1√
t
. (4.1)

Moreover, let

N̂σ,τ (t) := t−1/2Nσ,τ (t) and N̂ c,A
σ,τ (t) := t−1/2N c,A

σ,τ (t). (4.2)

By Lemma 3.1 (ii),

lim
t↑∞

E
[
|N̂σ,τ (t)|2

]
= C3. (4.3)

Now, we need the following.

Lemma 4.1. For β ∈ B3,

lim
t→∞

E
[
|N̂ c,A

σ,τ (t)|2
]

= C3,A, (4.4)

with limA↑∞ C3,A = C3 and, for k ∈ N, we have

lim
A↑∞

lim
r↑∞

lim
t→∞

E
[
|N̂ c,A

σ,τ (t)|2k
∣∣ Fr] = k!(C3M2σ,0)k a.s. and in L1. (4.5)

Moreover, for k′ < k,

lim
A↑∞

lim
r↑∞

lim
t→∞

E

[
N̂ c,A
σ,τ (t)kN c,A

σ,τ (t)
k′ ∣∣ Fr] = 0 a.s. and in L1. (4.6)

Proof. The proof of Lemma 4.1 is a rerun of the proof of Lemma 3.4.

The claim of Theorem 1.13 follows with the very same arguments as the proof of
Theorem 1.9.
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4.2 Real critical point β =
√

2

For |σ| = 1/
√

2, the following scaling of the martingaleM1,0(t) plays an important
role

MSH
1,0(t) :=

√
t

n(t)∑
i=1

e−
√

2(
√

2t−xk(t)). (4.7)

MSH
1,0(t) is called critical additive martingale and the rescaling appearing in the r.h.s. of

(4.7) is referred to as Seneta-Heyde scaling. The limiting behaviour of MSH
1,0 in the setting

of branching random walks has been first analysed in [1]. An alternative proof is given
in [28]. As t→∞, (4.7) converges in probability to a limiting random variable MSH

1,0.

Lemma 4.2. Denote MSH1,0 (t) :=
√
t
∑n(t)
i=1 e−

√
2(
√

2−xk(t)) and MSH1,0 :=
(

2
π

)1/2Z, where Z
is the limit of the derivative martingale, cf. (1.22). Then, for β =

√
2, the following

convergence holds in probability

MSH
1,0(t)

P−→
t→∞

MSH
1,0. (4.8)

Proof. The proof is just an adaptation of the result for the branching random walk (see
[28, Section 6.5]).

4.3 The boundary between phases B2 and B3; and the triple point β = (1+ i)/
√

2

In this section, we prove the convergence of the moments of the rescaled partition
function on the boundary between phases B2 and B3 to the moments of a Gaussian ran-
dom variable with random variance in probability which is the content of Theorem 1.15.

Proof of Theorem 1.15. (i) The proof of Theorem 1.15 (i) is a modification of the proof
of Theorem 1.9 (ii) in the following way.

Lemma 4.3. For β with σ = 1√
2
, ρ ∈ [−1, 1] and binary branching

lim
t→∞

E
[∣∣N c,A

σ,τ (t)
∣∣2] = C2,A, (4.9)

and, for k ∈ N, we have

lim
r↑∞

lim
t→∞

r
2k
4 E
[∣∣N c,A

σ,τ (t)
∣∣2k | Fr] = k!(C2,AM

SH
1,0)k in probability, (4.10)

where MSH
1,0 is the martingale defined in (4.8). Moreover, for k′ < k,

lim
r↑∞

lim
t→∞

E

[
N c,A
σ,τ (t)kN c,A

σ,τ (t)
k′ ∣∣ Fr] = 0 in probability. (4.11)

Proof. The proof is a rerun of the proof of Lemma 3.4 with the only difference that the
martingale MSH

1,0 only converges in probability towards MSH
1,0 as t ↑ ∞ and that there an

additional factor r1/4 needed.

Since (4.10) and (4.11) only hold in probability, using the same method as in the proof
of Theorem 1.9, we get the corresponding weak convergence result.

(ii) For the triple point, the argument is similar to (i) but with the moments as given in
Lemma 4.1 with M2σ,0 replaced by MSH

1,0.
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4.4 The boundary between phases B1 and B2

In this section, we prove Theorem 1.6.

Proof of Theorem 1.6. For β ∈ B̄1 ∩ B̄2 \ {β =
√

2, β = 1√
2
(1 + i)}, consider in the same

way as in the proof of Theorem 1.4 the
√

2
γ -moment for some γ > σ and

√
2γ > 1. Then, a

rerun of the computation starting from (2.1) up to (2.14) bounds the
√

2
γ -moment from

above by ∫ t

0

dq e
(σ2−τ2+2)(t−q)−2t−(σ2−τ2)t√

2σ e
γ2

σ2
q+q

=

∫ t

0

dq e

(
τ2−(σ−

√
2)2+

(
γ2

σ2
−1

))
q

√
2σ

=

∫ t

0

dq e

(
γ2

σ2
−1

)
q

√
2σ ,

(4.12)

since |τ | + |σ| =
√

2. The r.h.s. of (4.12) is uniformly bounded by a constant. Hence,
Mσ,τ (t) is in Lp for some p > 1. Hence, it converges a.s. and in L1. The limit is
non-degenerate because E [Mσ,τ (t)] = 1 and Theorem 1.6 follows.

5 Proof of Theorem 1.2

In this section, as a consequence of the fluctuation results of the previous sections,
we derive the phase diagram shown on Fig. 1.

Proof of Theorem 1.2. Convergence in probability for β ∈ B1 and B3 in (1.11) follows
from Theorems 1.4 and 1.9 (ii) by [24, Lemma 3.9 (1)]. Convergence for the glassy phase
β ∈ B2 was shown in [19]. For the boundaries between all three phases, the formula
(1.11) follows from the continuity of the limiting log-partition function.
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