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Abstract

A family of self-similar and translation-invariant random sup-measures with long-range
dependence are investigated. They are shown to arise as the limit of the empirical
random sup-measure of a stationary heavy-tailed process, inspired by an infinite urn
scheme, where same values are repeated at several random locations. The random
sup-measure reflects the long-range dependence nature of the original process, and
in particular characterizes how locations of extremes appear as long-range clusters
represented by random closed sets. A limit theorem for the corresponding point-
process convergence is established.
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1 Introduction

There is a recently renewed interest in limit theorems for extreme values of stationary
processes in the presence of long-range dependence [1, 27, 31]. Let {Xn}n∈N be a
stationary process. In extreme value theory, it is by now a classical problem to investigate
the limit of the partial maxima {maxi=1,...,bntc Xi}t∈[0,1] as a process of t ∈ [0, 1], after
appropriate normalization, as n → ∞. It is further understood that such functional limit
theorems are better illustrated in terms of convergence of point processes, in particular
in the case when the dependence of the extremes of {Xn}n∈N is weak. For a simple and
yet representative example, take {Xn}n∈N to be i.i.d. heavy-tailed random variables such
that P(X1 > x) ∼ x−α as x → ∞ with tail index α ∈ (0,∞). It is well known that

n∑
i=1

δ(Xi/n1/α,i/n) ⇒
∞∑
`=1

δ
(Γ

−1/α
` ,U`)

, (1.1)
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A family of random sup-measures with long-range dependence

where {(Γ`, U`)}`∈N is a measurable enumeration of points from a Poisson point process
on R+ × [0, 1] with intensity dxdu. Such a point-process convergence provides a detailed
description of the asymptotic behavior of extremes, by which we mean broadly the top
order statistics instead of the largest one alone: the top order statistics normalized
by n1/α converge weakly to Γ

−1/α
1 ,Γ

−1/α
2 , . . . , and their locations are asymptotically

independent and uniformly distributed over [0, 1] [22]. Such a picture is representative
for the general situation where {Xn}n∈N have weak dependence. Classical references
now include [7, 21, 29], among others.

The recent advances along this line, however, focus on the case when the stationary
process {Xn}n∈N has long-range dependence in the literature. The long-range depen-
dence here, roughly speaking, means that with the same marginal law, the normalization
of maxima is of a different order from n1/α so that a non-degenerate limit arises [30, 31].
In the seminal work of O’Brien et al. [25], summarizing a series of developments in the
80s, it has been pointed out that all possible non-degenerate limits of extremes of a sta-
tionary sequence can be fit into the framework of convergence of random sup-measures.
The framework could be viewed as a counterpart of the Lamperti’s theorem [19] for
extremes, in the sense that the limit random sup-measures are necessarily shift-invariant
and self-similar. This framework of course includes the case (1.1), and the corresponding
limit random sup-measure on [0, 1] can be represented as

Mα(·) = sup
`∈N

1

Γ
1/α
`

1{U`∈ · }, (1.2)

or more generally as a random sup-measure on R in the same notation with {(Γ`, U`)}`∈N
a Poisson point process on R+ ×R with intensity dxdu. In this case, furthermore, the
limit random sup-measure is independently scattered (a.k.a. completely random) and
α-Fréchet, that is, its values over disjoint sets are independent and for every bounded
open set A, Mα(A) is α-Fréchet distributed with P(Mα(A) ≤ x) = exp(−Leb(A)x−α),
x > 0. Independently scattered random sup-measures are fundamental in stochastic
extremal integral representations of max-stable processes [34]. In general, the random
sup-measure arising from a stationary sequence may not be independently scattered, or
even Fréchet [32].

However, within the general framework of convergence of random sup-measures, to
the best of our knowledge it is only very recently that other concrete non-trivial examples
have been completely worked out. In a series of papers [18, 26, 32], the extremes of a
well-known challenging example of heavy-tailed stationary processes with long-range
dependence have been completely characterized in terms of limit theorems for random
sup-measures. For this example, the limit random sup-measure obtained by Lacaux and
Samorodnitsky [18] takes the form

Msr
α,β(·) = sup

`∈N

1

Γ
1/α
`

1{
R̃

(β)
` ∩ · 6=∅

}, (1.3)

where {Γ`}`∈N are as before, {R̃(β)
` }`∈N are i.i.d. random closed sets of [0, 1], each

consisting of a randomly shifted (1−β)-stable regenerative set (a stable regenerative set
is the closure of a stable subordinator; see Example 6.1 below for a complete description
of R̃(β)

` ), and the two sequences are independent. We refer to this family of random
sup-measures as stable-regenerative random sup-measures in this paper. More precisely,
Msr

α,β arises in limit theorems for a discrete model with parameters α > 0, β ∈ (1/2, 1)

[18], and it can be naturally extended to all β ∈ (0, 1) (for the original problem in [18]
with β ∈ (0, 1/2), a more complicated random sup-measure of non-Fréchet type is shown
to arise in the limit in [32]; note also that a different parameterization β̃ = 1 − β was
used in [32]).
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One could draw a comparison between (1.2) and (1.3) by viewing each uniform
random variable Ui in (1.2) as a random closed set consisting of a singleton point. From
this point of view, for the stable-regenerative random sup-measures, the random closed
sets {R̃(β)

` }`∈N represent the limit law of positions of extremes, and in this case they

reveal a much more intriguing structure: for example, each R̃
(β)
` , as randomly shifted

(1−β)-stable regenerative set, is uncountably infinite and with Hausdorff dimension 1−β

almost surely. They reflect the picture that each top order statistic shows up at infinitely
many different locations, even unbounded ifMsr

α,β is viewed as a random sup-measure on
R, in a sharp contrast to the situation of independently scattered random sup-measure
(1.2) where each top order statistic occurs at a unique random location.

We refer to the phenomena that each top order statistic may show up at multiple and
possibly infinitely many locations by long-range clustering. Clustering of extremes have
been studied before, but in most examples clusters are local in the sense that, roughly
speaking, each top order statistic is replaced by a cluster consisting of several correlated
values at the same time point, due to certain local dependence structure of the original
model (see e.g. [14, 21]).

In this paper, by examining another model of heavy-tailed stationary processes,
we prove the convergence of empirical random sup-measures to a family of random
sup-measures, exhibiting long-range clustering. We refer to this family as the Karlin
random sup-measures, denoted by Mα,β with α > 0, β ∈ (0, 1) (see (3.5)). These random

sup-measures are also in the form of (1.3): now each random closed set R̃(β)
` is replaced

by a new one consisting of a random number of independent uniform random variables,
and hence its complexity is between the independently scattered random sup-measures
(1.2) and stable-regenerative random sup-measures (1.3). In the literature, the Karlin
random sup-measures have been considered recently by Molchanov and Strokorb [24],
from the aspect of extremal capacity functionals.

The Karlin random sup-measures arise in our investigation on the so-called heavy-
tailed Karlin model, a variation of an infinite urn scheme investigated by Karlin [17].
The model is a stationary heavy-tailed process where each top order statistic shows up
at possibly multiple locations. It has been known to have long-range dependence, and
functional central limit theorems for related partial sums have been recently investigated
in [10, 11]. Here, for the extremes, we establish a limit theorem (Theorem 4.1) of point-
process convergence encoding the values and corresponding locations of the stationary
process as in (1.1), with now locations represented by random closed sets. In particular,
the joint convergence describes the long-range clustering of the corresponding order
statistics of the Karlin model, and as an immediate consequence the convergence of the
empirical random sup-measure to the Karlin random sup-measure in the form of (1.3)
follows (Theorem 4.2).

Another way to distinguish the Karlin random sup-measures from independently
scattered and stable-regenerative random sup-measures is by noticing that they all
have different ergodic properties. This can be understood by comparing the ergodic
properties of the induced max-increment processes of each class. Each max-increment
process of a max-stable random sup-measure is a stationary max-stable process. Ergodic
properties of stationary max-stable processes have been recently investigated in the
literature [9, 15, 16, 33]. In particular, it is known that the max-increment processes of
independently scattered random sup-measures are mixing, those of stable-regenerative
random sup-measures are ergodic but not mixing, and here we show that those of Karlin
random sup-measures are not ergodic.

We also notice that the Karlin random sup-measures and stable-regenerative ran-
dom sup-measures both have the same extremal process as a time-changed standard
α-Fréchet extremal process, and this holds in a much greater generality. It is easy to
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see that the extremal process contains much less information than the corresponding
random sup-measure. Here we elaborate the relation of the two by showing that for
all self-similar Choquet random sup-measures (defined in Section 2), the associated
extremal processes are time-changed standard extremal processes (Proposition A.1 in
the appendix).

The paper is organized as follow. A general class of random sup-measures, the
so-called Choquet random sup-measures, is presented in Section 2. In Section 3, we
introduce the Karlin random sup-measures. In Section 4, we introduce the heavy-tailed
Karlin model, and state our main results. The proofs are provided in Section 5. In
Section 6 we discuss related random sup-measures having the same extremal process.
The appendix is devoted to a general result concerning the relation between Choquet
random sup-measures and their extremal processes. Some related background on
random closed sets and random sup-measures are provided below.

Preliminary background

We start with spaces of closed sets. Our main reference is [23]. We shall consider
the space of all closed subsets of a given metric space E, denoted by F(E), with only
E = [0, 1], R or R+ := [0,∞) in this paper. The space F ≡ F(E) is equipped with the Fell
topology. That is, letting G ≡ G(E) and K ≡ K(E) denote the open and compact subsets
of F , respectively, the topology generated by the base of sets

FG := {F ∈ F : F ∩G 6= ∅} , G ∈ G

and
FK := {K ∈ K : F ∩K = ∅} , K ∈ K.

The Fell topology is also known as the hit-and-miss topology. With our choice of E
(and more generally when it is locally compact and Hausdorff second countable), the
Fell topology on F(E) is metrizable. Hence we define random closed sets as random
elements in a metric space [3]. The law of a random closed set R is uniquely determined
by

ϕ(K) := P(R ∩K 6= ∅), K ∈ K(E),

where K(E) is the collection of all compact subsets of E, and ϕ is known as the capacity
functional of R. Let {Rn}n∈N and R be a collection of random closed sets in F . A practical
sufficient condition for the weak convergence Rn ⇒ R in F(E) as n → ∞ is that

lim
n→∞

P(Rn ∩A 6= ∅) = P(R ∩A 6= ∅),

for all A ⊂ E which is a finite union of bounded open intervals such that P(R ∩A 6= ∅) =
P(R ∩A 6= ∅) where A is the closure set of A [23, Corollary 1.6.9].

Next, we review basics on sup-measures on a metric space E. Our main references
are [25, 35]. A sup-measure m on E is defined as a set function from G ≡ G(E) to R+ (in
general the sup-measure could take negative values, but not in the framework of this
paper), and it can be uniquely extended to a set function from all subsets of E to R+. We
start by recalling the definition of a sup-measure on G. A set function m : G → R+ is a
sup-measure, if m(∅) = 0 and

m

(⋃
α

Gα

)
= sup

α
m(Gα)

for all arbitrary collection of {Gα}α ⊂ G. Let SM(E) denote the space of sup-measures
from G → R+. The canonical extension of m : G → R+ to a sup-measure on all subsets of
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E is given by
m(A) := inf

G∈G,A⊂G
m(G) for all A ⊂ E,A 6= ∅.

The sup-vague topology on SM(E) is defined such that for {mn}n∈N and m elements
of SM(E), mn → m as n → ∞ if the following two conditions hold

lim sup
n→∞

mn(K) ≤ m(K), for all K ∈ K(E),

lim inf
n→∞

mn(G) ≥ m(G), for all G ∈ G(E).

This choice of topology makes SM(E) compact and metrizable. We then define random
sup-measures again as random elements in a metric space. In particular, M : Ω → SM(E)

is a random sup-measure, if and only if M(A) is a R+-valued random variable for all
open bounded intervals A or all compact intervals A, with rational end points. Examples
of particular importance for us include scaled indicator random sup-measures in the
form of

ζ1{R∩ · 6=∅},

where ζ is a positive random variable and R a random closed set, the two not necessarily
independent, and the maximum of a finite number of such scaled-indicators. A practical
sufficient condition for weak convergence in SM(E) is the following. Let {Mn}n∈N and
M be random sup-measures on E. We have Mn ⇒ M in SM(E), if

(Mn(A1), . . . ,Mn(Ad)) ⇒ (M(A1), . . . ,M(Ad)),

for all bounded open intervals A1, . . . , Ad of E such that M(Ai) = M(Ai) with probability
one [25, Theorem 3.2].

Of particular importance among random sup-measures are Fréchet (max-stable)
random sup-measures, which are random sup-measures with Fréchet finite-dimensional
distributions. Recall that a random variable Z has an α-Fréchet distribution if P(Z ≤ z) =

exp(−σz−α), z > 0, for some constants σ > 0, α > 0. A random vector (Z1, . . . , Zd) has an
α-Fréchet distribution if all its max-linear combinationsmaxi=1,...,d aiZi, for a1, . . . , ad > 0,
have α-Fréchet distributions. Now, a random sup-measure is α-Fréchet if its joint law
on finite sets is α-Fréchet. Equivalently, an α-Fréchet random sup-measure on E can be
viewed as a set-indexed α-Fréchet max-stable process {M(A)}A⊂E , that is, a stochastic
process of which every finite-dimensional distribution is α-Fréchet. Fréchet random
variables and Fréchet processes are fundamental objects in extreme value theory, as
they arise in limit theorems for extremes of heavy-tailed models [6, 15, 29].

2 Choquet random sup-measures

A special family of Fréchet random sup-measures is the so-called Choquet random
sup-measures, recently introduced by Molchanov and Strokorb [24]. It is known that
every α-Fréchet random sup-measure M has the expression

P(M(K) ≤ z) = exp

(
−θ(K)

zα

)
, K ∈ K(E), (2.1)

where θ(K) is referred to as the extremal coefficient functional ofM . In general, different
Fréchet random sup-measures may have the same extremal coefficient functional. Given
an extremal coefficient functional θ, the so-called Choquet random sup-measure was
introduced and investigated in [24], in the form of

M(·) d
= sup

`∈N

1

Γ
1/α
`

1{R`∩ · 6=∅}. (2.2)
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Here {(Γ`, R`)}`∈N is a measurable enumeration of points from a Poisson point process
on (0,∞)×F(E) with intensity dxdν, where ν is a locally finite measure on F(E) uniquely
determined by

ν(FK) ≡ ν({F ∈ F(E) : F ∩K 6= ∅}) = θ(K), K ∈ K(E).

The so-defined M in (2.2) turns out to be an α-Fréchet random sup-measure with
extremal coefficient functional θ, and furthermore its law is uniquely determined by θ. It
was demonstrated in [24] that this family of random sup-measures plays a crucial role
among all Fréchet random sup-measures from several aspects, and the Choquet theorem
plays a fundamental role in this framework, which explains the name.

In view of limit theorems, Choquet random sup-measures arise naturally in the
investigation of extremes of a stationary sequence, including the independently scattered
and stable-regenerative random sup-measures (see (1.2) and (1.3) respectively). In
extreme value theory, many limit theorems are established in terms of extremal processes
rather than random sup-measures. Given a general random sup-measure M, letM(t) :=

M([0, t]), t ≥ 0, denote its associated extremal process. It is well known thatM contains
much less information than M in general. This is particularly the case in the framework
of self-similar Choquet random sup-measures, as their extremal processes are necessarily
time-changed versions of a standard α-Fréchet extremal process. Recall that a random
sup-measure M is H-self similar for some H > 0 if

M(λ ·) d
= λHM(·), for all λ > 0. (2.3)

By standard α-Fréchet extremal process, we mean the extremal process determined
by the independently scattered random sup-measure Mα,Mα(t) := Mα([0, t]). That is,
using the same {(Γ`, U`)}`∈N as in (1.2),

Mα(t) := sup
`∈N

1

Γ
1/α
`

1{U`≤t}, t ≥ 0. (2.4)

Proposition 2.1. For any H-self-similar Choquet α-Fréchet random sup-measure M
with H > 0, the corresponding extremal processM satisfies

θ([0, 1]) {M(t)}t≥0
d
=
{
Mα(t

αH)
}
t≥0

.

To the best of our knowledge, this fact has not been noticed in the literature before.
This proposition actually follows from a more general result on Choquet random sup-
measures and the corresponding extremal processes, which is of independent interest
and established in Proposition A.1 in the appendix. In the upcoming setting, this
provides another justification that it is important to work with random sup-measures
in the presence of long-range dependence, as the corresponding extremal processes
capture much less information of the dependence. See also the discussion in Section 6.

3 Karlin random sup-measures

In this section we provide two representations of Karlin random sup-measures. They
are Choquet random sup-measures with α-Fréchet marginals and they depend on a
second parameter β ∈ (0, 1).

Let us denote by xA, for x > 0 and A ⊂ R, the scaled set {xy : y ∈ A}. The Karlin
random sup-measure Mα,β on R is defined by the following representation

Mα,β(A) := sup
`∈N

1

Γ
1/α
`

1{
Ñ`(x`A) 6=0

}, A ∈ G(R), (3.1)
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where {(Γ`, x`, Ñ`)}`∈N is an enumeration of the points from a Poisson point process on
R+×R+×M+(R) with intensity measure dγ×Γ(1−β)−1βx−β−1dx×dP̃. HereM+(R) is
the space of Radon point measures on R and P̃ is the probability measure on it induced
by a standard Poisson random measure (with intensity dx). Equivalently, the Poisson
point process {(Γ`, x`, Ñ`)}`∈N can be viewed as the Poisson point process {(Γ`, x`)}`∈N
on R+ ×R+ with intensity dγ×Γ(1− β)−1βx−β−1dx and i.i.d. marks {Ñ`}`∈N with law P̃.

To see that Mα,β is a Choquet random sup-measure, we introduce the random closed

set R̃` induced by Ñ` as

R̃` :=
{
t ∈ R : Ñ`({t}) = 1

}
,

and then write {Ñ`(x`A) 6= 0} = {(R̃`/x`) ∩A 6= ∅}. So (3.1) now becomes

Mα,β(A) = sup
`∈N

1

Γ
1/α
`

1{(
R̃`/x`

)
∩A 6=∅

}, A ∈ G(R),

as in (2.2), and then it can be extended to all A ⊂ R by the canonical extension of
sup-measures.

Viewing {Mα,β(A)}A⊂R as a set-indexed α-Fréchet max-stable process, we have the
following joint distribution:

P (Mα,β(A1) ≤ z1, . . . ,Mα,β(Ad) ≤ zd)

= exp

−Γ(1− β)−1

∫ ∞

0

βx−β−1Ẽ

 d∨
i=1

1{
Ñ (xAi)6=0

}
zαi

 dx

 , (3.2)

for all d ∈ N, z1, . . . , zd > 0, where Ẽ is the expectation with respect to P̃. See [24, 34]
for more details. It suffices to consider A1, . . . , Ad as open (or compact) intervals in R
(not necessarily disjoint) above to determine the law of Mα,β .

From the above presentation, in particular we compute for d = 1 and a compact set
K ⊂ R,

P(Mα,β(K) ≤ z) = exp

(
−Γ(1− β)−1

∫ ∞

0

βx−β−1P̃
(
Ñ (xK) 6= 0

)
dxz−α

)
.

Let Leb denote the Lebesgue measure on R. We have∫ ∞

0

βx−β−1P̃
(
Ñ (xK) 6= 0

)
dx =

∫ ∞

0

βx−β−1 (1− exp(−xLeb(K))) dx (3.3)

= Leb(K)

∫ ∞

0

x−β exp(−xLeb(K))dx

= Γ(1− β)Leb(K)β .

Therefore we arrive at, for all z > 0,

P(Mα,β(K) ≤ z) = exp

(
−θβ(K)

zα

)
with θβ(K) := Leb(K)β .

The function θβ is the extremal coefficient functional of the random sup-measure Mα,β .
It is clear from the definition (3.2) that Mα,β is β/α-self-similar in the sense of (2.3)

and translation-invariant

Mα,β(·)
d
= Mα,β(x+ ·), for all x ∈ R.

It is also remarkable that it is symmetric (or rearrangement invariant [24, Sect. 9]) in the
sense that its law only depends on the Lebesgue measures of the sets. More precisely,
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for two collections of disjoint open intervals {A1, . . . , Ad} and {B1, . . . , Bd} such that
Leb(Ai) = Leb(Bi), i = 1, . . . , d, we have

(Mα,β(A1), . . . ,Mα,β(Ad))
d
= (Mα,β(B1), . . . ,Mα,β(Bd)) .

This is a stronger notion than the translation invariance, which has been known to hold
true for all random sup-measures arising from stationary sequences [25].

By self-similarity essentially all properties of Mα,β can be investigated by restricting
to a bounded interval, in which case Mα,β has a more convenient representation. We
consider its restriction to [0, 1] here. In this case, θβ determines the law of a random
closed set R(β) in [0, 1] by

P(R(β) ∩K 6= ∅) = θβ(K)

θβ([0, 1])
= Leb(K)β , for all K ⊂ [0, 1] compact. (3.4)

Now, restricting to [0, 1], it follows that

Mα,β(·)
d
= sup

`∈N

1

Γ
1/α
`

1{(
R(β)

` ∩ ·
)
6=∅

} on [0, 1], (3.5)

where {Γ`}`∈N is the sequence of arrival times of a standard Poisson point process on

R+, {R(β)
` }`∈N are i.i.d. copies of R(β), and the two sequences are independent. The fact

that Mα,β in (3.1) has the same presentation (in law) as in (3.5) when restricted to [0, 1],
follows from either a straightforward computation of finite-dimensional distributions
of random sup-measures based on (3.5), or from a more general property of Choquet
random sup-measures [24, Corollary 4.5].

In addition, we have the following probabilistic representation of R(β).

Lemma 3.1. Suppose β ∈ (0, 1). Let Qβ be anN-valued random variable with probability
mass function

P(Qβ = k) =
β(1− β)(k−1)↑

k!
=: pβ(k), k ∈ N,

with (a)n↑ = a(a+ 1) · · · (a+ n− 1), n ∈ N, a ∈ R. Let {Un}n∈N be i.i.d. random variables
uniformly distributed over (0, 1), independent from Qβ . Then,

R(β) d
=

Qβ⋃
i=1

{Ui}.

Proof. It suffices to prove that
⋃Qβ

i=1{Ui} has the same capacity functional as R(β) in
(3.4). We have, by first conditioning on Qβ ,

P

Qβ⋃
i=1

{Ui}

 ∩K 6= ∅

 = E
[
1− (1− Leb(K))Qβ

]
.

One can show that the prescribed distribution of Qβ satisfies the property, for all
z ∈ (0, 1),

1− zβ = E
[
(1− z)Qβ

]
.

See for example [28, Eq. (3.42)]. In view of (3.4), this completes the proof.

Remark 3.2. The law of Qβ has been known to be related to the Karlin model defined
in Section 4, and hence it is not a coincidence that it shows up in the limit random sup-
measure. In fact, Qβ is a size-biased sampling from the asymptotic frequency {pβ(k)}k∈N
of blocks of size k of an infinite exchangeable random partition with β-diversity. See [28,
Section 3.3] for more details and Remark 4.3 below.
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A family of random sup-measures with long-range dependence

Remark 3.3. The first representation of Mα,β in (3.1) has been already considered by
Molchanov and Strokorb [24]. Their description starts with and focuses on the extremal
coefficient functional θβ whereas we start from the underlying Poisson point process
directly. This is suggested in [24, Remark 9.8], while more detailed discussions can be
found in the first arXiv online version of the same paper. In particular, Example 9.5
therein provides the same representation as in (3.1). The interpretation of the set R(β)

in our Lemma 3.1 seems to be new.

The Karlin random sup-measures also interpolate between the independently scat-
tered random sup-measures Mα and the completely dependent one, defined as Mc

α(·) =
Z1{ · 6=∅} for a standard α-Fréchet random variable Z (the random sup-measure taking
the same value Z on any non-empty set).

Proposition 3.4. For every α > 0, Mα,β ⇒ Mα as β ↑ 1, and Mα,β ⇒ Mc
α as β ↓ 0.

Proof. It suffices to notice that by the capacity functional in (3.4), R(β) ⇒ U as β ↑ 1

where U is the random closed set induced by the uniform random variable on (0, 1), and
R(β) ⇒ [0, 1], a deterministic set, as β ↓ 0.

We conclude this section by examining the ergodic properties of Mα,β. Every self-
similar and translation invariant random sup-measure M naturally induces a stationary
process, the so-called max-increment process defined as

ζ(t) := M((t− 1, t]), t ∈ R. (3.6)

Proposition 3.5. The max-increment process {ζα,β(t)}t∈R of Mα,β is not ergodic.

Proof. Introduce, for z > 0, t ∈ R,

τz(t) := logP(ζα,β(0) ≤ z, ζα,β(t) ≤ z)− 2 logP(ζα,β(0) ≤ z).

A simple necessary and sufficient condition for ergodicity of a stationary α-Fréchet
process is that

lim
T→∞

1

T

∫ T

0

τz(t)dt = 0 for all z > 0,

see Kabluchko and Schlather [16]. Here we have, for t > 1,

− logP(ζα,β(0) ≤ z, ζα,β(t) ≤ z)

=
1

zα
Γ(1− β)−1

∫ ∞

0

βx−β−1P̃
(
Ñ (x(−1, 0]) 6= 0, Ñ (x(t− 1, t]) 6= 0

)
dx

=
1

zα
Γ(1− β)−1

∫ ∞

0

βx−β−1(1− e−x)2dx = (2− 2β)z−α.

In addition to (3.3), this implies for all t > 1, z > 0,

τz(t) =
[
2θβ((−1, 0])− (2− 2β)

]
z−α = 2βz−α.

The desired result hence follows.

4 A heavy-tailed Karlin model

In this section, we introduce a discrete stationary process {Xn}n∈N based on a model,
originally studied by Karlin [17], which is essentially an infinite urn scheme. Here, we
shall work with a heavy-tailed randomized version of the original model.
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A family of random sup-measures with long-range dependence

To start with, consider an N-valued random variable Y with P(Y = k) = pk, k ∈ N.
We assume that p1 ≥ p2 ≥ · · · > 0 and, for technical purpose, encode them into the
measure

ν :=

∞∑
`=1

δ1/p`
, (4.1)

where δx is the unit point mass at x. The following regular variation assumption is made
on the frequencies:

ν((0, x]) = max{` ∈ N : 1/p` ≤ x} = xβL(x) with β ∈ (0, 1), (4.2)

for some slowly varying function L at infinity.

The randomized Karlin model {Xn}n∈N is defined through a two-layer construction.
We imagine that there are infinitely many empty boxes indexed by N. First, we indepen-
dently associate a heavy-tailed random variable to each box. Second, at each round n, we
throw a ball at random in one of the boxes (according to the law of Y ) and we consider
the corresponding heavy-tailed random variable as the value of our process at time n.
Namely, let {ε`}`∈N be i.i.d. random variables with common law such that

P(ε1 > y) ∼ cαy
−α as y → ∞ with α > 0, cα ∈ (0,∞), (4.3)

each associated with the box with label ` ∈ N. Let {Yn}n∈N be i.i.d. random variables
with common law as Y described above, independent of {ε`}`∈N. The stationary sequence
{Xn}n∈N is then obtained by setting

Xn := εYn
, n ∈ N.

Here, we are interested in the empirical random sup-measure of {Xn}n∈N on [0, 1]

introduced as

Mn(·) := max
i/n∈ ·

Xi,

and its limit as n → ∞. Important quantities relying on the infinite urn scheme are,

Kn,` :=

n∑
i=1

1{Yi=`}, ` ≥ 1, and Kn :=

∞∑
`=1

1{Kn,` 6=∅},

the number of balls in the box ` and the number of non-empty boxes at time n, respectively.
We know from [17] that, under (4.2), Kn ∼ Γ(1− β)nβL(n) almost surely.

For a more detailed description of the model, we shall work within the framework of
point-process convergence generalizing (1.1). For each n ∈ N, introduce, for ` ≥ 1,

Rn,` = {i ∈ {1, . . . , n} : Yi = `}.

The following point process ξn on R+ ×F([0, 1]) encode the information of our random
model at time n:

ξn :=
∑

`≥1, Kn,` 6=0

δ(ε`/bn,Rn,`/n), (4.4)

The first coordinate in the Dirac masses presents the value (normalized by bn, given
below) attached to the box ` and the second coordinate the possible multiple positions
among {1, . . . , n} (standardized by 1/n) where this box has been chosen.

Our main results are the following. The first is a complete point-process convergence.
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A family of random sup-measures with long-range dependence

Theorem 4.1. For the model above under assumptions (4.2) and (4.3), with

bn := (cαΓ(1− β)nβL(n))1/α, (4.5)

we have

ξn ⇒ ξ :=

∞∑
`=1

δ(
Γ
−1/α
` ,R(β)

`

), as n → ∞,

in M+((0,∞)×F([0, 1])), where {(Γ`,R(β)
` )}`∈N have the same law as in (3.5).

The second is the convergence of random sup-measures.

Theorem 4.2. Under the assumption of Theorem 4.1, we have

1

bn
Mn ⇒ Mα,β , as n → ∞,

in SM([0, 1]).

Theorem 4.1 is proved by analyzing the top order statistics of the model and their
locations. Theorem 4.2 is a direct corollary of Theorem 4.1. Nevertheless, we will also
give a second proof of it which is straightforward, without any analysis of the other top
order statistics except the largest.

Remark 4.3. In the representation of the law of R(β) in Lemma 3.1, the probability
mass function {pβ(k)}k∈N has an intrinsic connection to the Karlin model: each pβ(k) is
the asymptotic frequency of the number of boxes with exactly k balls, namely

lim
n→∞

1

Kn

∞∑
`=1

1{Kn,`=k} = pβ(k) a.s.

This has been known since Karlin [17].

Remark 4.4. For the sake of simplicity, we do not introduce a slowly varying function
in (4.3) as in the common setup for heavy-tailed random variables. Replacing (4.3) by

P(ε1 > y) ∼ y−α`(y) as y → ∞

with α > 0 and ` a slowly varying function, the same limit arises while the correct
normalization would involve the Bruijn conjugate (e.g. [4, Proposition 1.5.15]).

5 Proofs

In order to analyze the point process ξn, we introduce a description of it through
the extreme values of the Karlin model. For each n ∈ N, we consider the Kn random
variables

{ε` : Kn,` 6= 0}

and their order statistics denoted by

εn,1 ≥ · · · ≥ εn,Kn .

When there are no ties, we let ̂̀n,k denote the label of the box corresponding to the k-th
order statistics, so that

εn,k = ε̂̀
n,k

, for k ≤ Kn,

and set ̂̀n,k := 0 for k > Kn. When there are ties among the order statistics, the
aforementioned labeling is no longer unique, and we choose one at random among all
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possible ones in a uniform way. This procedure guarantees the independence between
the values of the order statistics and the permutation that classifies them. That is, given
Kn, the variables ̂̀n,1, . . . , ̂̀n,Kn

are independent of the variables εn,1, . . . , εn,Kn
. Now,

introduce the random closed sets

R̂n,k :=
{
i = 1, . . . n : Yi = ̂̀n,k} , k = 1, . . . ,Kn,

and R̂n,k := ∅ if k > Kn. The point processes ξn introduced in (4.4) can then be written
as

ξn =

Kn∑
k=1

δ(
εn,k/bn,R̂n,k/n

).
The key step in our proof is to investigate the following approximations of ξn, keeping
only the top order statistics,

ξ(m)
n :=

m∑
k=1

δ(
εn,k/bn,R̂n,k/n

), m ∈ N.

Here and below, we set εn,k := 0 if k > Kn.

Proposition 5.1. For all m ∈ N, we have

ξ(m)
n ⇒ ξ(m) :=

m∑
`=1

δ(
Γ
−1/α
` ,R(β)

`

), as n → ∞,

in M+((0,∞)×F([0, 1])), where {(Γ`,R(β)
` )}`∈N have the same law as in (3.5).

Proof. There is only a finite number of random points in both ξ
(m)
n and ξ(m). Hence, it

suffices to prove the joint convergence(
εn,1
bn

, . . . ,
εn,m
bn

,
R̂n,1

n
, . . . ,

R̂n,m

n

)
⇒
(
Γ
−1/α
1 , . . . ,Γ−1/α

m ,R(β)
1 , . . . ,R(β)

m

)
(5.1)

in Rm
+ ×F([0, 1])m, as n → ∞. Under the heavy-tail assumption (4.3), the convergence

of the first m coordinates, as the normalized m top order statistics of Kn i.i.d. random
variables, is well known from [22] if Kn is a deterministic sequence increasing to infinity
and the normalization (here bn) is c

1/α
α K

1/α
n . For the Karlin model, under the regular

variation assumption (4.2), it has been shown that

lim
n→∞

Kn

nβL(n)
= Γ(1− β) a.s.,

see [13, Corollary 21]. Therefore the convergence of the first m coordinates follows.
Further, on the left-hand side of (5.1), the first and last m coordinates are conditionally
independent given the event {Kn ≥ m}. Since P (Kn ≥ m) → 1 as n → ∞, it is sufficient
to prove the convergence of the lastm coordinates to conclude. The main difficulty in the
analysis of the last m coordinates is due to their dependence. To overcome this difficulty,
we first consider a coupled Poissonized version of the model. Namely, let {N(t)}t≥0

denote a standard Poisson process on R+ independent of {Yn}n∈N and {εn}n∈N, and let
0 < τ1 < τ2 < · · · denote its consecutive arrival times. We consider the coupled model
where we shift the fixed locations 1, 2, . . . , n of the original model to the random points
corresponding to the consecutive random arrival times of N . The Poissonized process is
then {XN(t)}t≥0. In this way, we set

K̃n,` :=

∞∑
i=1

1{Yi=`, τi≤n} and K̃n :=

∞∑
`=1

1{
K̃n,` 6=0

}. (5.2)

EJP 23 (2018), paper 107.
Page 12/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP235
http://www.imstat.org/ejp/
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It is important to keep in mind that, for this model, there are K̃n different ε involved at
time n, instead of Kn. Note that, thanks to the coupling, K̃n = KN(n). Thus, the order

statistics of the set {ε` : K̃n,` 6= 0} are exactly εN(n),1 ≥ · · · ≥ εN(n),K̃n
. Now, introduce˜̀

n,k such that

ε˜̀
n,k

= εN(n),k, k = 1, . . . , K̃n,

and ˜̀n,k := 0 if k > K̃n. Again, in case of ties, we choose uniformly a random labeling as
before. Then we define

R̃n,k :=
{
τi : Yi = ˜̀n,k} ∩ [0, n], k = 1, . . . , K̃n.

The key observation on the Poissonization procedure is that given that ˜̀n,1 = `1, . . . ,˜̀
n,m = `m, with `1, . . . , `m > 0, R̃n,1, . . . , R̃n,m are independent random closed sets; this
is a consequence of the thinning property of Poisson processes. Moreover, the law of
each R̃n,k is the conditional law of the set of the arrival times of a Poisson process with
intensity p`k within [0, n], given that it is not empty.

We first show that (
R̃n,1

n
, . . . ,

R̃n,m

n

)
⇒
(
R(β)

1 , . . . ,R(β)
m

)
. (5.3)

Let A1, . . . , Am be m open intervals within (0, 1). We first compute

P

(
m⋂

k=1

{
1

n
R̃n,k ∩Ak 6= ∅

})

=
∑

`1,...,`m∈N

P

(
m⋂

k=1

{
1

n
R̃n,k ∩Ak 6= ∅

}
∩
{˜̀

n,k = `k

})
. (5.4)

For every choice of `1, . . . , `m ∈ N that are mutually distinct (otherwise the probability
above is zero), let Nk be a Poisson process with parameter p`k , k = 1, . . . ,m, and R̃k the
corresponding random closed set induced by its arrival times in [0, n]. Given {K̃n,`}`∈N,
the probability of the event {˜̀n,1 = `1, . . . , ˜̀n,m = `m} is

1{K̃n,`1
6=0,...,K̃n,`m 6=0}

(K̃n −m)!

K̃n!

as each non-empty box has equal probability to be the k-th largest (above j! stands for
the factorial of the non-negative integer j). Therefore by conditioning on the values
of {˜̀n,k}k=1,...,m first, and then using the independence of the K̃n,`, we have, letting λk

denote the Lebesgue measure of Ak,

P

(
m⋂

k=1

{
1

n
R̃n,k ∩Ak 6= ∅

}
∩
{˜̀

n,k = `k

})

= E

[
(K̃n −m)!

K̃n!

m∏
k=1

1{K̃n,`k
6=0}P

(
R̃k ∩ nAk 6= ∅ | R̃k ∩ [0, n] 6= ∅

)]

= E

[
(K̃n −m)!

K̃n!

m∏
k=1

1{K̃n,`k
6=0}

(
1− e−λknp`k

1− e−np`k

)]

= E

[
K̃

(`1,...,`m)
n !

(m+ K̃
(`1,...,`m)
n )!

]
m∏

k=1

(1− e−λknp`k ),
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where
K̃(`1,...,`m)

n =
∑

`≥1, ` 6∈{`1,...,`m}

1{K̃n,` 6=0}.

We shall prove, in Lemma 5.2 below, that Φ̃n/((K̃n−m)∨1) → 1 and Φ̃n/(K̃n+m) → 1 in
Lm, where Φ̃n := EK̃n ∼ Γ(1− β)nβL(n) according to [13, Proposition 17 and Lemma 1].
Using that

1

(m+ K̃n)m
≤ K̃

(`1,...,`m)
n !

(m+ K̃
(`1,...,`m)
n )!

≤ 1

((K̃n −m) ∨ 1)m
,

we infer that

K̃
(`1,...,`m)
n !

(m+ K̃
(`1,...,`m)
n )!

∼ 1

Φ̃m
n

in L1, uniformly in (`1, . . . , `m), as n → ∞.

The right-hand side of (5.4) then becomes

∑
`1,...,`m∈N, 6=

E

[
K̃

(`1,...,`m)
n !

(m+ K̃
(`1,...,`m)
n )!

]
m∏

k=1

(1− e−λknp`k )

∼ 1

(Γ(1− β)nβL(n))m

∑
`1,...,`m∈N,6=

m∏
k=1

(
1− e−λknp`k

)
, as n → ∞, (5.5)

where in the summation, 6= indicates that `1, . . . , `m are mutually distinct. If we sum over
all `1, . . . , `m ∈ N instead, recalling the definition of ν in (4.1), we have

∑
`1,...,`m∈N

m∏
k=1

(
1− e−λknp`k

)
=

m∏
k=1

∫ ∞

0

(1− e−λkn/x)ν(dx). (5.6)

For the Karlin model, it is well known that the regular variation assumption (4.2) on ν

leads to, after integration by parts and change of variables,∫ ∞

0

(1− e−λn/x)ν(dx) =

∫ ∞

0

λn

x2
e−λn/xν((0, x])dx

∼ ν((0, n])λ

∫ ∞

0

xβ−2e−λ/xdx = ν((0, n])λβΓ(1− β).

This gives the asymptotic of (5.6), and also tells that the summations in (5.6) and (5.5)
are asymptotically equivalent. Therefore, we have shown that

lim
n→∞

P

(
m⋂

k=1

{
1

n
R̃n,k ∩Ak 6= ∅

})
=

m∏
k=1

λβ
k .

This established the claimed weak convergence in (5.3).
To complete the proof, it remains to show that R̃n,k/n and R̂n,k/n can be made close

with arbitrarily high probability by taking n large enough. To make this idea precise,
we consider the Hausdorff metric dH for non-empty compact sets defined as, for two
non-empty compact sets F1 and F2,

dH(F1, F2) := max

{
sup
x∈F1

d(x, F2), sup
x∈F2

d(x, F1)

}
,

where d above is the distance between a point and a set induced in R by Euclidean
metric: d(x,A) := infy∈A |x − y|. It is known that dH metricizes the Fell topology on
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F ′([0, 1]) := F([0, 1]) \ {∅}. See for example [23, Appendix C]. For n large enough,
consider the event

B(m)
n := {Kn ≥ m} ∩ {K̃n ≥ m},

so that, under B
(m)
n , R̂n,k 6= ∅ and R̃n,k 6= ∅ for all k = 1, . . . ,m. It is clear that

limn→∞P(B
(m)
n ) = 1. Therefore, (5.1) and hence the proposition shall follow from (5.3)

and the fact that for all δ > 0,

lim
n→∞

P

({
max

k=1,...,m
dH

(
R̂n,k

n
,
R̃n,k

n

)
> δ

}
∩B(m)

n

)
= 0. (5.7)

To prove (5.7), we first introduce the event

E(m)
n =

{̂̀
n,1 = ˜̀n,1, . . . , ̂̀n,m = ˜̀n,m} ,

and we shall prove that limn→∞P(E
(m)
n ) = 1. Since the probability of the event

T (m)
n :=

{
no ties in the m+ 1 top order statistics of {ε` : Kn,` 6= 0 or K̃n,` 6= 0}

}
goes to 1 as n → ∞, this will follow if one can show that

lim
n→∞

P
(
E(m)

n ∩B(m)
n ∩ T (m)

n

)
= 1. (5.8)

Assuming B
(m)
n and T

(m)
n , the event E(m)

n holds if the m top order statistics from the set
{ε` : Kn,` 6= 0 or K̃n,` 6= 0} already appear in the subset {ε` : Kn,` 6= 0 and K̃n,` 6= 0}.
Given K∧

n := Kn∧ K̃n and K∨
n := Kn∨ K̃n, using the fact that the locations (labellings) of

the order statistics among {1, . . . ,K∨
n } are uniformly distributed, the desired probability

is the one that, when taking uniformly at random a permutation of K∨
n elements, the

m first elements of the permutation belong to a fixed subset of K∧
n elements. Thus, we

infer that

P
(
E(m)

n ∩B(m)
n ∩ T (m)

n

)
= E

[
K∧

n (K
∧
n − 1) · · · (K∧

n −m+ 1)

K∨
n (K

∨
n − 1) · · · (K∨

n −m+ 1)
1
B

(m)
n

1
T

(m)
n

]
.

The quotient in the expectation converges to 1 almost surely and it is bounded by 1. There-
fore, by the dominated convergence theorem, we obtain (5.8) and thus limn→∞P(E

(m)
n ) =

1.
From now on, we assume that the events E(m)

n and B
(m)
n hold. Let k ∈ {1, . . . ,m} be

fixed and denote `k = ̂̀n,k = ˜̀n,k. Recall our definition of τi, the i-th arrival time of the
Poisson process N in the Poissonization and set

ρn := max
i=1,...,n

|i− τi|,

the maximal displacement of the positions 1, . . . , n by the Poissonization. Consider also
the Poisson process Nk derived from N by keeping only the arrival times corresponding
to the box `k (Nk(t) :=

∑∞
i=1 1{τi≤t}1{Yi=`k}, t ≥ 0). Thus, Nk is a Poisson process of

intensity p`k and we denote by τ
(k)
1 < τ

(k)
2 < · · · its consecutive arrival times.

Consider i ∈ R̂n,k and first assume that i is such that τi ≤ n and hence τi ∈ R̃n,k. In

this case we have d(i, R̃n,k) ≤ |i − τi| ≤ ρn. On the other hand, for i ∈ R̂n,k such that
τi > n, we have

d(i, R̃n,k) ≤ |i− τ
(k)
Nk(n)

| ≤ |i− n| ∧ |τ (k)Nk(n)
− n|.
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Since in this case N(n) < i < n, we have |i− n| ≤ |N(n)− n| and hence

sup
i∈R̂n,k

d(i, R̃n,k) ≤ max
{
ρn, |N(n)− n|, |τ (k)Nk(n)

− n|
}
. (5.9)

Now, consider τi ∈ R̃n,k. For such τi with i ∈ {1, . . . , n}, we have d(τi, R̂n,k) ≤ |τi− i| ≤ ρn,

whereas for τi ∈ R̃n,k with i > n, denoting by jk the maximum of R̂n,k (non-empty by
assumption), we have

d(τi, R̂n,k) ≤ |τi − jk| ≤ |τi − τjk |+ |τjk − jk| ≤ |n− τjk |+ |τjk − jk|,

where we used that τjk ≤ τi ≤ n in the last inequality. Note that τjk = τ
(k)
Nk(τn)

and thus,

sup
i: τi∈R̃n,k

d(τi, R̂n,k) ≤ ρn + |τ (k)Nk(τn)
− n|.

Therefore, above and (5.9) yield

dH

(
R̂n,k

n
,
R̃n,k

n

)
≤ max

 |N(n)− n|
n

,
|τ (k)Nk(n)

− n|
n

,
ρn
n

+
|τ (k)Nk(τn)

− n|
n

 .

It is well known that limn→∞ ρn/n = 0 and limn→∞ |N(n)− n|/n = 0 almost surely.
Furthermore,

lim
n→∞

τ
(k)
Nk(n)

n
= lim

n→∞

τ
(k)
Nk(n)

Nk(n)

Nk(n)

n
= p`k

1

p`k
= 1 almost surely

and hence limn→∞ τ
(k)
Nk(τn)

/n = 1 almost surely. This established (5.7) and the proposition.

Lemma 5.2. Let {K̃n}n≥1 be the process defined in (5.2) and Φ̃n = EK̃n, n ≥ 1. For any
real constant c, we have

Φ̃n

(K̃n + c) ∨ 1
→ 1, as n → ∞,

almost surely and in Lp for all p ≥ 1.

Proof. We know from [13] that K̃n ∼ Φ̃n almost surely and thus the almost sure conver-
gence above follows. Recalling that K̃n is a sum of independent {0, 1}-valued random
variables and that Var(K̃n) = Φ̃2n − Φ̃n ≤ Φ̃n, the Bernstein inequality (see e.g. [5]) gives

P

(∣∣∣∣∣K̃n

Φ̃n

− 1

∣∣∣∣∣ > 1

2

)
≤ 2 exp

(
− (Φ̃n/2)

2

2(Var(K̃n) + Φ̃n/6)

)
≤ 2 exp

(
− 3

28
Φ̃n

)
.

Let p ≥ 1 and q > p be fixed. Using the above inequality and the fact that K̃n/((K̃n + c)∨
1) ≤ 1 ∨ (1− c), we have

E

(
Φ̃n

(K̃n + c) ∨ 1

)q

= E

((
Φ̃n

(K̃n + c) ∨ 1

)q

1{
K̃n
Φ̃n

≥ 1
2

}
)

+ E

((
Φ̃n

(K̃n + c) ∨ 1

)q

1{
K̃n
Φ̃n

< 1
2

}
)

≤ 2q(1 ∨ (1− c))q + 2Φ̃q
n exp

(
− 3

28
Φ̃n

)
.

We infer that {Φ̃n/((K̃n + c)∨ 1)}n≥1 is bounded in Lq and then {[Φ̃n/((K̃n + c)∨ 1)]p}n≥1

is uniformly integrable. The desired Lp convergence follows.
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A family of random sup-measures with long-range dependence

Proof of Theorem 4.1. To prove the convergence of the point processes of interest, we
compute their Laplace transform:

Ψξn(f) := E exp (−ξn(f)) = E exp

(
−

Kn∑
k=1

f
(
εn,k/bn, R̂n,k/n

))
,

for f ∈ C+
K((0,∞) × F([0, 1])), the space of non-negative continuous functions with

compact support. Similarly,

Ψξ(f) := E exp

(
−

∞∑
`=1

f
(
Γ
−1/α
` ,R(β)

`

))
is the Laplace transform of ξ. Recall that the desired convergence follows if and only if

lim
n→∞

Ψξn(f) = Ψξ(f), for all f ∈ C+
K((0,∞),F([0, 1])), (5.10)

see for example [29, Proposition 3.19].
Now we prove (5.10). When investigating the weak convergence of point processes

here, the topology on (0,∞) is such that all compact sets are bounded away from zero
and F([0, 1]) is itself a compact metric space. So, for any f ∈ C+

K((0,∞)×F([0, 1])), there
exists κ = κ(f) > 0 so that f(x, F ) = 0 for all x < κ and F ∈ F([0, 1]). Given f and thus
κ > 0 fixed, for all ε > 0, we can pick m = m(κ, ε) ∈ N large enough, so that

lim
n→∞

P
(
B(m)

κ,n

)
= P

(
Γ−1/α
m < κ

)
> 1− ε with B(m)

κ,n :=

{
εn,m
bn

< κ

}
.

Now we express Ψξn(f) as

Ψξn(f) = E
[
exp (−ξn(f))1B

(m)
κ,n

]
+ E

[
exp (−ξn(f))1(B

(m)
κ,n )c

]
.

The second term on the right-hand side above is then bounded by 1−P(B(m)
κ,ε,n). The first

term equals

E

[
exp

(
−

m∑
k=1

f
(
εn,k/bn, R̂n,k/n

))
1
B

(m)
κ,n

]
. (5.11)

This is the expectation of a function from Rm
+ ×F([0, 1])m to [0, 1], continuous everywhere

except at points from the set{
(x1, . . . , xm, F1, . . . , Fm) ∈ Rm

+ ×F([0, 1])m : xm = κ
}
. (5.12)

We have seen the convergence (εn,k/bn, R̂n,k/n)k=1,...,m ⇒ (Γ
−1/α
k ,R(β)

k )k=1,...,m in Propo-
sition 5.1, and we can notice that the set of discontinuity points (5.12) above is hit by
(Γ

−1/α
1 , . . . ,Γ

−1/α
m ,R(β)

1 , . . . ,R(β)
m ) with probability zero. Therefore, applying the continu-

ous mapping theorem to (5.11), we have that

lim sup
n→∞

Ψξn(f) ≤ E

[
exp

(
−

m∑
k=1

f
(
Γ
−1/α
k ,R(β)

k

))
1{

Γ
−1/α
m <κ

}
]
+ ε

= E

[
exp

(
−

∞∑
k=1

f
(
Γ
−1/α
k ,R(β)

k

))
1{

Γ
−1/α
m <κ

}
]
+ ε

≤ Ψξ(f) + ε.

Similarly, one can show that

lim inf
n→∞

Ψξn(f) ≥ Ψξ(f)− P
(
Γ−1/α
m ≥ κ

)
≥ Ψξ(f)− ε.

Since ε > 0 is arbitrary, we have thus proved (5.10) for every test function f , and hence
the desired result.
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A family of random sup-measures with long-range dependence

Proof of Theorem 4.2. It suffices to prove, for all open intervals A1, . . . , Ad in [0, 1] and
positive reals z1, . . . , zd, that

Pn := P

(
Mn(A1)

bn
> z1, . . . ,

Mn(Ad)

bn
> zd

)
−→ P(Mα,β(A1) > z1, . . . ,Mα,β(Ad) > zd) := P, as n → ∞.

This is a direct consequence of Theorem 4.1 since, denoting

FAi
= {F ∈ F([0, 1]) : F ∩Ai 6= ∅}, i = 1, . . . , d,

we have

Pn = P (ξn ((z1,∞)×FA1
) ≥ 1, . . . , ξn ((zd,∞)×FAd

) ≥ 1)

−→ P (ξ ((z1,∞)×FA1
) ≥ 1, . . . , ξ ((zd,∞)×FAd

) ≥ 1) = P, as n → ∞.

Our proof of Theorem 4.2 is based on the presentation (3.5) of Mα,β , which we have
shown at the beginning can be derived from the presentation (3.2). We conclude this
section by giving a direct proof of Theorem 4.2 using the presentation (3.2) and also
without using Proposition 5.1.

Second proof of Theorem 4.2. Fix d ∈ N, open intervals A1, . . . , Ad in [0, 1] and positive
reals z1, . . . , zd. We shall prove that

P

(
Mn(Ak)

bn
≤ zk, k = 1, . . . , d

)
→ P (Mα,β(Ak) ≤ zk, k = 1, . . . , d) ,

as n → ∞. For every ` ∈ N and every n ∈ N, we record whether Yi = ` for some i ∈ nAk,
for each k = 1, . . . , d, and count different types of boxes. More precisely, introduce
δ = (δ1, . . . , δd) ∈ Λd := {0, 1}d \ {0, . . . , 0}, and consider

τδA(n) :=

∞∑
`=1

∏
k=1,...,d
δk=1

1{∃i∈nAk,Yi=`}
∏

k′=1,...,d
δk′=0

1{∀i∈nAk′ ,Yi 6=`}.

For example, τ1,...,1A (n) is the number of box ` that has been sampled in some round
i1 ∈ nA1, i2 ∈ nA2, . . . , id ∈ nAd, and τ1,0,...,0A (n) is the number of box ` that has been
sampled in some round i1 ∈ nA1, but never in any round in nA2, . . . , nAd. So all boxes
that have been sampled during the first n rounds are divided into disjoint groups indexed
by δ ∈ Λd.

Now we need the following limit theorem for τδA(n):

lim
n→∞

τδA(n)

nβL(n)
= τδA :=

∫ ∞

0

βx−β−1P̃

(
1{

Ñ (xAk)6=0
} = δk, k = 1, . . . , d

)
dx (5.13)

in probability. This follows from [10, Theorem 2] (which was also established by the Pois-
sonization technique): the above identity therein was established for the corresponding
Poisson random measures being even or odd, and we obtain the desired result here by
applying the identity

P̃
(
Ñ (A) 6= ∅

)
=

1

2
P̃
(
Ñ (2A) odd

)
.
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A family of random sup-measures with long-range dependence

Then, conditioning on {Yn}n∈N, we can write

P

(
Mn(Ak)

bn
≤ zk, k = 1, . . . , d

)
= E

[ ∏
δ∈Λd

P0

(
ε0
bn

≤ min
k=1,...,d,δk=1

zk

)τδ
A(n)

]

= E exp

{∑
δ∈Λd

τδA(n) log

[
1− P0

(
ε0
bn

> min
k=1,...,d,δk=1

zk

)]}
,

where ε0, defined on another probability space (Ω0,F0,P0), has the same distribution as
ε1. By (5.13) and heavy-tail assumption (4.3) on ε’s distribution,

lim
n→∞

∑
δ∈Λd

τδA(n) log

[
1− P0

(
ε0
bn

> min
k=1,...,d,δk=1

zk

)]

= Γ(1− β)−1
∑
δ∈Λd

τδA

(
min

k=1,...,d,δk=1
zk

)−α

in probability.

This last sum can be written as

Ẽ

(∑
δ∈Λd

max
k=1,...,d,δk=1

1

zαk

d∏
k=1

1{
1{Ñ(xAk)6=0}=δk

}
)

= Ẽ

(∑
δ∈Λd

max
k=1,...,d

1{Ñ (xAk)6=0}

zαk
1{

1{
Ñ(xAk)6=0

}=δk,k=1,...,d

}
)

= Ẽ

(
max

k=1,...,d

1{Ñ (xAk)6=0}

zαk

)
.

Summing up, we have thus shown that

lim
n→∞

P

(
Mn(Ak)

bn
≤ zk, k = 1, . . . , d

)
= exp

(
−Γ(1− β)−1

∫ ∞

0

βx−β−1Ẽ

(
max

k=1,...,d

1{Ñ(xAk)6=0}

zαk

)
dx

)
,

which is the desired finite-dimensional distribution as in (3.2).

6 Random sup-measures and associated extremal processes

The extremal process associated to the Karlin random sup-measure Mα,β appears to
be a time-changed version of a standard α-Fréchet extremal processMα, precisely{

Mα(t
β)
}
t≥0

. (6.1)

As noticed in Section 2, this is a consequence of the more general fact that the extremal
process of any Choquet α-Fréchet random sup-measure is determined by the extremal
coefficient functional evaluated on sets {[0, t]}t>0 only. This is proved in Proposition A.1
in the appendix. The Karlin random sup-measure is of course not the only Choquet
random sup-measure corresponding to the same extremal process (6.1). Another such
family that arises naturally from limit theorems with long-range dependence are the
stable-regenerative random sup-measures [18] recalled below.
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A family of random sup-measures with long-range dependence

Example 6.1. We recall the definition of stable-regenerative random sup-measures:

Msr
α,β(·) := sup

`∈N

1

Γ
1/α
`

1{(
V

(β)
` +R

(β)
`

)
∩ · 6=∅

}, (6.2)

where {(Γ`, V
(β)
` , R

(β)
` )}`∈N is a Poisson point process on R+×R+×F(R+) with intensity

dxβv−(1−β)dvdP1−β where P1−β is the law of (1 − β)-stable regenerative set (i.e., the

closure of a (1− β)-stable subordinator [2]) on R+, and R̃
(β)
` in (1.3) is V (β)

` +R
(β)
` here.

It was shown [18, 26] that {
Msr

α,β([0, t])
}
t≥0

d
=
{
Mα(t

β)
}
t≥0

.

(Strictly speaking only β ∈ (1/2, 1) was considered in [18], although the extension to
β ∈ (0, 1) is straightforward.)

We now give an example of random sup-measure that is self-similar, non-stationary,
and yet also has the same extremal process.

Example 6.2. For β > 0, let Tβ be the mapping between subsets of R+ induced by
t 7→ tβ. Then, Mα ◦ Tβ is β/α-self-similar, but non-stationary, and the corresponding
extremal process also has the form {Mα(t

β)}t≥0.

In the special case β ∈ (0, 1), we provide another equivalent representation ofMα◦Tβ ,
which can also be connected to a variation of the Karlin model investigated in Section 4.
Let Ñ be a Poisson random measure on R+, and view it as a Poisson process by letting
Ñ (t) = Ñ ([0, t]) ∈ N0 := {0} ∪N denote the counting number of the Poisson process. We
write

Ñ [A] :=
{
Ñ (t) : t ∈ A

}
⊂ N0, for A ⊂ R+.

We then introduce

M∗
α,β(·) := sup

`∈N

1

Γ
1/α
`

1{
Ñ`[x` · ]31

} on R+, (6.3)

with {(Γ`, Ñ`, x`)}`∈N defined as in (3.1). When restricted to [0, 1],

M∗
α,β(·)

d
= sup

`∈N

1

Γ
1/α
`

1{
R(β)∗

` ∩ · 6=∅
},

with R(β)∗ d
= minR(β) (recall (3.4)). In fact, one could define Mα,β and M∗

α,β based on
the same Poisson point process such that with probability one, Mα,β(·) ≥ M∗

α,β(·).
Proposition 6.3. Let Mα be defined as in (1.2) and Tβ be the mapping between subsets
of R+ induced by t 7→ tβ for some β ∈ (0, 1), then

M∗
α,β

d
= Mα ◦ Tβ (6.4)

as random sup-measures on R+.

Proof. To show (6.4), by self-similarity it suffices to restrict to [0, 1] and compare the
capacity functionals of the random closed sets in the Poisson point process presentation
(6.3) and (1.2). We start by computing the extremal coefficient functional corresponding

EJP 23 (2018), paper 107.
Page 20/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP235
http://www.imstat.org/ejp/


A family of random sup-measures with long-range dependence

to (6.3): for an interval A = (a, b],

Γ(1− β)−1

∫ ∞

0

βx−β−1P̃
(
Ñ [xA] 3 1

)
dx

= Γ(1− β)−1

∫ ∞

0

βx−β−1P̃
(
Ñ (xa) = 0, Ñ (xb) > 0

)
dx

= Γ(1− β)−1

∫ ∞

0

βx−β−1
[
P̃
(
Ñ (xa) = 0

)
− P̃

(
Ñ (xb) = 0

)]
dx

= (bβ − aβ).

This implies that the capacity functional for R(β)∗ is

θ([a, b])P
(
R(β)∗ ∩ [a, b] 6= ∅

)
= bβ − aβ = Leb(Tβ([a, b])),

whence

M∗
α,β(·)

d
= sup

`∈N

1

Γ
1/α
`

1{U`∈Tβ(·)},

with {Un}n∈N being i.i.d. uniform random variables on [0, 1]. The desired result hence
follows.

The above representation of Mα ◦ Tβ was discovered during our investigation on the
limit of empirical random sup-measures for the following variation of the Karlin model

X∗
n := εYn1{Kn,Yn=1}, n ∈ N,

with {Yn}n∈N, {εn}n∈N and Kn,`, as in Section 4. In this variation, if a box ` is sampled
(Yn = `), thenX∗

n = ε` only if this is the first time for the box `, andX∗
n = 0 otherwise. For

this model, one could establish a limit theorem for the empirical random sup-measure,
and the limit is exactly the random sup-measure M∗

α,β. The sequence {X∗
n}n∈N is not

stationary, a drastically difference from {Xn}n∈N considered in Section 4. Nevertheless,
we see that partial maxima of both sequences are equal, explaining the equality of the
corresponding extremal processes in the limit.

We conclude this section by the following remark comparing the aforementioned
random sup-measures.

Remark 6.4. In summary, for β ∈ (0, 1),

Mα,β , Msr
α,β , and Mα ◦ Tβ

all have the same extremal process as {Mα(t
β)}t≥0. The independently scattered random

sup-measure Mα, the stable-regenerative random sup-measure Msr
α,β, and the Karlin

random sup-measure Mα,β are all self-similar and shift-invariant. However, for the
corresponding max-increment processes (3.6), Mα is mixing, Msr

α,β is ergodic but not
mixing, and Mα,β is not ergodic. The random sup-measure Mα ◦ Tβ is self-similar but
not shift-invariant.

A Extremal processes of Choquet random sup-measures

As before, given a random sup-measure M, we letM(t) := M([0, t]), t ≥ 0, denote its
associated extremal process. We denote byMα the standard α-Fréchet extremal process
defined in (2.4). In the literature,Mα was originally named the extremal process [12, 20].
The notion has become however more and more common to refer to various limits of
partial-maxima processes. The same notion was also used for random sup-measures in
[25].

Recall the definition of Choquet random sup-measures (2.2) in Section 2. Proposi-
tion 2.1 therein is a special case of the following result.
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A family of random sup-measures with long-range dependence

Proposition A.1. Let M be a Choquet α-Fréchet random sup-measure with extremal
coefficient functional θ, andM its extremal process.
(i) For d ∈ N, 0 < t1 < · · · < td and x1, . . . , xd ∈ R+,

P (M(tk) ≤ xk, k = 1, . . . , d) = exp

(
−

d∑
k=1

akθ([0, tk])

)
(A.1)

with

ak :=
1∧d

j=k xj

− 1∧d
j=k+1 xj

, k = 1, . . . , d− 1,

and ad := 1/xd.
(ii) If in addition M is H-self-similar with H > 0, then,

θ([0, 1]) {M(t)}t≥0
d
=
{
Mα(t

αH)
}
t≥0

.

Proof. We start by computing the finite-dimensional distribution of the associated ex-
tremal process. We write

P(M(tk) ≤ xk, k = 1, . . . , d) = P (M([0, tk]) ≤ xk, k = 1, . . . , d)

= P

(∫ ∨

R+

d∨
k=1

1[0,tk]∧d
j=k xj

dM ≤ 1

)
.

See [34] for background on stochastic extremal integrals
∫ ∨

fdM. We then express the
integrand as

f(t) :=

d∨
k=1

1[0,tk](t)∧d
j=k xj

=

d∑
k=1

ak1[0,tk](t).

In this way, we see that f is an upper-semi-continuous function expressed as the sum
of d comonotonic functions. Let θ denote the extremal coefficient functional of M.
From [24], we know that P(

∫ ∨
gdM ≤ t) = exp(−`(g)/t), t > 0, where here and below,

`(g) :=
∫
gdθ (understood as a Choquet integral for upper-semi-continuous function g) is

the tail dependence functional of M, and `(1K) = θ(K). In particular we have

P(M(tk) ≤ xk, k = 1, . . . , d) = P

(∫ ∨
fdM ≤ 1

)
= exp (−`(f)) (A.2)

= exp

(
−

d∑
k=1

akθ([0, tk])

)
,

and in the last step we applied the comonotonic additivity of the tail dependence function
` for Choquet random sup-measures (i.e., for comonotonic functions g, h,

∫
g + hdθ =∫

gdθ +
∫
hdθ [8, 24]). We have proved the first part of the proposition.

We also know that for an H-self-similar α-Fréchet random sup-measure, the extremal
coefficient functional necessarily has the scaling property θ(λ[0, t]) = λαHθ([0, t]) for all
λ > 0 (see (2.1)). So for such a random sup-measure the conclusion of the first part
becomes

P (M(tk) ≤ xk, k = 1, . . . , n) = exp

(
−θ([0, 1])

∑̀
k=1

akt
αH
k

)
.

Recall that for the independently scattered random sup-measure Mα, extremal coef-
ficient functional is the Lebesgue measure. The second part of the proposition then
follows.
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Remark A.2. We thank an anonymous referee for pointing out to us the following
consequence: for a general Fréchet random sup-measure not of Choquet type, the
statement (A.1) holds with ‘=’ replaced by ‘≥’. This is due to the stochastic dominance
property of Choquet random sup-measures. Indeed, a general Fréchet random sup-
measure M̃ can be coupled with a Choquet random sup-measure M with the same
extremal coefficient functional θ. Let M̃,M and ˜̀, ` be the extremal processes and the
tail dependence functionals of the two random sup-measures, respectively. It is shown
in [24, Corollary 5.4] that ˜̀≤ `. Now, the aforementioned statement follows from the
fact that the law of the extremal process is uniquely determined by the tail dependence
functional (A.2).
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