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Abstract

The theory of dependency graphs is a powerful toolbox to prove asymptotic normality
of sums of random variables. In this article, we introduce a more general notion
of weighted dependency graphs and give normality criteria in this context. We also
provide generic tools to prove that some weighted graph is a weighted dependency
graph for a given family of random variables.

To illustrate the power of the theory, we give applications to the following objects:
uniform random pair partitions, the random graph model G(n,M), uniform random
permutations, the symmetric simple exclusion process and multilinear statistics on
Markov chains. The application to random permutations gives a bivariate extension
of a functional central limit theorem of Janson and Barbour. On Markov chains, we
answer positively an open question of Bourdon and Vallée on the asymptotic normality
of subword counts in random texts generated by a Markovian source.
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1 Introduction

1.1 Background: dependency graphs

The central limit theorem is one of the most famous results in probability theory : it
states that suitably renormalized sums of independent identically distributed random
variables with finite variance converge towards a standard Gaussian variable.

It is rather easy to relax the identically distributed assumption. The Lindeberg
criterion, see e.g. [11, Chapter 27], gives a sufficient (and almost necessary) criterion
for a sum of independent random variables to converge towards a Gaussian law (after
suitable renormalization).

Relaxing independence is more delicate and there is no universal theory to do it.
One of the ways, among many others, is given by the theory of dependency graphs. A
dependency graph encodes the dependency structure in a family of random variables:
roughly we take a vertex for each variable in the family and connect dependent random
variables by edges. The idea is that, if the degrees in a sequence of dependency graphs
do not grow too fast, then the corresponding variables behave as if independent and
the sum of the corresponding variables is asymptotically normal. Precise normality
criteria using dependency graphs have been given by Petrovskaya/Leontovich, Janson,
Baldi/Rinott and Mikhailov [58, 42, 6, 53].

These results are powerful black boxes to prove asymptotic normality of sums of
partially dependent variables and can be applied in many different contexts. The original
motivation of Petrovskaya and Leontovich comes from the mathematical modelization of
cell populations [58]. On the other hand, Janson was interested in random graph theory:
dependency graphs are used to prove central limit theorems for some statistics, such
as subgraph counts, in G(n, p) [6, 42, 46]; see also [55] for applications to geometric
random graphs. The theory has then found a field of application in geometric probability,
where central limit theorems have been proven for various statistics on random point
configurations: the lengths of the nearest-neighbour graph, of the Delaunay triangulation
and of the Voronoi diagram of these random points [5, 56], or the area of their convex
hull [7]. More recently it has been used to prove asymptotic normality of pattern counts
in random permutations [13, 38]. Dependency graphs also generalize the notion of
m-dependence [40, 10], widely used in statistics [24]. All these examples illustrate the
importance of the theory of dependency graphs.

1.2 Overview of our results

The goal of this article is to introduce a notion of weighted dependency graphs;
see Theorem 4.5. As with usual dependency graphs, we want to prove the asymptotic
normality of sums of random variables Xn =

∑Nn

i=1 Yn,i. Again, we take a vertex for each
variable Yn,i in the family and connect dependent random variables with an edge. The
difference is that edges may now carry weights in (0, 1). If two variables are almost
independent (in a sense that will be made precise), the weight of the corresponding
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edge is small. Our main result, Theorem 4.11, is a normality criterion for weighted
dependency graphs: roughly, instead of involving degrees as Janson’s or Baldi/Rinott’s
criteria, we can now use the weighted degree, which is in general smaller.

This of course needs to quantify in some sense the “dependency” between random
variables. This is done using the notion of joint cumulants, and maximum spanning trees
of weighted graphs (which is a classical topic in algorithmics literature; see Section 3).

As explained in Section 4.5, our normality criterion contains Janson’s criterion and
natural applications of Mikhailov’s criterion. Unfortunately, we are not able to deal with
variables Yn,i with only few finite moments, as in the result of Baldi and Rinott.

On the other hand, and most importantly, the possibility of having small weights on
edges extends significantly the range of application of the theory. Indeed, in this article
we provide several examples where weighted dependency graphs are used to prove
asymptotic normality of sums of pairwise dependent random variables (for such families,
the only usual dependency graph is the complete graph, and the standard theory of
dependency graphs is useless). Examples given in the article involve pair partitions, the
random graph model G(n,M), permutations, statistical mechanics and finally Markov
chains.

Except for variance estimates in some examples, our normality criterion is easy to
apply. Proving that a given graph is a weighted dependency graph might be difficult a
priori, but we provide general statements that reduce it in several cases to an elementary
moment computation (see detail in Section 1.3). Therefore the present article gives
simple proofs of central limit theorems on a large variety of objects, that are hard or
non-accessible via other methods.

Before describing specifically the results obtained on each of these objects, let us
mention that weighted dependency graphs can also be used to prove multivariate asymp-
totic normality and functional central limit theorems; rather than giving a cumbersome
general theorem for that, we refer the reader to examples in Sections 8.2, 8.3 and 9.3.

1.2.1 Random pair partitions

Our first example deals with uniform random pair partitions of a 2n element set. This
model is the starting point of the configuration model in random graph theory (see e.g.
[46, Chapter 9]) and has also recently appeared in theoretical physics [23].

We consider the number of crossings in such a random pair partitions. This is a
natural statistics in the combinatorics literature, see e.g. [17]. A central limit theorem
for this statistics has been given by Flajolet and Noy [36]. We give an alternate proof of
this result (see Theorem 6.5) that does not rely on the explicit formula for the generating
function. Our method can be extended to give a central limit theorem for the number of
k-crossings, for which no explicit generating function is available, but, for simplicity of
notation in this first example, we only treat the case of crossings.

1.2.2 Random graphs

The second example deals with the random graph model G(n,M), that is a uniform
random graph among all graphs with vertex set {1, · · · , n} and M edges. This is the
model considered by Erdős and Rényi in their seminal paper of 1959 [32].

Since the number of edges is prescribed, the presence of distinct edges are not
independent events, unlike in G(n, p). Therefore the usual theory of dependency graph
cannot be used, but weighted dependency graphs work fine on this model.

To illustrate this, we consider the subgraph count statistics; i.e. we fix a finite graph
H and look at the number of copies of H in the random graph G(n,M). We prove a
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central limit theorem for these statistics, when n and M go together to infinity in a
suitable way (Theorem 7.5).

This central limit theorem is a weaker version of a theorem of Janson [44, Theorem
19] (who gets the same result with slightly weaker hypotheses). We nevertheless think
that the proof given here is interesting, since it parallels completely the proof with
usual dependency graphs that can be done for the companion model G(n, p): we refer to
[46, Chapter 6] for the application of dependency graphs to central limit theorem for
subgraph counts in G(n, p). In comparison, Janson’s approach involves martingales in
the continuous time model G(n, t) and a stopping time argument.

1.2.3 Random permutations

The study of uniform random permutations is a wide subject in probability theory and,
as for random graphs, it would be hopeless to try and do a comprehensive presentation
of it. Relevant to this paper, Hoeffding [39] has given a central limit theorem for what
can be called simply indexed permutation statistics. The latter is a statistic of the form

Xn =

n∑
i=1

a(n)(i, π(i)),

where π is a uniform random permutation of size n and a(n) a sequence of real matrices
with appropriate conditions.

Hoeffding’s result has been extended and refined in many directions, including the
following ones.

• In [12], Bolthausen used Stein’s method to give an upper bound for the speed of
convergence in Hoeffding’s central limit theorem.

• This work has then been extended to doubly indexed permutation statistics (called
DIPS for short) by Zhao, Bai, Chao and Liang [67]. Barbour and Chen [8] have then
given new bounds on the speed of convergence, that are sharper in many situations.
DIPS have been used in various contexts in statistics; we refer the reader to [67, 8]
and references therein for background on these objects.

• In another direction, Barbour and Janson have established a functional central limit
theorem for single indexed permutation statistics [9].

Using weighted dependency graphs, we provide a functional central limit theorem
for doubly indexed permutation statistics; see Theorem 8.7. This can be seen as an
extension of Barbour and Janson’s theorem or a functional version of Zhao, Bai, Chao and
Liang’s result (note however that, in the simply indexed case, our hypotheses are slightly
stronger than the ones of Barbour and Janson and that we cannot provide a speed of
convergence). There is a priori no obstruction in obtaining an extension for k-indexed
permutation statistics, except maybe that the general statement and the computation of
covariance limits in specific examples may become quickly cumbersome.

1.2.4 Stationary configuration of SSEP

The symmetric simple exclusion process (SSEP) is a classical model of statistical physics
that represents a system outside equilibrium. Its success in the physics literature is
mainly due to the fact that it is tractable mathematically and displays phase transition
phenomena. We refer the reader to [25] for a survey of results on SSEP and related
models from a mathematical physics viewpoint.
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The description of the invariant measure, or steady state, of SSEP (and more generally
the asymmetric version ASEP), has also attracted the interest of the combinatorics
community in the recent years. This question is indeed connected to the hierarchy of
orthogonal polynomials and has led to the study of new combinatorial objects, such as
permutation tableaux and staircase tableaux [22, 21].

In this paper we prove that indicator random variables, which indicate the presence
of particles at given locations in the steady state, have a natural weighted dependency
graph structure. As an application we give a functional central limit theorem for the
particle distribution function in the steady state, Theorem 9.4. An analogue result for
the density function, which is roughly the derivative of the particle distribution function
has been given by Derrida, Enaud, Landim and Olla [26]. Their result holds in the more
general setting of ASEP and it would be interesting to generalize our approach to ASEP
as well.

1.2.5 Markov chains

Our last application deals with the number of occurrences of a given subword in a text
generated by a Markov source. More precisely, let (Mk)k≥0 be an aperiodic irreducible
Markov chain on a finite state space S. Assume that M0 is distributed according to
the stationary distribution π of the chain and denote wn = (M0,M1, . . . ,Mn). We are
interested in the number of times Xn that a given word v = s1 · · · sm occurs as a subword
of wn, possibly adding some additional constraints, such as adjacency of some letters of
v in wn.

This problem, motivated by intrusion detection in computer science and identifying
meaningful bits of DNA in molecular biology, has attracted the attention of the analysis of
algorithm community in the nineties; we refer the reader to [37] for detailed motivations
and references on the subject.

A central limit theorem for Xn was obtained in some particular cases:

• when we are only counting consecutive occurrences of v, i.e. the number of factors
of wn that are equal to v (see Régnier and Szpankowski [59], or Bourdon and Vallée
[15] for an extension to probabilistic dynamical sources);

• or when the lettersM1,M2, . . . ,Mn of wn are independent (see Flajolet, Szpankowski
and Vallée [37]).

• Another related result is a central limit theorem by Nicodème, Salvy and Flajolet
[54] for the number of occurrence positions, i.e. positions where an occurrence
of the pattern terminates. This statistics is quite different from the number of
occurrences itself, since the number of occurrence positions is always bounded by
the length of the word.

Despite all these results, the number of occurrences in the general subword case with a
Markov source was left open by these authors; see [14, Section 4.4]. Using weighted
dependency graphs, we are able to fill this gap; see Theorem 10.5.

Note that there is a rich literature on central limit theorems for linear statistics on
Markov chains (Mn)n≥0, that is statistics of the form Sf

N :=
∑N

i=0 f(Mn) for a function
f on the state space. We refer the reader to [47] and references therein for numerous
results in this direction, in particular on infinite state spaces. In [61], the authors
study through cumulants linear statistics on mixing sequences (including Markov chains;
Chapter 4) and multilinear statistics on independent identically distributed random
variables (Chapter 5). It seems however that there is a lack of tools to study multilinear
statistics on Markov chains such as the above considered subword count statistics. The
theory of weighted dependency graphs introduced here is such a tool.
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1.2.6 Homogeneity versus spatial structure

It is worth noticing that the previous examples have various structures. The first three
are homogeneous in the sense that there is a transitive automorphism group acting on
the model. This is reflected in the corresponding weighted dependency graphs that have
all equal weights.

In comparison, the last two examples have a linear structure: particles in SSEP are
living on a line and a Markov chain is canonically indexed by N. For Markov chains,
this is reflected in the corresponding weighted dependency graph, since the weights
decrease exponentially with the distance. On the contrary, SSEP has a homogeneous
weighted dependency graph (all weights are equal to 1/n), which comes as a surprise for
the author and indicates a quite different dependency structure from the Markov chain
setting.

The possibility to cover models with various dependency structures is, in the author’s
opinion, a nice feature of weighted dependency graphs.

1.3 Finding weighted dependency graphs

The proof of our normality criterion (Theorem 4.11) is quite elementary and easy.
Therefore, one could argue that the difficulty of proving a central limit theorem has
only been shifted to the difficulty of finding an appropriate weighted dependency graph.
Indeed, proving that a given weighted graph L̃ is a weighted dependency graph for
a given family of random variables {Yα, α ∈ A} consists in establishing bounds on all
joint cumulants κ(Yα;α ∈ B), where B is a multiset of elements of A. We refer to this
problem as proving the correctness of the weighted dependency graph L̃. Attacking it
head-on is rather challenging. (The definition of joint cumulants is given in Eq. (2.2); the
precise bound that should be proved can be found in Eq. (4.3), but is not relevant for the
discussion here.)

To avoid this difficulty, we give in Section 5 three general results that help proving
the correctness of a weighted dependency graph. These results make the application of
our normality criterion much easier in general, and almost immediate in some cases.

Before describing these three tools, let us observe that proving the correctness of a
usual dependency graph L is usually straightforward; it is most of the time an immediate
consequence of the definition of the model we are working on. Therefore the existing
literature does not provide any tool for that.

1. Our first tool (Theorem 5.2) is an equivalence of the definition with a slightly
different set of inequalities involving cumulants of product of random variables.
When the random variables Yα are Bernoulli random variables, we can then use
the trivial fact Y m

α = Yα to reduce (most of the time significantly) the number of
inequalities to establish.

2. The second tool (Theorem 5.8) shows the equivalence of bounds on cumulants and
bounds on an auxiliary quantity defined as

Pr =
∏
δ⊆[r]

E

[∏
i∈δ

Yαi

](−1)|δ|

.

At first sight, one might think that this new expression is not simpler to bound than
cumulants, but its advantage is that it is multiplicative: if moments E

[∏
i∈δ Yαi

]
have a natural factorization, then Pr factorizes accordingly and we can bound each
factor separately.
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3. The third tool (Theorem 5.11) is a stability property of weighted dependency
graphs by products. Namely, if we prove that some basic variables admit a weighted
dependency graph, we obtain for free a weighted dependency graphs for monomials
in these basic variables. A typical example of application is the following: in the
random graph setting, we prove that the indicator variables corresponding to
presence of edges have a weighted dependency graph and we automatically obtain
a similar result for presence of triangles or of copies of any given fixed graph.

Items 1 and 3 are both used in all applications described in Section 1.2 and reduces
the proof of the correctness of the relevant weighted dependency graph to bounding
specific simple cumulants. For random pair partitions, random permutations and random
graphs, this bound directly follows from an easy computation of joint moments and item
2 above. In summary, the proof of correctness of the weighted dependency graph is
rather immediate in these cases.

For SSEP, we also make use of an induction relation for joint cumulants obtained
by Derrida, Lebowitz and Speer [28] (joint cumulants are called truncated correlation
functions in this context). The Markov chain setting uses linear algebra considerations
and a recent expression of joint cumulants in terms of the so-called boolean cumulants,
due to Arizmendi, Hasebe, Lehner and Vargas [2] (see also [61, Lemma 1.1]). Boolean
cumulants have been introduced in non-commutative probability theory [64, 49] and
their appearance here is rather intriguing.

To conclude this section, let us mention that in each case, the proof of correctness
of the weighted dependency graph relies on some expression for the joint moments of
the variables Yα. This expression might be of various forms: explicit expressions in the
first three cases, an induction relation in the case of SSEP or a matrix expression for
Markov chains, but we need such an expression. In other words, weighted dependency
graphs can be used to study what could be called locally integrable systems, that is
systems in which the joint moments of the basic variables Yα can be computed. Such
systems are not necessarily integrable in the sense that there is no tractable expression
for the generating function or the moments of X =

∑
α∈A Yα, so that classical asymptotic

methods can a priori not be used. In particular, in all the examples above, it seems
hopeless to analyse the moments E[Xr] by expanding them directly in terms of joint
moments.

1.4 Usual dependency graphs: behind the central limit theorem.

We have focused so far on the question of asymptotic normality. However, usual
dependency graphs can be used to establish other kinds of results. The first family of
such results consists in refinements of central limit theorems.

• In their original paper [6] Baldi and Rinott have combined dependency graphs with
Stein’s method. In addition to providing a central limit theorem, this approach
yields precise estimates for the Kolmogorov distance between a renormalized
version of Xn and the Gaussian distribution. For more general and in some cases
sharper bounds, we also refer the reader to [16]. An alternate approach to Stein’s
method, based on mod-Gaussian convergence and Fourier analysis, can also be
used to establish sharp bounds in Kolmogorov distance in the context of dependency
graphs, see [34].

• Another direction, addressed in [29, 35], is the validity domain of the central limit
theorem.

The Gaussian law is not the only limit law that is accessible with the dependency
graph approach. Convergence to Poisson distribution can also be proved this way, as
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demonstrated in [4]; again, this result has found applications, e.g., in the theory of
random geometric graphs [55].

We now leave convergence in distribution to discuss probabilities of rare events:

• In [45], S. Janson has established some large deviation upper bound involving the
fractional chromatic number of the dependency graph.

• Another important, historically first use of dependency graphs is the Lovász local
lemma [31, 65]. The goal here is to find a lower bound for the probability that
Xn = 0 when Yn,i are indicator random variables, that is the probability that none
of the Yn,i is equal to 1. This inequality has found a large range of application to
prove by probabilistic arguments the existence of an object (often a graph) with
given properties: this is known as the probabilistic method, see [1, Chapter 5].

1.5 Future work

We believe that weighted dependency graphs may be useful in a number of different
models and that they are worth being studied further. An application of weighted
dependency graphs to the d-dimensional Ising model is given in a joint paper with
Dousse [30]. In a work in progress, we also use them to study statistics in uniform
set-partitions and obtain a far-reaching generalization of a result of Chern, Diaconis,
Kane and Rhoades [18].

Proving the correctness of these weighted dependency graphs again use the tools
from Section 5 of this paper. In the case of Ising model, we also need the theory of
cluster expansions.

Another source of examples of weighted dependency graphs is given by determinantal
point processes (see, e.g., [41, Chapter 4]): indeed, for such processes, it has been
observed by Soshnikov that cumulants have rather nice expressions [63, Lemma 1].
This fits in the framework of weighted dependency graphs and the stability by taking
monomials in the initial variables may enable to study multilinear statistics on such
models. This is a direction that we plan to investigate in future work.

The results of the present article also invite to consider the following models.

• Uniform d-regular graphs: the weighted dependency graph for pair partitions pre-
sented in Section 6 gives bounds on joint cumulants in the configuration model. It
would be interesting to have similar bounds for uniform d-regular graphs, especially
when d tends to infinity, in which case the graph given by the configuration model
is simple with probability tending to 0. The fact that joint moments of presence of
edges have no simple expression for d-regular graphs is an important source of
difficulty here.

• The asymmetric version of SSEP, called ASEP: finding a weighted dependency
graph for this statistical mechanics model is closely related to the conjecture made
in [28], on the scaling limit of the truncated correlation functions.

• Markov chains on infinite state spaces: as mentioned earlier, there is an important
body of literature on CLT for linear statistics

∑N
n=0 f(Mn) on such models, see

[47]. Does Theorem 10.4, which gives a weighted dependency graph for Markov
chain on a finite state space, generalize under some of these criteria? This would
potentially give access to CLT for multilinear statistics on these models. . .

Finally, because of the diversity of examples, it would be of great interest to adapt
some of the results mentioned in Section 1.4 to weighted dependency graphs. An
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approach to do this would be to use recent results on mod-Gaussian convergence
[35, 34]. Unfortunately, this requires uniform bounds on cumulants of the sum Xn, which
are at the moment out of reach for weighted dependency graphs in general.

1.6 Outline of the paper

The paper is organized as follows.

• Standard notation and definitions are given in Section 2.

• Section 3 gives some background about maximum spanning trees, a notion used in
our bounds for cumulants.

• The definition of weighted dependency graphs and the associated normality crite-
rion are given in Section 4.

• Section 5 provides tools to prove the correctness of weighted dependency graphs.

• The next five sections (from 6 to 10) are devoted to the applications described in
Section 1.2.

• Appendices give a technical proof, some variance estimations and adequate tight-
ness criteria for the functional central limit theorems, respectively.

2 Preliminaries

2.1 Set partitions

The combinatorics of set partitions is central in the theory of cumulants and is
important in this article. We recall here some well-known facts about them.

A set partition of a set S is a (non-ordered) family of non-empty disjoint subsets of
S (called blocks of the partition), whose union is S. We denote by #(π) the number of
blocks of π.

Denote P(S) the set of set partitions of a given set S. Then P(S) may be endowed
with a natural partial order: the refinement order. We say that π is finer than π′ or π′

coarser than π (and denote π ≤ π′) if every part of π is included in a part of π′.
Endowed with this order, P(S) is a complete lattice, which means that each family

F of set partitions admits a join (the finest set partition which is coarser than all set
partitions in F , denoted with ∨) and a meet (the coarsest set partition which is finer
than all set partitions in F , denoted with ∧). In particular, there is a maximal element
{S} (the partition in only one part) and a minimal element {{x}, x ∈ S} (the partition in
singletons).

Lastly, denote µ the Möbius function of the partition lattice P(S). In this paper,
we only use evaluations of µ at pairs (π, {S}), i.e. where the second argument is the
maximum element of P(S). In this case, the value of the Möbius function is given by:

µ(π, {S}) = (−1)#(π)−1(#(π)− 1)!. (2.1)

2.2 Joint cumulants

For random variables X1, . . . , Xr with finite moments living in the same probability
space (with expectation denoted E), we define their joint cumulant (or mixed cumulant)
as

κ(X1, . . . , Xr) = [t1 . . . tr] log

(
E
(
exp(t1X1 + · · ·+ trXr)

))
. (2.2)

As usual, [t1 . . . tr]F stands for the coefficient of t1 . . . tr in the series expansion of F in
positive powers of t1, . . . , tr. The finite moment assumption ensures that the function is
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analytic around t1 = · · · = tr = 0. If all random variables X1, · · · , Xr are equal to the
same variable X, we denote κr(X) = κ(X, . . . ,X) and this is the usual cumulant of a
single random variable. .

Joint cumulants have a long history in statistics and theoretical physics and it is
rather hard to give a reference for their first appearance. Their most useful properties
are summarized in [46, Proposition 6.16] — see also [50].

• It is a symmetric multilinear functional.

• If the set of variables {X1, . . . , Xr} can be split into two mutually independent sets
of variables, then the joint cumulant vanishes;

• Cumulants can be expressed in terms of joint moments and vice-versa, as follows:

E
(
X1 · · ·Xr

)
=

∑
π∈P([r])

∏
C∈π

κ(Xi; i ∈ C); (2.3)

κ(X1, . . . , Xr) =
∑

π∈P([r])

µ(π, {[r]})
∏
C∈π

E

(∏
i∈C

Xi

)
. (2.4)

Hence, knowing all joint cumulants amounts to knowing all joint moments.

Because of the symmetry, it is natural to consider joint cumulants of multisets of random
variables.

The second property above has a converse. Since we have not been able to find it in
the literature, we provide it with a proof.

Proposition 2.1. Let A = A1 t A2 be a finite set, partitioned into two parts. Let
{Yα, α ∈ A} be a family of random variables defined on the same probability space, such
that each Yα is determined by its moments. We assume that for each multiset B of A
that contains elements of both A1 and A2,

κ(Yα;α ∈ B) = 0.

Then {Yα, α ∈ A1} and {Yα, α ∈ A2} are independent.

Proof. Since each Yα is determined by its moments, from a theorem of Petersen [57],
we know that the multivariate random variable (Yα, α ∈ A1 ∪A2) is also determined by
its joint moments, or equivalently by its joint cumulants. Consider random variables
(Zα, α ∈ A1 ∪A2) such that (Zα, α ∈ A1) (resp. (Zα, α ∈ A2)) has the same (multi-variate)
distribution than (Yα, α ∈ A1) (resp. (Yα, α ∈ A2)) and such that {Zα, α ∈ A1} and
{Zα, α ∈ A2} are independent. Because of the equalities of multi-variate distribution, if
the multiset B is composed either only by elements of A1 or only by elements of A2, then

κ(Zα, α ∈ B) = κ(Yα, α ∈ B).

On the other hand, if B contains elements of both A1 and A2, then {Zα, α ∈ B} can
be split into two mutually independent sets: {Zα, α ∈ B ∩ A1} and {Zα, α ∈ B ∩ A2}.
Therefore,

κ(Zα, α ∈ B) = 0.

But, for such B, one has κ(Yα, α ∈ B) = 0 by hypothesis.
Finally all joint cumulants of (Yα, α ∈ A1 ∪ A2) and (Zα, α ∈ A1 ∪ A2) coincide and,

therefore, both random vectors have the same distribution (recall that the first one
is determined by its joint moments). Therefore {Yα, α ∈ A1} and {Yα, α ∈ A2} are
independent, as claimed.

Remark 2.2. We do not know whether the hypothesis “determined by their moment”
can be relaxed or not.
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2.3 Multisets

As mentioned above it is natural to consider joint cumulants of multisets of random
variables, so let us fix some terminology.

For a multiset B, we denote by |B| the total number of elements (i.e. counted with
multiplicities) and #(B) the number of distinct elements. Furthermore B1 ] B2 is by
definition the disjoint union of the multisets B1 and B2, i.e. the multiplicity of an element
in B1 ]B2 is the sum of its multiplicity in B1 and B2.

The set of multisets of elements of A is denoted by MSet(A), while MSet≤m(A) is the
subset of multisets with |B| ≤ m.

2.4 Graphs

Definition 2.3. A graph is a pair (V,E), where V is the vertex set and E the edge set.
Elements of E are 2-element subsets of V (our graphs are simple loopless graphs). All
graphs considered in this paper are finite.

We denote by CC(L) the partition of the vertex set of a graph L into connected
components. Consequently, |CC(L)| is the number of connected components of L.

Two types of graphs appear here: dependency graphs throughout the paper and
random graphs in Section 7. The former are tools to prove central limit theorems, while
the latter are the objects of study, and they should not be confused. Following [46], we
use the letter L for dependency graphs, and we reserve the more classical G for random
graphs.

If B is a multiset of vertices of L, we can consider the graph L[B] induced by L on B

and defined as follows: the vertices of L[B] correspond to elements of B (if B contains
an element with multiplicity m, then m vertices correspond to this element), and there is
an edge between two vertices if the corresponding vertices of L are equal or connected
by an edge in L.

Finally we say that two subsets (or multisets) A1 and A2 of vertices of L are discon-
nected if they are disjoint and there is no edge in L that has an extremity in A1 and an
extremity in A2.

2.5 Weighted graphs

An edge-weighted graph L̃, or weighted graph for short, is a graph L in which each
edge e is assigned a weight we. In this article we restrict ourselves to weights we with
we ∈ [0, 1]. Edges not in the graph can be thought of as edges of weight 0, all our
definitions are consistent with this convention.

The induced graph of a weighted graph L̃ on a multiset B has a natural weighted
graph structure. We put on each edge of L̃[B] the weight of the corresponding edge in
L̃; if the edge connects two copies of the same vertex of L̃, there is no corresponding
edge in L̃ and we put weight 1.

If I and J are subsets (or multisets) of vertices of a weighted graph L̃, we write
W (I, J) for the maximal weight of an edge connecting a vertex of I and a vertex of J .
If I ∩ J 6= ∅, then W (I, J) = 1. On the contrary, if I and J are disconnected, we set
W (I, J) = 0.

This enables to define powers of weighted graphs.

Definition 2.4. Let L̃ be a weighted graph with vertex set A and m be a positive integer.
The m-th power of L̃ is the graph with vertex set MSet≤m(A) such that I and J are linked
by an edge unless I and J are disjoint and disconnected in L. Moreover the edge (I, J)

has weight W (I, J). We denote this weighted graph L̃m.
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2.6 Asymptotic notation

We use the symbol un � vn (resp. un � vn, un � vn) to say that limn→∞
un

vn
is a

nonzero constant (resp. 0, +∞) as n → ∞. In particular, vn should be nonzero for n

sufficiently large.

3 Spanning trees

As we shall see in the next section, our definition of weighted dependency graphs
involves the maximal weight of a spanning tree of a given weighted graph. In this section,
we recall this notion and prove a few lemmas that we use later in the paper.

3.1 Maximum spanning tree

Definition 3.1. A spanning tree of a graph L = (V,E) is a subset E′ of E such that
(V,E′) is a tree.

More generally, we say that a subset E′ of E forms a spanning subgraph of L if (V,E′)

is connected.

If L̃ is a weighted graph, we say that the weight w(T ) of a spanning tree of L̃ is the
product of the weights of the edges in T . The maximum weight of a spanning tree of L̃ is
denoted M

(
L̃
)
. This parameter is central in our work.

If L̃ is disconnected, we set M
(
L̃
)
= 0 for convenience.

Example 3.2. An easy case which appears a few times in the paper is the case of a
connected graph L̃ with r vertices and all weights equal to the same value, say ε. Then
all spanning trees have weight εr−1 so that M

(
L̃
)
= εr−1.

For a less trivial example, consider the weighted graph of Fig. 1. The red edges form
a spanning tree of weight ε2 · (ε)2 = ε4. It is easy to check that there is no spanning trees
with bigger weight so that M

(
L̃
)
= ε4 in this case.

ε ε2

ε3

ε

1

ε

1 ε2

Figure 1: Example of a weighted graph with a spanning tree of maximal weight. Fat red
edges are edges of the maximum weight spanning tree, the other edges of the graph are
dotted for more readability.

Finding a spanning tree with maximum weight is a well-studied question in the
algorithmics literature: see [19, Chapter 23] (the usual convention is to define the
weight of a spanning tree as the sum of the weights of its edges and to look for a
spanning tree of minimal weight, but this is of course equivalent, up to replacing weights
with the logarithms of their inverses).

3.2 Prim’s algorithm and the reordering lemma

There are several classical algorithms to find a spanning tree with maximum weight.
We describe here Prim’s algorithm, which is useful for our work.

Assume L̃ is a connected weighted graph. Choose arbitrarily a vertex v in the graph
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and set initially A = {v} and T = ∅. We iterate the following procedure: find the edge
with maximum weight connecting a vertex v in A with a vertex w outside A (since L̃ is
connected, there is at least one such edge), then add w to A and {v, w} to T . It is easy to
check that at each step, T is always a tree with vertex set A and a general result ensures
that at each step, T is included in a spanning tree of maximum weight of L̃ [19, Corollary
23.2]. Note also that the weight of the edge {v, w} is equal to W ({w}, A). We stop the
iteration when A is the vertex set of L̃, and T is then a spanning tree of maximum weight.

The correctness of this algorithm implies the following lemma.

Lemma 3.3. Let L̃ be a weighted graph with r vertices. There exists an ordering
(β1, . . . , βr) of its vertex set such that

r−1∏
j=1

W
(
{βj+1}; {β1, · · · , βj}

)
= M

(
L̃
)
. (3.1)

Proof. Adding edges of weight 0 to the graph does not change any side of the above
equality, so we can assume that L̃ is connected.

We apply Prim’s algorithm, as described above, and we denote vertices of L̃ by
β1, . . . , βr in the order in which they are added to the setA. ThenW

(
{βj+1}; {β1, · · · , βj}

)
is the weight of the edge added in the j-th iteration of the algorithm. Therefore the LHS
of Eq. (3.1) is the weight of the spanning tree constructed by Prim’s algorithm. Since
this is a spanning tree of maximum weight, this weight is M

(
L̃
)
.

Remark 3.4. In the special case where L̃ has only edges of weight 1, the lemma states
the following: if L̃ is connected, there exists an ordering (β1, . . . , βr) of its vertices such
that each β` is in the neighbourhood of (β1, . . . , β`−1). This easy particular case is used
in the dependency graph literature, but with weighted dependency graphs, we need
Theorem 3.3 in its full generality.

3.3 Inequalities on maximal weights of spanning trees

We now state some inequalities on maximal weights, that are useful in the sequel.
We first introduce some notation.

If ∆ is a subset of B, we denote Π(∆) the multiset partition of B which has ∆ and
singletons as blocks. Furthermore, if ∆ = (∆1, · · · ,∆`) is a family of subsets of B, then
we denote π∆ = Π(∆1) ∨ · · · ∨Π(∆`). Note that if ∆1, . . . , ∆` are the parts of a partition
π, then trivially π∆ = π.

Finally, edges of weight 1 will play a somewhat special role in weighted dependency
graphs. We therefore denote L̃〈1〉 the subgraph formed by edges with weight 1.

Lemma 3.5. Let L̃ be a weighted graph with vertex set B and (∆1, . . . ,∆s) a family of
subsets of B. We assume that π∆ ∨ CC(L̃〈1〉) = {B}. Then(

s∏
i=1

M
(
L̃[∆i]

))
≤ M

(
L̃
)
.

Proof. Consider a spanning tree Ti of maximum weight in each induced graph L̃[∆i].
Each Ti can be seen as a subset of edges of the original graph L̃. Let S be the union of
the Ti and of the set of edges of weight 1. The condition π∆ ∨ CC(L̃〈1〉) = {B} ensures
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that the edge set S forms a spanning subgraph of L̃. Therefore we can extract from it a
spanning tree T . Then

w(T ) =
∏
e∈T

w(e) ≥
∏
e∈S

w(e) ≥
s∏

i=1

∏
e∈Ti

w(e) =

s∏
i=1

M
(
L̃[∆i]

)
.

But, since T is a spanning tree of L̃, we have w(T ) ≤ M
(
L̃
)
, which completes the

proof.

Our next lemma uses the notion of m-th power of a weighted graph, which was
defined in Section 2.5.

Lemma 3.6. Let I1, · · · , Ir be multisets of vertices of a weighted graph L̃. We consider
a partition π of I1 ] · · · ] Ir such that

π ∨
{
I1, · · · , Ir

}
=
{
I1 ] · · · ] Ir

}
. (3.2)

Then we have
s∏

i=1

M
(
L̃[πi]

)
≤ M

(
L̃m[{I1, · · · , Ir}]

)
,

where L̃m is the m-th power of L̃.

Proof. The multiset B := I1 ] · · · ] Ir can be explicitly represented by

{(v, j) : j ≤ r and v ∈ Ij}.

Let πi be a part of π and consider a spanning tree Ti of minimum weight of L̃[πi]. Edges
of Ti are pairs {(v, j), (v′, j′)}. For such an edge e with j 6= j′, we can consider the
corresponding edge ē = {Ij , Ij′} in L̃m. By definition of power graphs, ē has at least the
same weight as e. Doing so for each edge of Ti with j 6= j′, we get a set Si of edges in
L̃m such that ∏

ē∈Si

w(ē) ≥
∏
e∈Ti
j 6=j′

w(e) ≥
∏
e∈Ti

w(e).

As in the proof of the previous lemma, we now consider the union S of the Si’s. The
condition (3.2) ensures that S forms a spanning subgraph of L̃m[{I1, · · · , Ir}] and hence
we can extract from it a spanning tree T . Then

w(T ) =
∏
ē∈T

w(ē) ≥
∏
ē∈S

w(ē) ≥
s∏

i=1

∏
ē∈Si

w(ē) ≥
s∏

i=1

∏
e∈Ti

w(e) ≥
s∏

i=1

M
(
L̃[∆i]

)
.

But, since T is a spanning tree of L̃m[{I1, · · · , Ir}], we have w(T ) ≤ M
(
L̃m[{I1, · · · , Ir}]

)
,

which concludes the proof.

4 Weighted dependency graphs

4.1 Usual dependency graphs

Consider a family of random variables {Yα, α ∈ A}. A dependency graph for this
family is an encoding of the dependency relations between the variables Yα in a graph
structure. We take here the definition given by Janson [42]; see also papers of Malyshev
[51] and Petrovskaya/Leontovich [58] for earlier appearances of the notion with slightly
different names.

Definition 4.1. A graph L is a dependency graph for the family {Yα, α ∈ A} if the two
following conditions are satisfied:
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1. the vertex set of L is A.

2. if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and {Yα, α ∈ A2} are
independent.

A trivial example is that any family of independent variables {Yα, α ∈ A} admits
the graph with vertex-set A and no edges as a dependency graph. A more interesting
example is the following.

Example 4.2. Consider the Erdős-Rényi random graph model G(n, pn), that is G has
vertex set [n] := {1, . . . , n} and it has an edge between i and j with probability pn, all
these events being independent from each other. Let A be the set of 3-element subsets
of [n] and if α = {i, j, k} ∈ A, let Yα be the indicator function of the event “the graph G

contains the triangle with vertices i, j and k”.
Let L be the graph with vertex set A and the following edge set: α and β are linked

if |α ∩ β| = 2 (that is, if the corresponding triangles share an edge in G). Then L is a
dependency graph for the family {Yα, α ∈ A}.

Note also that the complete graph on A is a dependency graph for any family of
variables indexed by A. In particular, given a family of variables, it may admit several
dependency graphs. The fewer edges a dependency graph has, the more information
it encodes and, thus, the more interesting it is. It would be tempting to consider the
dependency graph with fewest edges, but such a graph is not always uniquely defined.

As said in the introduction, dependency graphs are a valuable toolbox to prove central
limit theorems for sums of partially dependent variables. Denote N (0, 1) a standard
normal random variable. The following theorem is due to Janson [42, Theorem 2].

Theorem 4.3 (Janson’s normality criterion). Suppose that, for each n, {Yn,i, 1 ≤ i ≤ Nn}
is a family of bounded random variables; |Yn,i| < Mn a.s. Suppose further that Ln is
a dependency graph for this family and let ∆n − 1 be the maximal degree of Ln. Let
Xn =

∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Assume that there exists an integer s such that(
Nn

∆n

)1/s
∆n

σn
Mn → 0 as n → ∞. (4.1)

Then, in distribution,
Xn−EXn

σn
→d N (0, 1) as n → ∞. (4.2)

Example 4.4. We use the same model and notation as in Theorem 4.2. Assume to
simplify that pn is bounded away from 1. Then one has Nn � n3, ∆n � n and Mn = 1. An
easy computation — see, e.g., [46, Lemma 3.5] — gives σ2

n � max(n3p3n, n
4p5n). Thus the

hypothesis (4.1) in Janson’s theorem is fulfilled if pn � n−1/3+ε for some ε > 0.
When this holds, Theorem 4.3 implies that, after rescaling, the numberXn of triangles

in G(n, pn) is asymptotically normal. The latter is in fact true under the less restrictive
hypothesis pn � n−1, as proved by Ruciński [60], but this cannot be obtained from
Theorem 4.3.

To finish this section, let us mention a stonger normality criterion, due to Mikhailov
[53]. Roughly, he replaces the number of vertices Nn and the degree ∆n by some
quantities defined using conditional expectations of variables. If (4.1) holds with these
new quantities, then we can also conclude that one has Gaussian fluctuations. His
theorem has a larger range of applications than Janson’s: e.g., for triangles in random
graphs, it proves asymptotic normality in its whole range of validity, that is if pn � n−1

and 1− pn � n−2; see [46, Example 6.19].
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4.2 Definition of weighted dependency graphs

The goal of the present article is to relax the independence hypothesis in the definition
of dependency graphs. As we shall see in the next sections, this enables to include many
more examples.

As above, {Yα, α ∈ A} is a family of random variables defined on the same probability
space. We suggest the following definition.

Definition 4.5. Let C = (C1, C2, · · · ) be a sequence of positive real numbers. Let Ψ be
a function on multisets of elements of A.

A weighted graph L̃ is a (Ψ,C) weighted dependency graph for {Yα, α ∈ A} if, for
any multiset B = {α1, . . . , αr} of elements of A, one has∣∣∣∣κ(Yα;α ∈ B

)∣∣∣∣ ≤ Cr Ψ(B)M
(
L̃[B]

)
. (4.3)

Our definition implies in particular that all cumulants, or equivalently all moments
of the Yα are finite. This might seem restrictive but in most applications, the Yα are
Bernoulli random variables. Note also that we already have this restriction in Janson’s
and Mikhailov’s normality criteria.

Remark 4.6. It is rather easy to ensure inequality (4.3). For any family {Yα;α ∈ A},
take

Ψ(B) =
∣∣κ(Yα;α ∈ B)

∣∣, C = (1, 1, · · · ),

and L̃ the complete graph on A with weight 1 on each edge. Then L̃ is trivially a (Ψ,C)

weighted dependency graph for {Yα;α ∈ A}. But this type of examples do not yield
interesting results.

We are interested in constructing examples, where:

• Cr may depend on r, but is constant along a sequence of weighted dependency
graphs;

• Ψ has a rather simple form, such as p#(B) for some p (the case Ψ ≡ 1 gives a good
intuition);

• Edge weights also have a very simple expression and most of them tend to 0 along
a sequence of weighted dependency graphs;

Intuitively, Eq. (4.3) should be thought of as follows: variables that are linked by edges
of small weight in L̃ are almost independent, in the sense that their joint cumulants are
required to be small (because of the factor M

(
L̃[B]

)
). Indeed, the smaller the weights in

L̃[B] are, the smaller M
(
L̃[B]

)
is.

Example 4.7. Most of this paper is devoted to the treatment of examples: proving that
they are indeed weighted dependency graphs and inferring some central limit theorems.
Nevertheless, to guide the reader’s intuition, let us give right away an example without
proof.

Consider the Erdős-Rényi random graph model G(n,mn), i.e. G is a graph with vertex
set [n] and an edge set E of size mn, chosen uniformly at random among all possible
edge set of size mn.

If we set pn = mn/
(
n
2

)
, then each edge {i, j} belongs to E with probability pn, but the

corresponding events are not independent anymore. Indeed, since the total number of
edges is fixed, if we know that one given edge is in G, it is less likely that another given
edge is also in G.

As in Theorem 4.2, let A be the set of 3-element subsets of [n] and if α = {i, j, k} ∈ A,
let Yα be the indicator function of the event “the graph G contains the triangle with
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vertices i, j and k”. Since presences of edges are no longer independent event, neither
are presences of edge-disjoint triangles and the only dependency graph of this family in
the classical sense is the complete graph on A.

Consider the complete graph L̃with vertex setA and weights on the edges determined
as follows:

• If |α ∩ β| ≥ 2 (that is, if the corresponding triangles share an edge in G), then the
edge {α, β} in L̃ has weight 1;

• If |α ∩ β| ≤ 1, then the edge {α, β} in L̃ has weight 1/mn.

We will prove in Section 7 that L̃ is a (Ψn,C) weighted dependency graph with Ψn(B) =

p
e(B)
n where e(B) is the total number of distinct edges in B (recall that B is here a
multiset of triangles) and the sequence C = (Cr) does not depend on n.

Intuitively, this means that presences of edge-disjoint triangles are almost indepen-
dent events. Moreover, the weight 1/mn quantifies this almost-independence. This is
rather logical: the bigger mn is, the less knowing that a given edge is in G influences the
probability that another given edge is also in G (and hence the same holds for presence
of edge-disjoint triangles).

4.3 A criterion for asymptotic normality

Let L̃ be a (Ψ,C) weighted dependency graph for a family of variables {Yα, α ∈ A}.
We introduce the following parameters (for ` ≥ 1)

R =
∑
α∈A

Ψ({α}); (4.4)

T` = max
α1,...,α`∈A

∑
β∈A

W ({β}, {α1, · · · , α`})
Ψ
(
{α1, · · · , α`, β}

)
Ψ
(
{α1, · · · , α`}

)
 . (4.5)

Remark 4.8. Despite the complicated definition of T`, its order of magnitude is usually
not hard to determine in examples (recall that Ψ and the weights usually have rather
simple expression).

Remark 4.9. Let us consider the special case where Ψ is the constant function equal to
1. One has

• R = |A|, which is the number of vertices of L;

• using the easy observation w{β,α1} ≤ W ({β}, {α1, · · · , α`}) ≤
∑`

i=1 w{β,α`}, we
see that

∆ ≤ T` ≤ `∆, where ∆ := max
α∈A

∑
β∈α

w{β,α};

note that ∆ − 1 is the maximal weighted degree in L̃ (the weighted degree of a
vertex is

∑
β∈α,β 6=α w{β,α}; the condition β 6= α in the summation index explains the

shift by −1). In particular, each T` has the same order of magnitude as ∆.

In general, R and T` should be thought of as deformations of the number of vertices and
the maximal weighted degree. Considering R and T` rather than simply |A| and ∆ leads
to a more general normality criterion, in a similar way that Mikhailov’s criterion extends
Janson’s.

The following lemma bounds cumulants in terms of the two above defined quantities.
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Lemma 4.10. Let L̃ be a (Ψ,C) weighted dependency graph for a family of variables
{Yα, α ∈ A}. Define R and T` (for ` ≥ 1) as above. Then, for r ≥ 1,∣∣∣∣∣κr

(∑
α∈A

Yα

)∣∣∣∣∣ ≤ Cr r!RT1 · · ·Tr−1.

Proof. By multilinearity

κr

(∑
α∈A

Yα

)
=

∑
α1,...,αr∈A

κ (Yα1
, . . . , Yαr

) .

Applying the triangular inequality and Eq. (4.3),∣∣∣∣∣∣κr

 ∑
α1,...,αr∈A

Yα

∣∣∣∣∣∣ ≤ Cr

∑
α1,...,αr∈A

Mα1,...,αr
,

where, by definition, Mα1,...,αr = M
(
L̃[B]

)
Ψ(B) for B = {α1, · · · , αr} (in particular

Mα1,...,αr is invariant by permutation of the indices).
We also define

M ′
α1,...,αr

=

r−1∏
j=1

W
(
{αj+1}; {α1, · · · , αj}

) Ψ(B)

We say that a list (β1, · · · , βr) of elements of A is well-ordered if

M
(
L̃[B]

)
=

r−1∏
j=1

W
(
{βj+1}; {β1, · · · , βj}

)
, (4.6)

which implies Mβ1,...,βr
= M ′

β1,...,βr
. From Theorem 3.3, each list (α1, . . . , αr) admits a

well-ordered permutation. Conversely, a well-ordered list (β1, · · · , βr) is a permutation
of at most r! lists (α1, . . . , αr). Therefore∣∣∣∣∣∣κr

 ∑
α1,...,αr∈A

Yα

∣∣∣∣∣∣ ≤ r!Cr

∑
...

Mβ1,...,βr
= r!Cr

∑
...

M ′
β1,...,βr

, (4.7)

where both sums run over well-ordered lists (β1, · · · , βr) of elements of A. Extending the
sum to all lists (β1, · · · , βr) of elements of A only increases the right-hand side, so that
we get: ∣∣∣∣∣∣κr

 ∑
α1,...,αr∈A

Yα

∣∣∣∣∣∣ ≤ r!Cr

∑
β1,...,βr∈A

M ′
β1,...,βr

. (4.8)

By definition, one has, for any ` < r and elements β1, · · · , β`+1 in A:

M ′
β1,...,β`+1

= W ({β`+1}, {β1, · · · , β`})
Ψ({β1, · · · , β`, β`+1})

Ψ({β1, · · · , β`})
M ′

β1,...,β`

Fixing (β1, · · · , β`) and summing over β`+1 in A, we get∑
β`+1∈A

M ′
β1,...,β`+1

≤ T`M
′
β1,...,β`

.
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Since
∑

β∈A M ′
β = R, an immediate induction yields∑

β1,...,βr∈A

M ′
β1,...,βr

≤ RT1 · · · Tr−1.

Together with Eq. (4.8), this ends the proof of the lemma.

We can now give an asymptotic normality criterion, using weighted dependency
graphs.

Theorem 4.11. Suppose that, for each n, {Yn,i, 1 ≤ i ≤ Nn} is a family of random
variables with finite moments defined on the same probability space. For each n, let
Ψn a function on multisets of elements of [Nn]. We also fix a sequence C = (Cr)r≥1, not
depending on n.

Assume that, for each n, one has a (Ψn,C) weighted dependency graph L̃n for
{Yn,i, 1 ≤ i ≤ Nn} and define the corresponding quantitiesRn, T1,n, T2,n, . . . , by Eqs. (4.4)
and (4.5).

Let Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Assume that there exist numbers Dr and Qn and an integer s ≥ 3 such that

Tr,n ≤ DrQn (4.9)(
Rn

Qn

)1/s
Qn

σn
→ 0 as n → ∞, (4.10)

then, in distribution,
Xn−EXn

σn
→d N (0, 1) as n → ∞. (4.11)

Proof. From Theorem 4.10, we know that, for r ≥ 2,∣∣∣∣∣κr

(
Nn∑
i=1

Yn,i

)∣∣∣∣∣ ≤ Cr r!Rn D1 · · ·Dr−1 Q
r−1
n . (4.12)

Setting C ′
r = Cr r!D1 · · ·Dr−1 and X̃n = (Xn − EXn)/σn, we get that for r ≥ s,

∣∣∣κr(X̃n)
∣∣∣ = 1

σr
n

|κr(Xn)| ≤ C ′
r

Rn Q
r−1
n

σr
n

= C ′
r

(
Rn Q

s−1
n

σs
n

) r−2
s−2
(

σ2
n

RnQn

) r−s
s−2

.

Eq. (4.12) for r = 2 ensures that the last factor is bounded while the middle factor tends
to 0 from our hypothesis (4.10). We conclude that κr(X̃n) tends to 0 for r ≥ s. The
convergence towards a normal law then follows from [42, Theorem 1].

Remark 4.12. Continuing Theorem 4.9, when Ψ is constant equal to 1, one can choose
Dr = r and Qn = ∆n, where ∆n is the maximal weighted degree in L̃n. Then hypothesis
Eq. (4.10) says that the quotient ∆n

σn
tends to 0 reasonably fast (faster than some power

of Rn

∆n
). Roughly, one has a central limit theorem as soon as the weighted degree is

smaller than the standard deviation. (In particular, except in pathological cases, the
standard deviation should tend to infinity.)

Remark 4.13. In most examples of application, Rn is immediate to evaluate, while a
good upper bound for T`,n and thus a sequence Qn as in the theorem can be found by
a relatively easy combinatorial case analysis. The most difficult part in applying the
theorem is to find a lower bound for σn (Theorem 4.10 gives a usually sharp upper bound).
In this sense, the weighted dependency graph structure, once uncovered, reduces the
central limit theorem to a variance estimation.
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Remark 4.14. [42, Theorem 1] also ensures the convergence of all moments. Therefore,
in Theorem 4.11 above and in all applications, we have convergence of all moments, in
addition to the convergence in distribution.

Remark 4.15. Except Theorem 3.3 — see Theorem 3.4 —, the proof of our normality
criterion is largely inspired from the case of usual dependency graphs. The difficulty
here was to find a good definition of weighted dependency graphs, not to adapt the
theorem to this new setting.

4.4 Multidimensional convergence and bounds for joint cumulants

Bounds on cumulants, and thus weighted dependency graphs, can also be used to
obtain the convergence of a random vector towards a multidimensional Gaussian vector
or the convergence of a random function towards a Gaussian process.

To avoid a heavily technical theorem, we do not state a general result, but refer the
reader to examples in Sections 8.2, 8.3 and 9.3. We nevertheless give here a useful
bound on joint cumulants, whose proof is a straightforward adaptation of the one of
Theorem 4.10.

Lemma 4.16. Let L̃ be a (Ψ,C) be a weighted dependency graph for a family of variables
{Yα, α ∈ A}. Consider subsets A1, · · · , Ar of A. Then, with the notation of the previous
section, ∣∣∣∣∣κ

(∑
α∈A1

Yα, . . . ,
∑
α∈Ar

Yα

)∣∣∣∣∣ ≤ Cr r!RT1 · · ·Tr−1.

Remark 4.17. It is also possible in the above bound to replace R by

R1 =
∑

α∈A1

Ψ({α1})

and/or the product T1 · · ·Tr−1 by T 2
≤r−1 · · ·T r

≤r−1, where

T i
≤r−1 = max

`≤r−1
max

α1,...,α`∈A

 ∑
β∈Ai

W ({β}, {α1, · · · , α`})
Ψ
(
{α1, · · · , α`, β}

)
Ψ
(
{α1, · · · , α`}

)
 .

The maximum over ` in the equation above comes from the reordering argument, that is
the use of Theorem 3.3 in the proof of Theorem 4.10. We do not know what is the index
of the element taken from Ai in the reordered sequence (β1, · · · , βr). The only thing we
can ensure is that β1 = α1 (since we can choose arbitrarily the first vertex in Prim’s
algorithm; see the proof of Theorem 3.3), which allows us to use R1 instead of R.

This slight improvement of the bound is not used in the applications given in this
paper. It could however be useful if we wanted to prove, say, a multivariate convergence
result for numbers of copies of subgraphs of different sizes in G(n,m); see Section 7 for
the corresponding univariate statement.

Note that, with this improvement, the bound given for the joint cumulant is not
symmetric in A1,. . . ,Ar, while the quantity to bound obviously is.

4.5 Comparison between usual and weighted dependency graphs

In this Section, we compare at a formal level the notions of weighted dependency
graphs and of usual dependency graphs. The results of this Section are not needed in
the rest of the paper and it can safely be skipped.

The key observation here is the following: if the induced weighted graph L̃[B] is dis-
connected, thenM

(
L̃[B]

)
is 0 by definition, and hence (4.3) states that the corresponding

joint cumulant should be 0.
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For the next proposition, we need to introduce some terminology. Let {Yα, α ∈ A}
be a family of random variables defined on the same probability space. We say that a
function Ψ on multisets of A dominates joint moments, if for any multiset B and multiset
partition π of B: ∣∣∣∣∣∏

C∈π

E

(∏
α∈C

Yα

)∣∣∣∣∣ ≤ Ψ(B).

Examples include:

• Assume that the variables {Yα, α ∈ A} are uniformly bounded by a constant M , i.e.
, for any α, one has |Yα| ≤ M a.s. Then for any multiset B and multiset partition π

of B, one has ∣∣∣∣∣∏
C∈π

E

(∏
α∈C

Yα

)∣∣∣∣∣ ≤ M |B|.

In other terms, the function Ψ defined by Ψ(B) = M |B| dominates joint moments.

• More generally, a repetitive use of Hölder inequality, together with the monotonicity
of the r-th norm yields the following: for any multiset B and multiset partition π of
B, one has∣∣∣∣∣∏

C∈π

E

(∏
α∈C

Yα

)∣∣∣∣∣ ≤ ∏
C∈π

∏
α∈C

E
(
|Yα||C|

)1/|C|
≤
∏
α∈B

E
(
|Yα||B|

)1/|B|
.

In other terms, the function Ψ defined by Ψ(B) =
∏

α∈B E
(
|Yα||B|)1/|B|

dominates
joint moments.

• As a more concrete example, consider triangles in random graphs, as in Theo-
rems 4.2 and 4.7. In both models G(n, pn) and G(n,Mn), the function Ψ(B) = p

e(B)
n

dominates joint moments.

Proposition 4.18. Let {Yα, α ∈ A} be a family of random variables defined on the same
probability space, with a dependency graph L.

Set Cr = (r!)2 and consider a function Ψ on multisets of A that dominates joint
moments. Consider also the weighted graph L̃, obtained by assigning weight 1 to each
edge.

Then L̃ is a (Ψ,C) weighted dependency graph for {Yα, α ∈ A}.

Proof. We have to check that the inequality (4.3) holds for any multiset B. Consider two
cases:

• Assume B is disconnected in L. Since L is a dependency graph for {Yα, α ∈ A},
this implies that the set of variables {Yα, α ∈ A} can be split into two mutually
independent sets of variables and κ(Yα;α ∈ B) = 0, as wanted.

• Otherwise, L̃ contains at least one spanning tree, and since all edges have weight
1, all spanning trees have weight 1. Thus M

(
L̃[B]

)
= 1 and we should prove:∣∣∣∣κ(Yα;α ∈ B

)∣∣∣∣ ≤ (r!)2Ψ(B).

This can be deduced easily from Eq. (2.4), the fact that Ψ dominates joint moments
and the inequalities |µ(π, {[`]}))| ≤ r! and |P([r])| ≤ r!.
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Conversely, the unweighted version of a (Ψ,C) weighted dependency graph is also a
usual dependency graph, as soon as each variable Yα is determined by its moments, as
shown by the following proposition.

Proposition 4.19. Let {Yα, α ∈ A} be a family of random variables with finite moments
defined on the same probability space, such that each Yα is determined by its moments.
Let C and Ψ be arbitrary and assume that we have a (Ψ,C) weighted dependency graph
L̃ for the family {Yα, α ∈ A}. Denote L the unweighted version of L̃.

Then L is a usual dependency graph for the family {Yα, α ∈ A}.

Proof. Let A1 and A2 be disconnected subsets of A in L. We should prove that {Yα, α ∈
A1} and {Yα, α ∈ A2} are independent.

Let B be a multiset of elements of A1 tA2 that contains elements in both A1 and A2.
Then the induced weighted graph L̃[B] has at least two connected component because
B∩A1 and B∩A2 are disconnected. Therefore M

(
L̃[B]

)
= 0. Since L̃ is (Ψ,C) weighted

dependency graph for {Yα, α ∈ A}, Eq. (4.3) implies that

κ(Yα, α ∈ B) = 0.

From Theorem 2.1, we conclude that {Yα, α ∈ A1} and {Yα, α ∈ A2} are independent.

We can now argue that Theorem 4.11 contains Janson’s normality criterion. For each
n ≥ 1, let {Yn,i, 1 ≤ i ≤ Nn} be a family of bounded random variables with dependency
graph Ln. Consider the weighted graph L̃n obtained from Ln by assigning weight 1
to each edge and set Ψ(B) = M

|B|
n , where Mn is an upper bound for all |Yn,i|. From

Theorem 4.18, L̃ is a (Ψ,C) weighted dependency graph for {Yn,i, 1 ≤ i ≤ Nn} with
Cr = (r!)2. Define Rn and T`,n as in Section 4.3. If ∆n − 1 is the maximal degree in Ln,
then Rn = Mn Nn and T`,n ≤ `Mn(∆n) for L̃n. In particular we can choose Qn = Mn∆n

and condition (4.10) in our normality criterion reduces to (4.1) in Janson’s.

On the other hand our theorem does not contain formally Mikhailov normality cri-
terion [53]. But it contains classical examples. Again, one should see the dependency
graph in each example as a weighted dependency graph with weight 1 on each edge and
choose Ψ as follows:

• in the example at the end of Mikhailov’s paper [53], variables are indexed by
pairs of elements of [n], so that a multiset B of such pairs can be interpreted
as a multigraph G(B) of vertex set [n]. Then the function Ψ(B) = N−|CC(G(B))|

dominates joint moments and we can apply our theorem to prove asymptotic
normality, in exactly the same way as with Mikhailov’s theorem.

• for triangles in random graphs [46, Example 6.19], choose Ψ(B) = p
e(B)
n , as

suggested before Theorem 4.18.

In each case, we leave details to the reader.

5 Finding weighted dependency graphs

In general, the main difficulty in order to apply Theorem 4.11 is to check that Ln

is indeed a weighted dependency graph for the family {Yn,i, 1 ≤ i ≤ Nn} of random
variables. Indeed, one should establish the bound (4.3), which may be quite cumbersome.
In this section, we give a few lemmas and propositions that help in this task in different
contexts.
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5.1 An alternate formulation

In this section, we will see that instead of (4.3), one can show a slightly different set
of inequalities. Intuitively, this set of inequalities puts an emphasis on edges of weight 1,
which, in most applications, relate incompatible events.

We require an extra assumption on the function Ψ.

Definition 5.1. Let A be a set and Ψ a function on multisets of elements of A. Then Ψ is
called super-multiplicative if, for any multisets B1 and B2, Ψ(B1 ]B2) ≥ Ψ(B1)Ψ(B2).

Proposition 5.2. Let {Yα, α ∈ A} be a family of random variables defined on the same
probability space. Consider a weighted graph L̃ with vertex set A, a super-multiplicative
function Ψ on multisets of elements of A and a sequence D = (Dr)r≥1.

Assume that, for any multiset B of elements of A, one has∣∣∣∣∣κ
( ∏

α∈B1

Yα, · · · ,
∏

α∈B`

Yα

)∣∣∣∣∣ ≤ D|B| Ψ(B)M
(
L̃[B]

)
, (5.1)

where B1, . . . , B` are the vertex sets of the connected components of the graph L̃〈1〉[B],
that is the graph induced by edges of weight 1 of L̃ on B.

Then L̃ is a (Ψ,C) weighted dependency graph for the family {Yα, α ∈ A}, for some
sequence C that depends only on D.

Proof. We have to check that the inequality (4.3) holds for any multiset B. We proceed
by induction on the size r of the multiset B.

Consider the case r = 1. From Eq. (5.1), we know that, for any α ∈ A, one has:

|E(Yα)| ≤ D1Ψ({α}),

so that, if we set C1 = D1, Eq. (4.3) holds for all 1-element sets B = {α}.
Let r > 1 and assume that (4.3) holds for all multisets B̃ of size ` < r. Fix a multiset

B of size r and define B1, . . . , B` as in above. Using a formula of Leonov and Shiryaev
for cumulants of products [50] — see also [62, Theorem 4.4] —, one has

κ

( ∏
α∈B1

Yα, · · · ,
∏

α∈B`

Yα

)
=
∑
π⊥B

s∏
i=1

κ
(
Yα;α ∈ πi

)
,

where the sum runs over multiset partitions π = {π1, · · · , πs} of B such that π ∨
{B1, · · · , B`} = {B}; we denote this condition by π ⊥ B (for a discussion on multiset
partitions, see Theorem 5.3 at the end of the proof). We isolate the term corresponding
to π = {B} on the right hand-side and rewrites this as:

κ(Yα, α ∈ B) = κ

( ∏
α∈B1

Yα, · · · ,
∏

α∈B`

Yα

)
−
∑
π⊥B

π 6={B}

s∏
i=1

κ
(
Yα;α ∈ πi

)
. (5.2)

But by assumption ∣∣∣∣∣κ
( ∏

α∈B1

Yα, · · · ,
∏

α∈B`

Yα

)∣∣∣∣∣ ≤ Dr Ψ(B)M
(
L̃[B]

)
. (5.3)

Moreover, the induction hypothesis asserts that if πi is a strict subset of B, one has∣∣κ(Yα;α ∈ πi

)∣∣ ≤ C|πi| Ψ(πi)M
(
L̃[πi]

)
.
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If π is a set partition of B different from {B}, all its parts are strict subsets of B and we
have ∣∣∣∣∣

s∏
i=1

κ
(
Yα;α ∈ πi

)∣∣∣∣∣ ≤
(

s∏
i=1

C|πi|

) (
s∏

i=1

Ψ(πi)

) (
s∏

i=1

M
(
L̃[πi]

))
. (5.4)

From the super-multiplicativity, the middle factor is at most Ψ(B). Moreover, under the
hypothesis π ⊥ B, the last factor is at most M

(
L̃[B]

)
, as proved in Theorem 3.5 (for the

graph L̃[B] with ∆i = πi). Finally, from Eqs. (5.2) to (5.4), we get:

∣∣κ(Yα, α ∈ B)
∣∣ ≤

Dr +
∑
π⊥B

π 6={B}

C|πi|

 Ψ(B)M
(
L̃[B]

)
.

This ends the proof of (4.3) by setting

Cr = Dr +
∑

π∈P(B)
π 6={B}

C|πi|;

observe that the right-hand side depends indeed only on the size r of B, and not on B

itself.

Remark 5.3. In the previous proof and in Section 5.3 below, we sum over all multiset
partitions π of a multiset B. If B = {b1, . . . , br}, this means that we consider all set
partitions of {1, . . . , r} and associate with each one a multiset partitions of B by replacing
i by bi within each part. For example, the multiset {a, b, b} has five multiset partitions:
{{a}, {b}, {b}}, {{a, b, b}}, {{a}, {b, b}} and twice {{a, b}, {b}}. In particular, the number
of multiset partitions counted with multiplicity of a multiset of size r is the r-th Bell
number, independently of whether this multiset has repeated elements or not.

With this convention, Leonov and Shiryaev formula clearly holds with cumulants of
multisets. Indeed the case with equal variables can be obtained from specialization of
the generic case and this does not change the summation set.

Remark 5.4. We will see in Section 5.3 a converse of Theorem 5.2: for any weighted
dependency graph with a super-multiplicative function Ψ, Eq. (5.1) holds. In fact, a
more general bound for cumulants of products of the Yα holds; see Eq. (5.13) and Theo-
rem 5.12.

Remark 5.5. Theorem 5.2 is in particularly useful when L̃ has no edges of weight 1 and
Yα are Bernoulli variables. In this case, each connected component Bi of the induced
graph L[Bi] contains only one distinct element βi, with multiplicity mi ≥ 1. Then∏

α∈Bi

Yα = Y mi

βi
= Yβi

,

where the last equality comes from the assumption that Yβi
is a Bernoulli variable.

Therefore, to prove that L̃ is a (Ψ,C) weighted dependency graph for the family {Yα, α ∈
A}, it is enough to bound κ(Yα, α ∈ B), for subsets B of A (and not all multisets).

5.2 Small cumulants and quasi-factorization

Let ` ≥ 1 and u = (u∆)∆⊆[`] be a family of real numbers indexed by subsets of [`]. We

shall always assume u∅ 6= 0. Typically, u∆ are the joint moments E
(∏

j∈∆ Yj

)
of a family

(Y1, · · · , Y`) of random variables, but it is convenient not to assume this.
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For any subset ∆ of [`], we set

κ∆(u) :=
∑

π∈P(∆)

µ(π, {∆})
∏
B∈π

uB

u∅
. (5.5)

If u is the family of joint moments of (Y1, · · · , Y`), then u∅ = 1 and κ∆(u) is simply the
joint cumulant of the subfamily {Yj , j ∈ ∆}.
Definition 5.6. Fix some ` ≥ 1 and consider a sequence

(
u(n)

)
n≥1

of lists, each indexed

by subsets of [`]. Let also, for each n ≥ 1, L̃n be a weighted graph with vertex set [`]. We
say that

(
u(n)

)
n≥1

has the L̃n small cumulant property if, for any subset ∆ ⊆ [`] of size
at least 2, one has ∣∣κ∆(u

(n))
∣∣ = (∏i∈∆

u{i}
u∅

)
·O
(
M
(
L̃n[∆]

))
. (5.6)

Note that Eq. (5.6) is similar to Eq. (4.3), so that we are interested in establishing the
small cumulant property. We will see that it is equivalent to another property, that we
call quasi-factorization property and is in some cases easier to establish.

We now assume that, for any ∆ ⊆ [`], one has u∆ 6= 0. Then we also introduce the
auxiliary quantity P∆(u) implicitly defined by the property: for any subset ∆ ⊆ [`],

u∆/u∅ =
∏
δ⊆∆

Pδ(u). (5.7)

In particular, we always have P∅(u) = 1 and P{i}(u) = u{i}/u∅. Using Möbius inversion
on the boolean lattice, we have explicitly: for any subset ∆ ⊆ [`] with ∆ 6= ∅,

P∆(u) =
∏
δ⊆∆

(
uδ

u∅

)(−1)|∆|−|δ|

=
∏
δ⊆∆

(uδ)
(−1)|∆|−|δ|

.

Definition 5.7. Fix some ` ≥ 1 and consider a sequence
(
u(n)

)
n≥1

of lists, each indexed

by subsets of [`], such that for n large enough and any ∆ ⊆ [`], one has u(n)
∆ 6= 0. We also

consider, for each n ≥ 1, a weighted graph L̃n with vertex set [`]. We say that
(
u(n)

)
n≥1

has the L̃n quasi-factorization property if, for any subset ∆ ⊆ [`] of size at least 2, one
has

P∆(u
(n)) = 1 +O

(
M
(
L̃n[∆]

))
. (5.8)

The following proposition, generalizing [33, Lemma 2.2], is be used repeatedly in this
article. It says that the two above properties are equivalent.

Proposition 5.8. Let ` ≥ 1 and L̃n be a sequence of weighted graph, each with vertex
set [`]. We also consider a sequence

(
u(n)

)
n≥n0

of lists of real numbers, each indexed by

subsets of [`]. Finally assume that, for each n ≥ n0 and each ∆ ⊆ [`], we have u
(n)
∆ 6= 0.

If
(
u(n)

)
n≥n0

has the L̃n quasi-factorization property, then it also has the L̃n small

cumulant property. Assume moreover that the maximal weight of L̃n tends to 0. Then
the converse also holds:

(
u(n)

)
n≥n0

has the L̃n small cumulant property if and only if it

has the L̃n quasi-factorization property.

Proof. The proof is an adaptation of the one of [33, Lemma 2.2].

We first assume that u∅ = 1 and u{i} = 1 for all i in [`], so that the product in Eq. (5.7)
can be taken over subsets δ with |δ| ≥ 2.
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Let us start by the fact that the quasi-factorization property implies the small cu-
mulant property. For n ≥ n0 and a subset ∆ ⊆ [`] we set R(n)

∆ = P∆(u
(n)) − 1. The

quasi-factorisation property asserts that that R(n)
∆ = O(M

(
L̃n[∆]

)
) whenever |∆| ≥ 2.

We need to prove that this implies the small cumulant property, i.e. that, for any ∆ ⊆ [`]

with |∆| ≥ 2, we have κ∆(u
n) = O

(
M
(
L̃n[∆]

))
. It is in fact enough to prove it for

∆ = [`]. The case of smaller ∆ then follows by considering a smaller family of sequence(
u(n)

)
n≥n0

, indexed by subsets of ∆.

Fix a set partition π ∈ P(`). For a block B of π, one has, expanding the product in
(5.7):

u
(n)
B =

∏
∆⊆B
|∆|≥2

(1 +R
(n)
∆ ) =

∑
{∆1,...,∆m}

R
(n)
∆1

. . . R
(n)
∆m

,

where the sum runs over all finite sets of (distinct) subsets of B of size at least 2 (in
particular, the size m of the set is not fixed). Therefore,∏

B∈π

u
(n)
B =

∑
{∆1,...,∆m}

R
(n)
∆1

. . . R
(n)
∆m

,

where the sum runs over all finite sets of (distinct) subsets of [`] of size at least 2 such
that each ∆i is contained in a block of π. In other terms, for each i ∈ [m], π must be
coarser than the partition Π(∆i), which, by definition, has ∆i and singletons as blocks.
Finally, from Eq. (5.5)

κ[`](u
(n)) =

∑
{∆1,...,∆m}

∆i⊆[`]

R
(n)
∆1

. . . R
(n)
∆m

 ∑
π∈P([`])

∀i, π≥Π(∆i)

µ(π, {[`]})

 . (5.9)

The condition on π can be rewritten as

π ≥ Π(∆1) ∨ · · · ∨Π(∆m).

Hence, by definition of the Möbius function, the sum in the parenthesis is equal to
0, unless we have Π(∆1) ∨ · · · ∨Π(∆m) = {[`]}. From Theorem 3.5, this implies the
inequality

m∏
i=1

M
(
L̃n[∆i]

)
≤ M

(
L̃n
)
.

But recall that by hypothesis R(n)
∆ = O(M

(
L̃n[∆]

)
). Therefore, whenever the condition

Π(∆1) ∨ · · · ∨Π(∆m) = {[`]} holds, we have

R
(n)
∆1

· · ·R(n)
∆m

= O

(
m∏
i=1

M
(
L̃n[∆i]

))
= O(M

(
L̃n
)
).

In other words, all non-zero summands in (5.9) are O(M
(
L̃n
)
). Since the summation

index set in (5.9) does not depend on n, we conclude that κ[`](u
(n)) = O

(
M
(
L̃n
))
, which

ends the proof of the first implication.

Let us now consider the converse statement. We proceed by induction on ` and we
assume that, for all `′ smaller than a given ` ≥ 2, the L̃n small cumulant property implies
the L̃n quasi factorization property.

Consider a sequence of lists (u(n))n≥n0
such that, for any ∆ ⊆ [`] with |∆| ≥ 2,

one has κ∆(u
(n)) = O(M

(
L̃n[∆]

)
). By induction hypothesis, for all ∆ ( [`], one has

P∆(u
(n))− 1 = O(M

(
L̃n[∆]

)
).
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Since the maximal weight of L̃n[∆] tends to 0, the quantity M
(
L̃n[∆]

)
also tends to 0

for all ∆ ⊆ [`] with |∆| ≥ 2. Thus P∆(u
(n)) tends to 1. From Eq. (5.7), this implies that,

for any ∆ ⊆ [`], the sequence u
(n)
∆ also tends to 1. This estimate is useful below.

Back to the proof, we have to establish that

P[`](u
(n))− 1 =

∏
∆⊆[`]

(u
(n)
∆ )(−1)`−|∆|

− 1 = O

(
M
(
L̃n
))

Thanks to the estimates above for u(n)
∆ , this is equivalent to the fact that

u
(n)
[`] −

∏
∆([`]

(u
(n)
∆ )(−1)`−1−|∆|

= O

(
M
(
L̃n
))

(5.10)

Define now an auxiliary family (v(n))n≥n0
defined by:

v
(n)
∆ =

{
u
(n)
∆ if ∆ ( [`];∏
δ([`](u

(n)
δ )(−1)`−1−|δ|

for ∆ = [`].

Clearly, P∆(v) = P∆(u) for ∆ ( [`] and P[`](v) = 1, so that the family v has the L̃n

quasi-factorization property. Thus, using the first part of the proof, it also has the L̃n

small cumulant property. In particular:

κ[`](v
(n)) = O

(
M
(
L̃n
))

.

But, by hypothesis

κ[`](u
(n)) = O

(
M
(
L̃n
))

.

As v∆ = u∆ for ∆ ( [`], one has:

u[`] − v[`] = κ[`](u)− κ[`](v) = O

(
M
(
L̃n
))

,

which proves (5.10).

The general case follows directly from the case u∅ = u{i} = 1 by considering the
family

w
(n)
∆ =

(u∆/u∅)∏
i∈∆

u{i}
u∅

.

Indeed, for |∆| ≥ 2,

P∆(w) = P∆(u);

K∆(w) = K∆(u)/
∏
h∈∆

(
u{h}

u∅

)
.

When the maximal weight in L̃n tends to zero, we write “
(
u(n)

)
n≥n0

has the L̃n SC/QF
property” (since the two properties are equivalent in this case). Furthermore, when
L̃n is a complete graph with weight εn on each edge, we say that “

(
u(n)

)
n≥n0

has the

εn SC/QF property” (instead of the “L̃n SC/QF property”). In the following lemma, we
collect a few easy facts on the SC/QF property.

Lemma 5.9. 1. If, for each n, u(n)
∆ = u(n) does not depend on ∆, then (u(n))n≥1 has

the 0-SC/QF property, where 0 stands for the graph on vertex-set [`] with no edges.
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2. If, for each n, (u(n)) is multiplicative, that is u
(n)
∆ =

∏
i∈∆ u

(n)
{i}, then (u(n))n≥1 has

the 0-SC/QF property.

3. Let (L̃n)n≥n0
and (K̃n)n≥n0

two sequences of weighted graphs with maximal weight
tending to 0 and assume that the weight of {i, j} in L̃n is always smaller than or
equal to the corresponding weight in K̃n.

If a sequence (u(n))n≥1 has the L̃n-SC/QF property, then it also has the K̃n-SC/QF
property.

4. Consider two sequences
(
u(n)

)
n≥n0

and
(
v(n)

)
n≥n0

, both with the L̃n SC/QF prop-

erty. Then their entry-wise product u(n) ·v(n) and their entry-wise quotient u(n)/v(n)

both have the L̃n SC/QF property.

5. Moreover, if u∅ = v∅, then any linear combination λu(n) + µv(n) with only non-zero
terms for n sufficiently large also has the L̃n-SC/QF property.

Proof. For (1) and (2), observe that P∆

(
u(n)) = 1. Item (3) is trivial. (4) follows from the

following easy identities: for any ∆ ⊆ [`] and n sufficiently large (to avoid a division by
0),

P∆

(
u(n) · v(n)

)
= P∆(u

(n)) · P∆(v
(n)); P∆

(
u(n)/v(n)

)
=

P∆(u
(n))

P∆(v(n))
.

Moreover, if u∅ = v∅,

κ∆

(
λu(n) + µv(n)

)
=

1

(λ+ µ)|∆|

(
λκ∆(u

(n)) + µκ∆(v
(n))
)
,

which implies (5).

We end this section by a family of examples, for which the SC/QF property holds.

Let (Xn)n≥1 be a sequence of integers such that Xn ≥ 1 (for all n ≥ 1) and
limn→∞ Xn = +∞. Fix ` ≥ 1 and nonnegative integers a1, · · · , a`. We consider the
factorial sequences

u
(n)
∆ (a1, · · · , a`) =

(
Xn −

∑
i∈∆ ai

)
!

For n sufficiently large, say n ≥ n0, the integer Xn −
∑`

i=1 ai is non-negative and the
truncated family

(
u(n)(a1, · · · , a`)

)
n≥n0

is well-defined.

Proposition 5.10. We use the notation above and set εn = 1/Xn. Then the family(
u(n)(a1, · · · , a`)

)
n≥n0

has the εn SC/QF property.

The proof is a combination of easy but technical inductions. It is given in Appendix A.

Combining this result with Theorem 5.9 (item 4), we get that products and quotients
of these factorial sequences have the SC/QF property. Therefore, if the joint moments of
some random variables are of this form, we get bounds on their joint cumulants without
any computation. This is used in Sections 6 to 8.

5.3 Powers of weighted dependency graphs

The propositions and lemmas of the two previous sections help to establish that a
family of random variables admits a given weighted dependency graph. In this section,
we shall see that when we have a weighted dependency graph for a family {Yα, α ∈ A},
we can automatically construct a new one for monomials YI =

∏
α∈I Yα in the original

variables Yα (here, the index I is a multiset of elements of A).
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Proposition 5.11. Let {Yα, α ∈ A} be a family of random variables with a (Ψ,C)

weighted dependency graph L̃. We fix a positive integer m and consider the m-the
power L̃m of WDep, as defined in Theorem 2.4.

Assume that Ψ is super-multiplicative. Then L̃m is a (Ψ,Dm) weighted dependency
graph for the family {YI , I ∈ MSet≤m(A)}, where:

Ψ({I1, · · · , Ir}) = Ψ(I1 ] · · · ] Ir) (5.11)

and Dm,r depends only on m, r, C1, . . . , Cmr.

Proof. Let I1, · · · , Ir be in MSet≤m(A). As above, we use the formula of Leonov and
Shiryaev for cumulants of products [50] (see also [62, Theorem 4.4]):

κ
(
YI1 , · · · , YIm

)
=
∑
π⊥I

∏̀
i=1

κ(Yβ ;β ∈ πi),

where the sum runs over multiset partitions π of the multiset I1 ] · · · ] Ir such that

π ∨
{
I1, · · · , Ir

}
=
{
I1 ] · · · ] Ir

}
. (5.12)

Since L̃ is a (Ψ,C) weighted dependency graph for {Yα, α ∈ A}, one has the bound∣∣∣∣κ(Yβ ;β ∈ πi)

∣∣∣∣ ≤ C|πi| Ψ(πi)M
(
L̃[πi]

)
.

Hence, for any partition π of I1 ] · · · ] Ir,∣∣∣∣∣∏̀
i=1

κ(Yβ ;β ∈ πi)

∣∣∣∣∣ ≤
(∏̀

i=1

C|πi|

) (∏̀
i=1

Ψ(πi)

)(∏̀
i=1

M
(
L̃[πi]

))
.

But, from the super-multiplicativity of Ψ, one has

∏̀
i=1

Ψ(πi) ≤ Ψ(π1 ] · · · ] π`) = Ψ(I1 ] · · · ] Ir).

On the other hand, from Theorem 3.6, when (5.12) is satisfied, one has

∏̀
i=1

M
(
L̃[πi]

)
≤ M

(
L̃m[{I1, · · · , Ir}]

)
.

Bringing everything together, we have

|κ
(
YI1 , · · · , YIm

)
| ≤

(∑
π⊥I

∏̀
i=1

C|πi|

)
M
(
L̃m[{I1, · · · , Ir}]

)
Ψ(I1 ] · · · ] Ir). (5.13)

The quantity
(∑

π⊥I

∏`
i=1 C|πi|

)
only depends on the sizes of I1, . . . , Ir and on the values

of C1, . . . , Cmr and thus can be bounded by some Dm,r, depending on m, r, C1, . . . ,
Cmr.

Remark 5.12. When the Ij are the connected components of the graph L̃1[B], Eq. (5.13)
specializes to (5.1), which justifies Theorem 5.4.

Remark 5.13. In general we are only interested in a subfamily of {YI , I ∈ MSet≤m(A)}.
But clearly, if we have a weighted dependency graph for some family of variables, then
any subfamily admits the corresponding weighted subgraph as weighted dependency
graph.
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6 Crossings in random pair partitions

6.1 Definitions and basic considerations

Recall that [2n] denotes the set of integers {1, · · · , 2n}
Definition 6.1. A pair partition of [2n] is a set H of disjoint 2-element subsets of [2n]
whose union is [2n].

Observe that, by definition for each integer i in [2n], there is a unique j 6= i such {i, j}
is in H. We call j the partner of i.

We are interested in the uniform model on pair partitions of [2n]. A uniform random
pair partition of [2n] can be constructed as follows. Take i1 arbitrarily (e.g. i1 = 1) and
choose its partner j1 uniformly at random among numbers different for i1 (i.e. each
number different from i1 is taken with probability 1/(2n − 1)); then take i2 arbitrarily
different from i1 and j1 and choose its partner j2 uniformly at random among numbers
different from i1, j1 and i2 (each such number is taken with probability 1/(2n − 3));
and so on, until all pairs are created. In particular, given distinct numbers i1, · · · , it
and j1, · · · , jt, the probability that all pairs ({is, js})s≤t belong to a uniform random pair
partition H of [2n] is

1

(2n− 1) · · · (2n− 2t+ 1)
.

This simple observation is the key to find a weighted dependency graph associated to
uniform random pair partitions.

To illustrate the use of this weighted dependency graph, we study a classical statistics
on pair partitions, called crossing; see, e.g., [17] and references therein for enumerative
results on this statistics.

Definition 6.2. A crossing in a pair partitionH is a quadruple (i, j, k, l) with i < j < k < l

such that {i, k} and {j, l} belong to H.

It is customary to represent pair partitions by putting the numbers 1, . . . , 2n on a line
and linking partners with an arch in the upper-half plane. With this representation, cross-
ings as defined above correspond to crossings of the corresponding arches. For example
(1, 4, 5, 7) and (4, 6, 7, 8) are the only two crossings of Hex =

{
{1, 5}, {2, 3}, {4, 7}, {6, 8}

}
.

The corresponding graphical representation is given in Fig. 2.

1 2 3 4 5 6 7 8

Figure 2: Example of a pair partitions with two crossings

6.2 A weighted dependency graphs for random pair partitions

Let An be the set of two element subsets of [2n]. For {i, j} ∈ An, we define a random
variable Yi,j such that Yi,j = 1 if {i, j} belongs to the random pair partition Hn, and 0

otherwise.

Proposition 6.3. Consider the weighted graph L̃ on vertex set An defined as follows:

• if two pairs α1 and α2 in An have an element in common, then they are linked in L̃

by an edge of weight 1;

• if two pairs α1 and α2 in An are disjoint, then they are linked in L̃ by an edge of
weight 1/n.
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Then L̃ is a (Ψn,C) weighted dependency graph for the family {Yi,j , {i, j} ∈ An},
where

• Ψn(B) = n−#(B) for any multiset B of elements of An

• and C = (Cr)r≥1 is a sequence that does not depend on n.

Proof. Clearly Ψn is super-multiplicative. From Theorem 5.2, it is enough to prove that,
for any multiset B of elements of An of size r, one has∣∣∣∣∣κ

( ∏
α∈B1

Yα, . . . ,
∏

α∈B`

Yα

)∣∣∣∣∣ ≤ Dr Ψ(B)M
(
L̃[B]

)
, (6.1)

where B1, . . . , B` are the vertex sets of the connected components of the graph L̃〈1〉[B],
and for some Dr that does not depend on n.

But, if α1 and α2 are different and linked by an edge of weight 1, the product Yα1Yα2

is identically equal to 0. Therefore the left-hand side of Eq. (6.1) is 0 unless each Bi

contains only one element (possibly with multiplicity m). Since the Yα take value in
{0, 1}, we have Y m

α = Yα and the multiplicity does not play any role.
Finally, it is enough to prove that for disjoint pairs α1, · · · , αr in An, we have:

|κ(Yα1 , · · · , Yαr )| ≤ Dr

(
1
n

)2r−1
. (6.2)

Assume n ≥ r, otherwise the above statement is vacuous. From the discussion in
Section 6.1, we have that, for any subset ∆ of [r],

M
(n)
∆ := E

∏
i∈∆

Yαi =
1

(2n− 1) · · · (2n− 2|∆|+ 1)
=

(2n− 2|∆|)!n! 2|∆|

(2n)! (n− |∆|)!
.

Note that it does not depend on α1, . . . , αr. From Theorem 5.9 (items 1, 2 and 3) and
Theorem 5.10, each factor of the above expression has the 1

n SC/QF property and thus

M(n) = (M
(n)
∆ )∆⊆[r] also has this property.

Therefore, since M
(n)
∅ = 1, one has:

κ[r](M
(n)) =

(∏r
i=1 M

(n)
{i}

)
· O(n−r+1).

But κ[r](M
(n)) = κ(Yα1 , · · · , Yαr ) and, for each i, one has M (n)

{i} = 1
2n−1 , so that Eq. (6.2)

is proved.

6.3 Asymptotic normality of the number of crossings

Let A′
n be the set of quadruples (i, j, k, l) of elements of [2n] with i < j < k < l. For

(i, j, k, l) in A′
n, we set Y ′

i,j,k,l = Yi,kYj,l. Equivalently, Y ′
i,j,k,l = 1 if (i, j, k, l) is a crossing

in the random pair partition Hn and 0 otherwise. We also consider

Crn =
∑

i<j<k<l

Y ′
i,j,k,l,

which is the number of crossings in the random pair partition Hn. We will prove the
asymptotic normality of Crn, using the weighted dependency graph of the previous
section.

First, we use Theorem 5.11 to find a weighted dependency graph for the variables
Y ′
i,j,k,l. For a multiset B = {Y ′

it,jt,kt,lt
, 1 ≤ t ≤ |B|}, we define pairs(B) as

pairs(B) = #

({
(it, kt), 1 ≤ t ≤ |B|} ∪ {(jt, lt), 1 ≤ t ≤ |B|

})
.

This is the number of distinct Y variables that appear in the (Y ′
α)α∈B.
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Proposition 6.4. Let L̃′ be the complete graph on A′
n with the following weights:

• if two quadruples α′
1 and α′

2 have a non-empty intersection, they are linked by an
edge of weight 1;

• if they are disjoint, then they are linked by an edge of weight 1/n.

Then L̃′ is a (Ψ′
n,C

′) weighted dependency graph for the family {Y ′
i,j,k,l, (i, j, k, l) ∈ A′

n},
where Ψ′

n(B) = n− pairs(B) and C ′ = (C ′
r)r≥1 is a sequence that does not depend on n.

Proof. This is a direct application of Theorem 5.11 to the weighted dependency graph
given in Theorem 6.3.

We can now prove the asymptotic normality result.

Theorem 6.5. As above, we denote Crn the number of crossings in a uniform random
pair partition of the set [2n]. Then, in distribution,

Crn −ECrn√
Var(Crn)

→ N (0, 1).

Proof. We use the notation of Section 4.3, for the above described sequence of weighted
dependency graphs. We have

Rn =
∑

α∈A′
n

Ψ′
n({α}) =

(
n

4

)
1
n2 � n2. (6.3)

To find an upper bound for T`,n, first fix α1, · · · , α` in A′
n. We want to give an upper

bound for ∑
β∈A′

n

W ({β}, {α1, · · · , α`})
Ψ′

n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , α`}

) . (6.4)

To do that let us split the sum into different parts (all constants in O symbols in the
discussion below depend on ` but can be chosen independent from α1, · · · , α`):

• if β has no element in common with any of the αi, then W ({β}, {α1, · · · , α`}) = 1/n

and
Ψ′

n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , α`}

) = 1/n2.

The number of such terms is obviously bounded by O(n4) (which bounds the total
number of terms in A′

n) so that the total contribution of this case is O(n).

• Assume that β has an element in common with at least one of the αi, but that we
nevertheless have

pairs
(
{α1, · · · , α`, β}

)
= pairs

(
{α1, · · · , α`}

)
+ 2.

In this case, we have W ({β}, {α1, · · · , α`}) = 1 and

Ψ′
n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , α`}

) = 1/n2.

The number of such terms is bounded by O(n3): indeed we should choose which
element of which αi is in common with β (constant number of choices) and then
choose other elements of β (O(n3) choices). Finally, the total contribution of such
terms is also O(n).
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• We now look at the case where

pairs
(
{α1, · · · , α`, β}

)
= pairs

(
{α1, · · · , α`}

)
+ 1.

This implies that β has at least two elements in common with
⋃

i≤` αi, thus the
number of such terms is O(n2). But in this case W ({β}, {α1, · · · , α`}) = 1 and

Ψ′
n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , α`}

) = 1/n,

so that the total contribution of such terms is also O(n).

• The last case consist is β ∈ A′
n such that

pairs
(
{α1, · · · , α`, β}

)
= pairs

(
{α1, · · · , α`}

)
.

This implies in particular that β is included in
⋃

i≤` αi, hence there is only a constant
number of such terms. In this case W ({β}, {α1, · · · , α`}) = 1 and

Ψ′
n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , α`}

) = 1,

so that the total contribution of such terms is O(1).

Finally, we see that, for any α1, · · · , α` in A′
n, the quantity (6.4) is O(n), with a constant

in O symbol depending on `, but not on α1, · · · , α`. Thus T`,n is O(n) and we can choose
Qn = n in Theorem 4.11. The variance of Crn is computed in Appendix B.1 and we see
that σn � n3/2. Therefore (4.10) is fulfilled for s = 3 and we infer from Theorem 4.11 the
asymptotic normality of Crn.

7 Erdős-Rényi model G(n,m)

7.1 The model

For each n, let mn be an integer between 0 and
(
n
2

)
. As in Theorem 4.7, we consider

the Erdős-Rényi random graph model G(n,mn), i.e. G is a graph with vertex set V := [n]

and an edge set E of size mn, chosen uniformly at random among all possible edge sets
of size mn.

Set pn = mn/
(
n
2

)
. For any 2-element subset {i, j} of V , we define a random variable

Yi,j such that Yi,j = 1 if the edge {i, j} belongs to the random graph G, and 0 otherwise.
Clear, Yi,j = 1 with probability pn. However, unlike in G(n, pn), these random variables
are not independent. We can nevertheless compute their joint moments: if α1,. . . ,αr are
distinct 2-element subsets of V , then

E
(
Yα1

. . . Yαr

)
=

(
En − r

mn − r

)/(
En

mn

)
,

where En =
(
n
2

)
. Indeed, the numerator is the number of graphs with vertex set [n] and

mn edges containing α1,. . . ,αr, while the denominator is the total number of graphs with
vertex set [n] andmn edges. This simple explicit formula for joint moments is the starting
point to find a weighted dependency graph in G(n,m), as we shall do in Section 7.2.

We then use this dependency graph structure to give a new proof of Janson’s central
limit theorem for subgraph count statistics in G(n,mn); see Section 7.3.
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7.2 A weighted dependency graph in G(n,m).

Let An be the set of two element subsets of [n].

Proposition 7.1. Assume mn tends to infinity. Set εn = 1/mn and Ψn(B) = p
#(B)
n for

any multiset B of elements of An.
Then the complete graph on An with weight εn on each edge is a (Ψn,C) weighted

dependency graph for the family {Yi,j , {i, j} ∈ An}, where C = (Cr)r≥1 is a sequence
that does not depend on n.

Proof. Clearly Ψn is super-multiplicative. From Theorem 5.2 — see also Theorem 5.5 —,
it is enough to prove that, for any distinct α1, · · · , αr, one has

|κ(Yα1
, · · · , Yαr

)| ≤ C ′
r

(
1

mn

)r−1

prn, (7.1)

for some C ′
r that does not depend on n.

If ∆ is a subset of [r], denote

M
(n)
∆ = E

(∏
i∈∆

Yαi

)
.

Recall from the previous section that this has an explicit expression:

M
(n)
∆ =

(
En − |∆|
mn − |∆|

)/(
En

mn

)
.

Note that it does not depend on α1, · · · , αr. Moreover, as soon as mn ≥ r, which happens
for n big enough, say n ≥ n0, one can write

M
(n)
∆ =

(En − |∆|)!mn!

(mn − |∆|)!En!
. (7.2)

We see M(n) := (M
(n)
∆ )∆⊆[r] as a sequence of lists, each indexed by subset of [r], and

we use the notation and terminology of Section 5.2. All the factors in (7.2) have the 1
mn

SC/QF property, and hence M(n) also has it — see Lemmas 5.9 (items 1,3 and 4) and
5.10. Therefore, since M

(n)
∅ = 1, one has:

κ[r](M
(n)) =

(∏r
i=1 M

(n)
{i}

)
· O(m−r+1

n ).

But κ[r](M
(n)) = κ(Yα1

, · · · , Yαr
) and, for each i, one has M

(n)
{i} = mn

En
= pn, so that

Eq. (7.1) is proved.

7.3 A CLT for subgraph counts in G(n,mn)

Fix some graph H with at least one edge. Let AH
n be the set of subgraphs H ′ of the

complete graph Kn on vertex set [n] that are isomorphic to H: there are n(n− 1) · · · (n−
vH + 1)/Aut(H) such subgraphs, where Aut(H) is the number of automorphisms of H.

As before, let G be a random graph with the distribution of the model G(n,mn). For
H ′ in AH

n , we denote

YH′ = 1H′⊂G =
∏

{i,j}∈EH′

Yi,j .

Then the random variable
XH

n =
∑

H′∈AH
n

YH′
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counts the number of subgraphs of G that are isomorphic to H. This is called the
subgraph count statistics and is a classical object of study in random graph theory — see,
e.g., [46, Sections 3 and 6]. The goal of this section is to prove the asymptotic normality
of this statistics, using weighted dependency graphs.

We first observe that the above-defined family {YH′ , H ′ ∈ An} admits a weighted
dependency graph. To do that, if B = {H ′

1, · · · ,H ′
r} is a multiset of elements of AH

n , we
define e(B) as the total number of edges in this multiset, that is:

e(B) =

∣∣∣∣∣
r⋃

i=1

EH′
i

∣∣∣∣∣ .
Proposition 7.2. Assume mn tends to infinity. Set εn = 1/mn and Ψn(B) = p

e(B)
n for any

multiset B of elements of AH
n .

Consider the complete graph with vertex set AH
n and assign weights on edges as

follows:

• if two copies H ′
1 and H ′

2 of H have an edge in common (as subgraphs of Kn), then
the edge (H ′

1,H
′
2) gets weight 1;

• otherwise, the edge (H ′
1,H

′
2) gets weight 1/mn.

We denote the resulting weighted graph L̃H .

Then L̃H is a (Ψn,C) weighted dependency graph for the family {YH′ , H ′ ∈ AH
n }, for

some sequence C = (Cr)r≥1 that does not depend on n (but depends on H).

Proof. Indeed, L̃H is a subgraph of the eH -th power of the weighted dependency graph
L given in Theorem 7.1 — see Theorem 5.11.

We use the notation of Theorem 4.11. Then we have

Rn =
∑

H′∈AH
n

Ψ({H ′}) = n(n− 1) · · · (n− vH + 1)

Aut(H)
peHn � nvH peHn . (7.3)

Estimates of T`,n and the variance Var(XH
n ) are given in the Theorem 7.3 below. Let

us introduce the notation involved in these estimates.

• As in [46], we denote

ΦH = min
K⊆H,eK>0

nvK peKn . (7.4)

In particular, ΦH ≤ n2pn: indeed, H has at least one subgraph K with two vertices
and one edge. In the following, we assume ΦH tends to infinity.

• We also consider the following quantity:

Φ̃H = min
K⊆H,eK>1

nvK peKn .

Note that, unlike in the definition of Φ, the minimum is taken over graphs K with
at least 2 edges. In the following, we assume that the graph L2 with three vertices
and two edges is included in H — see a discussion on this hypothesis at the end of
the Section. In particular, this implies that ΦH , Φ̃H ≤ n3 p2n and n3 p2n → ∞ (since
ΦH → ∞).
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Lemma 7.3. Fix ` ≥ 1. Then

T`,n ≤ CH,`
nvH peHn
ΦH

, (7.5)

for some constant CH,` depending on H and `, but not on n.
Assume furthermore n(1 − pn)

2 � 1. Then we have the following estimate for the
variance:

Var(XH
n ) ≥ C

(nvH peHn )2

Φ̃H

(1− pn)
2, (7.6)

for some constant C > 0 and n sufficiently large.

Remark 7.4. Note in particular that, in many case (e.g. pn = p constant) the variance
of Var(XH

n ) has a different order of magnitude than in the independent model G(n, pn).
This phenomenon has already been observed by Janson [43].

Proof. We prove here only Eq. (7.5). The proof of Eq. (7.6) is postponed to Appendix B.2.
We denote Λ = L̃H

1 the subgraph of L̃H formed by edges of weight 1. Since L̃H has
only edges of weight 1 and 1/mn, we have:

T`,n = max
H′

1,...,H
′
`∈AH

n

 ∑
H′′∈NΛ(H′

1,...,H
′
`)

Ψ
(
{H ′

1, · · · ,H ′
`,H

′′}
)

Ψ
(
{H ′

1, · · · ,H ′
`}
)

+
1

mn
·

∑
H′′ 6∈NΛ(H′

1,...,H
′
`)

Ψ
(
{H ′

1, · · · ,H ′
`,H

′′}
)

Ψ
(
{H ′

1, · · · ,H ′
`}
)
 . (7.7)

Fix some H ′
1, . . ., H

′
` in AH

n and consider the first summand in the above definition. In
this summand, we sum over graphs H ′′ in NΛ(H

′
1, . . . , H

′
`), that is over graphs H

′′ with
vertex set included in [n] that have at least an edge in common with either H ′

1, H
′
2, . . . or

H ′
`. Denote K the intersection of H ′′ with the union

⋃`
i=1 H

′
i. Then

Ψ
(
{H ′

1, · · · ,H ′
`,H

′′}
)

Ψ
(
{H ′

1, · · · ,H ′
`}
) = p

e
[
H′′∪

(⋃`
i=1 H′

i

)]
−e

[(⋃`
i=1 H′

i

)]
n = p

eH′′−e
[
H′′∩

(⋃`
i=1 H′

i

)]
n = peH−eK

n .

On the other hand, for a fixed K, the number of graphs H ′′ with VH′′ ⊂ [n], which are
isomorphic to H, and whose intersection with

⋃`
i=1 H

′
i is given by K is bounded by

(`vH)vKnvH−vK . Indeed the latter is an upper bound for the number of ordered choices
of vH vertices, the first vK of them among the vertices of

⋃`
i=1 H

′
i (which has at most

`vH vertices) and the last vH − vK are chosen freely in [n]. Therefore∑
H′′∈NΛ(H′

1,...,H
′
`)

Ψ
(
{H ′

1, · · · ,H ′
`,H

′′}
)

Ψ
(
{H ′

1, · · · ,H ′
`}
) ≤

∑
K⊆H

(`vH)vKnvH−vKpeH−eK
n ≤ DH,`

nvHpeHn
ΦH

,

where DH,` is a constant depending only on H and `.

Consider now the second summand in Eq. (7.7) (H ′
1, . . . , H

′
` are still fixed). Here

we sum over graphs H ′′ which are not in NΛ(H
′
1, . . . , H

′
`), which means that they do not

share any edge with any of the H ′
i. In this case

Ψ
(
{H ′

1, · · · ,H ′
`,H

′′}
)

Ψ
(
{H ′

1, · · · ,H ′
`}
) = pe(H)

n .

There are at most nvH graphs H ′′ with VH′′ ⊂ [n] that are isomorphic to H and we shall
use this upper bound for the number of H ′′ not in NΛ(H

′
1, . . . , H

′
`). Therefore

1

mn

∑
H′′ /∈NΛ(H′

1,...,H
′
`)

Ψ
(
{H ′

1, · · · ,H ′
`,H

′′}
)

Ψ
(
{H ′

1, · · · ,H ′
`}
) ≤ nvHp

e(H)
n

mn
� nvH−2peH−1

n .
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Recall that ΦH ≤ n2pn so that nvH−2peH−1
n ≤ nvH p

eH
n

ΦH
.

Putting everything together, we get that T`,n ≤ CH,`
nvH p

eH
n

ΦH
, as claimed.

We can now establish the following central limit theorem, originally proved by Janson
[43, 44].

Theorem 7.5. [44, Theorem 19] Let mn be an integer sequence tending to infinity with
mn ≤

(
n
2

)
. Set pn = mn/

(
n
2

)
and consider a random graph G taken with Erdős-Rényi

distribution G(n,mn).
Fix some graph H that contains L2. Assume ΦH tends to infinity and that for some

ε > 0, we have n1−ε(1 − pn)
2 � 1. We denote XH the number of copies of H in the

random graph G.
Then, in distribution

XH − EXH

√
VarXH

→ N (0, 1).

Proof. Since, for each n ≥ 1, the family {YH′ , H ′ ∈ AH
n } admits a weighted dependency

graph — Theorem 7.2 —, it is enough to check the hypothesis of our normality criterion,
Theorem 4.11.

From Theorem 7.3, one can choose Qn = nvH p
eH
n

ΦH
, while σ2

n is bounded from below by
Eq. (7.6). We therefore have

Qn

σn
≤ C−1/2

√
Φ̃H

ΦH(1− pn)
.

Note also that Rn

Qn
= ΦH ≤ n2. We distinguish two cases.

• If the minimum in (7.4) (the definition of ΦH) is achieved by the graph H with two
vertices and one edge, then ΦH = n2pn and we use the inequality Φ̃H ≤ n3p2n. Thus

Qn

σn
≤ C−1/2 1

n1/2(1− pn)
≤ C−1/2 1

nε/2
.

In particular (4.10) is fulfilled for any integer s ≥ 4/ε.

• Otherwise, one has ΦH = Φ̃H . We also know that pn tends to 0 (otherwise n2pn
clearly minimizes (7.4)), so that

Qn

σn
≤ 2C−1/2 1√

ΦH

.

Since ΦH tends to infinity, (4.10) is fulfilled for s = 3.

Remark 7.6 (Discussion of the hypotheses). The hypothesis “ΦH → ∞” is clearly neces-
sary for asymptotic normality: otherwise, with probability not tending to zero, G(n,mn)

does not contain any copy of H [46, Section 3.1], which rules out the possibility that XH
n

satisfies a central limit theorem.
On the other hand, the hypotheses “H contains a copy of L2” and “n1−ε(1− pn)

2 � 1”
are limits of our method. Indeed, Janson prove asymptotic normality with the less
restrictive hypotheses “n3p2n → ∞” and “n3(1− pn)

2 → ∞".
Janson describes also the limit distributions of induced subgraph counts [44, Theo-

rems 21 and 23]. Some of these results could be also derived with weighted dependency
graphs, but certainly not all since the limit law is not always Gaussian.

The method presented in this article has nevertheless an important advantage: it can
be applied to other combinatorial objects where a coupling with an independent model
is not available, as illustrated in the other sections of this article.
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8 Random permutations

8.1 A weighted dependency graph for random permutations

We consider in this section a uniform random permutation Πn of size n. Let An be
the set [n]2. For (i, l) ∈ An, we denote

Yi,l =

{
1 if Πn(i) = l;

0 otherwise.

Joint moments of these variables have simple expressions. If either i = j or l = k, but
not both, then Yi,l and Yj,k are incompatible, i.e. Yi,l Yj,k = 0. Moreover, if we consider
distinct integers i1, · · · , ir and l1, · · · , lr, then

E

(
r∏

h=1

Yih,lh

)
=

1

n (n− 1) · · · (n− r + 1)
. (8.1)

Proposition 8.1. Consider the weighted graph L̃ on vertex set An defined as follows:

• if two pairs α1 = (i1, l1) and α2 = (i2, l2) in An satisfy either i1 = i2 or l1 = l2, then
they are linked in L̃ by an edge of weight 1.

• otherwise, they are linked in L̃ by an edge of weight 1/n.

Then L̃ is a (Ψn,C) dependency graph, for the family {Yi,l, (i, l) ∈ An}, where

• Ψn(B) = n−#(B) for any multiset B of elements of An

• and C = (Cr)r≥1 is a sequence that does not depend on n.

Proof. The proof is similar to that of Theorems 6.3 and 7.1. Again Ψn is clearly multi-
plicative and Yα1

Yα2
= 0 whenever α1 and α2 are linked by an edge of weight 1, so that

it is enough to prove the following (analogue of Eq. (6.2)): for disconnected α1, · · · , αr,
one has

|κ(Yα1 , · · · , Yαr )| ≤ Dr

(
1

n

)2r−1

. (8.2)

This inequality is proved exactly as in Theorem 6.3, using the explicit expression Eq. (8.1)
for joint moments.

Using Theorem 5.11, we also have dependency graphs for monomials in the variables
Yi,l. In particular, in Section 8.3, we consider degree 2 monomials Yi,j Yk,l. Following
Section 5.3, we denote:

• A′
n := MSet2(An) is the set of multisets of size 2 of elements of An.

• L̃2 is the complete graph on A′
n such that the weight of the edge between {α1, α2}

and {β1, β2} is 1 if some αi shares its first, respectively second, element with some
βj and 1/n otherwise.

• Ψ is the function of multiset of A′
n defined by: Ψ({α′

1, · · · , α′
r}) = n−p({α′

1,··· ,α
′
r}),

where p({α′
1, · · · , α′

r}) = #(α′
1∪· · ·∪α′

r) is the number of distinct pairs in α′
1∪· · ·∪α′

r.

Proposition 8.2. The weighted graph L̃2 is a (Ψ,D)-dependency graph for the family
of random variables {Yi,lYj,k, {(i, l), (j, k)} ∈ A′

n}, where D = (Cr)r≥1 is a sequence that
does not depend on n.
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Remark 8.3. This weighted dependency graph and its powers (see Theorem 5.11)
correspond to the bounds on cumulants given in [33, Theorem 1.4]. Thanks to the results
of this article, proving these bounds on cumulants is now easier (in particular we do not
need to consider truncated cumulants anymore as in [33, Section 2.4]). Yet, some ideas
of this article dedicated to random permutations are crucial here to build the general
theory of weighted dependency graphs.

Remark 8.4. When Πn is distributed with Ewens distribution — see, e.g., [3] for back-
ground on this measure —, the family {Yi,l, (i, l) ∈ An} still admits a weighted depen-
dency graph. The only difference is that Yi,l and Yj,k share an edge of weight 1 as soon as
{i, l} ∩ {j, k} 6= ∅. Nevertheless, most central limit theorems for Ewens distribution can
be inferred from a corresponding central limit theorem for uniform random permutations
using a coupling argument (the Chinese restaurant process yields a coupling between
Ewens distributed permutations and uniform permutations, where only Op(ln(n)) values
differ). Therefore we have decided to restrict here to the uniform model.

8.2 A functional central limit theorem for simply indexed permutation statis-
tics

In this section, we prove a weaker version of a functional central limit theorem, due
to Barbour and Janson [9].

Let (a(n)0 (i, l))i,l≤n (n ≥ 1) be a sequence of real matrices. Take t in [0, 1], an integer n
and a permutation π of size n. If nt is an integer, then we define

Xπ
n (t) =

nt∑
i=1

a
(n)
0 (i, π(i)).

We then extend Xπ
n to a continuous function on [0, 1], by requiring that Xπ

n is affine on
each interval [j/n, (j + 1)/n] (for 0 ≤ j ≤ n− 1). More explicitly we set, for t in [0, 1],

Xπ
n (t) =

bntc∑
i=1

a
(n)
0 (i, π(i)) + (nt− bntc)a(n)0 (bntc+ 1, π(bntc+ 1)),

where bxc denotes, as usual, the integer value of x.
Consider now a uniform random permutation Π of size n and set Xn = XΠ

n . Then Xn

is a random continuous function on [0, 1] and we want to study its asymptotics.

The quantity Xn(1) =
∑n

i=1 a
(n)
0 (i, π(i)) is a classical combinatorial statistics on

permutation, originally introduced by Hoeffding [39], while the process Xn is a slight
deformation of the one considered by Barbour and Janson in [9] (theirs is a step function,
while ours is continuous piecewise-affine).

We now perform a centering by defining

a(n)(i, l) = a
(n)
0 (i, l)− n−1

n∑
k=1

a0(n)(i, k).

Then, for all i and n,
∑n

k=1 a
(n)(i, k) = 0 and, for t in [0, 1],

Xn(t)− EXn(t) =

nt∑
i=1

a(n)(i,Π(i)).

We assume that:

• the entries of the matrices a(n) are uniformly bounded by a constant M ;
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• The functions fn and gn defined by

fn(t) = n−2

bntc∑
i=1

n∑
l=1

(
a(n)(i, l)

)2
, (8.3)

gn(t, u) = n−3

bntc∑
i=1

bntc∑
j=1

n∑
l=1

a(n)(i, l) a(n)(j, l) (8.4)

have pointwise limits f and g.

Note that these hypotheses are in particular fulfilled when a(n)(i, l) = α(i/n, l/n) for
some fixed piecewise continuous function α : [0, 1]2 → R independent of n. The latter is
a natural hypothesis to get a limit for a renormalized version of Xn.

We consider convergence in the space C[0, 1] of real-valued continuous functions on
[0, 1], endowed with the uniform metric. Denote t ∧ u = min(t, u).

Theorem 8.5. We use the notation and assumptions above. Then there exists a zero-
mean continuous Gaussian process Z on [0, 1] with covariance function given by

Cov(Z(t), Z(u)) = σ(t, u) := f(t ∧ u)− g(t, u)

and, in distribution in C[0, 1], we have

Xn(t)− EXn(t)√
n

→ Z.

Proof. The first step is to prove the convergence of the finite-dimensional laws (note that
this step does not require the existence of Z). We do that by proving the convergence
of joint cumulants; since a multidimensional Gaussian vector is determined by its joint
moments, this is enough to establish convergence in distribution.

Both sides are centered so that there is nothing to prove for the expectation.

For covariances, first write, for t ∈ [0, 1],

X̃n(t) :=
Xn(t)− EXn(t)√

n
= n−1/2

bntc∑
i=1

n∑
l=1

a(n)(i, l)Yi,l.

Then for 0 ≤ t ≤ u ≤ 1, we have

Cov
(
X̃n(t), X̃n(u)

)
= E

(
X̃n(t) X̃n(u)

)
= n−1

bntc∑
i=1

bnuc∑
j=1

 ∑
1≤l,k≤n

a(n)(i, l)a(n)(j, k)E(Yi,l Yj,k)


(8.5)

If i = j, then E(Yi,l Yj,k) =
1
n if l = k and 0 otherwise. Thus the expression in the bracket

reduces to n−1
∑n

l=1 a
(n)(i, l)2 and the total contribution of terms with i = j in (8.5) is

fn(t ∧ u).

On the other hand, if i 6= j then E(Yi,l Yj,k) = 0 if l = k and 1
n(n−1) otherwise. Thus,

for i 6= j ∑
1≤l,k≤n

a(n)(i, l)a(n)(j, k)E(Yi,l Yj,k)

 =
1

n(n− 1)

∑
1≤l,k≤n

l 6=k

a(n)(i, l)a(n)(j, k).
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Since a(n) is centered, the same sum without the restriction l 6= k equals to 0. Thus, the
sum with condition l 6= k is the opposite of the sum with condition l = k and, if i 6= j, one
has  ∑

1≤l,k≤n

a(n)(i, l)a(n)(j, k)E(Yi,l Yj,k)

 =
−1

n(n− 1)

n∑
l=1

a(n)(i, l)a(n)(i, l).

As a consequence, the total contribution of terms with i 6= j in (8.5) is

− n

n− 1
g(t, u) +

1

n− 1
f(t ∧ u).

Finally we get the piecewise limit

lim
n→∞

Cov
(
X̃n(t), X̃n(u)

)
= f(t ∧ u)− g(t, u),

as wanted.

Let us now consider higher order cumulants. Recall that the family {Y(i,l), (i, l) ∈ An}
admits L̃ as a (Ψn,C) weighted dependency graph where L̃, Ψn and C are defined in
Theorem 8.1. Since a(n)(i, l) is uniformly bounded by M , the family{

a(n)(i, l)Y(i,l), (i, l) ∈ An

}
has the same dependency graph, replacing simply Ψn by

Ψ′
n(B) := M |B|Ψn(B).

For this dependency graph, using the notation of Section 4.3, one has

Rn =
∑

(i,l)∈An

M

n
= M n.

Let us now establish a bound for Tr,n. Fix α1, · · · , αr in An (αh = (ih, lh) for h ≤ `) and
consider the sum ∑

β∈An

W ({β}, {α1, · · · , αr})
Ψ′

n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , αr}

) . (8.6)

As in previous sections, we split this sum into different parts. Write β = (i, l). Constants
in O symbols below can be chosen independent of α1, · · · , αr, but depend on r.

• If fulfills i 6= i1, · · · , ir and l 6= l1, · · · , lr, then W ({β}, {α1, · · · , αr}) = 1/n and

Ψ′
n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , αr}

) =
M

n
.

Since there are O(n2) such terms, the total contribution of these terms is O(1).

• If i ∈ {i1, · · · , ir}, but (i, s) /∈ {(i1, l1), · · · , (ir, lr)}, then W ({β}, {α1, · · · , αr}) = 1

and
Ψ′

n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , αr}

) =
M

n
.

There are O(n) such terms which gives a total contribution of O(1).

• The total contribution of terms with s ∈ {s1, · · · , sr} but (i, s) /∈ {(i1, l1), · · · , (ir, lr)}
is O(1) from the same argument.
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• Finally, if (i, s) ∈ {(i1, l1), · · · , (ir, lr)}, we have W ({β}, {α1, · · · , αr}) = 1 and

Ψ′
n

(
{α1, · · · , α`, β}

)
Ψ′

n

(
{α1, · · · , αr}

) = M.

But the number of such terms is bounded by r, so that their total contribution is
also O(1).

Finally, we get that, for any α1, · · · , αr, the quantity (8.6) is bounded by a constant Dr,
uniformly on α1, · · · , αr. Thus, for each r ≥ 1, the sequence (Tr,n)n≥1 is bounded.

Using Theorem 4.16, we can now write: for r > 2 and t1, · · · , tr in [0, 1],∣∣∣κr

(
X̃n(t1), · · · , X̃n(tr)

)∣∣∣ = n−r/2 |κr (Xn(t1), · · · , Xn(tr))|

≤ n−r/2Crr!Rn T1,n · · ·Tr−1,n ≤ Crr!D1 · · ·Dr−1 M n1−r/2.

The right hand side tends to 0 so that
∣∣∣κr

(
X̃n(t1), · · · , X̃n(tr)

)∣∣∣ tends to 0. This proves

the convergence of the finite-dimensional laws towards Gaussian vectors.

It remains now to prove that the sequence of random functions X̃n is tight in C[0, 1].
This will prove the existence of the continuous Gaussian process Z, and the convergence
of Xn towards Z as well.

To do this, we use a moment criterion that can be found in a book of Kallenberg [48,
Corollary 16.9 for d = 1]: a sufficient condition for X̃n to be tight is that X̃n(0) is tight
and that, for some positive constants a, b and λ,

E
[
|X̃n(s)− X̃n(t)|a

]
≤ λ |s− t|1+b for all s, t ∈ [0, 1], n ≥ 1. (8.7)

In our case, Xn(0) is identically equal to 0 so that only the inequality (8.7) needs to
be checked. Moreover, since X̃n is affine in each interval [j/n, (j + 1)/n], it is in fact
sufficient to prove this inequality when nt and ns are integers; see Appendix C (this
reduction needs a ≥ 1 + b, which is the case in what follows).

Let n ≥ 1 be an integer and s and t in [0, 1] such that ns and nt are integers. Assume
t < s. We consider the case a = 4, that is the fourth moment of X̃n(s) − X̃n(t). Since
X̃n(s)− X̃n(t) is centered, from the moment cumulant formula (2.3), we get

E
[
(X̃n(s)− X̃n(t))

4
]
= κ4(X̃n(s)− X̃n(t)) + 3κ2(X̃n(s)− X̃n(t))

2.

But

n1/2
(
X̃n(s)− X̃n(t)

)
=

ns∑
i=nt+1

n∑
l=1

a(n)(i, l)Yi,l

and its cumulants can be bounded by Theorem 4.10. Note that we consider here the
restriction of the dependency graph above to the family

{a(n)(i, l)Yi,l, nt < i ≤ ns and 1 ≤ l ≤ n}.

Then we have

Rn(s, t) :=

ns∑
i=nt+1

n∑
l=1

Ψ′
n({(i, l)}) = M n (s− t).

On the other hand the parameter T`,n(s, t) associated to this restricted graph is bounded
by the same bound as in the non-restricted case above: T`,n(s, t) = O(1). Therefore, from
Theorem 4.10, we have

|nκ2

(
X̃n(s)− X̃n(t)

)
| ≤ D2 n (s− t), |n2κ4

(
X̃n(s)− X̃n(t)

)
| ≤ D4 n (s− t),
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for some constants D2 and D4. Putting all together,

E
[
(X̃n(s)− X̃n(t))

4
]
≤ D4 n

−1 (s− t) + 3D2
2(s− t)2 ≤ (D4 + 3D2) (s− t)2,

where the last equality comes from the fact that s− t ≥ n−1 since ns and nt are distinct
integers. Thus (8.7) is proved for a = 4, b = 1 and λ = D4 + 3D2, which ends the proof of
the theorem.

To illustrate this theorem, we use the same example as Barbour and Janson [9,
Theorem 5.1]. Let a(n)0 (i, l) = [l ≥ i], that is 1 if l ≥ i and 0 otherwise. Then Xn(t) is the
number of weak exceedances of Π of index at most nt.

After centering, we have a(n)(i, l) = [l ≥ i]− (n− i+1)/n, which is obviously uniformly
bounded. As explained in [9], if 0 ≤ t ≤ u ≤ 1, then one has

f(t) = lim
n→∞

fn(t) =
1
2 t

2 − 1
2 t

3; g(t, u) = lim
n→∞

gn(t, u) =
1
2 t

2u− 1
6 t

3 − 1
4 t

2u2.

All our hypotheses are fulfilled and we obtain that there exists a continuous Gaussian
process Z with covariance function σ(Z(t), Z(u)) = 1

2 t
2(1− u+ 1

2u
2)− 1

6 t
3 and that, in

distribution in C[0, 1],
Xn − EXn√

n
→ Z.

Remark 8.6. The hypotheses given here are stronger than the ones of Barbour and
Janson [9], who use a bound on the Lyapounov ratio, instead of our uniformly bounded
assumption. However, as seen above, the example of exceedances, which motivated
their work, also fits in our framework. Note also that Barbour and Janson also give a
bound on the speed of convergence, which we cannot achieve.

Another difference between their theorem and ours is that they consider convergence
in Skorohod space D[0, 1], while we work in C[0, 1], but since the limit is continuous, this
is just a matter of taste.

8.3 A functional central limit theorem for doubly indexed permutation statis-
tics

An advantage of the method of the previous section is that it can be easily adapted
to more involved permutation statistics, such as doubly indexed permutation statistics
(DIPS). By definition a DIPS is a statistics of the following form: let ζ(n)0 (i, j, k, l)i,j,k,l∈[n]

be a sequence of multi-indexed real numbers, then, for a permutation π of size n, we set

Xn(π) =
∑

1≤i,j≤n

ζ
(n)
0 (i, j, π(i), π(j)).

A central limit theorem for DIPS with control on the speed of convergence is given in
[67]. In this section, we provide a functional CLT for this class of statistics.

To this end let us associate with a DIPS and a permutation π a continuous function
on [0, 1]2 as follows. If nt1 and nt2 are integers, then

Xπ
n (t1, t2) =

nt1∑
i=1

nt2∑
j=1

ζ
(n)
0 (i, j, π(i), π(j)).

The function Xπ
n is then extended to [0, 1]2 by requiring that, for any pair (i, j) with

0 ≤ i, j ≤ n− 1, the function Xπ is affine on the square [i/n; (i+ 1)/n]× [j/n; (j + 1)/n].
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We now consider a uniform random permutation Π of size n and the associated
random function Xn := XΠ

n . We perform the following centering:

ζ(n)(i, j, k, l) =

{
ζ
(n)
0 (i, j, k, l)− 1

n(n−1)

∑
k′ 6=l′ ζ

(n)
0 (i, j, k′, l′) if i 6= j;

ζ
(n)
0 (i, j, k, l)− 1

n

∑
k′ ζ

(n)
0 (i, j, k′, k′) if i = j.

.

With this definition, if nt1 and nt2 are integers, we have

Xn(t1, t2)− EXn(t1, t2) =

nt1∑
i=1

nt2∑
j=1

ζ(n)(i, j, π(i), π(j)).

We assume that:

• the real numbers ζ(n)(i, j, k, l) (n ≥ 1, i, j, k, l ≤ n) are uniformly bounded by a
constant M ;

• the rescaled covariance n−3 Cov
(
Xn(t1, t2), Xn(u1, u2)

)
has a pointwise limit that

we denote σ(t1, t2;u1, u2). (It may be possible to give sufficient conditions such
as Eqs. (8.3) and (8.4) for this convergence, but this would be technical and not
enlightening.)

We consider here the space C[0, 1]2 of real-valued continuous functions on [0, 1]2, with
the topology of uniform convergence. We then have the following theorem.

Theorem 8.7. We use the notation and assumptions above. Then there exists a zero-
mean continuous Gaussian process Z on [0, 1]2 with covariance function given by

Cov(Z(t1, t2), Z(u1, u2)) = σ(t1, t2;u1, u2)

and, in distribution in C[0, 1]2, we have

X̃n(t1, t2) :=
Xn(t1, t2)− EXn(t1, t2)

n3/2
→ Z.

Proof. The structure of the proof is the same as for simply-indexed permutation statistics.
We first prove the convergence of finite-dimensional laws by controlling joint cumulants.
Both sides are centered and we have assumed the convergence of covariances, so that
we can focus on joint cumulants of order at least 3.

Note that, if nt1 and nt2 are integers, we can rewrite X̃n(t1, t2) as

X̃n(t1, t2) = n−3/2
nt1∑
i=1

nt2∑
j=1

n∑
k=1

n∑
l=1

ζ(n)(i, j, k, l)Yi,kYj,l.

Recall from Theorem 8.2 that the family {Yi,kYj,l, (i, k), (j, l) ∈ An} admits L̃2 as a (Ψ,D)

weighted dependency graph. Since ζ(n)(i, j, k, l) is uniformly bounded by M , the family

{ζ(n)(i, j, k, l)Yi,kYj,l, (i, k), (j, l) ∈ An}

has the same dependency graph, replacing Ψ by Ψ′(B) := M |B|Ψ(B). For this depen-
dency graph, we have Rn = Mn2. A case analysis similar to the one above shows that
Tr,n = O(n) (with a constant depending on r). We sketch here briefly the argument.
Recall that we want to bound, for fixed α′

1, · · · , α′
r, the sum∑

β′∈A′
n

W ({β′}, {α′
1, · · · , α′

r})
Ψ′

n

(
{α′

1, · · · , α′
`, β

′}
)

Ψ′
n

(
{α′

1, · · · , α′
r}
) . (8.8)
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• If β′ in A′
n does not share any element with α′

1, · · · , α′
r, then the quotient of Ψ′ is

M/n2 and the W factor is equal to 1/n. Since there are fewer than |A′
n| � n4 such

terms, their total contribution is O(n).

• If β′ has an element, but no pair in common with one of the α′
i, then the quotient of

Ψ′ is also M/n2, while the W factor is 1. But there are O(n3) such terms, so that
the total contribution of such terms is also O(n).

• If β′ has exactly pair in common with one of the α′
i, then the quotient of Ψ′ is also

M/n and the W factor is also 1. There are O(n2) such terms, so that the total
contribution of such terms is also O(n).

• Finally if both pairs in β′ already appear in the α′
i, then the quotient of Ψ′ is M

and the W factor is also 1. But this implies that the pairs of β′ are chosen within a
finite family, so that there is only a constant number of such terms and their total
contribution is O(1).

Finally, as claimed above, for r ≥ 1, there exists a constant Dr such that Tr,n ≤ Dr n.
Let ((t11, t

1
2), · · · , (tr1, tr2)) be an r-uple of points in [0, 1]2 (r ≥ 3). From Theorem 4.16

and the discussion above, we get∣∣∣κr

(
˜Xn(t11, t

1
2), · · · , ˜Xn(tr1, t

r
2)
)∣∣∣ ≤ n−3r/2Crr!Rn T1,n · · ·Tr−1,n ≤ Crr!D1 · · ·Dr−1 M n1−r/2.

The right hand side tends to 0 so that all joint cumulants of the family (Xn(t1, t2))(t1,t2)∈[0,1]2

of order at least 3 tend to 0. This proves the convergence of the finite-dimensional laws
towards Gaussian vectors.

We now prove the tightness of the random functions (X̃n)n≥1 in the space C[0, 1]2.
We again use the moment criterion [48, Corollary 16.9], but this time for d = 2. Since
X̃n(0, 0) is tight (it is identically equal to 0, for all n), we should prove that there exist
positive constants a, b and λ,

E
[
|X̃n(s1, s2)− X̃n(t1, t2)|a

]
≤ λ (|s1 − t1|+ |s2 − t2|)2+b (8.9)

for all (s1, s2), (t1, t2) in [0, 1]2 and n ≥ 1. As in dimension 1, since X̃n is affine on each
square [i/n; (i+1)/n]× [j/n; (j +1)/n] (0 ≤ i, j ≤ n− 1), it is enough to prove (8.9) when
ns1, ns2, nt1 and nt2 are integers; see Appendix C.

Let us first give bounds depending on (s1, s2), (t1, t2) for cumulants of the difference
X̃n(s1, s2)− X̃n(t1, t2). If t1 < s1 and t2 < s2, then

X̃n(s1, s2)− X̃n(t1, t2) = n−3/2
∑
i,j

n∑
k=1

n∑
l=1

ζ(n)(i, j, k, l)Yi,kYj,l,

where the first sum runs over pairs (i, j) such that i ≤ ns1, j ≤ s2 and either nt1 < i ≤ ns1
or nt2 < j ≤ ns2. There are fewer than n2(s1 − t1 + s2 − t2) such pairs (i, j), so that, by
the same argument as in the one-dimensional case (restricting the dependency graph),
we have ∣∣κr

(
X̃n(s1, s2)− X̃n(t1, t2)

)∣∣ ≤ Dr(|s1 − t1|+ |s2 − t2|)n1−r/2, (8.10)

for some constant Dr that depends only on r. The same bound obviously holds without
the assumption t1 < s1 and t2 < s2.

We now have to consider the moment of order 6 of ∆X := X̃n(s1, s2)− X̃n(t1, t2). In
terms of cumulants it writes as:

E(∆X6) = κ6(∆X) + 15κ4(∆X)κ2(∆X) + 10κ3(∆X)2 + 15κ2(∆X)3.
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Set δ = |s1 − t1|+ |s2 − t2|. From (8.10), we have

E
[
∆X6

]
≤ D6n

−2δ + (15D4D2 + 10D2
3)n

−1δ2 + 15D3
2δ

3 ≤ Dδ3,

for some constant D. For the last inequality, note that since ns1, ns2, nt1 and nt2 are
integers, we have n−1 ≤ δ = |s1 − t1| + |s2 − t2| (we can assume that either s1 6= t1 or
s2 6= t2, otherwise (8.9) is trivial). This ends the proof of (8.9) (for a = 6 and b = 1) and
hence of the theorem.

As an example we consider positive alignments in random permutations. A positive
alignment in a permutation π is a pair (i, j) such that j < i ≤ σ(i) < σ(j). This statistics
mixes somehow the classical notions of inversions and exceedances: it is studied together
with many similar statistics in [20]. Let us set ζ(n)0 (i, j, k, l) = [j < i ≤ k < l] (i.e. 1 if
j < i ≤ k < l and 0 otherwise) and define the associated random function XΠ

n in C[0, 1]2

as above. In particular XΠ
n (1, 1) is the number of positive alignments in the uniform

random permutation Π.

It is clear that ζ(n)0 (i, j, k, l) and hence ζ
(n)
0 (i, j, k, l) is uniformly bounded. Besides, an

easy adaptation of Theorem B.1 shows that Cov
(
Xn(t1, t2), Xn(u1, u2)

)
is a polynomial

in n, t1, t2, u1, u2. Moreover, from the same arguments as in the proof above to bound
general joint cumulants, we know that, for fixed t1, t2, u1u2, it behaves as O(n3). Thus,
for any t1, t2, u1u2 in [0, 1], the rescaled covariance n−3 Cov

(
Xn(t1, t2), Xn(u1, u2)

)
has

indeed a limit.

Thus, our theorem applies and X̃n converges in probability in C[0, 1]2 towards a zero-
mean continuous Gaussian process in [0, 1]2. It is possible to compute the covariances of
the limiting process, but it would be a lengthly computation.

Remark 8.8. The extension of the above result to k-indexed permutation statistics for
fixed k is straightforward (with a convergence in distribution in C[0, 1]k). However, it
becomes rather difficult to do any explicit computation.

9 Symmetric simple exclusion process

9.1 Background on the model

The symmetric simple exclusion process with open boundaries (SSEP for short) is a
continuous-time Markov chain defined as follows: we consider particles on a discrete line
with N sites. More formally, the space state is {0, 1}N : a state of the SSEP is encoded as
a word in 0 and 1 of length N , where the entries with value 1 correspond to the positions
of the occupied sites. The system evolves as follows:

• each particle has an exponential clock with rate 1. When it rings the particle jumps
to the right if it is not in the right-most site and if the site at its right is empty.
Otherwise, the jump is suppressed.

• Similarly, each particle has another exponential clock with rate 1 and attempts to
jump to its left when it rings (with similar rules as above).

• if the left-most (resp. right-most) site is empty, an exponential clock with rate α

(resp. δ) is associated with it. When it rings, a particle is added to the left-most
(resp. right-most) site.

• if the left-most (resp. right-most) site is full, an exponential clock with rate γ (resp.
β) is associated with it. When it rings, the particle in the left-most (resp. right-most)
site is removed.
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1 1 1

1111

α β

γ δ

Figure 3: A state of the SSEP with the possible transitions and the rates of the corre-
sponding clocks. Dotted transtitions do not apply to the represented state.

All the above mentioned exponential clocks are independent. The conditions for particles
to jump or be added in the extremities ensure that no two particles are in the same site
at the same moment (which explains the terminology simple exclusion in the name of
the model). The transition are schematically represented on Fig. 3.

As common in the field, we define ρa = α
α+γ and ρb = β

β+δ . We are interested here

in a random state τ in {0, 1}N , distributed according to the steady state of the SSEP,
that is the invariant measure of this Markov process. The correlation functions of the
particles, that are the joint moments of the coordinates (τi)1≤i≤N , can be described
using the so-called matrix Ansatz of Derrida, Ewans, Hakim and Pasquier [27]. Based
on this matrix Ansatz, Derrida, Lebowitz and Speer have found an inductive formula to
compute joint cumulants of the family (τi)1≥i≥N (called truncated correlation functions
in this context).

To state it, we first need to introduce the discrete difference operator ∆. If f in a
function on positive integers, we set ∆f(N) = f(N) − f(N − 1). Note that ∆f is not
defined for N = 1, but this is irrelevant as we shall make N tends to infinity, while we
apply ∆ a fixed number of times.

Fix a positive integer r and a some integers 1 ≤ i1 < · · · < ir+1 ≤ N . As the formula
involves SSEP with different number N of sites, we make it explicit in the notation and
denote κN

r (τi1 , . . . , τir ) the joint cumulants of τi1 ,. . . , τir . Derrida, Lebowitz and Speer
[28, Eq (A.11)] have proved that

κN
r+1(τi1 , . . . , τir , τir+1) = (E(τir+1)− ρb)

∑
π∈P([r])

∏
B∈π

∆κN
|B|(τit ; t ∈ B). (9.1)

Expectations can be easily computed (see, e.g. [25, Eq. (42)]):

E(τi) =
ρa
(
N + 1/(β + δ)− i

)
+ ρb

(
i− 1 + 1/(α+ γ)

)
N + 1/(α+ γ) + 1/(β + δ)− 1

. (9.2)

Eqs. (9.1) and (9.2) determine the joint cumulants of distinct variables in the family
(τi)1≤i≤N . We will use this to find a weighted dependency graph for this family in the
next section.

9.2 A weighted dependency graph in SSEP

We start by a lemma, bounding repetition-free joint cumulants of the family (τi)1≤i≤N .

Lemma 9.1. Let r ≥ 1. Then there exists a constant Dr such that for each N ≥ r and
(i1, · · · , ir) with 1 ≤ i1 < · · · < ir ≤ N , we have∣∣κN

r (τi1 , . . . , τir )
∣∣ ≤ DrN

−r+1.

Proof. We will in fact prove a stronger statement:
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The quantity κN
r (τi1 , . . . , τir ) is a polynomial in i1, · · · , ir with coefficients that

are rational functions in N . Moreover, its total degree in N, i1, · · · , ir is at
most −r + 1.

To simplify the discussion below, we call such a function a nice function of degree at
most −r+1. It is clear that, if f(N ; i1, · · · , ir) is a nice function of degree at most d, then

max
i1,...,ir∈[N ]

f(N ; i1, · · · , ir) = O(Nd).

Therefore proving the above claim proves the lemma.
We prove this statement by induction on r. For r = 1, it follows immediately from the

explicit formula (9.2). Take r ≥ 1 and suppose that our statement holds for any r′ ≤ r.
We consider the quantity κN

r+1(τi1 , . . . , τir , τir+1
) and its expression given in Eq. (9.1). Fix

a set partition π in P([r]).

• By induction hypothesis, for each block B of π, κN
|B|(τit ; t ∈ B) is a nice function of

degree at most −|B|+ 1.

• Applying the operator ∆ turns it into a nice function of degree at most −|B|.

• Multiplying these nice functions for different blocks B of π gives a nice function of
degree at most −

∑
B∈π |B| = −r.

The sum of these nice functions (over set partitions π in P([r])) is also a nice function of
degree at most −r. We then multiply by E(τir+1

)− ρb which, as can be seen on Eq. (9.2),
is a nice function of degree 0 and we still have a nice function of degree at most −r.
Therefore κN

r+1(τi1 , . . . , τir , τir+1
) is a nice function of degree at most −r, which ends the

proof of the lemma.

We are ready to present a weighted dependency graph associated with SSEP.

Proposition 9.2. Let N ≥ 1 and τ = (τ1, · · · , τN ) be a random {0, 1} vector distributed
according to the steady state of SSEP on N sites. Let AN = [N ] and consider the family
of variables {τi, i ∈ AN}. We consider the complete graph L̃ with weight 1/N on each
edge and the function ΨN on multiset of elements of AN that is identically equal to 1.
Then L̃ is a (ΨN ,C) weighted dependency graph for the family {τi, i ∈ N}, for some
sequence C = (Cr)r≥1 that does not depend on N .

Proof. We note the three following fact: (1) Ψn is trivially super-multiplicative, (2) the τi
are Bernoulli variables and (3) L̃ has no edges of weight 1. From Theorem 5.5 (which
uses Theorem 5.2), it is enough to prove bounds on cumulants of sets of distinct variables
(instead of cumulants of all multisets of variables). Namely, we should prove that, for
any r ≥ 1 and any distinct i1, · · · , ir in [N ], one has∣∣κN

r (τi1 , . . . , τir )
∣∣ ≤ DrN

−r+1,

for a constant Dr that does not depend on N . But this is exactly Theorem 9.1.

Remark 9.3. In [28], Derrida, Lebowitz and Speer have proved that, for any x1, · · · , xr

in [0, 1] the quantity Nr−1κN
r

(
τbN x1c, . . . , τbN xrc

)
has a limit when N tends to infinity.

This of course implies that the joint cumulant is O(N−r+1). However the constant in the
O symbol could a priori depend on x1, · · · , xr, while we need a bound which is uniform
in i1, · · · , ir. This explains why we need Theorem 9.1 and we can not use directly the
result of Derrida, Lebowitz and Speer. Nevertheless, the key identity in the proof is the
induction formula (9.1), due to these authors.
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9.3 A functional central limit for the number of particles

Let N ≥ 1 and t in [0, 1]. We consider a random state τ in {0, 1}N , distributed
according to the steady state of the SSEP on N sites. If Nt is an integer, we define XN (t)

as the number of particles in the first Nt cells of τ . Formally, this means XN (t) =
∑Nt

i=1 τi.
We then extend XN to a continuous function on [0, 1], by requiring that it is affine on
each segment [i/N ; (i+ 1)/N ].

This function measures the repartition of the particles in τ . Informally, it is the
integral of the density of particles, often considered in the physics literature; see, e.g.,
[25, Section 3].

Since there are explicit formulas for the expectations and covariances of the τi [28, Eq.
(2.3) and (2.4)], the expectations and covariances of (XN (t))t∈[0,1] are easy to evaluate
asymptotically:

lim
N→∞

N−1E(XN (t)) = ρa(1− t) + ρb t; (9.3)

lim
N→∞

N−1 Cov(XN (t), XN (u)) =

∫ t∧u

0

(
ρa(1− x) + ρb x

) (
1− ρa(1− x)− ρb x

)
dx (9.4)

−
∫ t

0

∫ u

0

x ∧ y (1− x ∨ y) (ρa − ρb)
2dxdy.

In the last formula, x ∧ y := min(x, y) and x ∨ y := max(x, y). We denote σ(u, v) the
right-hand side of Eq. (9.4).

Theorem 9.4. We use the notation above. There exists a zero-mean continuous Gaussian
process Z on [0, 1] with covariance function given by

Cov(Z(t), Z(u)) = σ(u, t)

and, in distribution in C[0, 1], we have, when N tends to infinity,

X̃N (t) :=
XN (t)− EXN (t)√

N
→ Z.

Proof. As usual, we start by proving the convergence of the finite-dimensional laws. To
do that, we prove the convergence of joint cumulants. Expectations clearly converge as
both sides are centered. Covariances also converge, by definition of σ(u, t).

Let us consider now higher order cumulants. We recall that the family {τi, i ∈ N}
admits a weighted dependency graph L̃; see Theorem 9.2. Call RN andQN the associated
parameters, as in Section 4.3. From Theorem 4.9, since ΨN is the constant function
equal to 1, RN is simply the number of vertices of L̃, which is N . Moreover, T` ≤ `∆,
where ∆− 1 is the maximal weighted degree in the graph, which is here smaller than 1

(i.e. ∆ < 2). From Theorem 4.16, we get, that for any r ≥ 3 and t1, · · · , tr in [0, 1] (such
that Nt1, · · · , Ntr are integers),∣∣∣∣κr

(
X̃N (t1), · · · , X̃N (tr)

)∣∣∣∣ = N−r/2

∣∣∣∣κr

(∑Nt1
i=1 τi, · · · ,

∑Ntr
i=1 τi

)∣∣∣∣ ≤ Cr r! 2
r−1 (r−1)!N1−r/2.

In particular, all joint cumulants of order 3 or more tend to 0, which ends the proof of
multidimensional laws toward Gaussian vectors.

The proof of tightness is virtually identical to that in the proof of Theorem 8.5.

Remark 9.5. Thanks to the stability of weighted dependency graph by product (the
function Ψ here, identically equally to 1, is super-multiplicative), it is possible to obtain
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functional central limits for more complicated quantities that involve products of τi.
For example if we are interested in the number and repartition of particles that can
jump to their right, we should define X ′

N (t) =
∑Nt

i=1 τi(1 − τi+1). Its joint cumulants
are easily bounded, using the weighted dependency graph L̃2 for the set of products
{τiτj , (i, j) ∈ [N ]2}. It suffices then to compute the asymptotics of the covariances
(X ′

N (t))t∈[0,1], which should be an elementary but cumbersome computation starting
from the explicit formulas that exist for (truncated) correlation functions [28].

Remark 9.6. In the recent years, combinatorial models have been given to describe the
steady state τ of SSEP (and more generally of the asymetric simple exclusion process);
see [22] and references therein. In the particular case where α = β = 1 and γ = δ = 0,
this relates particles in τ to exceedances in permutations; see [33, Section 5.2] for
details. In this sense, the example at the end of Section 8.2 can be seen as a particular
case of Theorem 9.4.

10 Markov chains

We consider here an aperiodic irreducible Markov chain (Mk)k≥0 on a finite state
space S. We denote by P the transition matrix, namely P (s, t) is the probability that
Mk+1 = t if Mk = s (for any k ≥ 0). Let π0 be the initial distribution, that is the law of
M0. We also denote π the stationary distribution (seen as a row vector), characterized
by π P = π.

For s ∈ S and i ≥ 0, define Y s
i = 1 if Mi = s and 0 otherwise. The joint moment of

these variables have simple matrix expressions: if Es,s denotes the matrix with entries 0
except a 1 at coordinates (s, s), and 1 the column vector with all entries equal to 1, then
we have

E[Y s1
i1

· · ·Y sr
ir

] = π0P
i1Es1,s1P

i2−i1Es2,s2 · · ·Esr−1,sr−1
P ir−ir−1Esr,sr1. (10.1)

From now on, we shall suppose that the initial distribution π0 is equal to the stationary
distribution π. We will prove in Section 10.2 that there is a natural weighted dependency
graph structure on the (Y s

i )i≥1;s∈S . The weight of the edge joining Y s
i and Y t

j is λj−i
2 ,

where λ2 ∈ [0, 1) is the second biggest modulus of an eigenvalue of the transition matrix
P . This encodes the fact that far apart elements of the Markov chains are almost-
independent. In Section 10.3, this weighted dependency graph structure is used to
prove a central limit theorem for the number of occurrences of a given subword u in
wn = (M0, · · · ,Mn), as announced in the introduction.

10.1 Bounds for boolean and classical cumulants

The goal of this section is to bound the joint cumulants of the variables (Y s
i )i≥1;s∈S .

Such bound of cumulants can be found in the monograph of Saulis and Statulevičius [61,
Chapter 4]; nevertheless, to keep this section self-contained, we present a proof here for
the simple case of finite-state Markov chain.

Instead of working directly with classical (joint) cumulants, we first give bounds for
boolean cumulants. Corresponding bounds for classical cumulants will then follow easily,
thanks to a formula linking these different types of cumulants recently established by
Arizmendi, Hasebe, Lehner and Vargas in [2] (see also [61, Lemma 1.1]; in loc. cit.,
boolean cumulants are called centered moments).

Let Z1, · · · , Zr be random variables with finite moments defined on the same proba-
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bility space. By definition, their boolean (joint) cumulant is

Br(Z1, · · · , Zr) =

r−1∑
l=0

(−1)l
∑

1≤d1<...<dl≤r−1

E(Z1 · · ·Zd1)E(Zd1+1 · · ·Zd2) · · · E(Zdl+1 · · ·Zr).

(10.2)
While not at first sight, this definition is quite similar to the definition of classical (joint)
cumulants, replacing the lattice of all set partitions by the lattice of interval set partitions;
see [2, Section 2] for details. Note however that, unlike classical cumulants, boolean
cumulants are not symmetric functionals.

We recall that (Mk)k≥0 is an aperiodic irreducible Markov chain with transition matrix
P , such that M0 is distributed according to the stationary distribution π of the chain.
Recall also that Y s

i is the indicator function of the event Mi = s. Finally, λ2 is the biggest
modulus of an eigenvalue of P , except 1.

Lemma 10.1. Let r > 0. With the above notation, there exists a constant CP,r depending
on P and r with the following property. For any integers i1 < i2 < · · · < ir and states
s1, · · · , sr, we have

|Br(Y
s1
i1

, · · · , Y sr
ir

)| ≤ CP,rλ
ir−i1
2 .

Proof. Fix integers i1 < i2 < · · · < ir and s1, · · · , sr in S. To make notation lighter, we
write E(j) = Esj ,sj , `(j) = ij+1 − ij and Zj = Y

sj
ij
. As in the summation index of (10.2),

we consider l ≥ 0 and 1 ≤ d1 < . . . < dl ≤ r − 1. Since the initial distribution π0 is
the stationary distribution π, one has π0P

i = π and formula (10.1) for joint moments
simplifies a little. We have

E(Zdj+1 · · ·Zdj+1) = π E(dj + 1)P `(dj+1) E(dj + 2) · · · E(dj+1 − 1)P `(dj+1−1) E(dj+1)1.

Multiplying such expressions, we get

E(Z1 · · ·Zd1
)E(Zd1+1 · · ·Zd2

) · · · E(Zdl+1 · · ·Zr)

= π E(1)Q(1)E(2)Q(2) · · · E(r − 1)Q(r − 1)E(r)1,

where we set, for 1 ≤ k ≤ r − 1,

Q(k) =

{
1π if k ∈ {d1, · · · , dl};
P `(k) otherwise.

The boolean cumulant Br(Z1, · · · , Zr) now writes as

Br(Z1, · · · , Zr) = π E(1) (P `(1) − 1π)E(2) · · · E(r − 1) (P `(r−1) − 1π)E(r)1.

By Perron-Frobenius theorem, the matrix P has a unique eigenvalue of modulus 1 and
1π is the projector on the corresponding eigenvector; see [52, p 674]. Therefore, for any
`, the matrix (P ` − 1π) has operator norm λ`

2. The result follows immediately.

We now recall the expression of classical cumulants in terms of boolean cumulants
given in [2]. Let us first introduce some terminology. A set partition ρ of [r] is called
reducible if there exists ` in {1, · · · , r − 1} such that ρ ≤

{
{1, · · · , `}, {` + 1, · · · , r}

}
;

otherwise, it is called irreducible. The set of irreducible set partitions of [r] is denoted
by Pirr[r]. The following statement is a less precise version of [2, Theorem 1.4] (see also
[61, Lemma 1.1]).
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Lemma 10.2. Let r ≥ 1. There exist universal constants dρ, indexed by irreducible set
partitions of [r], with the following property. For any random variables Z1, · · · , Zr with
finite moments defined on the same probability space, one has

κn(Z1, · · · , Zr) =
∑

ρ∈Pirr[r]

dρ ·

∏
C∈ρ

B|C|(Zj ; j ∈ C)

 . (10.3)

Arizmendi, Hasebe, Lehner and Vargas relate dρ with a specialization of the Tutte
polynomial of a specific graph associated with ρ, but we do not need this description
of dρ here. For our purpose, the crucial aspect in this boolean-to-classical cumulant
formula is that the sum ranges only over irreducible set partitions. We can now establish
our bound on classical cumulants.

Lemma 10.3. As above, let (Mk)k≥0 be an aperiodic irreducible Markov chain with
transition matrix P , such that M0 is distributed according to the stationary distribution
π of the chain. Let r > 0. Then there exists a constant DP,r depending on the transition
matrix P and on r with the following property. For any distinct integers i1 < i2 < · · · < ir
and states s1, · · · , sr, we have

|κr(Y
s1
i1

, · · · , Y sr
ir

)| ≤ DP,rλ
ir−i1
2 .

Proof. For any subset C of [r], we know by Theorem 10.1 that

|B|C|(Y
sj
ij

; j ∈ C)| ≤ cstλ
imax(C)−imin(C)

2 .

If ρ is an irreducible set partition, one can easily check that∑
C∈ρ

imax(C) − imin(C) ≥ ir − i1.

Therefore each summand in (10.3) is bounded in absolute value by a constant times
λir−i1
2 , which proves the lemma.

10.2 A weighted dependency graph for Markov chains

We denote by N≥0 the set of nonnegative integers.

Proposition 10.4. As above, let (Mk)k≥0 be an aperiodic irreducible Markov chain on a
finite state space S, such that M0 is distributed according to the stationary distribution
π of the chain. Recall that Y s

i is the indicator function of the event Mi = s.
We consider the complete graph L̃ on A := N≥0 × S with weight λj−i

2 on the edge
{(i, s), (j, t)} (for any nonnegative integers i < j and states s, t in S). Finally, let Ψ be the
function on multisets of elements of A that is identically equal to 1.

Then L̃ is a (Ψ,C) weighted dependency graph for the family {Y s
i ; (i, s) ∈ A} for

some sequence C = (Cr)r≥1.

Proof. Consider a multiset B = {(i1, s1), . . . , (ir, sr)} of elements of A and the induced
graph L̃[B]. Assume, without loss of generality that i1 < · · · < ir. Then it is easy to
observe that the maximum weight of a spanning tree in L̃[B] is M

(
L̃[B]

)
= λir−i1

2 .

We use Theorem 5.2. Vertices (i, s) and (j, t) in L̃ are connected by an edge of weight
1 if and only if i = j. But (Y s

i )
2 = Y s

i and Y s
i Y t

i = 0 if s 6= t. Therefore, it is enough to
prove that, for any fixed r > 0, there exists a constant Dr with the following property:
for any distinct integers i1 < · · · < ir and any states s1, . . . , sr, we have

|κr(Y
s1
i1

, · · · , Y sr
ir

)| ≤ DrM
(
L̃[B]

)
= Drλ

ir−i1
2 .

The existence of such a constant is given by Theorem 10.3.
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10.3 Subword counts in strings generated by a Markov source

We consider the following pattern matching problem. Let u1, . . . , ud be finite words
on a finite alphabet S of respective lengths `1, · · · , `d. An occurrence of L = (u1, . . . , ud)

in w is a factorization w = w0u1w1 · · ·udwd, where the wi’s are (possibly empty) words
on the alphabet S. This corresponds to an occurrence of the u = u1 · · ·ud as a subwords,
where letters from the same ui are required to be consecutive.

As before, let (Mk)k≥0 be an aperiodic irreducible Markov chain on S, such that M0

is distributed according to the stationary distribution π of the chain. We are interested
in the number XN of occurrences of L in the random word WN = (M0, · · · ,MN ).

The position of such an occurrence is a d-uple (i1, · · · , id), where each ij is the index
of the first letter of uj in w (in particular, we always have ij+1 ≥ ij + `j). Denote I the
set of possible positions of occurrences that is

I = {(i1, · · · , id) ∈ Nd
≥0 such that, for all j ≤ d− 1, ij+1 ≥ ij + `j}.

We also define IN as the same set with the additional condition id + `d − 1 ≤ N . For
I ∈ I, we denote YI the indicator function of the event “W has an occurrence of L in
position I”. Using the above variables Y s

i , we can write

YI =

d∏
j=1

 `j∏
k=1

Y
(uj)k
ij+k−1

 and XN =
∑
I∈IN

YI .

An estimate for the variance of XN is given by Bourdon and Vallée [14, Theorem 3]:

Var(XN ) = σ2(L)N2d−1
(
1 +O( 1n )

)
, (10.4)

where σ2(L) is an explicit constant depending on both the pattern L and the transition
matrix P of the Markov chain.

Our main result in this section is that the fluctuations of order Nd−1/2 of XN are
Gaussian (possibly degenerate if σ(L) = 0).

Theorem 10.5. With the above notation, we have the convergence in distribution

X̃N =
XN − E(XN )

Nd−1/2
→ N (0, σ(L)).

Proof. Theorem 10.4 gives a weighted dependency graph for the variables (Y s
i )i≥0,s∈S .

Using Theorem 5.11, we get a weighted dependency graph for monomials in these
variables (with a fixed bound on degrees), so in particular for the (YI)I∈I . The weight

of the edge between YI and YJ in this dependency graph is λd(I,J)
2 where d(I, J) is the

minimal distance between elements of the sets

{it + k − 1; 1 ≤ t ≤ d, 1 ≤ k ≤ `t} and {jt + k − 1; 1 ≤ t ≤ d, 1 ≤ k ≤ `t}.

It is clear that

d(I, J) ≥ min
i∈I, j∈J

|j − i| −m, where m = max
1≤t≤d

`t,

and thus

λ
d(I,J)
2 ≤ λ−m

2 max
i∈I, j∈J

λ
|j−i|
2 .

The corresponding function Ψ is simply the constant function equal to 1.
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Consider the restriction of this weighted dependency graph to IN . Using the notation
of Section 4.3, we have RN = |IN | = O(Nd). To find an upper bound for T`,N , let us fix

I1,. . . , I` and set I =
⋃`

j=1 Ij . Then for J in I, we have

W ({J}, {I1, · · · , I`}) = max
1≤u≤`

λ
d(J,Iu)
2 ≤ λ−m

2

(
max
i∈I
j∈J

λ
|j−i|
2

)
≤ λ−m

2

∑
i∈I
j∈J

λ
|j−i|
2 .

Therefore, ∑
J∈I

W ({J}, {I1, · · · , I`}) ≤ λ−m
2

∑
i∈I

N∑
j=1

∑
J∈I
J3j

λ
|j−i|
2 .

The summand does not depend on J , so that the last summation symbol can be replaced
with the number of sets J in I containing j. This number is smaller than Nd−1. Moreover
for a fixed i, the sum

∑N
j=1 λ

|j−i|
2 is bounded by the constant 2

1−λ2
. Finally we have∑

J∈I
W ({J}, {I1, · · · , I`}) ≤ λ−m

2 |I| 2
1−λ2

Nd−1 ≤ 2λ−m
2 ` d

1− λ2
Nd−1.

Since this holds for any I1,. . . , I` in I, we have T`,N = O(Nd−1).
Using Theorem 4.10, we have∣∣∣κr(X̃N )

∣∣∣ = ∣∣ 1
Nr(d−1/2)κr(XN )

∣∣
≤ 1

Nr(d−1/2)RNT1,N · · ·Tr−1,N = 1
Nr(d−1/2)O(Nd+(d−1)(r−1)) = O(N−r/2+1).

Therefore cumulants of X̃N of order at least 3 tend to 0. On the other hand, its expectation
and variance tend to 0 and σ(L) respectively. This concludes the proof using the method
of moments.

Remark 10.6. The upper bound in Bourdon and Vallee’s estimate (10.4) for the variance
ofXN can be obtained from the weighted dependency graph structure and Theorem 4.10.
This upper bound alone implies the concentration result advertised by these authors.
Note however that their result is proved for more general sources and pattern problems.

A Proof of Theorem 5.10

We start by a lemma.

Lemma A.1. For any nonnegative integers a1, . . . , a`−1, the following rational function
in t has degree at most −`+ 1:

R(t) =
∏

δ⊆[`−1]

t−
∑
j∈δ

aj

(−1)|δ|+1

− 1.

Proof. This corresponds to [33, Lemma 2.4], but we copy the proof for completeness.
Define Rev (resp. Rodd) as ∏

δ

t−
∑
j∈δ

aj

 ,

where the product runs over subsets of [`− 1] of even (resp. odd) size. Clearly, R(t) =
Rodd−Rev

Rev
. Expanding the product, one gets

Rev =
∑
m≥0

1

m!

∑
δ1,...,δm

∑
j1∈δ1,...,jm∈δm

(−1)maj1 . . . ajmt2
`−2−m.
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The index set of the second summation symbol is the set of lists of m distinct (but not
necessarily disjoint) subsets of [` − 1] of even size. Of course, a similar formula with
subsets of odd size holds for Rodd.

Let us fix an integer m < `− 1 and a list j1, . . . , jm. Denote j0 the smallest integer in
[`− 1] different from j1, . . . , jm (as m < `− 1, such an integer necessarily exists). Then
one has a bijection:

lists of subsets
δ1, . . . , δm of even size such

that, ∀ h ≤ m, jh ∈ δh

 →


lists of subsets

δ1, . . . , δm of odd size such
that, ∀ h ≤ m, jh ∈ δh


(δ1, . . . , δm) 7→ (δ1∇{j0}, . . . , δm∇{j0}),

where∇ is the symmetric difference operator. Thus the summand (−1)maj1 . . . ajmt2
`−2−m

appears as many times in Rev as in Rodd. Finally, all terms corresponding to values of m
smaller than `− 1 cancel in the difference Rodd −Rev and Rodd −Rev has degree at most
2`−2 − `+ 1. Dividing by Rev, which has degree 2`−2, this ends the proof.

We now prove Theorem 5.10, using the notation defined there.

Proof of Theorem 5.10. We proceed by induction first on `, and then on a`.
For ` = 1, there is nothing to prove. Consider ` > 1 and assume that the statement

holds for all `′ < `. In particular, for any ∆ ( [`], the subfamily(
u
(n)
δ (ai; i ∈ ∆)

)
δ⊆∆,n≥n0

has the εn SC/QF property and

P∆

(
u(n)(a1, . . . , a`)

)
− 1 = O(X−|∆|+1

n ).

We thus have to prove that

P[`]

(
u(n)(a1, . . . , a`)

)
− 1 = O(X−`+1

n ). (A.1)

If a` = 0, then for any ∆ ⊆ [`− 1],

u
(n)
∆

(
a1, . . . , a`

)
= u

(n)
∆∪{`}

(
a1, . . . , a`

)
,

so that P[`]

(
u(n)(a1, . . . , a`)

)
= 1 and Eq. (A.1) trivially holds.

Assume that Eq. (A.1) for a` = k and consider the case a` = k + 1. Observe that, if
` ∈ ∆,

u
(n)
∆

(
a1, . . . , a`−1, k

)
=

Xn −
∑
i∈∆
i6=`

ai − k

u
(n)
∆

(
a1, . . . , a`−1, k + 1

)
.

On the other hand, if ` /∈ ∆,

u
(n)
∆

(
a1, . . . , a`−1, k

)
= u

(n)
∆

(
a1, . . . , a`−1, k + 1

)
.

Finally,

P[`]

(
u(n)(a1, . . . , a`−1, k)

)
=
∏

∆⊆[`]
`∈∆

Xn −
∑
i∈∆
i6=`

ai − k


(−1)|∆|

· P[`]

(
u(n)(a1, . . . , a`−1, k + 1)

)
.
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Subsets ∆ of [`] that contains ` are in trivial bijection with subsets of [`]− 1, so that the
product above correspond to the rational function R(t) + 1 from Theorem A.1, evaluated
in Xn − k. Thus it is 1 +O(X−`+1

n ). By induction hypothesis

P[`]

(
u(n)(a1, . . . , a`−1, k)

)
= 1 +O(X−`+1

n )

and thus

P[`]

(
u(n)(a1, . . . , a`−1, k + 1)

)
= 1 +O(X−`+1

n ),

which ends the proof.

Remark A.2. The exact same proof works for the family

v
(n)
∆ (a1, · · · , a`) =

(
Xn +

∑
i∈∆ ai

)
!

B Variance computations

B.1 Crossings in random pair partitions

The goal of this section is to compute (asymptotically) the variance of Crn, the number
of crossings in a uniform random pair partitions of [2n]. We first establish a polynomiality
result for it.

Lemma B.1. The quantity

(2n− 1)2 (2n− 3)2 (2n− 5) (2n− 7) Var(Crn)

is a polynomial in n of degree at most 9.

Proof. We use the decomposition

Var(Crn) =
∑

i1<j1<k1<l1
i2<j2<k2<l2

Cov(Y ′
i1,j1,k1,l1 , Y

′
i2,j2,k2,l2).

We split the sum depending on which summation indices are equal. For a given set of
equalities (e.g. i1 = j2 and l1 = l2, but all other indices are distinct), the covariance is
always the same and the corresponding number of terms is a polynomial in n.

Moreover, from the discussion of Section 6.1 on the probability that a random pair
partitions contains a given set of pairs, we see that

(2n− 1)2 (2n− 3)2 (2n− 5) (2n− 7) Cov(Y ′
i1,j1,k1,l1 , Y

′
i2,j2,k2,l2)

is always a polynomial in n. This proves that

(2n− 1)2 (2n− 3)2 (2n− 5) (2n− 7) Var(Crn)

is a polynomial in n, as claimed.
Besides, from Theorem 4.10, we know that Var(Crn) = O(n3) (recall from the proof

of Theorem 6.5 that, in this case, Rn = O(n2) and T1,n = O(n)). Therefore the degree of
the above polynomial is at most 9.

A polynomial of degree at most 9 can be determined by polynomial interpolation from
its values on the set {0, · · · , 9}. But Var(Crn) can be easily computed with the help of a
computer algebra software for small values of n. We performed this computation using
sage [66]. The code has been embedded in the pdf file for interested readers of the
electronic version. We obtain the following result.

EJP 23 (2018), paper 93.
Page 57/65

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP222
http://www.imstat.org/ejp/


Weighted dependency graphs

Proposition B.2. Let Crn be the number of crossings in a uniform random pair partition
of [2n]. We have

Var(Crn) =
n(n− 1)(n− 3)

45
.

We refer to [36, Theorem 3] for another proof of this result, which also explains the
polynomiality in n, but relies on the “remarkable exact formula” for the generating series
of crossings.

B.2 Subgraph counts: proof of Eq. (7.6)

We first write.

Var(XH
n ) =

∑
H′

1,H
′
2∈AH

n

Cov(YH′
1
, YH′

2
)

Observe that, if H ′
1 ∩H ′

2 ' K, then

Cov(YH′
1
, YH′

2
) =

(mn)2eH−eK

(En)2eH−eK

−
(
(mn)eH
(En)eH

)2

. (B.1)

Unlike in theG(n, p)model, this covariance can be negative. More precisely, it is negative
if and only if the copies H ′

1 and H ′
2 of H are edge-disjoint. The total contribution of such

pairs is given in the following lemma.

Lemma B.3. One has∑
H′

1,H′
2∈AH

n
E

H′
1
∩E

H′
2
=∅

Cov(YH′
1
, YH′

2
) = − 2e2H

Aut(H)2
(n)vH (n−2)vH−2 p

2eH−1
n (1−pn)+O

[
n2vH−4p2eH−2

n

]
.

Proof. Consider two edge-disjoint copies H ′
1 and H ′

2 of H and let us look at Eq. (B.1) in
this case. We have

p−2eH
n

(mn)2eH
(En)2eH

=

∏2eH−1
i=0

(
1− i

mn

)
∏2eH−1

i=0

(
1− i

En

) =

2eH−1∏
i=0

(
1− i

(
1

mn
− 1

En

))
+O(m−2

n )

= 1− 2eH(2eH − 1)

2

1

mn
(1− pn) +O(m−2

n ).

Similarly,

p−2eH
n

(
(mn)eH
(En)eH

)2

= 1− 2
eH(eH − 1)

2

1

mn
(1− pn) +O(m−2

n ).

Putting both equations together, we get

Cov(YH′
1
, YH′

2
) = −p2eHn e2H

1

mn
(1− pn) +O(p2eHn m−2

n ).

On the other hand, we claim that the total number of pairs (H ′
1,H

′
2) of copies of

H that do not share an edge is asymptotically (n)2vH/Aut(H)2(1 + O(n−2)). Indeed,
(n)2vH/Aut(H)2 is the number of pairs (H ′

1,H
′
2) of copies of H. If we think at such a

pair being taken independently uniformly at random, the vertex sets of H ′
1 and H ′

2 are
independent uniform random vH -element subsets of [n] and the probability that they
have at least two vertices in common in O(n−2). This explains the above claim.
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Bringing both estimates together, we get:

∑
H′

1,H′
2∈AH

n
E

H′
1
∩E

H′
2
=∅

Cov(YH′
1
, YH′

2
) = − e2H

Aut(H)2
(n)2vH

p2eHn

mn
(1− pn)

+O

(
n2vH−2p2eHn (1− pn)

mn

)
+O

(
n2vHp2eHn

m2
n

)
.

Substituting mn = pn n(n−1)
2 and observing that the second error term is bigger than the

first complete the proof.

Consider now pairs (H ′
1,H

′
2) with a non-trivial edge intersection. Denote by eK the

number of edges in the intersection of H ′
1 and H ′

2.
Consider the expression of Cov(YH′

1
, YH′

2
) given in Eq. (B.1). A straightforward

computation gives:

Cov(YH′
1
, YH′

2
) = p2eH−eK

n

[
1− peKn +O

(
1

mn

)]
= p2eH−eK

n (1− peKn )

{
1 +O

[
m−1

n (1− pn)
−1
]}

. (B.2)

We use the easy inequality (for 0 ≤ p ≤ 1 and e positive integer)

1− pe

1− p
= 1 + · · ·+ pe−1 ≥ epe−1 + (1− p)δe>1,

so that the estimate (B.2) gives

Cov(YH′
1
, YH′

2
) ≥ eK p2eH−1

n (1− pn)

{
1 +O

[
m−1

n (1− pn)
−1
]}

+ δeK>1 p
2eH−eK
n (1− pn)

2

{
1 +O

[
m−1

n (1− pn)
−1
]}

.

Call AH′
1,H

′
2
and BH′

1,H
′
2
the first and second term in the right-hand side.

Lemma B.4. One has∑
H′

1,H′
2∈AH

n
E

H′
1
∩E

H′
2
6=∅

AH′
1,H

′
2
=

2e2H
Aut(H)2

(n)vH (n− 2)vH−2p
2eH−1
n (1− pn) +O

[
n2vH−4p2eH−2

n

]
.

Proof. From the definition,

∑
H′

1,H′
2∈AH

n
E

H′
1
∩E

H′
2
6=∅

AH′
1,H

′
2
=

 ∑
H′

1,H′
2∈AH

n
E

H′
1
∩E

H′
2
6=∅

eK

 p2eH−1
n (1− pn)

{
1 +O

[
m−1

n (1− pn)
−1
]}

. (B.3)

The parenthesis counts the number of pairs (H ′
1,H

′
2) of copies of H with a marked

common edge. Such a pair can be constructed as follows: choose successively

1. a list of vertices v1, · · · , vk for the vertices of H ′
1 ((n)vH choices),

2. the edge of H ′
1 that will be the marked common edge (eH choices),
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3. the edge of H ′
2 that will be the marked common edge (eH choices); this determines

up to a switch (2 choices) two vertices of H ′
2.

4. choose a list of vertices w1, · · · , wk−2 for the other vertices of H ′
2, which does not

contain the extremities of the marked common edges ((n− 2)vH−2 choices).

Doing so, we construct Aut(H)2 times each pair (H ′
1,H

′
2). Thus we have ∑

H′
1,H′

2∈AH
n

E
H′

1
∩E

H′
2
6=∅

eK

 =
2e2H

Aut(H)2
(n)vH (n− 2)vH−2.

We plug this in Eq. (B.3) and expand the remainder (recall that mn � n2pn) to get the
statement in the lemma.

The last lemma estimates the sum of BH′
1,H

′
2
.

Lemma B.5. One has ∑
H′

1,H′
2∈AH

n∣∣
E

H′
1
∩E

H′
2

∣∣
>1

BH′
1,H

′
2
� (nvH peHn )2

Φ̃H

(1− pn)
2.

Proof. From the definition of BH′
1,H

′
2
, we have:∑

H′
1,H′

2∈AH
n∣∣

E
H′

1
∩E

H′
2

∣∣
>1

BH′
1,H

′
2
�

∑
H′

1,H′
2∈AH

n∣∣
E

H′
1
∩E

H′
2

∣∣
>1

p2eH−eK
n (1− pn)

2.

We split the sum depending on isomorphy type K of the intersection K of H ′
1 and H ′

2 and
we get ∑

H′
1,H′

2∈AH
n∣∣

E
H′

1
∩E

H′
2

∣∣
>1

p2eH−eK
n (1− pn)

2 =
∑
K⊆H
eK>1

NK p2eH−eK
n (1− pn)

2,

where NK is the number of pairs (H ′
1,H

′
2) with intersection isomorphic to K. Note that

the summation index does not depend on n. Furthermore, all summands are nonnegative,
thus the order of magnitude of the sum is simply the maximum of the orders of magnitude
of the summands. It is easy to see that NK � n2vH−vK : see, e.g., [46, Proof of Lemma
3.5].∑

K⊆H
eK>1

NK p2eH−eK
n (1− pn)

2 � max
K⊆H
eK>1

n2vH−vKp2eH−eK
n (1− pn)

2 =
(nvH peHn )2

Φ̃H

(1− pn)
2.

This completes the proof of the lemma.

Proof of Eq. (7.6). The variance Var(XH
n ) is bounded from below by the sum of the three

terms considered in Theorems B.3 to B.5. Note that the main terms in the estimates of
Theorems B.3 and B.4 cancel each other. Besides the error term in these lemmas are
smaller than the main term in Theorem B.5. Indeed, using Φ̃H ≤ n3p2n and n(1−pn)

2 � 1,
we have:

(nvH peHn )2

Φ̃H

(1− pn)
2 ≥ (nvH peHn )2

n3 p2n
(1− pn)

2 � (nvH peHn )2

n4 p2n
.

Therefore Var(XH
n ) is asymptotically at least of order (nvH p

eH
n )2

Φ̃H
(1− pn)

2, as claimed.
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C Moment inequalities and tightness of piecewise-affine random
functions

The goal of this last appendix section is to establish the following: for piecewise-affine
random functions, tightness can be inferred from moment inequalities for points of the
mesh. We start by a trivial lemma.

Lemma C.1. For any a > 1, the exists a constant Ca such that,

for all x, y, z ≥ 0, one has (x+ y + z)a ≤ Ca(x
a + ya + za).

Proof. This comes from the equivalence of the following norms on R3:

(x, y, z) 7→
(
|x|+ |y|+ |z|

)
and (x, y, z) 7→

(
|x|a + |y|a + |z|a

)1/a
.

C.1 One-dimensional case

The following lemma can be found in unpublished lecture notes of Marckert.

Lemma C.2. Consider a sequence (Xn) of random elements in C[0, 1]. Assume that for
each n, almost surely Xn is affine on each segment [j/n, (j + 1)/n] (for 0 ≤ j ≤ n − 1)
and that there exists positive constants a, b and λ with a ≥ 1 + b such that

E
[
|Xn(s)−Xn(t)|a

]
≤ λ |s− t|1+b, (C.1)

as soon as ns and nt are integers (n ≥ 1 and s, t ∈ [0, 1]).
Then (C.1) holds as well for any s and t in [0, 1] with the same exponents a and b but

a different constant λ′ instead of λ.
As a consequence, if moreover Xn(0) is tight, then the sequence Xn is also tight.

Proof. Let n ≥ 1 and s and t in [0, 1] with t < s. We distinguish two cases.

• If s and t belong to the same segment [j/n, (j+1)/n] (for some 0 ≤ j ≤ n− 1), then,
since Xn is affine on [j/n, (j + 1)/n], one has

Xn(s)−Xn(t) = n(s− t)

[
Xn

(
(j + 1)/n

)
−Xn(j/n)

]
.

The a-th moment of the right-hand side can be bounded by (C.1), so that

E
[
|Xn(s)−Xn(t)|a

]
≤ na(s−t)a λ (1/n)1+b = λ (s−t)1+b (n(s− t))

a−1−b ≤ λ (s−t)1+b.

The last inequality comes from the fact that n(s− t) ≤ 1 and a− 1− b ≥ 0.

• Consider now the case where nt ∈ [j/n, (j + 1)/n] and ns ∈ [k/n, (k + 1)/n] with
j < k. Then set s′ = k/n and t′ = (j + 1)/n so that

– t ≤ t′ ≤ s′ ≤ s;

– ns′ and nt′ are integers;

– s and s′ belong to [k/n, (k + 1)/n]; and,

– t and t′ belong to [j/n, (j + 1)/n].

Then, using Theorem C.1, Eq. (C.1) and the first part of the proof, we get

E
[
|Xn(s)−Xn(t)|a

]
≤Ca

(
E
[
|Xn(s)−Xn(s

′)|a
]
+E
[
|Xn(s

′)−Xn(t
′)|a
]
+E
[
|Xn(t

′)−Xn(t)|a
])

≤Ca

(
λ(s−s′)1+b+λ(s′−t′)1+b+λ(t′−t)1+b

)
≤Caλ(s−t)1+b. (C.2)

This proves that (C.1) holds for any s and t in [0, 1] and λ′ = Caλ. The tightness assertion
then follows from [48, Corollary 16.9 for d = 1].
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C.2 Two-dimensional case

We now state and prove a two-dimensional analogue of the previous lemma.

Lemma C.3. Consider a sequence (Xn) of random elements in C[0, 1]2. Assume that for
each n, almost surely Xn is affine on each square [i/n, (i + 1)/n] × [j/n, (j + 1)/n] (for
0 ≤ i, j ≤ n− 1) and that there exists positive constants a, b and λ with a ≥ 2 + b such
that

E
[
|Xn(s1, s2)−Xn(t1, t2)|a

]
≤ λ (|s1 − t1|+ |s2 − t2|)2+b, (C.3)

as soon as ns1, ns2, nt1 and nt2 are integers (n ≥ 1 and s1, s2, t1, t2 ∈ [0, 1]).
Then (C.3) holds as well for any s1, s2, t1, t2 in [0, 1] with the same exponents a and b

but a different constant λ′ instead of λ.
As a consequence, if moreover Xn(0, 0) is tight, then the sequence Xn is also tight.

Proof. Let n ≥ 1 and s = (s1, s2) and t = (t1, t2) in [0, 1]2 and let us prove (C.3). We write
|s− t| := |s1 − t1|+ |s2 − t2| and distinguish three cases.

• If s and t belong to the same square [i/n, (i + 1)/n] × [j/n, (j + 1)/n] (for some
0 ≤ i, j ≤ n− 1), then, since Xn is affine on this square, we have

Xn(s)−Xn(t) = n(s1 − t1) [Xn ((i+ 1)/n, j/n)−Xn (i/n, j/n)]

+ n (s2 − t2)) [Xn (i/n, (j + 1)/n)−Xn (i/n, j/n)] .

Therefore we have

E
[
|Xn(s)−Xn(t)|a

]
≤ Can

a (|s1 − t1|a + |s2 − t2|a) λ (1/n)2+b

≤ Caλ (|s− t|)2+b (n(|s− t|))a−2−b ≤ 2a−2−bCaλ (|s− t|)2+b.

• If the segment [s, t] crosses at most two lines of the grid, call u and v the intersec-
tion points, so that |s− t| = |s− u|+ |u− v|+ |v − t|. Since s and u (respectively,
u and v and v and t) lie in the same square, we can apply the first case to bound
E
[
|Xn(s)−Xn(u)|a

]
(respectively, E

[
|Xn(u)−Xn(v)|a

]
and E

[
|Xn(v)−Xn(t)|a

]
).

Then the same computation as in (C.2) shows that (C.3) holds in this case.

• If the segment [s, t] crosses more than two lines, it crosses two lines in the same
direction, which implies that |s − t| ≥ 1. Call u and v the North-East corners of
the squares containing s and t, respectively. Then |s− u| ≤ 2 ≤ 2|s− t|. Similarly,
|v−t| ≤ 2|s−t|. By the triangular inequality |u−v| ≤ |s−u|+|s−t|+|v−t| ≤ 5|s−t|.
Bringing everything together, one has 9|s− t| ≥ |s−u|+ |u− v|+ |v− t|. Now, the
same computation as in (C.2) proves (C.3).

We conclude that (C.3) holds for any s, t in [0, 1]2. The tightness assertion then follows
from [48, Corollary 16.9 for d = 2].

This lemma is easily generalized to any dimension, though we do not need such a
generalization in this paper.
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