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Abstract

We prove a central limit theorem for the linear statistics of one-dimensional log-gases,
or β-ensembles. We use a method based on a change of variables which allows to
treat fairly general situations, including multi-cut and, for the first time, critical
cases, and generalizes the previously known results of Johansson, Borot-Guionnet and
Shcherbina. In the one-cut regular case, our approach also allows to retrieve a rate of
convergence as well as previously known expansions of the free energy to arbitrary
order.
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1 Introduction

Let β > 0 be fixed. For N ≥ 1, we are interested in the N -point canonical Gibbs
measure1 for a one-dimensional log-gas at the inverse temperature β, defined by

dPVN,β( ~XN ) =
1

ZVN,β
exp

(
−β

2
HVN ( ~XN )

)
d ~XN , (1.1)

where ~XN = (x1, . . . , xN ) is an N -tuple of points in R, and HVN ( ~XN ), defined by

HVN ( ~XN ) :=
∑

1≤i6=j≤N

− log |xi − xj |+
N∑
i=1

NV (xi), (1.2)
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1We use β
2
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CLT for Fluctuations of β-ensembles with general potential

is the energy of the system in the state ~XN , given by the sum of the pairwise repulsive
logarithmic interaction between all particles plus the effect on each particle of an
external field or confining potential NV whose intensity is proportional to N . We will
use d ~XN to denote the Lebesgue measure on RN . The constant ZVN,β in the definition
(1.1) is the normalizing constant, called the partition function, and is equal to

ZVN,β :=

∫
RN

exp

(
−β

2
HVN ( ~XN )

)
d ~XN .

Such systems of particles with logarithmic repulsive interaction on the line have been
extensively studied, in particular because of their connection with random matrix theory,
see [For10] for a survey.

Under mild assumptions on V , it is known that the empirical measure of the particles
converges almost surely to some deterministic probability measure on R called the
equilibrium measure µV , with no simple expression in terms of V . For any N ≥ 1, let us
define the fluctuation measure

fluctN :=

N∑
i=1

δxi −NµV , (1.3)

which is a random signed measure. For any test function ξ regular enough we define the
fluctuations of the linear statistics associated to ξ as the random real variable

FluctN (ξ) :=

∫
R

ξ dfluctN . (1.4)

The goal of this paper is to prove a Central Limit Theorem (CLT) for FluctN (ξ), under
some regularity assumptions on V and ξ.

1.1 Assumptions

(H1) - Regularity and growth of V The potential V is in Cp(R) and satisfies the growth
condition

lim inf
|x|→∞

V (x)

2 log |x|
> 1. (1.5)

It is well-known, see e.g. [ST13], that if V satisfies (H1) with p ≥ 0, then the logarithmic
potential energy functional defined on the space of probability measures by

IV (µ) =

∫
R×R

− log |x− y| dµ(x) dµ(y) +

∫
R

V (x) dµ(x) (1.6)

has a unique global minimizer µV , the aforementioned equilibrium measure. This
measure has a compact support that we will denote by ΣV , and µV is characterized by
the fact that there exists a constant cV such that the function ζV defined by

ζV (x) :=

∫
− log |x− y|dµV (y) +

V (x)

2
− cV (1.7)

satisfies the Euler-Lagrange conditions

ζV ≥ 0 in R, ζV = 0 on ΣV . (1.8)

We will work under two additional assumptions: one deals with the possible form of
µV and the other one is a non-criticality hypothesis concerning ζV .
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CLT for Fluctuations of β-ensembles with general potential

(H2) - Form of the equilibrium measure The support ΣV of µV is a finite union of
n + 1 non-degenerate intervals

ΣV =
⋃

0≤l≤n

[αl,−;αl,+], with αl,− < αl,+.

The points αl,± are called the endpoints of the support ΣV . For x in ΣV , we let

σ(x) :=

n∏
l=0

√
|x− αl,−||x− αl,+|. (1.9)

We assume that the equilibrium measure has a density with respect to the Lebesgue
measure on ΣV given by

µV (x) = S(x)σ(x), (1.10)

where S can be written as

S(x) = S0(x)

m∏
i=1

(x− si)2ki , S0 > 0 on ΣV , (1.11)

where m ≥ 0, all the points si, called singular points2, belong to ΣV and the ki are
natural integers.

(H3) - Non-criticality of ζV The function ζV is positive on R \ ΣV .

1.2 Main result

Definition 1.1. We introduce the so-called master operator ΞV , which acts on C1 func-
tions by

ΞV [ψ] := −1

2
ψV ′ +

∫
ψ(·)− ψ(y)

· − y
dµV (y). (1.12)

Theorem 1 (Central limit theorem for fluctuations of linear statistics). Let ξ be a function
in Cr(R), assume that (H1), (H2), (H3) hold. We let

k = max
i=1,...,m

2ki,

where the ki’s are as in (1.11). Assume that

p ≥ (3k + 6), r ≥ (2k + 4), (1.13)

where p (resp. r) denotes the regularity of V (resp. ξ)
If n ≥ 1, assume that ξ satisfies the n following conditions∫

ΣV

ξ(y)yd

σ(y)
dy = 0 for d = 0, . . . , n− 1. (1.14)

Moreover, if k ≥ 1, assume that for all i = 1, . . . ,m∫
ΣV

ξ(y)−Rsi,dξ(y)

σ(y)(y − si)d
dy = 0 for d = 1, . . . , 2ki, (1.15)

where Rx,dξ is the Taylor expansion of ξ to order d− 1 around x given by

Rx,dξ(y) = ξ(x) + (y − x)ξ′(x) + · · ·+ (y − x)d−1

(d− 1)!
ξ(d−1)(x).

2Let us emphasize that a singular point si can be equal to an endpoint αl,±.
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CLT for Fluctuations of β-ensembles with general potential

Then there exists a constant cξ and a function ψ of class C3 in some open neighbor-
hood U of ΣV such that ΞV [ψ] = ξ

2 + cξ on U , and the fluctuation FluctN (ξ) converges in
law as N →∞ to a Gaussian distribution with mean

mξ =

(
1− 2

β

)∫
ψ′ dµV ,

and variance

vξ = − 2

β

∫
ψξ′dµV .

It is proven in (4.7) that the variance vξ has the equivalent expression

vξ :=
2

β

(∫∫ (
ψ(x)− ψ(y)

x− y

)2

dµV (x)dµV (y) +

∫
V ′′ψ2dµV

)
. (1.16)

Let us note that ψ, hence also mξ and vξ, can be explicitly written in terms of ξ.

1.3 Comments on the assumptions

The growth condition (1.5) is standard and expresses the fact that the logarithmic
repulsion is beaten at long distance by the confinement, thus ensuring that µV has a
compact support. Together with the non-criticality assumption (H3) on ζV , it implies that
the particles of the log-gas effectively stay within some neighborhood of ΣV , up to very
rare events.

The case n = 0, where the support has a single connected component, is called
one-cut, whereas n ≥ 1 is a multi-cut situation. If m ≥ 1, we are in a critical case.

The relationship between V and µV is complicated in general, and we mention some
examples where µV is known to satisfy our assumptions.

• If V is real-analytic, then the assumptions are satisfied with n finite, m finite and S
analytic on ΣV , see [DKM98, Theorem 1.38], [DKM+99, Sec.1].

• If V is real-analytic, then for a “generic” V the assumptions are satisfied with n
finite, m = 0 and S analytic on ΣV , see [KM00].

• If V is uniformly convex and smooth, then the assumptions are satisfied with n = 0,
m = 0, and S smooth on ΣV , see e.g. [BdMPS95, Example 1].

• Examples of multi-cut, non-critical situations with n = 0, 1, 2 and m = 0, are
mentioned in [BdMPS95, Examples 3-4].

• An example of criticality at the edge of the support is given by V (x) = 1
20x

4− 4
15x

3 +
1
5x

2 + 8
5x, for which the equilibrium measure, as computed in [CKI10, Example 1.2],

is given by

µV (x) =
1

10π

√
|x− (−2)||x− 2|(x− 2)21[−2,2](x).

• An example of criticality in the bulk of the support is given by V (x) = x4

4 − x
2, for

which the equilibrium measure, as computed in [CK06], is

µV (x) =
1

2π

√
|x− (−2)||x− 2|(x− 0)21[−2,2](x).

Following the terminology used in the literature [DKM+99,KM00,CK06], we may say that
our assumptions allow the existence of singular points of type II (the density vanishes in
the bulk) and III (the density vanishes at the edge faster than a square root). Assumption
(H3) rules out the possibility of singular points of type I, also called “birth of a new cut”,
for which the behavior might be quite different, see [Cla08,Mo08].
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1.4 Existing literature, strategy and perspectives

1.4.1 Connection to previous results

The CLT for fluctuations of linear statistics in the context of β-ensembles was proven
in the pioneering paper [Joh98] for polynomial potentials in the case n = 0,m = 0, and
generalized in [Shc13] to real-analytic potentials in the possibly multi-cut, non-critical
cases (n ≥ 0,m = 0), where a set of n necessary and sufficient conditions on a given
test function in order to satisfy the CLT is derived. If these conditions are not fulfilled,
the fluctuations are shown to exhibit oscillatory behaviour. Such results are also a
by-product of the all-orders expansion of the partition function obtained in [BG13b]
(n = 0,m = 0) and [BG13a] (n ≥ 0,m = 0). A CLT for the fluctuations of linear statistics
for test functions living at mesoscopic scales was recently obtained in [BL18]. Finally, a
new proof of the CLT in the one-cut non-critical case was very recently given in [LLW17].
It is based on Stein’s method and provides a rate of convergence in Wasserstein distance.

1.4.2 Motivation and strategy

Our goal is twofold: on the one hand, we provide a simple proof of the CLT using a
change of variables argument, retrieving the results cited above. On the other hand,
our method allows to substantially relax the assumptions on V , in particular for the first
time we are able to treat critical situations where m ≥ 1.

Our method, which is adapted from the one introduced in [LS18] for two-dimensional
log-gases, can be summarized as follows

1. We prove the CLT by showing that the Laplace transform of the fluctuations
converges to the Laplace transform of the correct Gaussian law. This idea is already
present in [Joh98] and many further works. Computing the Laplace transform of
FluctN (ξ) leads to working with a new potential V + tξ (with t small), and thus to
considering the associated perturbed equilibrium measure.

2. Following [LS18], our method then consists in finding a change of variables (or a
transport map) that pushes µV onto the perturbed equilibrium measure. In fact we
do not exactly achieve this, but rather we construct a transport map I + tψ, which
is a perturbation of identity, and consider the approximate perturbed equilibrium
measure (I + tψ)#µV . The map ψ is found by inverting the operator (1.12), which
is well-known in this context, it appears e.g. in [BG13b,BG13a,Shc13,BFG13]. A
CLT will hold if the function ξ is (up to constants) in the image of ΞV , leading to the
conditions (1.14)–(1.15). The change of variables approach for one-dimensional
log-gases was already used e.g. in [Shc14,BFG13], see also [GMS07,GS14] which
deal with the non-commutative context.

3. The proof then leverages on the expansion of logZVN,β up to order N proven
in [LS17], valid in the multi-cut and critical case, and whose dependency in V is
explicit enough. This step replaces the a priori bound on the correlators used e.g.
in [BG13b].

1.4.3 More comments and perspectives

Using the Cramér-Wold theorem, the result of Theorem 1 extends readily to any finite
family of test functions satisfying the conditions ((1.14), (1.15)): the joint law of their
fluctuations converges to a Gaussian vector, using the bilinear form associated to (1.16)
in order to determine the covariance.

In the multi-cut case, the CLT results of [Shc13] or [BG13a] are stated under n
necessary and sufficient conditions on the test function, and the non-Gaussian nature
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of the fluctuations if these conditions are not satisfied is explicitly described. In the
critical cases, we only state sufficient conditions (1.15) under which the CLT holds. It
would be interesting to prove that these conditions are necessary, and to characterize
the behavior of the fluctuations for functions which do not satisfy (1.15).

Finally, we expect Theorem 1 to hold also at mesoscopic scales. The proof of [BL18]
uses the rigidity estimates of [BEY14] which are, to the best of our knowledge, not
available to the critical case.

1.5 The one-cut noncritical case

In the case n = 0 and m = 0, following the transport approach, we can obtain the
convergence of the Laplace transform of fluctuations with an explicit rate, under the
assumption that ξ is very regular (we have not tried to optimize in the regularity):

Theorem 2 (Rate of convergence in the one-cut noncritical case). Under the assumptions
of Theorem 1, if in addition n = 0, m = 0, p ≥ 6 and r ≥ 18, then we also have, for any s
such that |s|N is small enough3∣∣∣∣logEPVN,β [exp(sFluctN (ξ))] +

(
1− β

2

)
2s

β

∫
ψ′dµV +

s2

β

∫
ξ′ψdµV

∣∣∣∣
=

s

N
O
(
‖ψ‖C29(U) + ‖ψ‖C5(U) + ‖ψ‖3C5(U) + s‖ψ‖2C3 +

√
N‖ψ‖C2

)
. (1.17)

where the constant C depends only on V and β.

These additional assumptions allow to avoid using the result of [LS17] on the ex-
pansion of logZVN,β. Our transport approach also provides a functional relation on the
expectation of fluctuations which allows by a boostrap procedure to recover an expansion
of logZVN,β (relative to a reference potential) to arbitrary powers of 1/N in very regular
cases, i.e the result of [BG13b] but without the analyticity assumption. All these results
are presented in Appendix A.

1.6 Some notation

We denote by P.V. the principal value of an integral having a singularity at x0, i.e.

P.V.

∫
f = lim

ε→0

∫ x0−ε

−∞
f +

∫ +∞

x0+ε

f. (1.18)

If Φ is a C1-diffeomorphism and µ a probability measure, we denote by Φ#µ the
push-forward of µ by Φ, which is by definition such that for A ⊂ R Borel,

(Φ#µ)(A) := µ(Φ−1(A)).

If A ⊂ R we denote by Å its interior.
For k ≥ 0, and U some bounded domain in R, we endow the spaces Ck(U) with the

usual norm

‖ψ‖Ck(U) :=

k∑
j=0

sup
x∈U
|ψ(j)(x)|.

If z is a complex number, we denote by R(z) (resp. I(z)) its real (resp. imaginary)
part.

For any probability measure µ on R we denote by hµ the logarithmic potential
generated by µ, defined as the map

x ∈ R2 7→ hµ(x) =

∫
− log |x− y|dµ(y). (1.19)

3Depending only on ξ.
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2 Next order energy and concentration bounds

We start with the energy splitting formula of [SS15] that separates fixed leading order
terms from variable next order ones, and allows to quickly obtain first concentration
bounds.

2.1 The next-order energy

For any probability measure µ, let us define,

FN ( ~XN , µ) = −
∫∫

(R×R)\4
log |x− y|

( N∑
i=1

δxi − µ
)

(x)
( N∑
i=1

δxi − µ
)

(y), (2.1)

where 4 denotes the diagonal in R×R.
We have the following splitting formula for the energy, as introduced in [SS15] (we

recall the proof in Section B.1).

Lemma 2.1. For any ~XN ∈ RN , it holds that

HVN ( ~XN ) = N2IV (µV ) + 2N

N∑
i=1

ζV (xi) + FN ( ~XN , µV ) . (2.2)

Using this splitting formula (2.2), we may re-write PVN,β as

dPVN,β( ~XN ) =
1

KN,β(µV , ζV )
exp

(
−β

2

(
FN ( ~XN , µV ) + 2N

N∑
i=1

ζV (xi)

))
d ~XN , (2.3)

with a next-order partition function KN,β(µV , ζV ) defined by

KN,β(µV , ζV ) :=

∫
RN

exp

(
−β

2

(
FN ( ~XN , µV ) + 2N

N∑
i=1

ζV (xi)

))
d ~XN . (2.4)

We extend this notation to KN,β(µ, ζ) where µ is a probability density and ζ is a confine-
ment potential.

In view of (2.2), we have

ZVN,β = exp

(
−β

2
IV (µV )

)
KN,β(µV , ζV ). (2.5)

2.2 Expansion of the next order partition function

If µ is a probability density, we denote by Ent(µ) the entropy function given by4

Ent(µ) :=

∫
R

µ logµ. (2.6)

The following asymptotic expansion is proven [LS17, Corollary 1.1] (cf. [LS17, Remark
4.3]) and valid in a general multi-cut critical situation.

Lemma 2.2. Let µ be a probability density on R. Assume that µ has the form (1.10),
(1.11) with S0 in C2(Σ), and that ζ is some Lipschitz function on R satisfying

ζ = 0 on Σ, ζ > 0 on R \ Σ,

∫
R

e−βNζ(x)dx <∞ for N large enough.

4The sign convention here differs from the usual one.
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Then, with the notation of (2.4) and for some Cβ depending only on β, we have

logKN,β(µ, ζ) =
β

2
N logN + CβN −N

(
1− β

2

)
Ent(µ) +NoN (1). (2.7)

2.3 Exponential moments of the energy and the fluctuations

In this paragraph we show that the next-order energy is typically (in a strong sense)
of order at most N , and that the fluctuations of a function in C1

c (R) are of order at most√
N .

2.3.1 Exponential moments of the next-order energy

Lemma 2.3. We have, for some constant C depending on β and V∣∣∣∣logEPVN,β

[
exp

(
β

4

(
FN ( ~XN , µV ) +N logN

))]∣∣∣∣ ≤ CN. (2.8)

Proof. This follows e.g. from [SS15, Theorem 6], but we can also deduce it from Lemma
2.2. We may write

EPVN,β

[
exp

(
β

4
FN ( ~XN , µV )

)]
=

1

KN,β(µV , ζV )

∫
exp

(
−β

4

(
FN ( ~XN , µV )− 2N

N∑
i=1

2ζV (xi)

))
d ~XN

=
KN, β2

(µV , 2ζV )

KN,β(µV , ζV )
.

Taking the log and using (2.7) to expand both terms up to order N yields the result.

2.3.2 The next-order energy controls the fluctuations

The following result is a consequence of the analysis of [SS15,PS14], we give the proof
in Section B.2 for completeness. It shows that FN controls fluctN .

Proposition 2.4. If ξ is compactly supported and Lipschitz, we have, for some universal
constant C∣∣∣∣∫ ξ dfluctN

∣∣∣∣
≤ ‖ξ′‖L∞ + (‖ξ′‖L2 + ‖ξ‖L2)

(
FN ( ~XN , µV ) +N logN + C(‖µV ‖L∞ + 1)N

)1/2

. (2.9)

Combining this result with Lemma 2.8 and using Hölder’s inequality, we deduce the
following concentration result, improving on the previous concentration estimates in√
N logN of [BG13b,MdMS14].

Corollary 2.5 (Exponential moments of the fluctuations). For any ξ compactly supported
and Lipschitz function, if ‖ξ‖H1(R) is small enough depending on β, we have

logEPVN,β [exp (FluctN (ξ))] ≤ C
√
N
(
‖ξ′‖L2(R) + ‖ξ‖L2(R))

)
+ C‖ξ′‖L∞(R) (2.10)

where C depends on β and V .

In view of the CLT result, one would expect to find concentration bounds in terms of
the H1/2 norm of ξ, but we do not pursue this goal here.
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2.3.3 Confinement bound

We will also need the following bound on the confinement. This is a well-known fact, an
easy proof can for instance be given by following that of Lemma 3.3 of [LS18].

Lemma 2.6. For any fixed open neighborhood U of Σ,

PVN,β

(
~XN ∈ UN

)
≥ 1− exp(−cN)

where c > 0 depends on U and β.

Lemma 2.6 is the only place where we use the non-degeneracy assumption (H3) on
the next-order confinement term ζV .

3 Inverting the operator and defining the approximate transport

The goal of this section is to find transport maps φt for t small enough such that
the transported measure φt#µ0 approximates the equilibrium measure associated to
Vt := V + tξ. Since the equilibrium measures are characterized by (1.7) with equality on
the support, it is natural to search for φt such that the quantity∫

− log |φt(x)− φt(y)|dµ0(y) +
1

2
Vt(φt(x))

is close to a constant. This is directly related to inverting the operator ΞV of (1.12), and
we will see that this choice allows to cancel out some crucial terms later.

3.1 Preliminaries

Lemma 3.1. We have the following

• The function S0 of (1.11) is in Cp−3−2k(ΣV ).
• There exists an open neighborhood U of ΣV and a positive functionM in Cp−3−2k(U\

Σ̊V ) such that

ζ ′V (x) = M(x)σ(x)

m∏
i=1

(x− si)2ki . (3.1)

In particular, (3.1) quantifies how fast ζ ′V vanishes near an endpoint of the support.
We postpone the proof to Section B.3.

3.2 The approximate equilibrium measure equation

In the following, we let

• U be an open neighborhood of ΣV such that (3.1) holds.
• B be the open ball of radius 1

2 in C2(U).

We define a map F from [−1, 1]×B to C1(U) by setting φ := Id + ψ and

F(t, ψ) :=

∫
− log |φ(·)− φ(y)|dµV (y) +

1

2
Vt ◦ φ(·) , (3.2)

Lemma 3.2. The map F takes values in C1(U) and has continuous partial derivatives in
both variables. Moreover there exists C depending only on V such that for all (t, ψ) in
[−1, 1]×B we have∥∥∥∥F(t, ψ)−F(0, 0)− t

2
ξ + ΞV [ψ]

∥∥∥∥
C1(U)

≤ Ct2‖ψ‖2C2(U), (3.3)

where ΞV is as in (1.12).

The proof is postponed to Section B.4.
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CLT for Fluctuations of β-ensembles with general potential

3.3 Inverting the operator

Lemma 3.3. Let ψ be defined by

ψ(x) = − 1

2π2S(x)

(∫
Σ

ξ(y)− ξ(x)

σ(y)(y − x)
dy

)
for x in ΣV , (3.4)

ψ(x) =

∫
ψ(y)

x− y
dµV (y) +

ξ(x)

2
+ cξ∫

1

x− y
dµV (y)− 1

2
V ′(x)

for x ∈ U\ΣV , (3.5)

then ψ is in C l(U) with l = (p− 3− 3k) ∧ (r − 1− 2k) and

‖ψ‖C l(U) ≤ C‖ξ‖Cr(R) (3.6)

for some constant C depending only on V , and there exists a constant cξ such that

ΞV [ψ] =
ξ

2
+ cξ in U,

with ΞV as in (1.12).

The proof of Lemma 3.3 is postponed to Section B.5. In view of our assumptions, ψ
is in C3(U) and we may extend it to R in such a way that it is in C3(R) with compact
support.

3.4 Transport and approximate equilibrium measure

We let ψ be the function defined in Lemma 3.3, and cξ be such that

ΞV [ψ] =
ξ

2
+ cξ on U.

We let
tmax :=

(
2‖ψ‖C2(U)

)−1
, (3.7)

Definition 3.4. For t ∈ [−tmax, tmax],

• We let ψt be given by ψt := tψ.
• We let c̃t := tcξ.
• We let φt be the transport, defined by φt := Id + ψt.
• We let µ̃t be the approximate equilibrium measure, defined by µ̃t := φt#µV .
• We let ζ̃t be the approximate confining term ζ̃t := ζV ◦ φ−1

t .

Finally, we let τt be defined by

τt := F(t, ψt)−F(0, 0)− c̃t. (3.8)

Lemma 3.5. Under our assumptions, the following holds

• The map ψt satisfies

ΞV [ψt] =
t

2
ξ + c̃t.

• The map φt is a C2-diffeomorphism which coincides with the identity outside a
compact support independent of t ∈ [−tmax, tmax].

• The error τt is a O(t2), more precisely

‖τt‖C1(U) ≤ Ct2‖ψ‖2C2(U). (3.9)

Proof. The first two points are straightforward, the bound (3.9) follows from (3.3) and
the definitions.

In the sequel, we will use the fact that the result of Lemma 2.6 allows us to assume
that the points of ~XN all belong to the neighborhood U for t small enough, except for an
event of exponentially small probability.
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CLT for Fluctuations of β-ensembles with general potential

4 Study of the Laplace transform

We now follow the standard approach of reexpressing the Laplace transform of
fluctuations in terms of a ratio of partition functions, and combine it with the change of
variables approach, in the following central computation.

4.1 Expansion of the Laplace transform of the fluctuations

Proposition 4.1. Let s be in R, let t := −2s
βN , and assume that |t| ≤ tmax. We have

EPVN,β [exp (sFluctN (ξ))] = exp

(
−sN

∫
ξdµV

)
ZVtN,β
ZVN,β

(4.1)

and

EPVN,β [exp (sFluctN (ξ))]

= exp (Const)EPVN,β

(
exp

(
t
β

2
A[ ~XN , ψ] +

(
1− β

2

)∫
log φ′tdfluctN + Error

))
(4.2)

where we define

Const = −β
4
N2t2

∫
ξ′ψdµV + tN

(
1− β

2

)∫
ψ′dµV , (4.3)

A[ ~XN , ψ] =

∫∫
R×R

ψ(x)− ψ(y)

x− y
dfluctN (x)dfluctN (y). (4.4)

The Error term satisfies, for any fixed u∣∣∣logEPVN,β (exp(uError))
∣∣∣ ≤ Cu (t2N√N‖ψ‖2C3 + t3N2‖ψ‖3C1

)
. (4.5)

To prove this result, we will use some auxiliary computations, whose proof is in
Appendix B.

Lemma 4.2. For any bounded continuous function h we have∫∫
h(x)− h(y)

x− y
dµV (x)dµV (y) =

∫
V ′(x)h(x)dµV (x). (4.6)

For ψ defined in Lemma 3.3, we have

∫
ξ′ψdµV = −

∫∫ (
ψ(x)− ψ(y)

x− y

)2

dµV (x)dµV (y)−
∫
V ′′ψ2dµV . (4.7)

Proof of Proposition 4.1. By definition of FluctN and in view of (2.3) we have

EPVN,β [exp (sFluctN (ξ))] =
e−sN

∫
ξdµV

ZVN,β

∫
RN

exp

(
−β

2

(
HN ( ~XN ) +Nt

N∑
i=1

ξ(xi)

))
d ~XN

(4.8)
and (4.1) immediately follows by definition of Vt = V + tξ.
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Let us now make the change of variables xi = φt(yi) with φt = Id + tψ where ψ is the
map given in Lemma 3.3. We obtain

esN
∫
ξdµV EPVN,β [exp (sFluctN (ξ))]

=
1

ZVN,β

∫
exp

(
−β

2

(
−
∑
i 6=j

log |φt(xi)− φt(xj)|+N

N∑
i=1

(V + tξ)(φt(xi))

)

+

N∑
i=1

log φ′t(xi)

)
d ~XN

= EPVN,β

[
exp

(
− β

2

(
−
∑
i 6=j

log
|φt(xi)− φt(xj)|
|xi − xj |

+N

N∑
i=1

(Vt(φt(xi))− V (xi))

− 2

β

N∑
i=1

log φ′t(xi)
))]

. (4.9)

Let us now focus on the exponent in the right-hand side. First, since ψ, hence φt, is C1

we may reinsert the diagonal terms and write

−
∑
i 6=j

log
|φt(xi)− φt(xj)|
|xi − xj |

+N

N∑
i=1

(Vt(φt(xi))− V (xi))−
2

β

N∑
i=1

log φ′t(xi)

= −
∑
i,j

log
|φt(xi)− φt(xj)|
|xi − xj |

+N

N∑
i=1

(Vt(φt(xi))− V (xi))

+

(
1− 2

β

) N∑
i=1

log φ′t(xi). (4.10)

Expanding around NµV , we may next write

−
∑
i,j

log
|φt(xi)− φt(xj)|
|xi − xj |

+N

N∑
i=1

(Vt(φt(xi))− V (xi)) +

(
1− 2

β

) N∑
i=1

log φ′t(xi)

= T2 + T1 + T0 (4.11)

where T0, T1, T2 are as follows

T2 = −N2

∫∫
log
|φt(x)− φt(y)|
|x− y|

dµV (x)dµV (y) +N2

∫
(Vt ◦ φt − V )dµV (4.12)

+N

(
1− 2

β

)∫
log φ′tdµV

T1 = −2N

∫∫
log
|φt(x)− φt(y)|
|x− y|

dµV (x)dfluctN (y) +N

∫
(Vt ◦ φt − V ) dfluctN (4.13)

+

(
1− 2

β

)∫
log φ′t dfluctN

T0 = −
∫∫

log
|φt(x)− φt(y)|
|x− y|

dfluctN (x)dfluctN (y). (4.14)

Next, we note that the T2 term is independent of the configuration, and we Taylor
expand it as t→ 0 using that φt = Id + tψ. We may write that
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log
|φt(x)− φt(y)|
|x− y|

= t
ψ(x)− ψ(y)

x− y
− t2

2

(
ψ(x)− ψ(y)

x− y

)2

+ t3εt(x, y) (4.15)

with ‖εt(x, y)‖L∞(R×R) ≤ C‖ψ‖3C1 and expand all other terms to find

T2

N2
= −t

∫∫
ψ(x)− ψ(y)

x− y
dµV (x)dµV (y) +

t2

2

∫∫ (
ψ(x)− ψ(y)

x− y

)2

dµV (x)dµV (y)

+ t

∫
V ′ψ dµV +

t2

2

∫
V ′′ψ2dµV + t

∫
ξdµV + t2

∫
ξ′ψdµV +

t

N

(
1− 2

β

)∫
ψ′dµV

+O

(
t3‖ψ‖3C1+t3‖ψ‖2L∞‖ξ‖C2 +

t2

N
‖ψ‖2C1

)
. (4.16)

Applying (4.6) to ψ and using (4.7), we find

T2 = N2t

∫
ξdµV +

1

2
N2t2

∫
ξ′ψdµV + tN

(
1− 2

β

)∫
ψ′dµV

+O
(
t3N2‖ψ‖3C1+t3N2‖ψ‖2L∞‖ξ‖C2 + t2N‖ψ‖2C1

)
. (4.17)

We turn next to the T1 term, which can be rewritten5 in view of (3.8) as

T1 =

∫ (
2Nτt +

(
1− 2

β

)
log φ′t

)
dfluctN = FluctN [2Nτt]

+

∫ (
1− 2

β

)
log φ′tdfluctN . (4.18)

with ‖τt‖C1(U) ≤ Ct2‖ψ‖2C2(U) as in (3.9). Thus, using Corollary 2.5 we get for any fixed u∣∣∣logEPVN,β [exp (uFluctN [2Nτt])]
∣∣∣ ≤ Cut2N√N‖ψ‖2C2 . (4.19)

For the T0 term, we use (4.15) to write

T0 = −tA[ ~XN , ψ] + t2
∫
ε(x, y)dfluctN (x)dfluctN (y) (4.20)

with ‖ε‖C2(R×R) ≤ C‖ψ‖2C3 .

Applying the result of Proposition 2.4 twice and using (2.8) we find that for any fixed
u and |t| ≤ tmax,∣∣∣∣logEPN,β

[
exp

(
ut2
∫
ε(x, y)dfluctN (x)dfluctN (y)

)]∣∣∣∣ ≤ Cut2N‖ψ‖2C3 . (4.21)

Combining (4.9), (4.11), (4.17), (4.18), (4.20), we obtain that

exp

(
sN

∫
ξdµV

)
EPVN,β [exp (sFluctN (ξ))]

= exp

(
−β

2

(
N2t

∫
ξdµV +

1

2
N2t2

∫
ξ′ψdµV

)
+ tN

(
1− β

2

)∫
ψ′dµV

)
EPVN,β

(
exp

(
t
β

2
A[ ~XN , ψ] +

(
1− β

2

)∫
log φ′tdfluctN + Error

))
, (4.22)

5This uses crucially the fact that ψ is chosen to satisfy ΞV (ψ) = ξ
2

+ cξ.

EJP 23 (2018), paper 115.
Page 13/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP209
http://www.imstat.org/ejp/


CLT for Fluctuations of β-ensembles with general potential

with

Error = −β
2

FluctN [2Nτt]−
β

2
t2
∫
ε(x, y)dfluctN (x)dfluctN (y)

+O(t3N2‖ψ‖3C1+t3N2‖ψ‖2L∞‖ξ‖C2 + t2N‖ψ‖2C1). (4.23)

Combining the estimates (4.19), (4.21) and using the Cauchy-Schwarz inequality, we see∣∣∣logEPVN,β (exp(uError))
∣∣∣

≤ Cu
(
t2N
√
N‖ψ‖2C2 + t2N‖ψ‖2C3+t3N2‖ψ‖2L∞‖ξ‖C2 + t3N2‖ψ‖3C1 + t2N‖ψ‖2C1

)
,

which we may simplify as∣∣∣logEPVN,β (exp(uError))
∣∣∣ ≤ Cu (t2N√N‖ψ‖2C3+t3N2‖ψ‖2L∞‖ξ‖C2 + t3N2‖ψ‖3C1

)
.

The following lemma shows that we can treat
∫

log φ′tdfluctN in the right-hand side of
(4.2) as an error term.

Lemma 4.3. For any fixed u, we have∣∣∣∣logEPVN,β

[
exp

(
u

(
1− β

2

)∫
log φ′tdfluctN

)]∣∣∣∣ ≤ Cut√N‖ψ‖C2 . (4.24)

Proof. It follows from applying Corollary 2.5 to the map log φ′t.

Next, we deal with the term A[ ~XN , ψ] in (4.2).

4.2 First control on the anisotropy term

With Proposition 4.1 at hand, the only thing that remains to elucidate is the behavior
of the exponential moments of A[ ~XN , ψ], which we call the anisotropy. In particular we
will show that these are o(1).

Using concentration bounds, more precisely applying Proposition 2.4 twice together
with (2.8), we obtain a first bound

Lemma 4.4. For |t| ≤ tmax we have∣∣∣logEPVN,β (exp(−βtA[ ~XN , ψ]))
∣∣∣ ≤ CtN‖ψ‖C3(U). (4.25)

Proof. Let us write

A[ ~XN , ψ] =

∫
g(x)dfluctN (x), (4.26)

where we let

g(x) :=

∫
ψ̂(x, y)dfluctN (y), ψ̂(x, y) :=

ψ(x)− ψ(y)

x− y
. (4.27)

It is clear that
‖ψ̂‖C2(U×U) ≤ ‖ψ‖C3(U). (4.28)

Using Proposition 2.4 twice, we can thus write

‖∇g‖L∞ ≤
∣∣∣∣∫ ∇xψ̂(x, y)dfluctN (y)

∣∣∣∣ ≤ C‖∇x∇yψ̂‖L∞ (FN ( ~XN , µV ) +N logN + CN
) 1

2

and

|A[ ~XN , ψ]| =
∣∣∣∣∫ g(x)dfluctN (x)

∣∣∣∣ ≤ C‖∇g‖L∞ (FN ( ~XN , µV ) +N logN + CN
) 1

2

≤ C‖ψ̂‖C2(U×U)

(
FN ( ~XN , µV ) +N logN + CN

)
.
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In view of (2.8) and (4.28), we deduce that∣∣∣logEPN,β

[
−βtA[ ~XN , ψ]

]∣∣∣ ≤ CtN‖ψ‖C3(U). (4.29)

This shows that the exponential moments of the anisotropy yield bounded terms.

4.3 Intermediary conclusion on the Laplace transform

Inserting into the results of Proposition 4.1 and Lemma 4.3 we obtain the following
(with t = −2s

βN )

∣∣∣logEPVN,β [exp(sFluctN (ξ)]
∣∣∣ ≤ C (s (‖ψ‖C1 + ‖ψ‖C3) + s2‖ψ‖L∞‖ξ‖C1

)
+ C

(
s√
N
‖ψ‖2C3 +

s3

N
‖ψ‖2L∞‖ξ‖C2 +

s3

N
‖ψ‖3C1 +

s√
N
‖ψ‖C2

)
.

In view of (3.6), we can bound ‖ψ‖Cn ≤ ‖ξ‖C2k+1+n for any n, hence we obtain

∣∣∣logEPVN,β [exp (sFluctN (ξ))]
∣∣∣

≤ C
(
s (‖ξ‖C2k+2 + ‖ξ‖C2k+4) + s2‖ξ‖C2k+1‖ξ‖C1

)
+ C

(
s√
N
‖ξ‖2C2k+4 +

s3

N
‖ξ‖2C2k+1‖ξ‖C2 +

s3

N
‖ξ‖3C2k+2 +

s√
N
‖ξ‖C2k+3

)
.

We may re-write the right-hand side as a less sharp but simpler bound.

Corollary 4.5. Under the assumptions of Theorem 1 we have for any s such that 2|s|
βN ≤

tmax ∣∣∣logEPVN,β [exp(sFluctN (ξ))]
∣∣∣ ≤ C(s+ s3)

(
‖ξ‖3C2k+4 + ‖ξ‖C2k+4

)
(4.30)

where C depends only on β and V .

The estimate (4.30) shows that fluctuations of a smooth enough test function are
typically of order 1, which is an improvement on the a priori bound (2.10) but does not
yield a CLT. Let us observe that the only error term of order 1 comes from (4.29), which
was derived by treating A[ ~XN , ψ] as a fluctuation and using the a priori bound.

In the one-cut, non-critical case, this argument can be bootstrapped, as described
in Appendix A: roughly speaking we use the new control (4.30) instead of (2.10) to
estimate the exponential moments of A[ ~XN , ψ], and improve (4.29) by a factor N . The
contribution of A[ ~XN , ψ] in (4.2) becomes of lower order and Proposition 4.1 yields the
desired convergence of Laplace transforms. This is a standard technique, see e.g. the
recursion of [BG13b], and can be implemented in the one-cut, non-critical case because
the operator ΞV is invertible. In the multi-cut or critical cases, however, we only know
how to invert the operator ΞV under the extra conditions on the test function.

We then use a different way to show that the exponential moments of A are in
fact smaller than (4.29), by leveraging on the expansion of logZVN,β of [LS17] quoted
in Lemma 2.2. Indeed, comparing (4.1) to (4.2), we observe that the expansion of
logZVtN,β − logZVN,β provides another way of evaluating the exponential moments of A.

More precisely, we will use the expansion of logKN,β(µ̃t, ζ̃t)− logKN,β(µV , ζV ) where µ̃t
is the approximate equilibrium measure obtained by pushing forward µV by Id + tψ.
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5 Smallness of the anisotropy term and proof of Theorem 1

5.1 Comparison of partition functions by transport

Definition 5.1. For t ∈ [−tmax, tmax], where tmax is as in (3.7) we let P(t)
N,β be the proba-

bility measure

dP
(t)
N,β( ~XN ) =

1

KN,β(µ̃t, ζ̃t)
exp

(
−β

2

(
FN ( ~XN , µ̃t) + 2N

N∑
i=1

ζ̃t(xi)

))
d ~XN , (5.1)

where KN,β(µ̃t, ζ̃t) is as in (2.4).

Lemma 5.2 (Comparison of energies). Assume ψ ∈ C3(R). For any ~XN ∈ UN , letting
Φt( ~XN ) = (φt(x1), · · · , φt(xN )), we have∣∣∣∣∣FN (Φt( ~XN ), µ̃t)− FN ( ~XN , µV )−

N∑
i=1

log φ′t(xi) +
t

2
A[ ~XN , ψ]

∣∣∣∣∣
≤ Ct2

(
FN ( ~XN , µV ) +N logN

)
‖ψ‖2C3 . (5.2)

Proof. Since by definition µ̃t = φt#µ0 we may write

FN (Φt( ~XN ), µ̃t)− FN ( ~XN , µV )

= −
∫∫

R×R\4
log |x− y|

( N∑
i=1

δφt(xi) −Nµ̃t
)

(x)
( N∑
i=1

δφt(xi) −Nµ̃t
)

(y)

+

∫∫
R×R\4

log |x− y|dfluctN (x)dfluctN (y)

= −
∫∫

R×R\4
log
|φt(x)− φt(y)|
|x− y|

dfluctN (x)dfluctN (y)

= −
∫∫

R×R
log
|φt(x)− φt(y)|
|x− y|

dfluctN (x)dfluctN (y) +

N∑
i=1

log φ′t(xi).

We may then recognize the term T0 in (4.14) and use (4.20) and Proposition 2.4 to
conclude.

Lemma 5.3 (Comparison of partition functions). We have, for any t small enough

KN,β(µ̃t, ζ̃t)

KN,β(µV , ζV )
= exp

(
N

(
1− β

2

)
(Ent(µV )− Ent(µ̃t))

)
E
P

(0)
N,β

(
exp

(
β

2
tA[ ~XN , ψ] + Error1( ~XN ) + Error2( ~XN )

))
, (5.3)

with error terms bounded by

| logE
P

(0)
N,β

[exp(−2Error1( ~XN ))]| ≤ Ct2N‖ψ‖2C3 , (5.4)

| logE
P

(0)
N,β

[exp(−2Error2( ~XN ))]| ≤ Ct
√
N‖ψ‖2C2 . (5.5)

Proof. Starting from (2.4), by a change of variables and in view of (5.2), we may write

KN,β(µ̃t, ζ̃t) =

∫
exp

(
−β

2

(
FN (Φt( ~XN ), µ̃t) + 2N

N∑
i=1

ζ̃t ◦ φt(xi)
)

+

N∑
i=1

log φ′t(xi)

)
d ~XN

=

∫
exp

(
−β

2

(
FN (Φt( ~XN ), µ̃t) + 2N

N∑
i=1

ζV (xi)

)
+

N∑
i=1

log φ′t(xi)

)
d ~XN ,

(5.6)
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since ζV = ζ̃t ◦ φt by definition. Using Lemma 5.2 we may write

KN,β(µ̃t, ζ̃t)

KN,β(µV , ζV )
=

1

KN,β(µV , ζV )

∫
RN

exp

(
−β

2

(
FN ( ~XN , µ0) + 2N

N∑
i=1

ζ(xi)

)

+

(
1− β

2

) N∑
i=1

log φ′t(xi) +
β

2
tA + Error1( ~XN )

)
d ~XN

= E
P

(0)
N,β

(
exp

((
1− β

2

) N∑
i=1

log φ′t(xi) +
β

2
tA + Error1( ~XN )

))
, (5.7)

where the Error1 term is bounded as in (5.4). We may finally write

N∑
i=1

log φ′t(xi) = N

∫
R

log φ′t dµV + Error2( ~XN )

with an Error2 term as in (5.5), since this term is the same as the one arising in (4.13).
Finally, since by definition φt#µV = µ̃t we may observe that φ′t = µV

µ̃t◦φt and thus∫
R

log φ′t dµV =

∫
R

logµV dµV −
∫
R

logµt ◦ φt dµV = Ent(µV )− Ent(µ̃t). (5.8)

This yields (5.3).

5.2 Smallness of the anisotropy term

Proposition 5.4. For any s such that 2|s|
βN ≤ tmax, we have

logEPVN,β

(
exp

(
−s
N

A

))
= oN (1). (5.9)

Proof. Applying Cauchy-Schwarz to (5.3) we may write

EPVN,β

[
exp

(
β

4
tA

)]2

≤ EPVN,β

[
exp

(
β

2
tA + Error1 + Error2

)]
EPVN,β [exp(−Error1 − Error2)]

≤ KN,β(µ̃t, ζ̃t)

KN,β(µV , ζV )
exp

((
1− β

2

)
N (Ent(µ̃t)− Ent(µV ))

)
EPVN,β (exp(−2Error1))EPVN,β (exp(−2Error2)) . (5.10)

Inserting (2.7) and (5.4)–(5.5) into (5.10) we obtain that for t small enough,

logEPVN,β

(
exp

(
β

4
tA

))
≤ C(t2N‖ψ‖2C3 + t

√
N‖ψ‖2C2) +NδN , (5.11)

for some sequence {δN}N with limN→∞ δN = 0. Applying this to t = 4ε/β with ε small
(possibly depending on N ) and using Hölder’s inequality, we deduce

logEPVN,β

(
exp

(
−s
N

A

))
≤ |s|
Nε

logEPVN,β (exp(εA)) ≤ C|s|ε‖ψ‖2C3 +C
|s|√
N
‖ψ‖2C2 +C

|s|
ε
δN .

In particular, choosing ε =
√
δN , we get (5.9).
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5.3 Conclusion: proof of Theorem 1

Proof of Theorem 1. Combining (4.2) and (4.24) for t = − 2s
βN (where s is independent of

N ) and (5.9), together with the Cauchy-Schwarz inequality, we find

logEPVN,β [exp(sFluctN (ξ))] = logConst + oN (1)

+O

(
s2 + s√
N

(
‖ψ‖2C3(U) + ‖ψ‖2C3(U)

)
+
s3

N

(
‖ψ‖3C1 + ‖ψ‖2L∞‖ξ‖C2

))
(5.12)

with

logConst = −s
2

β

∫
ξ′ψdµV −

2s

β

(
1− β

2

)∫
ψ′dµV (5.13)

Letting N →∞, we obtain,

lim
N→∞

logEPVN,β [exp(sFluctN (ξ))] = −s
2

β

∫
ξ′ψdµV −

2s

β

(
1− β

2

)∫
ψ′dµV (5.14)

and the rate of convergence is uniform for s in a compact set of R.
Thus the Laplace transform of FluctN (ξ) converges (uniformly on compact sets) to

that of a Gaussian of mean mξ and variance vξ, which implies convergence in law and
proves the main theorem.

A The one-cut regular case

In the one-cut noncritical case, every regular enough function is in the range of the
operator Ξ, so that the map ψ can always be built. This allows to bootstrap the approach
used for proving Theorem 1. In this appendix, we expand on how we can proceed in this
simpler setting without refering to the result of [LS17] but assuming more regularity of
ξ, and retrieve the findings of [BG13b] (but without assuming analyticity), as well as a
rate of convergence for the Laplace transform of the fluctuations.

A.1 The bootstrap argument

We will consider the whole family P(t)
N,β of probability measures

dP
(t)
N,β( ~XN ) =

1

KN,β(µ̃t, ζ̃t)
exp

(
−β

2

(
FN ( ~XN , µ̃t) + 2N

N∑
i=1

ζ̃t(xi)

))
d ~XN ,

where KN,β(µ̃t, ζ̃t) is as in (2.4). We will also emphasize the t dependence by writing

fluct
(t)
N :=

∑
i

δxi −Nµ̃t

and using similarly the notation Fluct(t) and A(t).
Let us first explain the main computational point for the bootstrap argument. Differ-

entiating (4.2) with respect to t and using (4.5), we obtain

−βN
2

E
P

(0)
N,β

[Fluct
(0)
N (ξ)] = E

P
(0)
N,β

[
−β

2
A(0)[ ~XN , ψ] +

(
1− β

2

)
d

dt |t=0

N∑
i=1

log φ′t(xi)

]
.

Note that here all the error terms in (4.2) have disappeared because they were in factor
of t2. Also this is true as well for all t ∈ [−tmax, tmax], i.e.

E
P

(t)
N,β

[Fluct
(t)
N (ξ)] = − 2

βN
E
P

(t)
N,β

[
−β

2
A(t)[ ~XN , ψ] +

(
1− β

2

)
d

dt

N∑
i=1

log φ′t(xi)

]
. (A.1)
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We may in addition write that

d

dt

N∑
i=1

log φ′t(xi) = N

∫
d

dt
log φ′t dµ̃t + Fluct

(t)
N

(
d

dt
log φ′t

)
(A.2)

so that

E
P

(t)
N,β

[Fluct
(t)
N (ξ)] = − 2

β

(
1− β

2

)∫
d

dt
log φ′t dµ̃t

− 2

βN
E
P

(t)
N,β

[
−β

2
A(t)[ ~XN , ψ] +

(
1− β

2

)
Fluct

(t)
N

(
d

dt
log φ′t

)]
. (A.3)

This provides a functional equation which gives the expectation of the fluctuation in
terms of a constant term plus a lower order expectation of another fluctuation and the A
term (which itself can be written as a fluctuation, as noted below), allowing to expand it
in powers of 1/N recursively.

A.2 Improved control on the fluctuations

Assuming from now on that n = 0 and m = 0 so that every regular function is in the
range of ΞV , since µ̃t is the push forward of µV by a regular map, it is also one-cut, thus
all the results proved thus far remain true for P(t)

N,β and for any regular enough test
function ξ. Thanks to this, we can upgrade the control of exponential moments given
in Corollary 4.5 into the control of a weak norm of Fluct

(t)
N . Here we use the Sobolev

spaces Hα(R).

Lemma A.1. Under the same assumptions, for α ≥ 14 we have∣∣∣E
P

(t)
N,β

[
‖fluct

(t)
N ‖

2
H−α

]∣∣∣ ≤ C, (A.4)

where C depends only on V .

Proof. The proof is inspired by [AKM17], in particular we start from [AKM17, Prop. D.1]
which states that

‖u‖2H−α(R) ≤ C
∫ 1

0

rα−1‖u ∗ Φ(r, ·)‖2L2(R) dr (A.5)

where Φ(r, ·) is the standard heat kernel, i.e. Φ(r, x) = 1√
4πr

e−
|x|2
4r . It follows that

E
P

(t)
N,β

[
‖fluct

(t)
N ‖

2
H−α(R)‖

]
≤ C

∫ 1

0

rα−1E
P

(t)
N,β

[
‖fluct

(t)
N ∗ Φ(r, ·)‖2L2(R)

]
dr. (A.6)

On the other hand we may easily check that, letting ξx,r := Φ(r, x− ·), we have

E
P

(t)
N,β

[
‖fluct

(t)
N ∗ Φ(r, ·)‖2L2(R)

]
=

∫
E
P

(t)
N,β

[(
Fluct

(t)
N (ξx,r)

)2
]
dx. (A.7)

Applying the result of Corollary 4.5 to ξx,r gives us a control on the second moment of

Fluct
(t)
N [ξx,r] of the form

E
P

(t)
N,β

[
(Fluct

(t)
N (ξx,r))

2
]
≤ C

(
‖ξx,r‖3C4 + ‖ξx,r‖C4

)
.

Inserting into (A.6) and (A.7), we are led to

E
P

(t)
N,β

[
‖fluct

(t)
N ‖

2
H−α(R)

]
≤ C

∫ 1

0

∫
rα−1C

(
‖ξx,r‖3C4 + ‖ξx,r‖C4

)
dx dr.

Since U is bounded, the right-hand side can be bounded by C
∫ 1

0
rα−1(1 + r−27/2) dr,

which converges if α > 27/2.
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A.3 Proof of Theorem 2

First, by (5.6) and in view of Lemma 5.2, we may write

d

dt |t=0
logKN,β(µ̃t, ζ̃t) = E

P
(0)
N,β

[
−β

2
A(0)[ ~XN , ψ] +

(
1− β

2

)
d

dt |t=0

N∑
i=1

log φ′t(xi)

]
. (A.8)

Similarly, we have for all t

d

dt
logKN,β(µ̃t, ζ̃t) = E

P
(t)
N,β

[
−β

2
A(t)[ ~XN , ψ] +

(
1− β

2

)
d

dt

N∑
i=1

log φ′t(xi)

]
. (A.9)

Indeed, µ̃t has the same regularity as µV .
For any test function φ(x, y) we may write∫∫

φ(x, y)dfluct
(t)
N (x) dfluct

(t)
N (y) ≤ ‖φ‖C2α(U×U)‖fluct

(t)
N ‖

2
H−α(R)

and so by the result of Lemma A.1, we find∣∣∣∣EP(t)
N,β

(∫∫
φ(x, y)dfluct

(t)
N (x) dfluct

(t)
N (y)

)∣∣∣∣ ≤ C‖φ‖C2α(U×U). (A.10)

We may return to (4.26) and, using (A.10), write that∣∣∣E
P

(t)
N,β

[
A(t)[ ~XN , ψ]

]∣∣∣ ≤ C‖ψ‖C2α+1(U). (A.11)

On the other hand, by differentiating (4.30) applied with ξ = d
dt log φ′t, we have∣∣∣∣EP(t)

N,β

[∫
d

dt
log φ′tdfluct

(t)
N

]∣∣∣∣ ≤ C (‖ψ‖C5(U) + ‖ψ‖3C5(U)

)
(A.12)

Inserting (5.8) and (A.11) and (A.12), (A.2) into (A.9), and integrating between 0 and
t = −2s/Nβ, we obtain

log
KN,β(µ̃t, ζ̃t)

KN,β(µV , ζV )
=

(
1− β

2

)
N (Ent(µ̃t)− Ent(µ0)) +

s

N
OC

(
‖ψ‖C5(U) + ‖ψ‖3C5(U)

)
.

(A.13)
Comparing (A.13) with (5.3), we obtain

logE
P

(0)
N,β

(
exp

(
β

2
tA(0) + Error1( ~XN ) + Error2( ~XN )

))
=

s

N
O
(
‖ψ‖C2α+1(U) + ‖ψ‖C5(U) + ‖ψ‖3C5(U)

)
Using the bounds of (5.4)-(5.5) and the Cauchy-Schwarz inequality, we deduce that

logE
P

(0)
N,β

[
exp

(
β

2
tA(0)

)]
=

s

N
O
(
‖ψ‖C2α+1(U) + ‖ψ‖C5(U) + ‖ψ‖3C5(U) + s‖ψ‖2C3 +

√
N‖ψ‖C2

)
.

This can be inserted in place of (5.9) into (4.2) yields∣∣∣∣logEPVN,β [exp(sFluctN (ξ))] +

(
1− β

2

)
2s

β

∫
ψ′dµV +

s2

β

∫
ξ′ψdµV

∣∣∣∣
=

s

N
O
(
‖ψ‖C2α+1(U) + ‖ψ‖C5(U) + ‖ψ‖3C5(U) + s‖ψ‖2C3 +

√
N‖ψ‖C2

)
.

Taking α = 14, this proves Theorem 2.
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A.4 Iteration and expansion of the partition function to arbitrary order

Let V,W be two C∞ potentials, such that the associated equilibrium measures µV , µW
satisfy our assumptions with n = 0,m = 0. In this section, we explain how to iterate
the procedure described above to obtain a relative expansion of the partition function,
namely an expansion of logZWN,β − logZVN,β to any order of 1/N . Up to applying an affine
transformation to one of the gases, whose effect on the partition function is easy to
compute, we may assume that µV and µW have the same support Σ, which is a line
segment.

Since V,W are C∞ and µV , µW have the same support and a density of the same form
(1.10) which is C∞ on the interior of Σ, the optimal transportation map (or monotone
rearrangement) φ from µV to µW is C∞ on Σ and can be extended as a C∞ function with
compact support on R. We let ψ := φ − Id, which is smooth, and for t ∈ [0, 1] the map
φt := Id + tψ is a C∞-diffeomorphism, by the properties of optimal transport. We let
µ̃t := φt#µV as before.

We can integrate (A.9) to obtain

log
KN,β(µW , ζW )

KN,β(µV , ζV )

=

∫ 1

0

E
P

(t)
N,β

[
−β

2
A(t)[ ~XN , ψ]+

(
1− β

2

)
N

∫
d

dt
log φ′t dµ̃t+

(
1− β

2

)∫
d

dt
log φ′tdfluct

(t)
N

]
dt

= N

(
1− β

2

)
(Ent(µW )− Ent(µV ))

+

∫ 1

0

E
P

(t)
N,β

[
−β

2
A(t)[ ~XN , ψ] +

(
1− β

2

)
FluctN

[∫
d

dt
log φ′tdfluct

(t)
N

]]
dt.

The integral on the right-hand side is of order 1, and we claim that the terms in the
integral can actually be computed and expanded up to an errorO(1/N) using the previous

lemma. This is clear for the term E
P

(t)
N,β

[
Fluct

(t)
N ( ddt log φ′t)

]
which can be computed up

to an error O(1/N) by the result of Theorem 2. The term E
P

(t)
N,β

[
−β2A

(t)[ ~XN , ψ]
]

can

on the other hand be deduced from the knowledge of the covariance structure of the
fluctuations. Let F denote the Fourier transform. In view of (4.26), using the identity

ψ(x)− ψ(y)

x− y
=

∫ 1

0

ψ′(sx+ (1− s)y)ds

and the Fourier inversion formula we may write

E
P

(t)
N,β

[
A(t)[ ~XN , ψ]

]
= E

P
(t)
N,β

[∫∫
R×R

∫ 1

0

ψ′(sx+ (1− s)y)ds dfluct
(t)
N (x)dfluct

(t)
N (y)

]
=

∫ ∫ 1

0

λF(ψ)(λ)E
P

(t)
N,β

[
Fluct

(t)
N (eisλ·)Fluct

(t)
N (ei(1−s)λ·)

]
ds dλ. (A.14)

On the other hand, let ϕs,λ be the map associated to eisλ· by Lemma 3.3. Separating the
real part and the imaginary part we may use the results of the previous subsection to
eisλ· and obtain

E
P

(t)
N,β

[
Fluct

(t)
N (eisλ·)

]
=

(
1− 2

β

)∫
ϕ′s,λdµ̃t +O(

1

N
) .
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By polarization of the expression for the variance (see (1.16)) and linearity

E
P

(t)
N,β

[
Fluct

(t)
N (eisλ·)Fluct

(t)
N (ei(1−s)λ·)

]
= E

P
(t)
N,β

[
Fluct

(t)
N (eisλ·)

]
E
P

(t)
N,β

[
Fluct

(t)
N (ei(1−s)λ·)

]
+

2

β

(∫∫ (ϕs,λ(u)− ϕs,λ(v)

u− v

)(
ϕ(1−s),λ(u)− ϕ(1−s),λ(v)

u− v

)
dµ̃t(u)dµ̃t(v)

+

∫
V ′′t ϕs,λϕ(1−s),λdµ̃t

)
+O(

1

N
).

Letting N →∞, we may then find the expansion up to O(1/N) of E
P

(t)
N,β

[
−β2A

(t)[ ~XN , ψ]
]
.

Inserting it into the integral gives a relative expansion to order 1/N of the (logarithm of
the) partition function logKN,β. This procedure can then be iterated to yield a relative
expansion to arbitrary order of 1/N as desired.

B Auxiliary proofs

B.1 Proof of Lemma 2.1

Proof. Denoting 4 the diagonal in R×R we may write

HVN ( ~XN ) =
∑
i6=j

− log |xi − xj |+N

N∑
i=1

V (xi)

=

∫∫
4c
− log |x− y|

( N∑
i=1

δxi

)
(x)
( N∑
i=1

δxi

)
(y) +N

∫
R

V (x)
( N∑
i=1

δxi

)
(x).

Writing
∑N
i=1 δxi as NµV + fluctN we get

HVN ( ~XN ) = N2

∫∫
4c
− log |x− y|dµV (x)dµV (y) +N2

∫
R

V dµV

+ 2N

∫∫
4c
− log |x− y|dµV (x)dfluctN (y) +N

∫
R

V dfluctN

+

∫∫
4c
− log |x− y|dfluctN (x)dfluctN (y). (B.1)

We now recall that ζV was defined in (1.7), and that ζV = 0 in ΣV . With the help of this
we may rewrite the medium line in the right-hand side of (B.1) as

2N

∫∫
4c
− log |x− y|dµV (x)dfluctN (y) +N

∫
R

V dfluctN

= 2N

∫
R

(
− log | · | ∗ dµV )(x) +

V

2

)
dfluctN = 2N

∫
R

(ζV + c)dfluctN

= 2N

∫
R

ζV d
( N∑
i=1

δxi −NµV
)

= 2N

N∑
i=1

ζV (xi).

The last equalities are due to the facts that ζV vanishes on the support of µV and that
fluctN has a total mass 0 since µV is a probability measure. We may also notice that since
µV is absolutely continuous with respect to the Lebesgue measure, we may include the
diagonal back into the domain of integration. By that same argument, one may recognize
in the first line of the right-hand side of (B.1) the quantity N2IV (µV ).

EJP 23 (2018), paper 115.
Page 22/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP209
http://www.imstat.org/ejp/


CLT for Fluctuations of β-ensembles with general potential

B.2 Proof of Proposition 2.4

We follow the energy approach introduced in [SS15,PS14], which views the energy
as a Coulomb interaction in the plane, after embedding the real line in the plane. We
view R as identified with R× {0} ⊂ R2 = {(x, y), x ∈ R, y ∈ R}. Let us denote by δR the
uniform measure on R× {0}, i.e. such that for any smooth ϕ(x, y) (with x ∈ R, y ∈ R) we
have ∫

R2

ϕδR =

∫
R

ϕ(x, 0) dx.

Given (x1, . . . , xN ) in RN , we identify them with the points (x1, 0), . . . , (xN , 0) in R2.
For a fixed ~XN and a given probability density µ we introduce the electric potential Hµ

N

by

Hµ
N = (− log | · |) ∗

(
N∑
i=1

δ(xi,0) −NµδR

)
. (B.2)

Next, we define versions of this potential which are truncated hence regular near the
point charges. For that let δ(η)

x denote the uniform measure of mass 1 on ∂B(x, η) (where
B denotes an Euclidean ball in R2). We define Hµ

N,η in R2 by

Hµ
N,η = (− log | · |) ∗

(
N∑
i=1

δ
(η)
(xi,0) −NµδR

)
. (B.3)

These potentials make sense as functions in R2 and are harmonic outside of the real axis.
Moreover, Hµ

N,η solves

−∆Hµ
N,η = 2π

(
N∑
i=1

δ
(η)
(xi,0) −NµδR

)
. (B.4)

Lemma B.1. For any probability density µ, ~XN in RN and η in (0, 1), we have

FN ( ~XN , µ) ≥ 1

2π

∫
R2

|∇Hµ
N,η|

2 +N log η − 2N2‖µ‖L∞η. (B.5)

Proof. First we notice that
∫
R2 |∇HN,η|2 is a convergent integral and that

∫
R2

|∇HN,~η|2 = 2π

∫∫
− log |x− y|d

(
N∑
i=1

δ(η)
xi −NµδR

)
(x)d

(
N∑
i=1

δ(η)
xi −NµδR

)
(y).

(B.6)
Indeed, we may choose R large enough so that all the points of ~XN are contained in the
ball BR = B(0, R). By Green’s formula and (B.4), we have

∫
BR

|∇HN,η|2 =

∫
∂BR

HN,η
∂HN

∂ν
+ 2π

∫
BR

HN,η

(
N∑
i=1

δ(η)
xi −NµδR

)
. (B.7)

In view of the decay of HN and ∇HN , the boundary integral tends to 0 as R→∞, and
so we may write ∫

R2

|∇HN,η|2 = 2π

∫
R2

HN,η

(
N∑
i=1

δ(η)
xi −Nµ

)
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and thus (B.6) holds. We may next write∫∫
− log |x− y|d

(
N∑
i=1

δ(η)
xi −NµδR

)
(x)d

(
N∑
i=1

δ(η)
xi −NµδR

)
(y)

−
∫∫
4c
− log |x− y| dfluctN (x) dfluctN (y)

= −
N∑
i=1

log η+
∑
i 6=j

∫∫
− log |x−y|

(
δ(η)
xi δ

(η)
xj −δxiδxj

)
+2N

N∑
i=1

∫∫
− log |x−y|

(
δxi−δ(η)

xi

)
µ.

(B.8)

We have used the fact that for any xi,∫∫
− log |x− y|δ(η)

xi (x)δ(η)
xi (y) = − log η,

as follows from a direct computation of Newton’s theorem.
Let us now observe that

∫
− log |x− y|δ(η)

xi (y), the potential generated by δ(η)
xi is equal

to
∫
− log |x − y|δxi outside of B(xi, η), and smaller otherwise. Since its Laplacian is

−2πδ
(η)
xi , a negative measure, this is also a superharmonic function, so by the maximum

principle, its value at a point xj is larger or equal to its average on a sphere centered
at xj . Moreover, outside B(xi, η) it is a harmonic function, so its values are equal to its
averages. We deduce from these considerations, and reversing the roles of i and j, that
for each i 6= j,

−
∫

log |x− y|δ(η)
xi δ

(η)
xj ≤ −

∫
log |x− y|δxiδ(η)

xj ≤ −
∫

log |x− y|δxiδxj .

We may also obviously write∫
− log |x− y|δxiδxj −

∫
− log |x− y|δ(η)

xi δ
(η)
xj ≤ − log |xi − xj |1|xi−xj |≤2η.

We conclude that the second term in the right-hand side of (B.8) is nonpositive, equal to 0

if all the balls are disjoint, and bounded below by
∑
i 6=j log |xi− xj |1|xi−xj |≤2η. Finally, by

the above considerations, since
∫
− log |x− y|δ(η)

xi coincides with
∫
− log |x− y|δxi outside

B(xi, η), we may rewrite the last term in the right-hand side of (B.8) as

2N

N∑
i=1

∫
B(xi,η)

(− log |x− xi|+ log η))dµδR.

But we have that ∫
B(0,η)

(− log |x|+ log η)δR = η (B.9)

so if µ ∈ L∞, this last term is bounded by 2‖µ‖L∞N2η. Combining with all the above
results yields the proof.

Proof of Proposition 2.4. We now apply Lemma B.1 for µV with η = 1
2N . We obtain

1

2π

∫
R2

|∇Hµ
N,η|

2 ≤ FN ( ~XN , µV ) +N logN + C(‖µV ‖L∞ + 1)N. (B.10)

Let ξ be a Lipschitz, compactly supported test function in R, and let χ(y) be a smooth
cutoff function such that χ(y) = 1 for |y| ≤ 1, χ(y) = 0 for |y| ≥ 2 and ‖χ′‖L∞ ≤ 1. We
then extend ξ in R2 by χ̃ defined as

χ̃(x, y) := ξ(x)χ(y).
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It is easy to check that for any (x, y),

|∇χ̃(x, y)| ≤ |ξ′(x)|+ |ξ(x)|,

and χ̃ is supported in an horizontal stripe of width 1.
Letting #I denote the number of balls B(xi, η) intersecting the support of ξ, we have

(with η = 1
2N )∣∣∣∣∣

∫ (
fluctN −

(
N∑
i=1

δ(η)
xi −NµV δR

))
χ̃

∣∣∣∣∣ =

∣∣∣∣∣
∫ ( N∑

i=1

(δxi − δ(η)
xi )

)
χ̃

∣∣∣∣∣
≤ #Iη‖ξ′‖L∞ ≤ ‖ξ′‖L∞ , (B.11)

where we have bounded #I by N in the last inequality.
In view of (B.4), we also have∣∣∣∣∣
∫ ( N∑

i=1

δ(η)
xi −NµV δR

)
χ̃

∣∣∣∣∣ =
1

2π

∣∣∣∣∫
R2

∇HµV
N,η · ∇(χ̃)

∣∣∣∣
≤ 1

2π
(‖ξ′‖L2(R) + ‖ξ‖L2(R))‖∇HµV

N,η‖L2(R2). (B.12)

Combining (B.10), (B.11) and (B.12), we obtain∣∣∣∣∫ ξ fluctN

∣∣∣∣
≤ ‖ξ′‖L∞ +

(
‖ξ′‖L2(R) + ‖ξ‖L2(R)

) (
FN ( ~XN , µV ) +N logN + C(‖µV ‖L∞ + 1)N

) 1
2

.

(B.13)

B.3 Proof of Lemma 3.1

Proof. Since µV minimizes the logarithmic potential energy (1.6), for any bounded
continuous function h, (4.6) holds. Of course, an identity like (4.6) extends to complex-
valued functions, and applying it to h = 1

z−· for some fixed z ∈ C \ ΣV leads to

G(z)2 −G(z)V ′(R(z)) + L(z) = 0, (B.14)

where G is the usual Stieltjes transform of µV

G(z) =

∫
1

z − y
dµV (y), (B.15)

and L is defined by

L(z) =

∫
V ′(R(z))− V ′(y)

z − y
dµV (y). (B.16)

Solving (B.14) for G yields

G(z) =
1

2

(
V ′(R(z))−

√
V ′(R(z))2 − 4L(z)

)
. (B.17)

As is well-known, since µV is continuous on ΣV , the quantity − 1
πI(G(x+ iε)) converges

towards the density µV (x) as ε→ 0+, hence we have for x in ΣV

µV (x)2 = S(x)2σ2(x) = − 1

(2π)2
(V ′(x)2 − 4L(x)). (B.18)
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This proves that µV has regularity Cp−2 at any point where it does not vanish. Assuming
the form (1.11) for S, we also deduce that the function S0 has regularity at least Cp−3−2k

on ΣV .
Applying (B.17) on R \ Σ, we obtain

1

2
V ′(x)−

∫
1

x− y
dµV (y) =

1

2

√
V ′(x)2 − 4L(x),

and the left-hand side is equal to ζ ′(x).
Using (1.11), (B.18) and the fact that V is regular, we may find a neighborhood U

small enough such that ζ ′ does not vanish on U \ ΣV and on which we can write ζ ′ as in
(3.1).

B.4 Proof of Lemma 3.2

Proof. We first prove that the image of F is indeed contained in C1(U).
For (t, ψ) = (0, 0), we have indeed F(0, 0) = ζV +c and ζV is in C1(R) by the regularity

assumptions on V . We may also write

F(t, ψ) = F(0, 0)−
∫

log
|φ(·)− φ(y)|
| · −y|

dµV (y) +
1

2
(Vt ◦ φ− V ◦ φ),

and since ‖ψ‖C2(U) ≤ 1/2, the second and third terms are also in C1(U).
Next, we compute the partial derivatives of F at a fixed point (t0, ψ0) ∈ [−1, 1]×B. It

is easy to see that
∂F
∂t

∣∣∣
(t0,ψ0)

=
1

2
ξ ◦ φ0,

and the map (t0, ψ0) 7→ ξ ◦ φ0 is indeed continuous.
The Fréchet derivative of F with respect to the second variable can be computed as

follows

F(t0, ψ0 + ψ1) = −
∫

log
∣∣∣(φ0(·)− φ0(y)

)
+
(
ψ1(·)− ψ1(y)

)∣∣∣dµV (y) +
1

2
Vt0 ◦ (φ0 + ψ1)

= F(t0, ψ0)−
∫

log
∣∣∣1 +

ψ1(·)− ψ1(y)

φ0(·)− φ0(y)

∣∣∣dµV (y) +
1

2

(
Vt0 ◦ (φ0 + ψ1)− Vt0 ◦ φ0

)
= F(t0, ψ0)−

∫
ψ1(·)− ψ1(y)

φ0(·)− φ0(y)
dµV (y) +

1

2
ψ1V

′
t0 ◦ φ0 + εt0,ψ0

(ψ1) ,

where εt0,ψ0
(ψ1) is given by

εt0,ψ0(ψ1) = −
∫ [

log
∣∣∣1 +

ψ1(·)− ψ1(y)

φ0(·)− φ0(y)

∣∣∣− ψ1(·)− ψ1(y)

φ0(·)− φ0(y)

]
dµV (y)

+
1

2

(
Vt0 ◦ (φ0 + ψ1)− Vt0 ◦ φ0 − ψ1V

′
t0 ◦ φ0

)
.

By differentiating twice inside the integral we get the bound

‖εt0,ψ0(ψ1)‖C1(U) ≤ C(t0, ψ0)‖ψ1‖2C2(U),

with a constant depending on V . It implies that

∂F
∂ψ

∣∣∣
(t0,ψ0)

[ψ1] = −
∫
ψ1(·)− ψ1(y)

φ0(·)− φ0(y)
dµV (y) +

1

2
ψ1V

′
t0 ◦ φ0 ,

and we can check that this expression is also continuous in (t0, ψ0). In particular, we
may observe that

∂F
∂ψ

∣∣∣
(0,0)

[ψ] = −ΞV [ψ]. (B.19)
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Finally, we prove the bound (3.3). For any fixed (t, ψ) ∈ [−1, 1]×B, we write

F(t, ψ)−F(0, 0) =

∫ 1

0

dF(st, sψ)

ds
ds =

∫ 1

0

(
t
∂F
∂t

∣∣∣
(st,sψ)

+
∂F
∂ψ

∣∣∣
(st,sψ)

[ψ]
)
ds ,

we get

‖F(t, ψ)−F(0, 0)− t

2
ξ + ΞV [ψ]‖C1(U) ≤

∫ 1

0

(
t

2
‖ξ ◦ φs − ξ‖C1(U)

+

∥∥∥∥∂F∂ψ ∣∣∣(st,sψ)
[ψ]− ∂F

∂ψ

∣∣∣
(0,0)

[ψ]

∥∥∥∥
C1(U)

)
ds, (B.20)

with φs = Id + sψ. It is straightforward to check that

‖ξ ◦ φs − ξ‖C1(U) ≤ C‖ξ‖C2(U)‖ψ‖C1(U) .

To control the second term inside the integral we write

∂F
∂ψ

∣∣∣
(st,sψ)

[ψ]− ∂F
∂ψ

∣∣∣
(0,0)

[ψ]

= −
∫ (

ψ(·)− ψ(y)

φs(·)− φs(y)
− ψ(·)− ψ(y)

· − y

)
dµV (y) +

1

2
(V ′st ◦ φs − V ′)ψ

and we obtain∥∥∥∥∂F∂ψ ∣∣∣(st,sψ)
[ψ]− ∂F

∂ψ

∣∣∣
(0,0)

[ψ]

∥∥∥∥
C1(U)

≤
∫ ∥∥∥∥ ψ(·)− ψ(y)

φs(·)− φs(y)
− ψ(·)− ψ(y)

· − y

∥∥∥∥
C1(U)

dµV (y)

+
∥∥(V ′st ◦ φs − V ′)ψ∥∥C1(U)

We now use that∥∥∥∥( ψ(·)− ψ(y)

φs(·)− φs(y)
− ψ(·)− ψ(y)

· − y

)∥∥∥∥
C1(U)

=

∥∥∥∥(ψ(·)− ψ(y)

· − y

)(
· − y

φs(·)− φs(y)
− 1

)∥∥∥∥
C1(U)

≤ C‖ψ‖C2(U)

∥∥∥∥ · − y
φs(·)− φs(y)

− 1

∥∥∥∥
C1(U)

= Cs‖ψ‖C2(U)

∥∥∥∥ ψ(·)− ψ(y)

φs(·)− φs(y)

∥∥∥∥
C1(U)

≤ C‖ψ‖2C2(U)

∥∥∥∥ · − y
φs(·)− φs(y)

∥∥∥∥
C1(U)

≤ C‖ψ‖2C2(U) .

In the second and the fourth line, we used Leibniz formula . In the last line we used that
s(ψ(·)− ψ(y))/(· − y) is uniformely bounded by 1/2 in C2(U) so its composition with the
function x→ 1/(1 + x) is bounded in C2(U). We conclude by checking that

‖
(
V ′st ◦ φs − V ′

)
ψ‖C1(U) ≤ C

(
‖V ‖C3(U)‖ψ‖C1(U) + t‖ψ‖C2(U)

)
‖ψ‖C0(U) .
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B.5 Proof of Lemma 3.3

Proof. First, we solve the equation ΞV [ψ] = 1
2ξ + cξ in Σ̊V , where ΞV is operator defined

in (1.12). For x in Σ̊V , we have the following equation

V ′(x)

2
= P.V.

∫
1

x− y
dµV (y). (B.21)

In particular, for x in Σ̊V , it implies

ΞV [ψ](x) := P.V.

∫
ΣV

ψ(y)

y − x
µV (y)dy, (B.22)

and we might thus try to solve

P.V.

∫
ΣV

ψ(y)

y − x
µV (y)dy =

1

2
ξ + cξ. (B.23)

Equation (B.23) is a singular integral equation, we refer to [Mus92, Chap. 10-11-12] for
a detailed treatment. In particular, it is known that if the conditions (1.14) are satisfied,
then there exists a solution ψ0 to

P.V.

∫
ΣV

ψ0(y)

y − x
dy =

1

2
ξ + cξ on Σ̊V , (B.24)

which is explicitly given by the formula

ψ0(x) = −σ(x)

2π2
P.V.

∫
ΣV

ξ(y)

σ(y)(y − x)
dy. (B.25)

Since we have, for x in Σ̊V

P.V.

∫
ΣV

1

σ(y)(y − x)
dy = 0,

we may re-write (B.25) as

ψ0(x) = −σ(x)

2π2

∫
ΣV

ξ(y)− ξ(x)

σ(y)(y − x)
dy on Σ̊V , (B.26)

where the integral is now a definite Riemann integral. From (B.26) we deduce that the
map ψ0

σ is of class Cr−1 in Σ̊V and extends readily to a Cr−1 function on ΣV .
For d = 0, . . . , r − 1 and for x ∈ ΣV , we compute that(

ψ0

σ

)(d)

(x) = − d!

2π2

∫
ΣV

ξ(y)−Rsi,d+1ξ(y)

σ(y)(y − si)d+1
dy.

In particular, if conditions (1.15) hold, in view of Lemma 3.1 the map

ψ(x) :=
ψ0(x)

S(x)σ(x)

extends to a function of class (p− 3− 2k) ∧ (r − 1− k), hence C2 on ΣV , and in view of
(B.24) it satisfies ΞV [ψ] = ξ

2 + cξ on ΣV .
Now, we define ψ outside ΣV . By definition, for x outside ΣV , the equation

ΞV [ψ](x) =
1

2
ξ(x) + cξ
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can be written as

ψ(x)

∫
1

x− y
dµV (y)−

∫
ψ(y)

x− y
dµV (y)− 1

2
ψ(x)V ′(x) =

1

2
ξ(x) + cξ,

and thus the choice (3.5) ensures that ΞV [ψ] = 1
2ξ + cξ. Moreover, ψ is clearly of class

Cr∧(p−1) on R\ΣV . It remains to check that ψ has the desired regularity at the endpoints
of ΣV . Let us consider ψ̃ an extension of ψ in Cl with l := (p− 3− 2k)∧ (r− 1− k), which
coincides with ψ on ΣV (given for instance by a Taylor expansion at the endpoints). As ψ
and ψ̃ are equal on the support we can rewrite (3.5) as∫ ψ(y)

x−y dµV (y) + ξ(x)
2 + cξ∫

1
x−ydµV (y)− 1

2V
′(x)

=
−
∫ ψ̃(x)−ψ̃(y)

x−y dµV (y) + ψ̃(x)
∫

1
x−ydµV (y) + ξ(x)

2 + cξ∫
1

x−ydµV (y)− 1
2V
′(x)

= ψ̃(x) +
ξ(x)

2 + cξ − ΞV [ψ̃](x)∫
1

x−ydµV (y)− 1
2V
′(x)

.

Since ΞV [ψ] = ξ
2 + cξ on ΣV , the numerator on the right hand side of the last equation

and its first l derivatives vanish at any endpoint α. From Lemma (3.1) we conclude that
ψ is of class l − k = (p− 3− 3k) ∧ (r − 1− 2k) at α, hence C2 from (1.13).

B.6 Proof of Lemma 4.2

Proof. The first item is a consequence of the fact that µV minimizes the logarithmic
potential energy (1.6) and hence as is well-known

∫
− log | · −y| dµV (y) + 1

2V is constant
on the support of µV . Differentiating this and integrating against hdµV gives the result.
For the second relation, by definition of ψ we have

ξ

2
+ cξ =

∫
ψ(x)− ψ(y)

x− y
dµV (y)− 1

2
ψV ′ ,

and thus

ξ′ = 2

∫
ψ(y)− ψ(x)− ψ′(x)(y − x)

(x− y)2
dµV (y)− ψ′V ′ − ψV ′′ .

Integrating both sides against ψµV yields∫
ξ′ψdµV = 2

∫∫
(ψ(y)− ψ(x)− ψ′(x)(y − x))ψ(x)

(x− y)2
dµV (y)dµV (x)

−
∫
ψψ′V ′dµV −

∫
V ′′ψ2dµV .

Using (4.6) for the second term we obtain∫
ξ′ψdµV = 2

∫∫
(ψ(y)− ψ(x)− ψ′(x)(y − x))ψ(x)

(y − x)2
dµV (y)dµV (x)

−
∫∫

ψψ′(y)− ψψ′(x)

y − x
dµV (x)dµV (y)−

∫
V ′′ψ2dµV .

We may then combine the first two terms in the right-hand side to obtain (4.7).
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