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GOE statistics for Anderson models on antitrees and
thin boxes in Z3 with deformed Laplacian*
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Abstract

Sequences of certain finite graphs - special types of antitrees - are constructed along
which the Anderson model shows GOE statistics, i.e. a re-scaled eigenvalue process
converges to the Sine1 process. The Anderson model on the graph is a random matrix
being the sum of the adjacency matrix and a random diagonal matrix with independent
identically distributed entries along the diagonal. The strength of the randomness
stays fixed, there is no re-scaling with matrix size. These considered random matrices
giving GOE statistics can also be viewed as random Schrödinger operators P∆+ V on
thin finite boxes inZ3 where the Laplacian∆ is deformed by a projection P commuting
with ∆.
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1 Introduction

In the theory of randomly disordered systems there are two very important fields of
research, the Anderson model introduced in [And] and random matrix ensembles such
as the Gaussian Orthogonal Ensemble (GOE) introduced by Wigner [Wig]. The latter
one model the observed repulsion between energy levels (eigenvalues) in large nuclei.
This is characterized by the local eigenvalue statistics which for the GOE is given by
the Sine1 process in the limit where the matrix size goes to infinity, see e.g. [Meh]. This
type of limiting statistics is expected for a wide range of disordered systems of the same
symmetry class which is referred to as a universal behavior or simply universality. The
GOE statistics applies to models with time reversal symmetry in delocalized regimes.
Without time reversal symmetry (for instance in presence of magnetic phases) disordered
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GOE statistics for Anderson models

systems are expected to follow the local statistics of the Gaussian Unitary Ensemble
(GUE) given by the Sine2 process.

Let us introduce some of these concepts more precisely. For further details we refer
to the common literature, e.g. [Meh, AGZ, For]. The Gaussian Orthogonal Ensemble
GOE = (GOE(N))N∈N is given by the collection of Gaussian distributions GOE(N)

with density proportional to e−
N
4 Tr(H2) on the set of real symmetric N × N matrices

Sym(N) for N ∈ N. The distribution GOE(N) is invariant under orthogonal conjugation,

O>GOE(N)O
d
= GOE(N) for O ∈ O(N) = {O ∈ Mat(N,R) : O>O = IN}, where IN

denotes the N ×N unit matrix. If the random matrix HN is drawn from GOE(N) this
means that it has real entries, (HN )j,k for j ≥ k (entries above and on the diagonal)
are independent Gaussian random variables with mean zero and variance 1/N for
the off-diagonal variables and variance 2/N for the diagonal. The other entries are
determined as HN is symmetric. Similar, the Gaussian Unitary Ensemble is defined in
a way that the distribution is Gaussian and invariant under unitary conjugation. The
normalization in N assures that in the limit N → ∞ the (random) density of states
measures νN = 1

N

∑N
i=1 δλN

i
converge to the Wigner semi-circle measure 1

2π

√
4− λ2 dλ

supported on [−2, 2]. Here, {λNi : i = 1, . . . , N} is the (random) set of eigenvalues of the
random matrix HN and δλ denotes the delta measure supported at λ. The distribution
of these eigenvalues for finite N follow the β-ensemble rule, that is, the symmetrized
distribution of (λN1 , . . . , λ

N
N ) ∈ RN is proportional to e−βN/4

∑
i λ

2
i
∏

i<j |λi − λj |β
∏

i dλi
where β = 1 for GOE and β = 2 for GUE.

The Sineβ processes emerge as limits of the local statistics of these joint distribu-
tions. For some value in the so called bulk spectrum λ0 ∈ (−2, 2) one can consider the
eigenvalue process around λ0, that is the shifted eigenvalue process spec(HN − λ0IN ) =

{λNi − λ0 : i = 1, . . . , N}. According to the semi-circle law, the number of eigenvalues in
a fixed small neighborhood around λ0 is proportional to N

√
4− λ20 and the distance of

λ0 to the next eigenvalue is roughly proportional to 1/(N
√
4− λ20). So in order to get a

limiting point process it is reasonable to consider ΣN := N
√

4− λ20/(2π) spec(HN −λ0I).
We view this random discrete set as a random counting measure σN =

∑
x∈ΣN

δx, that is
σN (A) = |ΣN ∩A| for A ⊂ R. Thus, we have a probability distribution NN on the set of
discrete counting measures on R. In general such a distribution is called a point process.
NN converges weakly, NN ⇒ Sine1 (or ΣN ⇒ Sine1) for N → ∞. Weak convergence of
point processes is given by convergence of the Laplace functional ΨNN

(f) → ΨN (f) for
non-negative continuous functions f with compact support, where

ΨN (f) := EN (exp(−σ(f))) =

∫
dN (σ)(exp(−σ(f)) .

In essence, this functional replaces the role of the characteristic function (Fourier
transform) for probability distributions on R. Now, in the considered case, the pro-
cesses NN and Sineβ are also uniquely characterized by their moment measures (or
joint intensities) which all exist and one obtains vague-convergence of those. Under
certain growth conditions vague convergence of finite moment measures is sufficient for
obtaining weak convergence1. For a point process N the finite moment measures are
given by the expectations over the power measures, this means for a bounded Borel set
A1 ×A2 × · · · ×Ak ⊂ Rk the k-th finite moment measure is given by

EN

(
σk(

k∏
i=1

Ai)

)
=

∫
dN (σ)

k∏
i=1

σ(Ai) .

1This is similar as the comparison of weak convergence vs. convergence of moments for probability
distributions on R.
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GOE statistics for Anderson models

Sine1 is a so called Pfaffian process where all the finite moment measures are absolutely
continuous and their densities are given by a certain Pfaffian. If HN where drawn from
the GUE we would have convergence to the Sine2 process which is a determinantal
process given by the famous Sine-kernel, K(x, y) = sin(π(x−y))

π(x−y) , giving the name Sine
processes. This means, the finite moment measures are given by∫

dSine2(σ)(σ
k(f)) =

∫
f(x1, . . . , xk) det[K(xi, xj)]1≤i≤k,1≤j≤k dx1, dx2 · · · dxk .

Universality (limiting Sineβ process) has been proved for many random matrix ensem-
bles, e.g. [DG, ESY, TV] and particularly very recent works by Ajanki, Erdős, Krüger and
Schröder allow very general profiles of covariance structures and dependencies with
slow correlation decay of the random entries [AEK, EKS]. However, these ensembles are
still far from ensembles of very sparse matrices (many zero entries) or matrices with
randomness only along the diagonal, both of which apply for Anderson models.

The Anderson model is supposed to describe the quantum motion of electrons in
randomly disordered solids like doped semi-conductors. Unlike the random matrix
ensembles, here, one considers operators on an infinite dimensional separable Hilbert
space. Typically it is given by `2(Zd) or `2(G) for some countable graph G and the
random entries just appear on the diagonal. This means that one considers a random
operator H = ∆+ V given by the sum of a real random diagonal multiplication operator
V (in the canonical basis) with independent identically distributed entries along the
diagonal and a graph-Laplacian or adjacency operator ∆. The physically most relevant
models are given by the sum of a random potential and the discrete Laplacian on Zd,
d = 1, 2, 3. There are also continuous analogues defining Anderson models on L2(Rd)

where ∆ is the actual Laplacian on Rd and V a random multiplication operator made out
of a sum of bump like potentials centered around lattice points and multiplied by i.i.d.
real random variables.

For Anderson models one can also consider eigenvalue statistics if one restricts
the model to sequences of finite cubic boxes in Zd or adequate finite sub-graphs of G
approaching the infinite graph. Restricting the Anderson model to a finite box gives a
random matrix. However, the sequences of such random matrices are very different
from the random matrix ensembles mentioned above. The random entries are only on
the diagonal and the variances are constant and not re-scaled with the size of the matrix.
The off-diagonal entries are typically very sparse2 describing the graph structure (edges,
edge-weights).

For one and quasi-one dimensional models, e.g. [GMP, KuS, KLS] and for large
disorder or at band edges in any dimension, e.g. [FS, AM, DLS, Klo] the Anderson
model localizes. This means one has pure point spectrum and exponentially localized
eigenfunctions, a phenomenon called Anderson localization. In regimes of Anderson
localization one finds Poisson type statistics (i.e. limiting Poisson point processes)
[Min, Wan, GK].

While there is a huge literature on Anderson localization, there is still a major open
problem concerning delocalization. For Anderson models of low disorder on Zd for
dimension d ≥ 3 it is expected that some absolutely continuous spectrum persists3.
Moreover, in these delocalized regimes one also expects some form of universality (GOE
statistics) for the eigenvalue statistics along increasing boxes approaching Zd. However,
so far even the existence of this delocalized regime for models on Zd is mathematically
unproven.

2meaning most off diagonal entries are zero, the non-zero entries are sparse
3The non-disordered Laplacian has purely absolutely continuous spectrum
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GOE statistics for Anderson models

Existence of a delocalized regime for Anderson models was first shown for infinite
dimensional regular trees (Bethe lattice) and then extended to similar tree like structures
and tree-strips [Kle, ASW, FHS, KLW, AW, KS, Sa1, Sa2]. Only recently some examples of
graphs with finite d-dimensional growth rate (d > 2) have been introduced with rigorous
proofs of absolutely continuous spectrum for Anderson models on them. These are so
called antitrees and similar graph structures [Sa3, Sa4]. The word antitree describes that
these graphs are far from trees as they have some local complete-graph-like structures
in them. These can be viewed as local mean-field structures which give a local averaging
effect on the random potentials preventing localization.

A connection from Anderson models to GOE statistics has been found by considering
long strips within Z2 and re-scaling the random potential in relation to the graph size.
Originally one also had to modify the Laplacian slightly [VV] which was later resolved in
[SV]. In this paper we combine methods from [Sa3] with [VV, SV] to construct examples
of sequences of Anderson models on finite graphs with fixed disorder strength that show
GOE statistic in the limit. An additional re-scaling of the randomness (in relation to
the non-random parts) as in [SV, VV] is not needed. The graphs are tensor products of
two-dimensional grids and a complete graph with normalized edge weights. As tensor
products of such a complete graph with the line Z or half line Z+ are special cases
of antitrees as described in [Sa3], we call these graphs antitrees as well. The locally
averaging graph structure of the complete graph part replaces the re-scaling of the
randomness in [VV, SV]. In some sense this sequence of considered models lies in
between the theory of random band matrix ensembles and the Anderson models on Zd.

1.1 The considered graphs and related random matrices

Let us introduce more precisely the graph structures we will consider.

Definition 1.1. a) A discrete weighted graph (G,W ) is a countable or finite set G
together with a symmetric, real valued weight function W : G × G → R. Two distinct
points x 6= y ∈ G are considered to be connected by an edge if and only if W (x, y) 6= 0

in which case W (x, y) =W (y, x) ∈ R is the edge weight. The diagonal elements W (x, x)

will be referred to as point weights. One may think of W as a real symmetric matrix
indexed by points in G. This is the adjacency matrix of the weighted graph.
b) The complete graph of s-elements with re-normalized edge weights (Ks, Ps) is given
by Ks := {1, . . . , s}, Ps(j, k) =

1
s for any j, k ∈ Ks, thus any point is connected to any

other point and the weights are normalized by 1
s . With this normalization, Ps can be

viewed as a rank one orthogonal projection and thus ‖Ps‖ = 1 independent of s.
c) If (G,W ) is a discrete weighted graph, then the G-antitree of constant width s is given
by the tensor product (G,W )⊗ (Ks, Ps) = (G×Ks,W ⊗Ps) whereW ⊗Ps((x, j), (y, k)) =

W (x, y)Ps(j, k) =
1
sW (x, y).

In part c), the G-antitree of constant width is basically obtained by replacing any
vertex x ∈ G by a set Sx of s vertices and the edges between x and y by s2 edges
connecting all points in Sx and Sy. Doing this procedure where |Sx| is not constant we
would get a general G-antitree (of non-constant width |Sx|). The antitrees we worked
with in [Sa3] would all be Z+-antitrees in this sense where Z+ is the half line of positive
integers with edges only between neighbors. Therefore, we also use the term antitree
here as well.

We will consider such antitrees of constant width (tensor products with Ks) for
(long) two-dimensional strips. Such adjacent matrices can also be obtained through
some deformation of the Laplacian of 3-dimensional (thin) boxes as we shall see. More
precisely, the n× r strip Zn×r with point weight w is the set {1, . . . , n} × {1, . . . , r} ⊂ Z2
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GOE statistics for Anderson models

with weight function

Ww(x, y) =


0 if ‖x− y‖1 > 1

1 if ‖x− y‖1 = 1

w if x = y

The corresponding Zn×r antitree of constant width s shall be denoted by Aw
n×r,s and

the corresponding nrs × nrs adjacency operator by Aw
n×r,s, i.e. (Aw

n×r,s,Aw
n×r,s) =

(Zn×r,Ww)⊗ (Ks, Ps). To represent it in matrix form, we will split the nrs× nrs matrix
Aw

n×r,s into rs× rs blocks and each of these blocks is split into s× s blocks. Identifying
the base space with

Zn×r×s = {(x1, x2, x3) ∈ Z3, 1 ≤ x1 ≤ n, 1 ≤ x2 ≤ r, 1 ≤ x3 ≤ s} ,

Aw
n×r,s can be considered as an operator on `2(Zn×r×s) and we use the canonical or-

thonormal basis (δx1,x2,x3
) with lexicographical order to represent Aw

n×r,s as a matrix.
We start with the mean-field vector

1s :=
1√
s

1
...
1

 ∈ Rs and note that Ps = 1s1
>
s =

1

s

1 · · · 1
...

...
1 · · · 1

 ∈ Rs×s . (1.1)

Then, define the rs× rs matrices with s× s blocks

Pr,s := Ir ⊗ Ps =

Ps

. . .

Ps

 and Aw
r,s :=


wPs Ps

Ps
. . .

. . .
. . .

. . . Ps

Ps wPs

 . (1.2)

Here, Ir is the r×r identity matrix and Aw
r,s is block-tri-diagonal with s×s blocks. Finally,

we have Aw
n×r,s as a block-tri-diagonal nrs× nrs matrix structured in rs× rs blocks:

Aw
n×r,s =


Aw

r,s Pr,s

Pr,s Aw
r,s

. . .
. . .

. . . Pr,s

Pr,s Aw
r,s

 (1.3)

Let be given a probability distribution ν on R. The Anderson type model on Aw
m,×r

with single site distribution ν is given by the random real symmetric matrix

Hw
n,r,s := Aw

n×r,s + Vnrs (1.4)

where Vnrs is a nrs× nrs real diagonal matrix with independent identically ν-distributed
random variables along the diagonal. We will assume that the distribution is compactly
supported. This is a family of random band-matrices with randomness only on the
diagonal, size N = nrs, band-width 2rs and sparse structure in the entries, but with
some local mean-field setup within groups of s× s blocks.

1.2 Main results

Let us start with naming our main assumptions:

Assumptions. (A1) We assume that the distribution ν of the single site potential (diag-
onal entries of Vnrs) is compactly supported, say in the interval [−σ, σ].
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GOE statistics for Anderson models

(A2) Furthermore let us assume that the distribution is centered, E(v) :=
∫
v dν(v) = 0,

and non-trivial E(v2) =
∫
v2 dν(v) > 0.

We will often need averaged quantities over the distribution ν or products thereof
ν⊗k as the diagonal entries of Vnrs are all independently ν distributed. When the random
variables and their dependence on these entries are clear, we will denote the expectations
values by E. Furthermore, in these expressions a variable v will express a ν-distributed
independent random variable. Now let us introduce the harmonic mean

hλ :=

(
E

(
1

λ− v

))−1

=

(∫
1

λ− v
dν(v)

)−1

(1.5)

and define the interval

Iw,ν := {λ ∈ R : |λ| > σ and |hλ − w| < 4} . (1.6)

The harmonic-mean to arithmetic-mean inequality gives |hλ| < |λ| for |λ| > σ and we find

[−4 + w, 4 + w] \ [−σ, σ] ⊂ Iw,ν . (1.7)

So for small σ or large |w| the set Iw,ν will not be empty.

Theorem 1.2. Let Hw
n,r,s be the Anderson models on the antitree Aw

n×r,s with single site
distribution ν under the assumptions (A1) and (A2). For almost any λ ∈ Iw,ν there exist
sequences sk � nk � rk → ∞, and normalization constants Nk such that

Nk spec(H
w
nk,rk,sk

− λ) ⇒ Sine1 for k → ∞

The growth of sk/nk → ∞ and rk → ∞ can be chosen as slow as one wants, meaning that
for any increasing function f(n) growing towards infinity one finds sequences sk, nk, rk
satisfying this limit with sk/nk < f(nk) and rk < f(nk).

Remark 1.3. The spectrum spec(Hw
nk,rk,sk

− λ), i.e. the eigenvalues of Hw
nk,rk,sk

− λ are
considered as a random point process and the convergence holds in the sense of a weak
limit of random point processes as described in the introduction for the GOE case.

Let us go back to blocks in Z3 and consider the set Zn×r×s as introduced above, a
n× r × s grid within Z3. Now let us introduce the discrete Laplacian ∆n,r,s on Zn×r×s

but with periodic boundary conditions in the last coordinate direction. For the other
directions we use Dirichlet boundary conditions. This corresponds to introducing an
additional edge from points (x1, x2, 1) to (x1, x2, s) for any x1, x2. All the edges get weight
one and we have no point weights. This means the matrix (or weight function) associated
to ∆n,r,s is given by

〈δx, ∆n,r,s δy〉 = ∆m,n,r(x, y) =


1 if ‖x− y‖1 = 1

1 if {x3, y3} = {1, s} and (x1, x2) = (y1, y2)

0 else

Using the same basis structure as before we obtain

∆n,r,s =


∆r,s Irs

Irs ∆r,s
. . .

. . .
. . . Irs
Irs ∆r,s


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GOE statistics for Anderson models

where in general Im will denote them×m identity matrix and∆r,s is an rs×rs tri-diagonal
block matrix made of s× s blocks given by

∆r,s =


∆p

s Is

Is ∆p
s

. . .
. . .

. . . Is
Is ∆p

s

 where ∆p
s =



0 1 0 1

1
. . .

. . .
. . .

0
. . .

. . .
. . . 0

. . .
. . .

. . . 1

1 0 1 0


∈ Rs×s .

Because of the periodic boundary condition in the third coordinate we use the superscript
‘p’ for ∆p

s. This periodicity is reflected by the top-right and bottom-left entry 1 in ∆p
s.

This Laplacian commutes with the orthogonal projection P onto the functions which are
constant along the third coordinate direction, i.e.

P∆n,r,s = ∆n,r,sP where Pψ(x1, x2, x3) =
1

s

s∑
k=1

ψ(x1, x2, k) .

In matrix form using s× s blocks we have the block structure P = diag(Ps, . . . , Ps) with
nr such blocks. Using ∆p

s1s = 2 · 1s implying Ps∆
p
s = ∆p

sPs = 2Ps and IsPs = PsIs = Ps

we find

P∆n,r,s = P∆n,r,sP = A2
n×r,s .

Here, the A2
n×r,s is not the the square of An×r,s, rather in our notation as above it means

that we take the adjacency matrix Aw
n×r,s of the Zn×r-antitree with the point weight

w = 2 on Zn×r. This leads to the following corollary:

Theorem 1.4. For almost all λ ∈ I2,ν , in particular almost all energies λ ∈ [−2,−σ) ∪
(σ, 6], there are sequences sk � nk � rk → ∞ ( rk → ∞, sk/nk → ∞ can grow as slow
as wanted in comparison to the growth of nk) such that with the correct normalization
Nk we find

Nk spec(P∆mk,nk,rk + Vmknkrk − λ) ⇒ Sine1 .

Remark 1.5. (i) The Laplacian ∆ on Z3 or N3 can be seen as some sort of limit of
∆n,r,s for n, r, s → ∞ and has spectrum [−6, 6]. Indeed, for any n, r, s ∈ N we have
spec∆n,r,s ⊂ [−6, 6]. However, the projection P reduces to the subspace with top energy
for the Laplacian in the x3 direction leading to specP∆n,r,s ⊂ [−2, 6] and for n, r, s→ ∞
one fills this interval.

(ii) Modifying the proofs slightly one can replace ∆n,r,s by the Dirichlet-Laplacian ∆D
n,r,s

on the n×r×s grid. However, since∆D
n,r,s does not commute with P one needs to consider

P∆D
n,r,sP + Vnrs and a similar calculation as above shows P∆D

n,r,sP = A2−2/s
n×r,s . So the

whole difference is a further s-dependence which in the limit s → ∞ has no influence.
This resembles the fact that in the limit towards infinity the boundary conditions of the
Laplacian do not matter.

(iii) This result can not be seen as a limiting statistics for boxes on some fixed Anderson
model on a separable, infinite dimensional Hilbert space because there is no limit of the
projections P = P(n, r, s) in `2(Z3). Furthermore, there is no operator limit of P∆n,r,s

for boxes of size n× r × s approaching Z3.

(iv) With sk/nk and rk growing very slowly, less than any power of nk, the corresponding
subset Znk,rk,sk of Z3 look like very thin rectangular shaped boxes in Z3.
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2 Transfer matrices

The block structure of Aw
n×r,s will allow the analysis of the eigenvalue equation

through transfer matrices of similar type as in [Sa3]. In order to see this, let us identify
ψ ∈ Cnrs = (Crs)n with (ψi)

n
i=1, ψi ∈ Crs and let ψ0 = ~0 = ψn+1. Moreover, let us

write the random diagonal matrix Vnrs in diagonal block form of n blocks of size rs,
Vnrs = diag(V1, V2, . . . Vn). Then, we find(

Hw
n,r,sψ

)
i
= Pr,s(ψi+1 + ψi−1) + (Aw

r,s + Vi)ψi .

By definition of the random diagonal matrix Vnrs, the Vi are i.i.d. random diagonal rs×rs
matrices where each Vi has diagonal entries that are all i.i.d. real random variables and
ν-distributed. The projection Pr,s can be written as

Pr,s = Φr,sΦ
>
r,s where Φr,s =

1s 0
. . .

0 1s

 ∈ Rrs× r (2.1)

is a rs × r matrix. Recall that 1s ∈ Cs is the normalized ‘mean-field column vector’
1s = 1/

√
s (1, 1, . . . , 1)>. Note that Φ>

r,sΦr,s = Ir.
For ψ = (ψi)

n
i=1 ∈ Cnrs, ψi ∈ Crs let us define

~ui = ~ui(ψ) := Φ>
r,sψi ∈ Cr , (2.2)

then, the eigenvalue equation Hw
n,r,sψ = zψ gives

(z −Aw
r,s − Vi)ψi = Φr,s (~ui+1 + ~ui−1) . (2.3)

For z 6∈ spec(Aw
r,s − Vi)) it follows that

~ui = Φ>
r,s (z −Aw

r,s − Vi)
−1 Φr,s (~ui+1 + ~ui−1) . (2.4)

For z ∈ C, Im(z) > 0 we have =(z −Aw
r,s − Vi)

−1 < 0, where =(A) = (A−A∗)/(2ı) is the
imaginary part in the C∗ algebra sense. Using that Φr,s is injective we get Im(v∗Φ>

r,s (z −
Aw

r,s − Vi)
−1 Φr,sv) < 0 for non zero vectors v and therefore, Φ>

r,s (z −Aw
r,s − Vi)

−1 Φr,s is
invertible. Hence, it is defined and invertible for all but finitely many values of z ∈ R
as the determinant is a rational function of z. If it is invertible we can re-write the
eigenvalue equation in the following form,(

~ui+1

~ui

)
= Tw,z

i;r,s

(
~ui
~ui−1

)
, Tw,z

i;r,s :=

((
Φ>

r,s (zIrs −Aw
r,s − Vi)

−1 Φr,s

)−1 −Ir
Ir 0

)
. (2.5)

We call Tw,z
i;r,s the i-th transfer matrix at energy z of Aw

n×r,s. We write the energy or
spectral parameter z as an upper index because the dependence on z is somewhat of the
same flavor as the one on w.

Now let Qs be an s× (s− 1) matrix such that (1s, Qs) is orthogonal, meaning that

1s1
>
s + QsQ

>
s = Is 1>s Qs = 0 .

Then, we let

Qr,s :=

Qs

. . .

Qs

 implying Φr,sΦ
>
r,s +Qr,sQ

>
r,s = Irs .
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Hence, (Φr,s, Qr,s) is orthogonal. IfM is an invertible rs× rs matrix where Φ>
r,sMΦr,s is

also invertible then the Schur complement formula gives that(
Φ>

r,sM
−1Φr,s

)−1
= Φ>

r,sM Φr,s − Φ>
r,sM Qr,s

(
Q>

r,sM Qr,s

)−1
Q>

r,sM Φr,s . (2.6)

Applying this toM = zIrs −Aw
r,s − Vk and using PsQs = 0, Aw

r,sQr,s = 0 we obtain

(
Φ>

r,s (zIrs −Aw
r,s − Vi)

−1 Φr,s

)−1
= −Φ>

r,sA
w
r,sΦr,s +

(
Φ>

r,s (zIrs − Vi)
−1

Φr,s

)−1

. (2.7)

Using 1>s Ps1s = 1, (1.2) and (2.1) we get

Φ>
r,sA

w
r,sΦr,s = ∆D

r + w Ir

where ∆D
r is the Dirichlet Laplacian on the line Zr = {1, . . . , r} which is slightly different

from the periodic one ∆p
s used above,

∆D
r :=


0 1

1
. . .

. . .
. . .

. . . 1

1 0

 .

The diagonal matrix Vk can be further partitioned into s× s blocks to obtain

(
Φ>

r,s(zIrs − Vi)
−1Φr,s

)−1
=: V z

i;s =

v
z
i,1;s

. . .

vzi,r,s

 (2.8)

where

vzi,j;s :=
(
1>s (zIs − Vi,j)

−11s
)−1

=

(
1

s

s∑
k=1

1

z − vi,j,k

)−1

(2.9)

with vi,j,k being the random potential at the point (i, j, k) so that

Vi =

Vi,1 . . .

Vi,r

 ∈ Rrs×rs with Vi,j =

vi,j,1 . . .

vi,j,s

 ∈ Rs×s . (2.10)

Therefore we finally obtain

Tw,z
i;r,s =

(
V z
i − wIr −∆D

r −Ir
Ir 0

)
. (2.11)

For some parameters z = λ ∈ R some of the inverses in the definition of the transfer
matrix (2.5) are not defined. However, whenever possible we define it by analytic
extension of the map z 7→ Tw,z

i;r,s. Note that by definiteness of the imaginary parts in the
occurring inverses there is never a problem for non-real parameters z 6∈ R. For this
reason we define:

Definition 2.1. The value λ ∈ R (spectral parameter) is called singular for Hw
n,r,s at the

i-th slice if the map z 7→ Tw,z
i;r,s is not defined in λ after analytic extensions. We call λ ∈ R

singular for Hw
n,r,s if it is singular at some slice i = 1, . . . , n.

Note that by (2.9) and (2.11) the finite set of singular parameters for Hw
n,r,s is con-

tained in the convex hull of the support of ν and hence inside the interval [−σ, σ].
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3 The spectrum

For the spectrum and the determination of singular energies we may first split off
some (trivial) part of the matrix Hw

n,r,s. For calculating the appearing Schur complement
in the i-th transfer matrix it is sufficient to consider the subspace

Vi := span

[ ∞⋃
k=0

ran
(
(Aw

r,s + Vi)
k Φr,s

) ]
(3.1)

which is the union of all cyclic spaces of Aw
r,s + Vi associated to the column vectors

of Φr,s. It is clear that Aw
r,s + Vi leaves the (random) subspace Vi and its orthogonal

complement V⊥
i invariant. Now, writing ψ ∈ Cnrs as (ψi)

n
i=1 with ψi ∈ Crs we use the

fact that Cnrs ∼=
∏n

i=1 C
rs. With this isomorphy we can identify the product V of the Vi

as subspace of Cnrs and we also have a natural embedding V̂⊥
i of the complements V⊥

i

into Cnrs,

V :=

n∏
i=1

Vi ⊂ Cnrs and V̂⊥
i :=

i−1∏
j=1

{0} × V⊥
i ×

n∏
j=i+1

{0} . (3.2)

This means, ψ ∈ V ⇔ ∀i : ψi ∈ Vi, and, ψ ∈ V̂⊥
i ⇔

(
ψi ∈ V⊥

i ∧ ψj = 0 for j 6= i
)
. We

should mention that it is possible that V⊥
i = {0} for all i and V = Cnrs is the full space.

In fact, for continuous distributions ν of the single-site potentials this will happen with
probability one.

Proposition 3.1. We find including multiplicities that

spec(Hw
n,r,s) = spec(Hw

n,r,s|V) ∪
n⋃

i=1

spec(Vi |V⊥
i ) .

where V⊥
i is non-trivial and spec(Vi |V⊥

i ) non-empty if and only if there is j ∈ {1, . . . , r}
such that Vi,j has a multiple eigenvalue with Vi,j as defined in (2.10).

Proof. Since ranΦr,s ∈ Vi for any i = 1, . . . , n we see that Hw
n,r,s leaves V invariant.

Similarly, for any ψi ∈ V⊥
i we have Pr,sψi = Φr,sΦ

>
r,sψi = 0 giving that Hw

n,r,s also leaves

all the spaces V̂⊥
i invariant and the restrictions of Hw

n,r,s to V̂⊥
i is isomorphic to the

restrictions of Aw
r,s + Vi to V⊥

i . Now for ψi ∈ V⊥
i ∈ Crs we can split up ψi once more into

r-parts (ψi,j)
r
j=1 by C

rs = (Cs)r and use the block structure for Aw
r,s as in (1.2) and Φr,s

as in (2.1). Then

0 = Φ>
r,sψi =

1s
. . .

1s


>ψi,1

...
ψi,r

 =

1>s ψi,1

...
1>s ψi,r


implies 1>s ψi,j = 0 for all j = 1, . . . , r. This in turn implies Psψi,j = 1s1

>
s ψi,j = 0 and from

(1.2) we get Aw
r,sψi = 0. Therefore we have

Aw
r,s |V⊥

i = 0 implying
(
Aw

r,s + Vi
)
|V⊥

i = Vi |V⊥
i .

By the considerations above we have

Hw
n,r,s

∼= Hw
n,r,s |V ⊕

n⊕
i=1

Vi |V⊥
i

in terms of an orthogonal sum of operators (in fact matrices). The spectral decomposition
follows.
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Moreover, by construction, V⊥
i is non-trivial precisely if there is a non-zero eigenvec-

tor ψi of Aw
r,s + Vi which is orthogonal to all column vectors of Φr,s. By the calculations

above this is equivalent to finding j and ψi,j 6= 0 such that 1>s ψi,j = 0 and ψi,j is an
eigenvector of Vi,j as defined in (2.10). Using the fact that Vi,j is diagonal, you can
find such an eigenvector precisely if Vi,j has an eigenvalue with multiplicity more than
one.

Considering the eigenvalue equation (2.3) and (2.4) a solution ψ = (ψi)
n
i=1 can be

obtained from a solution (~ui)i of the transfer matrix equation by taking ψi = Ψz,i~ui where
Ψz,i is a rs× r matrix given by

Ψz,i := (zIrs − Aw
r,s − Vi)

−1 Φr,s

(
Φ>

r,s

(
zIrs −Aw

r,s − Vi
)−1

Φr,s

)−1

. (3.3)

Lemma 3.2. For any non-singular energy λ ∈ R the matrices Ψλ,i are defined or can be
defined by analytic extension of z 7→ Ψz,i at z = λ.

Proof. Let λ be non singular for Hw
n,r,s. If λ 6∈ spec(Aw

r,s + Vi) then the statement is clear
by existence of the first inverse in (3.3) and existence of the last term at least by analytic
extension in λ. So let λ be an eigenvalue of Aw

r,s+Vi. In order to show that Ψλ,i is defined
by analytic extension, it is sufficient to show that ϕ>Ψλ,i can be defined by analytic
extension for any eigenvector ϕ of the real symmetric matrix Aw

r,s + Vi because there
is an orthonormal basis of eigenvectors. So let (Aw

r,s + Vi)ϕ = λ0ϕ. Then, for ε 6= 0, |ε|
small,

ϕ>ψλ+ε,i =
ϕ>Φr,s

λ+ ε− λ0

(
Φ>

r,s

(
(λ+ ε)Irs −Aw

r,s − Vi
)−1

Φr,s

)−1

.

For λ 6= λ0 it is clear that the limit ε → 0 exists as λ is non singular and therefore the
limit of the second term exists. Let us now assume λ = λ0. We need to use some Schur
complement formulas. Since Φ>

r,sΦr,s = Ir we can choose some orthonormal basis for
Crs and Cr such that Φr,s ≡ ( I0 ). We may work in these bases and give EI − Aw

r,s − Vi
and ϕ the corresponding block structures

λ Irs −Aw
r,s − Vi ≡

(
A B

B> D

)
and ϕ ≡

(
ϕ1

ϕ2

)
.

The symbol ≡ shall remind that this is not how the matrices are defined but their
appearance after some basis change putting Φr,s in the block structure as indicated.
Then the eigenvalue equation for ϕ transforms to

Aϕ1 +Bϕ2 = 0, B>ϕ1 +Dϕ2 = 0 (3.4)

and we find using the Schur complement formula(
Φ>

r,s((λ+ ε)Irs −Aw
r,s − Vi)

−1Φr,s

)−1
Φr,sϕ ≡ (A+ εI−B(D + εI)−1B>)ϕ1

= εϕ1 +Aϕ1 +B(D + ε)−1Dϕ2
ε→0−→ Aϕ1 +Bϕ2 −BPkerϕ2 = −BPker ϕ2

where Pker is the orthogonal projection onto the kernel of D (note that D is self-adjoint).
We know that the limit B(D + εI)−1B> exists as λ is not singular. Hence, for any vector
v we have that

lim
ε→0

(B>v)>(D + εI)−1B>v exists which implies B>v ∈ (kerD)⊥ .

Therefore ranB> ⊂ (kerD)⊥ and BPker = (PkerB
>)> = 0. Hence,

(A+ εI−B(D + εI)−1B>)ϕ1 → 0 for ε→ 0 .
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This implies (
ϕ>Ψλ+ε̄,i

)>
= Ψ>

λ+ε̄,i ϕ ≡ 1

ε

(
A+ εI−B(D + εI)−1C

)
ϕ1 →

d

dz

[ (
Φ>

r,s(zIrs −Aw
r,s − Vi)

−1Φr,s

)−1
Φr,sϕ

]
z=λ

for ε → 0, which exists because the extension of the Schur complement is analytic in
z = λ.

Let us now introduce the products of the transfer matrices:

X
w,z
i;r,s := Tw,z

i;r,s T
w,z
i−1;r,s · · · Tw,z

2;r,s T
w,z
1;r,s .‘ (3.5)

We finally obtain the key Proposition of this section

Proposition 3.3. Let λ ∈ R be non-singular for Hw
n,r,s. Then, λ is an eigenvalue of Hw

n,r,s

if and only if we have either

det

((
Ir 0

)
Xw,λ

n;r,s

(
Ir
0

))
= 0 (3.6)

or λ is an eigenvalue of Vi |V⊥
i for some i = 1, . . . , n.

Particularly, if |λ| > σ then λ is an eigenvalue of Hw
n,r,s if and only if (3.6) holds.

Note that the second statement follows immediately as ‖Vi‖ ≤ σ ⇒ spec(Vi) ⊂ [−σ, σ]
and all singular energies are also inside the interval [−σ, σ].

Proof. First let λ ∈ spec(Hw
n,r,s), either λ ∈ spec(Vi|Vi) for some i = 1, . . . , n or λ ∈

spec(Hw
n,r,s|V). For the letter case let ψ = (ψi)

n
i=1 be a corresponding non-zero eigenvec-

tor, note ψ ∈ V.
Claim 1: For some i = 1, . . . , n we have ~ui = Φ>

r,sψi 6= ~0. If Φ>
r,sψi = 0 for all i = 1, . . . , n,

then Hw
n,r,sψ = λψ also implies Viψi = λψi and we have ψi ∈ V⊥

i and hence ψ ∈ V⊥

implying ψ = 0 as ψ ∈ V as well.
Claim 2: (~ui)i = (Φ>

r,sψi)i satisfy the transfer matrix equation (2.5) at z = λ with

~u0 = ~un+1 = ~0. If all appearing inverses in the definition of Tw,λ
i;r,s in (2.5) exist for all

i = 1, . . . , n then this is clear so we focus on the case when the transfer matrix is defined
only by analytic extension. The eigenvalue equation for λ leads to

ψi = ((λ+ ε)I−Aw
r,s − Vi)

−1 (Φr,s(~ui+1 + ~ui−1) + εψi)

which after multiplying with Φ>
r,s from the left gives(

Φ>
r,s

(
(λ+ ε)I−Aw

r,s − Vi
)−1

Φr,s

)−1

~ui = ~ui+1 + ~ui−1 + εΨ>
λ+ε,i ψi

In both equations we have to set ~u0 = ~0 for i = 1 and ~un+1 = ~0 for i = n. With Lemma 3.2
the limit ε→ 0 shows that (~ui)i satisfies the transfer matrix equation with the transfer
matrices defined by analytic extension to λ.

As not all of the ~ui are zero, and ~u0 = ~0, we find that ~u1 6= ~0 and we have

(
Ir 0

)
Xw,λ

n;r,s

(
Ir
0

)
~u1 = ~0 . (3.7)

This implies (3.6).
Conversely, assume (3.6), then we find ~u1 6= ~0 satisfying (3.7). We again focus on

the case where one or more of the transfer matrices at z = λ are only defined by
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analytic extension. We let ~ui ≡ ~ui(λ+ ε) be defined by the transfer matrix equation, i.e.(
~ui+1

~ui

)
= Xw,λ+ε

i;r,s

(
~u1

~0

)
. Note that we will have ~un+1(λ) = ~0 by (3.7). Let us define

ψi(λ+ ε) := Ψλ+ε,i ~ui(λ+ ε) and ψ(λ+ ε) = (ψi(λ+ ε))ni=1 .

For ε 6= 0 and small where all inverses in the definition of the transfer matrix exist we
obtain (

Hw
n,r,s − (λ+ ε)Inrs

)
ψ(λ+ ε) = ϕ(λ+ ε) = (ϕi(λ+ ε))ni=1

where

ϕi(λ+ ε) = ~0 for i = 1, . . . , n− 1 and ϕn(λ+ ε) = −Φr,s ~un+1(λ+ ε) .

In the limit ε→ 0 with Lemma 3.2 we obtain that ψ(λ) is a non-zero eigenvector for the
eigenvalue λ.

4 Effective energy, effective potential and elliptic channels

For |λ| > σ the random variables (vλi,j;s)i,j are well defined and independent identically
distributed, the distribution depends on λ and s. Moreover, the law of large numbers
gives for |λ| > σ and s → ∞ a limit distribution concentrated on the point hλ. From
(2.11) we thus define the effective energy by

E = E(λ) := hλ − w . (4.1)

Also note that h−1
λ = E(1/vλi,j;s) = E(1/(λ−v)) where v is a ν-distributed random variable.

Another important quantity will be the λ-dependent variance

σ2
λ :=

∫ (
(λ− v)−1 − h−1

λ

)2
dν(v) = E

(
1

λ− v
− 1

hλ

)2

(4.2)

Moreover, let us define

1

s
Ws(λ) := E(vλi,j;s) − hλ and

1√
s
Yi,j;s(λ) := vλi,j;s − hλ − 1

s
Ws(λ) (4.3)

From now on we mostly make considerations for a fixed λ 6∈ [−σ, σ] and will omit the
λ-dependence most of the time. Note that E(Yi,j;s) = 0 and in (i, j) we have a family of
real (for λ real), independent identically distributed random variables. Harmonic mean
estimates for bounded random variables as in Theorem A.1 give

Ws(λ) = h3λ σ
2
λ + O(1/s) (4.4)

E
(
Y 2
i,j;s

)
= h4λ σ

2
λ + O(1/s) and sup

s∈N
E
(
Y 2n
i,j;s

)
≤ Cn . (4.5)

The error bounds are uniform in λ on compact sets outside [−σ, σ] (including compact
subsets of C).

The upper left r × r block entry of the transfer matrices are given by

E Ir +
1√
s
Yi;s +

1

s
Ws Ir − ∆D

r (4.6)

where
Yi;s = diag(Yi,1;s, . . . , Yi,r;s) (4.7)

is the effective random potential in the i-th slice. In the s→ ∞ limit the eigenvalues and
eigenvectors of EIr −∆D

r will classify some of the asymptotic behavior of the products.
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Let us note that λ ∈ Iw,ν implies E(λ) ∈ (−4, 4) . Moreover, E(λ) is a continuous and
strictly monotone function of λ in Iw,ν . As in [SV] we now separate elliptic and hyperbolic
channels and diagonalize ∆D

r by the orthogonal matrix

Ojk :=
√
2/(r + 1) sin(π jk / (r + 1)) , j, k = 1, . . . , r .

The corresponding j-th eigenvector of ∆D
r corresponding to the j-th column vector of O

is given by
aj = 2 cos(πj / (r + 1)) , j = 1, . . . , r

so that
O> ∆D

r O = diag(a1, . . . , ar) .

We focus on the case −4 < E(λ) ≤ 0, the other case is symmetrical. In this case
E − aj < 2. In the notions of [SV] we have a parabolic channel if there exists j such that
|E − aj | = 2 which in this case means E − aj = −2. For any given r, there are r such
values of E (and of λ). The union over r ∈ N gives some countable set of values in E and
λ respectively. We will omit these values. Then, if there is no parabolic channel, there is
rh = rh(r,E) such that

E − aj < −2 for j = 1, . . . , rh (hyperbolic channels)

−2 <E − aj < 2 for j = rh + 1, . . . , r (elliptic channels)

So we have rh hyperbolic and re := r− rh elliptic channels. Note that for any fixed E and
r → ∞, re = re(r,E) is of the order of r, re ∼ cr for some c > 0. Then we define γj ∈ R
and zj ∈ C, |zj | = 1 by

γj + γ−1
j = E − aj , |γj | < 1 , for j = 1, . . . , rh

zj + z−1
j = E − aj+rh , |zj | = 1 , Im(zj) > 0 , for j = 1, . . . , re

and as in [SV] we define

Γ = diag(γ1, . . . , γrh) , Z = diag(z1, . . . , zre) (4.8)

as well as

U :=

(
Z∗

Z

)
, Õ :=

(
O

O

)
and Q :=


Γ Γ−1

Z∗ Z

Irh Irh
Ire Ire

 . (4.9)

Here, U is a 2re × 2re diagonal matrix, Õ a 2r × 2r orthogonal matrix written in r × r

blocks and Q a 2r×2r matrix where the rows are divided in 4 blocks of sizes rh, re, re, rh
and the columns in 4 blocks of sizes rh, re, rh, re. All the non-zero blocks indicated
above are diagonal square matrices. These matrices depend on λ. In order to get the
eigenvalue processes we will have to vary the spectral parameter around λ but we will
use these fixed Q Õ and U to describe our basis change cf. (5.2).

But primarily let us set one more demand on the choice of λ or better E(λ), re-
spectively. For fixed r the value rh changes exactly at the points E = E(λ) where we
have some parabolic channel. Hence, I(r0) := {λ ∈ Iw,ν : re(r,E(λ)) = r0} is a union
of intervals where rh and re are constant and Z = Z(λ) is an analytically dependent
diagonal r0 × r0 matrix.

Definition 4.1. We say that the matrix Z = diag(z1, . . . , zre) with |zj | = 1, Im(zj) > 0 is
chaotic, if all of the following apply for all i, j, k, l ∈ {1, . . . , re}

zizjzkzl 6= 1 , z̄izjzkzl 6= 1 ,

z̄iz̄jzkzl 6= 1 unless {i, j} = {k, l} .
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Then [SV, Lemma 5.2] gives the following.

Lemma 4.2. For each r0 > 0 and Lebesgue almost all λ ∈ I(r0) we find that Z as defined
above is chaotic and moreover for any unitary diagonal r0 × r0 matrix Z∗ there is an
increasing sequence (nk)k of integers such that Znk+1 → Z∗ for k → ∞.

So we will consider λ and r such that we have elliptic channels4, there is no parabolic
channel and such that Z is chaotic.

5 The limit of thin boxes with fixed width

We will first look at the situation s = mn with m and r constant and consider the
eigenvalue process for n → ∞. Furthermore, we scale energy differences to λ by
n(h2λσ

2
λ + 1) (cf. (A.5)) and define

λεn := λ+
ε

n(h2λσ
2
λ + 1)

so that E (λεn) = E(λ) +
ε

n
+ O

(
ε2

n2

)
(5.1)

Here, the error bound is uniform for ε/n varying inside a compact set so that λεn ∈ Iw,ν .
Let us map out the correspondences between notations here and in [SV] in order

to understand the relations of the propositions. In principle s amounts to the disorder
strength and 1

s corresponds to λ2 or better to σ2λ2 in [SV, Section 5], m amounts to σ−2.
Note in particular that the use of λ as in this paper does not correlate to the use of λ in
[SV]. But E(λ) is the more important quantity here which corresponds to E in [SV], the
use of ε is the same. The size of the transfer matrices r here corresponds to d in [SV],
moreover rh and re correspond to dh and de in [SV], respectively.

Since s = mn from now on, we will omit the index s and replace it by m and n.
Because of the different roles of m and n we will place the indices differently. This way
notations correspond somewhat to the ones used in [SV]. Then using the definitions (4.8)
and (4.9) for some fixed λ (without parabolic channel such that Z is chaotic) we define

T ε,m
i;r,n := Q−1 Õ> T

w,λε
n

i;r,mn ÕQ . (5.2)

For ε = 0 the limit s→ ∞ gives the non-random matrix

Tr = lim
s→∞

T 0,m
i;r,s =

Γ

U

Γ−1

 (5.3)

written in blocks of sizes rh, 2re, rh. Note that the upper block has the eigenvalues of
size (absolute value) < 1, the middle part the eigenvalues of size 1 and the lower part the
eigenvalues of size > 1. Hence, when considering products the upper part is decaying,
the lower part growing and the middle part stays of order 1. For the products we will
look at the same basis changes and scaling and define

X ε,m
i;r,n := Q−1 Õ>X

w,λε
n

i;r,mn ÕQ = T ε,m
i;r,n T

ε,m
i−1;r,n · · · T ε,m

1;r,n (5.4)

We also have to consider the impact of the perturbation in the spectral parameter. From
(4.3), (4.6), (5.1) we obtain using s = mn that

T ε,m
i;r,n = Tr +

1√
m

1√
n
Yε,m
i;n +

(
ε

n
+
W ε,m

n

mn

)
Wr + O

(
ε2

n2

)
(5.5)

where

Yε,m
i;n := Q−1 Õ>

(
Yi;mn(λ

ε
n) 0

0 0

)
ÕQ , W ε,m

n := Wmn(λ
ε
n) , Wr := Q−1

(
Ir

0

)
Q .

4this will be the case for fixed λ ∈ Iw,ν and r big enough
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GOE statistics for Anderson models

The error term is non-random and the bound is uniform for ε/n varying in compact
sets where λεn stays outside [−σ, σ]. Equation (5.5) is in essence the analogue of [SV,
equation (5.5)] where 1/

√
m here plays the role of σ there. Some difference is that here

the randomness and the drift-term have some dependence on ε and m, however, this
dependence will not matter in the limit. Note that by construction E(Yε,m

i;n ) = 0. Using
(4.4) and (4.5) we find for ε varying inside compact sets that

W ε,m
n = h3λσ

2
λ + O

(
1

mn
,
ε

n

)
, E

(
Y 2
i,j;mn(λ

ε
n)
)
= h4λσ

2
λ + O

(
1

mn
,
ε

n

)
. (5.6)

The error terms mean that the reminder terms are bounded by C(1/(mn) + |ε|/n) with a
uniform C as long as ε/n stays inside some compact interval so that always λεn ∈ Iw,ν . In
particular for any compact set K there is N such that for n > N and ε ∈ K this bound is
uniform.

Using these bounds, the moment bound in (4.5) and the independence of the Yi,j;s
we see that Theorem B.1 is applicable towards an SDE limit for the products X ε,m

i;n for
fixed ε,m with scaling i ∼ n. More precisely, from the decomposition of Tr in (5.3) define

P≤1 =

(
Irh+2re

0

)
∈ R2r×(rh+2re) ,

and let

Xε,m
i;r,n :=

(
Irh

U−i

)(
P>
≤1

[
X ε,m

i;r,n X0

]−1 P≤1

)−1

where X0 is some adequate r × r matrix such that the Schur complement

X0 :=
(
P>
≤1X−1

0 P≤1

)−1

exists. Then, Theorem B.1 (i) gives a weak limit of stochastic processes

Xε,m
btnc ; r,n

n→∞
=⇒

(
0

Λε,m
t

)
X0 for t > 0 with Λε,m

t ∈ C2re×2re

being some stochastic processes with Λε,m
0 := I2re which for (ε,m) fixed satisfy some

SDE (stochastic differential equation) in t. A special choice of X0 and hence X0 as in
[SV] is needed for proving the limiting eigenvalue statistics mentioned further below.
The covariance structure of the matrix Brownian motions appearing can be calculated
as in [SV, Proposition 5.3 and Section 5.3], especially [SV, eq. (5.37)], as we have almost
the same type of random matrices here with the same elliptic and hyperbolic channels
and the same diagonalization of ∆D

r . This gives the following.

Proposition 5.1. Let λ be such that Z is chaotic. The family of processes Λε,m
t satisfy

SDEs in the evolution in t of the form

dΛε,m
t =

(
ε+

h3λσ
2
λ − q

m

)
S
(
Ire

−Ire

)
Λε,m
t dt +

1√
m

S
(
dAt dBt

−dB∗
t −dAt

)
Λε,m
t

where

S =

(
(Z − Z)−1

(Z − Z)−1

)
, q =

h4λ σ
2
λ

r + 1

rh∑
j=1

(γ−1
j − γj)

−1 .

At and Bt are independent matrix Brownian motions, At is Hermitian and Bt complex
symmetric, i.e.

A∗
t = At , B>

t = Bt
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with covariance structure

E|(Bt)ij |2 = E|(At)|ij |2 = E
(
(At)ii(At)jj

)
= h4λσ

2
λ t ·

{
3
2 if i = j

1 if i 6= j

All covariances which do not follow are zero.

Note, the occuring factors h4λσ
2
λ come from the variance of Yi,j;s as compared to

the variance 1 for the potential used in [SV]. As in [SV] for energies close to λ all

the eigenvalues of Hw
n,r,s are given by the zeros of λ′ 7→ det(

(
Ir 0

)
X

w,λ′

n;t,s

(
Ir
0

)
) (see

Proposition 3.3). Note that for some C = C(λ) and |ε/n| < C we have that λεn ∈ Iw,ν ⊂
R \ [−σ, σ]. Using the calculations in [SV, Theorem 5.4] one can change the analytic
function in ε characterizing the eigenvalues along adequate sub-sequences to get another
characterization of this point process in the limit using Theorem B.1 (iii). This leads to
the following.

Proposition 5.2. Let En,r,s be the process of eigenvalues of Hn,r,s − λInrs re-scaled by
the factor n(h2λσ

2
λ + 1), i.e. let

En,r,s = n(h2λσ
2
λ + 1) spec (Hn,r,s − λ Inrs) .

Fixing r let λ ∈ Iw,ν be such that Z (as defined in (4.8)) is chaotic, let nk be some strictly
increasing sequence such that Znk+1 → Z∗ for k → ∞. Then, Enk,r,mnk

converges to the
zero process of the determinant of a re(λ)× re(λ) matrix,

Enk,r,mnk
=⇒ zerosε det

((
Z∗ Z∗

)
Λε,m
1

(
Irh
−Irh

))
for k → ∞

The important part here is that the SDEs can be jointly solved in ε with unique
analytic versions in ε (distributions on the set of analytic functions, see Theorem B.1 (ii) ).
Therefore, the random set of zeros, zerosεf(Λ

ε,m
1 ) = {ε ∈ C : f(Λε,m

1 ) = 0} for an analytic
function f is well defined (as a distribution on the set of sets) and makes sense as a point
process if P(f(Λε,m

1 ) ≡ 0 ∀ε ∈ C) = 0.

The factor (h2λσ
2
λ + 1) occurs here because it also occurs in the perturbations λεn of λ.

Note that with fixing r and letting s ∼ n going to infinity of the same order we basically
look at a sequence of graphs resembling a quasi-two-dimensional limit.

6 The GOE limit

Let us now explain how from Propositions 5.1 and 5.2 one can get to the limiting
GOE statistics as in [SV, VV]. Formally, the first step is like a derivative of the SDE in
Proposition 5.1 for small 1/

√
m when replacing ε by ε/

√
m meaning that we zoom in

more locally. Then in the m→ ∞ lots of (groups) of eigenvalues of this process will move
to infinity and some group is left which spaces like the eigenvalues of a random matrix
with Gaussian entries. These random matrices are almost like in the GOE ensemble,
there is just a bit of a different covariance structure and some dependence. Afterwards,
the r → ∞ limit will finally lead to the Sine1 process. So all together with the limit in the
previous structure, it is a triple limit process leading to the GOE statistics.

Fixing r we look at the process
√
m (X

ε/
√
m,m

i;r,n −X0) in a m→ ∞ limit. On the level
of the limiting process Λε,m

t as in Proposition 5.1 let us note that

Λ̂ε,m
t :=

√
m
(
Λ
ε/

√
m,m

t − I2re

)
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satisfies the SDE

dΛ̂ε,m
t =

(
ε− h2λσ

2
λ − q√
m

)
S
(
Ire

−Ire

) (
Λ̂ε,m
t√
m

+ I2re

)
dt

+ S
(
dAt dBt

−dB∗
t −dAt

) (
Λ̂ε,m
t√
m

+ I2re

)
with Λ̂ε,m

0 = 0 .

In the limit m→ ∞ the SDE can be easily solved and one finds as in [SV]

Λ̂ε,m
t

m→∞
=⇒ Λε

t := ε tS
(
Ire

−Ire

)
+ S

(
At Bt

−B∗
t At

)
.

Now taking λ such that Z is chaotic as in Proposition 5.2 and taking a sequence nk with
Znk+1 → Ire we find the limiting eigenvalue processes

Enk,r,mnk

k→∞
=⇒ Er,m := zerosε det

((
Ire Ire

)
Λε,m
1

(
Ire
−Ire

))
.

Then, working with analytic versions in ε and 1/
√
m for this family of processes one finds

as in [SV]

√
m Er,m

m→∞
=⇒ Er := zerosε det

((
Ire Ire

)
Λε
1

(
Ire
−Ire

))
= spec <e(B1 −A1)

Using the calculations as in [SV, Lemma 5.5] in combination with Theorem B.1 (iii) one
can get to this limit with a double sequence nk � mk → ∞, more precisely:

Proposition 6.1. Let λ be such that Z is chaotic, let nk be a strictly increasing sequence
of natural numbers such that Znk+1 → Ire and let mk → ∞ be some increasing sequence
towards infinity such that

√
mk ‖Znk+1 − Ire‖ → 0. Then for t > 0, jointly in t ∈ (0, 1] and

ε varying in any finite subset of C we find

√
mk

(
X

ε√
mk

,mk

btnkc;r,nk
− X0

)
k→∞
=⇒

(
0

Λε
t

)
X0 .

Moreover, for the re-scaled eigenvalue process En,r,s as defined above we find

√
mk Enk,r,mknk

k→∞
=⇒ Er = spec<e(B1 −A1) .

Let us note that from the process it is obvious that given any (slowly) towards ∞
increasing function f(n) one can choose to consider only sequences such that mk <

f(nk).

Proof of Theorem 1.2. Let b be some standard Gaussian variable and K = K(re) be an
independent real symmetric re × re matrix with Gaussian entries such that E((Kii)

2) = 5
4

and E((K2
ij) = 1 for i 6= j. Then in distribution,

<e(B1 −A1)
d
=

h2λσλ√
r + 1

(K + b Ire)

As explained in [VV], using methods of [ESYY] the local eigenvalue process converges to
the Sine1 process for re → ∞, more precisely,

√
re spec(K(re) + b Ire)

re→∞
=⇒ Sine1 .
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Now, for almost all λ ∈ Iw,ν i.e. almost all E(λ) ∈ (−4, 4) we find that for all r ∈ N, Z is
chaotic and there is no parabolic channel. Let us fix such a λ. Then for r → ∞ we also
find re(r,E) → ∞ and hence √

(r + 1)re
h2λσλ

Er =⇒ Sine1 .

This convergence and the convergence mentioned in Proposition 6.1 happen in the
topology of weak convergence for point processes. Therefore, one can construct some
diagonal sequence mk, nk, rk → ∞ such that with sk = mknk and re,k = re(rk, E) we find√

mk(rk + 1) re,k
h2λσλ

Enk,rk,sk
k→∞
=⇒ Sine1 .

This proves Theorem 1.2 with the normalization constant

Nk :=
(h2λσ

2
λ + 1)

√
nksk(rk + 1)re,k
h2λσλ

.

Now let f(n) be any (slowly) increasing function with f(n) → ∞ for n→ ∞. In Proposi-
tion 6.1 one may choose mk < f(nk) and start the sequence with nk > f(r) . Therefore,
we may choose mk < f(nk) and rk < f(nk).

A Harmonic means of random variables

In the transfer matrices we see effective potentials that are harmonic means of
certain independent identically distributed (iid) random variables. Certain estimates
are crucial for the proofs. We therefore consider in this section independent identically
distributed random variables Xk ∈ [a, b], 0 < a < b, k ∈ N. These variables correspond to
E − vi,j,k. We will consider the harmonic means Vs and the harmonic average h defined
by

Vs :=
1

1
s

∑n
k=1

1
Xk

, h :=
1

E(1/Xk)

where E denotes the expectation value. Vs corresponds to the random variables vλi,j;s as
in (2.9) and h corresponds to hλ. The second and third moment of the centered random
variable 1/Xj − 1/h will be of some importance, therefore let

σm
m := E((1/Xk − 1/h)m) .

Note σ1 = 0 and σ2
2 is the variance of 1/Xk and corresponds to σ2

λ in the application of
the following estimates.

Theorem A.1. There exists a continuous function C = C(a, b, h, σ2, σ3) such that uni-
formly in s,

0 < E(Vs − h) ≤ b h2 σ2
2

s
,

∣∣∣∣E(Vs − h)− h3σ2
2

s

∣∣∣∣ ≤ C

s2
. (A.1)

a2 h2 σ2
s

≤ E((Vs − h)2) ≤ b2 h2 σ2
2

s
,

∣∣∣∣E((Vs − h)2)− h4σ2
2

s

∣∣∣∣ ≤ C

s2
. (A.2)

Moreover, for the higher moments we find

∣∣E((Vs − h)3)
∣∣ ≤ C

s2
, and E((Vs − h)2m) ≤ (2m)!h2m b2m

2mm! a2m
1

sm
for m ≥ 2 . (A.3)
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Proof. Using b > a > 0 we find Vs ∈ [a, b] and Vs ≤ 1
s

∑
k=1Xk as well as h < E(Xk) by

the arithmetic-harmonic mean inequality. Let Y = 1/Vs − 1/h = 1
s

∑s
k=1(

1
Xk

− 1/h), then

E(Y ) = 0, E(Y 2) = σ2
2/s and E(Y

3) = σ3
3/s

2. Moreover, with Yk := 1/Xk − 1/h we find
|Yk| ≤ 1

a − 1
b ≤ 1

a and

E(Y 2m) =
1

s2m

s∑
k1,...,k2m=1

E(Yk1
· · ·Yikm

) ≤ 1

s2m
(2m)!

2mm!

s∑
k1,...,km=1

E(Y 2
k1
. . . Y 2

km
))

where we used that unpaired indices lead to zero expectation and the fact that (2m)!
2mm!

is the number of pairings of the set {1, . . . , 2m}. Now using that there are sm m-tuples
(k1, . . . , km) and using the bound of Yk as mentioned above we find

E(Y 2m) ≤ 1

sm
(2m)!

2mm!

1

a2m
.

Expanding Vs = h− hY Vs repeatedly we obtain

Vs − h = −hY Vs = −h2Y + h2Y 2Vs = −h2Y + h3Y 2 − h3Y 3Vs . (A.4)

As Vs ∈ [a, b] we can estimate E(h2Y 2Vs) ≤ h2b σ2
2/s and∣∣E(Y 3Vs)

∣∣ ≤ ∣∣E(hY 3)
∣∣+ ∣∣E(hY 4Vs)

∣∣ ≤ h(|σ3
3 | + 3ba−4)

s2

which with (A.4) (using the second-last and last term) gives (A.1). Taking powers of (A.4)
and using similar estimates lead to (A.2) and (A.3).

For the general moment bound we use Vs − h = h2Y (Y Vs − 1) from the expansion
above. Since 1− Y Vs= Vs/h ∈ [a/h, b/h] we have|1− Y Vs| ≤ b/h and therefore,

E((Vs − h)2m) ≤ (b/h)2mE((h2Y )2m) = h2m b2mE(Y 2m) ≤ 1

sm
(2m)!

2mm!

h2mb2m

a2m

When varying the spectral parameter we also need to understand how the harmonic
average varies for the definition in (5.1). This amounts to replacing Xk by Xk,ε = Xk + ε

and recalculating hε = 1/E(X−1
k,ε). Note by the continuity of C = C(a, b, h, σ2, σ3) for the

formulas above the error terms will also be uniform in ε along compact sets |ε| ≤ c in ε
as long as c < a because Xk,ε ∈ [a− c, b+ c] under such perturbations. Using

1

Xk,ε
=

1

Xk + ε
=

1

Xk
− ε

X2
k

+
ε2

X2
kXk,ε

as well as E(1/X2
k) = σ2

2 + 1/h2 and defining Cε := E( 1
X2

kXk,ε
) we find

hε =
1

1
h − ε[σ2

2 +
1
h2 − Cεε]

= h + ε (σ2
2 h

2 + 1) + O(ε2) (A.5)

where the error bound is uniform on compact sets in |ε| ≤ c where a− c > 0.

B SDE limits for products of random matrices

In this appendix we sumerize the key results of [SV] which are used in this paper.
Let be given some probability space (Ω,A,P), an open ball of radius r around zero
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Br = {z ∈ C : |z| < r} and a family of analytic random matrices T ε
k;n : Ω → Cr×r for

k, n ∈ N, ε/n ∈ Br of the form

T ε
k;n = T0 +

1√
n
Vk;n +

1

n
(εYn +Wn) +

1

n3/2
Zε

k;n

where (Vk;n,Zε
k;n)

∞
k=0 are independent identically distributed random variables (for fixed

ε and n) and T0, Yn and Wn are non-random (that is they are fixed for all ω ∈ Ω).
Analyticity means that for any ω ∈ Ω the dependence of T ε

k;n(ω) and thus of Zε
k;n(ω) on

ε ∈ nBr = Bnr is analytic. The lowest order term shall be block-diagonalized in the form

T0 =

Γ0

U

Γ−1
2

 with Γ0 ∈ Cr0×r0 , U ∈ U(r1) , Γ2 ∈ Cr2×r2 ,

where ‖Γ0‖ < 1 , ‖Γ2‖ < 1. Here, U(r1) is the unitary group of r1 × r1 matrices.
Moreover, we assume that Vk;n have mean zero, E(Vk;n) = 0, and that we have uniformly
for ε/n ∈ Br, n ∈ N a 8th moment bound5 in the following sense

E(‖Vk;n‖8) < C and E(‖Yε
k;n‖8) < C .

Furthermore, we assume that the limits

lim
n→∞

Yn = Y and lim
n→∞

Wn = W

exist and that we have limits of all second moments of the complex entries of Vk;n

meaning that

lim
n→∞

E
(
V>
k;nMVk;n

)
= h(M) and lim

n→∞
E
(
V∗
k;nMVk;n

)
= ĥ(M)

exist giving linear maps from Cr×r to itself. Here, E denotes the expectation, i.e. the
integral over ω ∈ Ω with respect to the probability measure P. Without the limit n→ ∞
these functions encode all joint second moments of the random matrix entries of Vk;n.
First, let us define some projections we will need.

P≤1 =

(
Ir0+r1

0r2×(r0+r1)

)
, P1 =

0r0×r1

Ir1
0r2×r1

 , P2 =

(
0(r0+r1)×r2

Ir2

)
.

The exponential growing part for powers of T0 will be projected away by a Schur
complement: Let X0 be such that X0 := (P>

≤1X
−1
0 P≤1)

−1 exists and consider

Xε
k;n :=

(
Ir0

U−k

)(
P>
≤1

(
T ε
k;nT

ε
k−1;n · · ·T ε

2;nT
ε
1;nX0

)−1 P≤1

)−1

.

The rotations through U in T0 lead to an averaging effect. The averaged covariances for
a limiting Brownian motion will be described by the following functions,

g(M) :=

∫
〈U〉

ū Ū P>
1 h(P1u

>MuP>
1 )P1U

∗u∗ du

ĝ(M) :=

∫
〈U〉

uU P>
1 ĥ(P1u

∗MuP>
1 )P1U

∗u∗ du .

5in fact a 6 + δ moment for δ > 0 is enough, but here we prove this type of bound in Appendix A
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Here, 〈U〉 is the smallest compact group containing the unitary U and by the notation du
we integrate u ∈ 〈U〉 over the normalized Haar measure on that group. Furthermore, for
the drift term we define in a similar way

W :=

∫
〈U〉

u
[
P>
1 WP1 − P1h(P2Γ2P>

2 )P1

]
U∗ u∗ du

and

Y :=

∫
〈U〉

uP>
1 Y P1 U

∗ u∗ du .

Theorem B.1. (i) In the scaling limit k ∼ n→ ∞ the family of processes can be described
by an SDE (stochastic differential equation) in the sense that the family of processes (for
varying ε) converges in distribution

Xε
bntc;n =⇒

(
0r0×r0

Λε
t

)
X0 for n→ ∞ , t > 0 .

Here, (Λε
t )t>0 is a family of processes in Cr1×r1 satisfying an SDE in t of the form

dΛε
t = dBt Λ

ε
t + (εY +W )Λε

t dt with Λε
0 = Ir1 .

Bt is a matrix-valued Brownian motion (independent of ε) with covariance structure

E(B>
t MBt) = t g(M) , E(B∗

tMBt) = t ĝ(M) .

(ii) There is an analytic version of this family of processes, this means a version (same
finite points distributions) such that the random functions ε 7→ Λε

t are analytic in ε.
Moreover, let f : C(r0+r1)×(r0+r1) → C be complex-analytic such that ε 7→ f(Λε

1) is almost
surely not the zero function, i.e. P(f(Λε

1) = 0 ∀ε ∈ C) = 0. Then, one has a well-defined
point process

zerosε (f(Λ
ε
t )) = {ε ∈ C : f(Λε

1) = 0} .

(iii) For some analytic function f0 : Cr×r → C let be defined the point processes

En := zerosε f0(T
ε
n;nT

ε
n−1;n · · ·T ε

1;n)

which should be discrete countable sets with probability one. Assume that one finds X0

as above and analytic functions fn : C(r0+r1)×(r0+r1) → C such that for any compact set
K ⊂ C we have

P
(
En ∩K = zerosεfn(X

ε
n;n) ∩ K

)
→ 1 ,

fn → f̂ uniformly on K and f(Λε) := f̂

((
0

Λε
1

)
X0

)
fulfills the conditions of part b).

Then, in the sense of weak convergence of point processes,

En =⇒ zerosε f(Λ
ε
1) .

Proof. Part (i) follows directly from [SV, Theorem 1.1]. Also, note that for a finite set of ε,
say (ε1, . . . , εm) ∈ Cm we can simply consider block-diagonal matrices diag(T ε1

k;n, . . . , T
εm
k;n)

for obtaining the joint distributions for different ε in the limit. This leads to the use of
the same Brownian motions for different ε and we have in fact convergence to a random
field (ε, t) → Λε

t .
For part (ii) first note that the limit is independent of Zε

k;n. Hence, we can set this
part equal to 0 first, obtaining families of random matrices T ε

k;n for all ε ∈ C depending
analytically on ε. As argued in [SV, Section 5.2] using the uniform bounds (in ε) one can
use [VV, Corollary 15] to get a unique version for which ε 7→ Λε

t is analytic (uniqueness
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in the sense of joint probability distributions on the set of analytic functions). For f as
given, one can then obtain well-defined distributions on the set of countable subsets of
C defined by the zeros of f(Λε

1) which gives a point process.
Part (iii) is basically proved in [SV, Theorem 5.4] for a specific case, following again
[VV, Corollary 15]. First, for the weak convergence of point processes it is sufficient
that for any compact set K ⊂ C the point processes restricted to K converge. Secondly,
for K ⊂ C compact and n0 large enough we have K ⊂ n0Br and all T ε

k;n are defined
for ε ∈ K and n ≥ n0. Moreover, using the uniform bounds and arguments in [SV],
for ω ∈ Ω0 ⊂ Ω with P(Ω0) = 1 we have that the Schur complements Xε

k;n are well
defined for sufficiently large n (with a possibly random lower bound). Again, by [VV,
Corollary 15] one finds analytic versions in ε, all realized on the same probability space,
such that the convergence in part a) is uniform on compact sets (almost surely). Thus,
the zeros of fn(Xε

n;n(ω)) converge to the ones of f(Λε
1(ω)) uniformly in K (almost surely),

if this limiting function is not identically zero in ε. This implies the weak convergence of
the point processes given by the zeros in K.
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