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On the Liouville heat kernel for k-coarse MBRW*
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Abstract

We study the Liouville heat kernel (in the L2 phase) associated with a class of loga-
rithmically correlated Gaussian fields on the two dimensional torus. We show that for
each ε > 0 there exists such a field, whose covariance is a bounded perturbation of
that of the two dimensional Gaussian free field, and such that the associated Liouville
heat kernel satisfies the short time estimates,
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for γ < 1/2. In particular, these are different from predictions, due to Watabiki,
concerning the Liouville heat kernel for the two dimensional Gaussian free field.
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1 Introduction

In recent years, there has been much interest and progress in the understanding of
two dimensional Liouville quantum gravity, and associated processes. We do not provide
an extensive bibliography and refer instead to the original (mathematical) articles and
surveys [10, 11, 5] for background. A starting point for this study is the measure which
is the exponential of the Gaussian free field and is constructed rigorously using Kahane’s
theory of Gaussian multiplicative chaos [19].1
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1With some abuse, we refer in the sequel to this measure as the LQG measure. Thus, in our terminology, the

LQG measure is the Gaussian Multiplicative Chaos (GMC) built from a logarithmically correlated Gaussian
field. As pointed out to us by Remi Rhodes and by an anonymous referee, in the physics literature the LQG
measure is often meant to represent a modification of this measure, e.g. by normalizition with respect to the
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On the Liouville heat kernel for k-coarse MBRW

One aspect that has received attention is the construction of Liouville Brownian
motion using the Liouville measure and the theory of Dirichlet forms. Mathematically,
this has been achieved in [13] (see also [4]), and properties of the associated Liouville
heat kernel have been discussed in [14, 17, 2]. One important motivation behind the
study of the Liouville heat kernel is that it can be used to study the geometry (and critical
exponents) of Liouville quantum gravity. Indeed, a particularly nice application of the
construction of the Liouville heat kernel is that it allows for a clean derivation of the
so-called KPZ relations [3]. Another important motivation, discussed in [17], are the
predictions of Watabiki [20] concerning the short time behavior of the Liouville heat
kernel. (We emphasize that the paper [20] is a physics paper, and its results are not
formulated as precise theorems and in particular do not refer explicitly to heat kernel
exponents. What we refer to as “Watabiki’s predictions” are reasonable extrapolations
from the formulae in [20], under the common mapping of exponents from dimensions to
heat kernels. This point is discussed in greater detail in [17].) See [17, 2] for existing
(weak) estimates on the diffusivity exponents of the Liouville heat kernel.

An important aspect of the class of logarithmically correlated Gaussian fields, that
is fields whose covariance is a bounded perturbation of the logarithmic covariance, of
which the 2D Gaussian free field is arguably the prominent example, is the universality of
many quantitites. We mention explictly Hausdorff dimensions, statistics of the maximum,
etc., see [19, 7]. One could naively expect that for Gaussian fields in this class, the
predicted exponents of the Liouville heat kernel would be universal. If that is indeed the
case, we would say that the heat kernel exponents are universal.

Our goal in this paper is to provide an example where the explicit predictions on
Liouville heat-kernel exponents (which can be extrapolated from [20] and discussed
in [17, 2]) do not hold for some two dimensional logarithmically correlated Gaussian
fields which are bounded perturbations of the Gaussian free field. Namely, we study in
this paper the heat kernel for Liouville Brownian motion constructed with respect to a
particular logarithmically correlated field, introduced in [6] under the name k-coarse
modified branching random walk (MBRW for short). Given k > 0 integer, this is the
centered Gaussian field on the torus T = R2/(4Z)2, denoted h = {h(x)}x∈T, with
covariance

G(x, y) = k log 2
∞∑
j=0

A(x, y; 2−kj),

where A(x, y;R) = |B(x,R) ∩B(y,R)|/|B(x,R)|, B(z,R) is the (open) ball centered at z
with radius R with respect to the natural metric on the torus, and |B| is the Lebesgue
measure of a set B. The particular choice of the scaling of the torus T = R2/(4Z)2

(rather than R2/Z2) is not important and only done for convenience.

We will show in Section 2.1 that for all k,

G(x, y) = log
1

|x− y|
+ λ(|x− y|), (1.1)

where λ is continuous in (0, 2] and |λ| ≤ 6k. Fixing γ ∈ (0, 2), we introduce in Section 2.3,
following [13], the Liouville measure µγ , Liouville Brownian motion (LBM) {Yt}, and
Liouville heat kernel (LHK) pγt (x, y), associated with (γ, h). Formally, the Liouville
measure on T is defined as µγ(dx) := eγh(x)−

1
2γ

2Eh(x)2dx; one then introduces the positive

total mass of the GMC, adding point singularities, etc. In this paper we follow the terminology established
in [10], and only note that global, absolutely continuous modifications such as a normalization by the area
would not change the main results. For more on this issue from the mathematical perspective, see [12] and
references therein.
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On the Liouville heat kernel for k-coarse MBRW

continuous additive functional (PCAF) with respect to µγ as

F (v) :=

∫ v

0

eγh(Xu)− γ2

2 Eh(Xu)
2

du,

where {Xt} denotes a standard Brownian motion (SBM) on T. The LBM is then defined
formally as Yt := XF−1(t), and the LHK pγt (x, y) is then the density of the Liouville
semigroup with respect to µγ , i.e.

Exf(Yt) =

∫
pγt (x, y)f(y)µ

γ(dy),

where the superscript x is to recall that Y0 = X0 = x.
Let P denote the Gaussian law of h. The main result of this paper is as follows.

Theorem 1.1. Suppose 0 ≤ γ < 1
2 , and x, y ∈ T with x 6= y. For any ε > 0, there

exist k(ε, x, y) and a random variable T0 depending on (x, y, γ, k, ε, h) only so that for any
k ≥ k(ε, x, y) and t < T0,

exp

(
−t

− 1

1+ 1
2
γ2 −ε

)
≤ pγt (x, y) ≤ exp

(
−t

− 1

1+ 1
2
γ2 +ε

)
, P-a.s.. (1.2)

Remark 1.2. The results of this paper shows that the exponent of the LHK with respect
to the k-coarse MBRW is for large k and small γ, roughly (1 + ok(1))/(1 + γ2/2). In
particular, it does not match values one could guess from Watabiki’s formula, see [20, 17],
based on which one would predict that for γ small, the exponent is (1+ o(γ))/(1+ 7γ2/4).

In a forthcoming paper [9], the present authors relate the heat kernel exponent
to the exponents of distances derived from the LQG itself. Together with [8] and
the results of this paper, this shows that the heat kernel estimate for the LQG built
from the standard GFF is not the same as the one for the k-coarse MBRW, and both
differ from Watabiki’s prediction. This is yet another manifestation of the expected
non-universality of exponents related to Liouville quantum gravity, across the class of
logarithmically correlated Gaussian fields. See [6, 8] for other examples. We do not
know what are the different universality classes for the exponents. In particular, as
pointed out by a referee, it is possible that fields with a certain regularity (i.e., such that
f(x, y) = G(x, y) + log |x− y| is a bounded continuous function, also on the diagonal) all
belong to the same universality class.

Heuristics. We describe the strategy behind the proof of the lower bound, and the
upper bound is similar. First, represent hierarchically the k-coarse MBRW as follows.
Let hj be independent centered Gaussian fields on T with covariance

Ehj(x)hj(y) = k log 2×A(x, y; 2−kj) =: gj(x, y). (1.3)

Formally, h =
∑∞
j=0 hj . For given t, choose r such that t = 2−kr(1+

1
2γ

2−o(1)), and decom-
pose the field h into a coarse field ϕr and a fine field ψr, with

ϕr :=

r−1∑
j=0

hj , ψr :=

∞∑
j=r

hj , (1.4)

with respective covariances

G(1)
r (x, y) = k log 2

r−1∑
j=0

A(x, y; 2−kj), G(2)
r (x, y) = k log 2

∞∑
j=r

A(x, y; 2−kj). (1.5)

Note that much like the MBRW, the fine field is not defined pointwise but only in the
sense of distributions.
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With k, r fixed, we partition T into 22(kr+2) boxes of side length s = 2−kr, elements of

BDr = {[a2−kr, (a+ 1)2−kr)× [b2−kr, (b+ 1)2−kr)}a,b∈[0,2kr+2)∩Z.

We call the elements of BDr s-boxes. Similarly to [6], we will find a sequence of
neighboring s-boxes Bi, 1 ≤ i ≤ I (with I ≤ 2kr(1+δ), δ chosen below) connecting x to y,
so that the following properties (of the Bi’s) hold. The coarse field ϕr throughout each
Bi is bounded above by δkr log 2, where δ > 0 is small and will be chosen according to ε
in Theorem 1.1. With probability at least sδ, the LBM associated with the fine field ψr
crosses each Bi within time s2−δ. Forcing the original LBM to pass through this sequence
of boxes, we will then conclude that it spends time at most 2kr(1+δ) × 2δγkr−

1
2γ

2krs2−δ =

2−kr(1+
1
2γ

2−(2+γ)δ) = t1+O(ε) crossing from x to the s-box containing y. This happens with

probability at least (sδ)2
kr(1+δ) ≥ exp(−t

− 1

1+ 1
2
γ2 +ε

), and, modulo a localization argument,
completes the proof of the lower bound.

Structure of the paper. The preliminaries Section 2 is devoted to the study of the
covariance of the k-coarse MBRW h, and in particular to verifying that its covariance
is a bounded perturbation of that of the Gaussian free field. We also discuss the power
law spectrum of µγ and the construction of the LBM with its corresponding PCAF. In
addition, Section 2.2 is devoted to a study of the coarse field ϕr, and results in estimates
on its fluctuations and maximum in a box. Section 3 is devoted to a study of the fine field;
we introduce the notions of slow and fast points/boxes and estimate related probabilities.
(The property of being fast is used in the proof of the lower bound, and that of being slow
is used in the upper bound.) Finally, the proof of lower bound is contained in Section 4,
and that of upper bound is contained in Section 5. Both these sections borrow crucial
arguments from [6].

Notation convention. Throughout the paper, we restrict attention to 0 ≤ γ < 1/2. T
is equipped with the natural metric inherited from the Euclidean distance. We choose
δ > 0 small and k large integer (as functions of ε) and keep them fixed throughout. We
let Ci, i = 0, 1, . . . be universal positive constants, independent of all other parameters.
With r as described above, we let BDr(x) denote the unique element of BDr containing
x. For ` > 0, an `-box means a box of side length `. Let B`(x) denote the `-box centered
at x, and let B(x, `) denote the ball centered at x with radius `. For any box B, let cB
denote the center of B. If B is an `-box, denote by B∗ the (5`)-box centered at cB. We
use P and E to denote the probability and expectation related to the Gaussian field h.
Let P x and Ex be the probability and expectation related to the SBM starting at x. We
let F x and F xr be the PCAFs for the LBM and ψr-LBM started at x, respectively. When
the starting point x needs not be emphasized, we drop the superscript x.

2 Preliminaries

Section 2.1 is devoted to the proof of (1.1). In Section 2.2, we study the coarse field
ϕr and bound its maximum on small boxes as well as the fluctuation across such boxes.
Section 2.3 is devoted to a quick review of the construction and existence of the LBM
and the LHK.

2.1 Proof of (1.1)

Let d denote the T distance between x, y, and fix r0 := r0(d) ≥ 0 integer so that

2−k(r0+1) <
d

2
≤ 2−kr0 .

Denote
θj,d := arcsin(2kjd/2), j = 0, 1, . . . , r0.
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We compute the covariance gj(x, y), c.f. (1.3). For j ≤ r0, note that R := 2−kj ≥ d
2 ; set

θ = θj,d. Then |B(x,R)∩B(y,R)| = (π−2θ)R2−2R2 sin(θ) cos(θ) = πR2−R2(2θ+sin(2θ)),
which implies that A(x, y;R) = 1− 1

π (2θ + sin(2θ)). It follows that with j ∈ Z+,

gj(x, y) =

{
k log 2− k log 2

π

(
2θj,d + sin(2θj,d)

)
, if j ≤ r0,

0, otherwise.
(2.1)

We now write

G(x, y) =

∞∑
j=0

gj(x, y) =

r0∑
j=0

gj(x, y) = k log 2

(r0 + 1)− 1

π

r0∑
j=0

(
2θj,d + sin(2θj,d)

) .

(2.2)
Since r0 = r0(d), we obtain that

G(x, y) = g(d) for some function g : (0, 2] → R+. (2.3)

We now show that g is continuous. Indeed, note that for any fixed j, d 7→ θj,d is
continuous (in d ∈ [0, 21−kj ]). Thus the only possible discontinuities of g on (0, 2] are
whenever − log2(d/2)/k is an integer (i.e. equals r0(d)); however, for such d we obtain
that θr0(d),d = π/2, which together with the continuity of d 7→ θj,d, yields the continuity of
g.

To estimate g(d), note that for all θ ∈ [0, π2 ], 0 ≤ sin(2θ) ≤ 2 sin(θ) and θ ≤ 2 sin(θ), and
therefore

0 ≤ 2θ + sin(2θ) ≤ 6 sin(θ). (2.4)

In particular,

1

π
|
r0∑
j=0

(2θj,d + sin(2θj,d))| ≤
6

π

r0∑
j=0

2−k(r0−j) ≤ 6

π

∞∑
i=0

2−ki ≤ 12

π
≤ 4.

On the other hand, |k(r0 + 1) log 2 + log d| ≤ (k + 1) log 2 ≤ 2k. Combining the last two
displays with (2.2) shows that

|g(d) + log d| ≤ 6k ,

yielding (1.1).

2.2 The coarse field

Note that gj(x, y) is a positive definite kernel on L2(T), since, with R = Rj = 2−kj ,

ĝj(x, y) = |B(0, R)|gj(x, y) =
∫
T

dz 1{|z−x|≤R}1{|z−y|≤R}

and therefore, for any f ∈ L2(T),∫
(T)2

f(x)f(y)ĝj(x, y)dxdy =

∫
T

dz

(∫
T

dx f(x)1{|x−z|≤R}

)2

≥ 0 .

Since gj(x, y) is Lipshitz continuous, Kolmogorov’s criterion implies that the associated
Gaussian field x 7→ hj(x) is continuous almost surely (more precisely, there exists a
version of the field which is continuous almost surely). Consequently, the coarse field ϕr
is also smooth. In this section, we estimate the maximum value as well as the fluctuations
of ϕr in a box.

We begin by recalling an easy consequence of Dudley’s criterion.
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Lemma 2.1. ([1, Theorem 4.1]) Let B ⊂ Z2 be a box of side length ` and {ηw : w ∈ B}
be a mean zero Gaussian field satisfying

E(ηz − ηw)
2 ≤ |z − w|∞/` for all z, w ∈ B.

Then Emaxw∈B ηw ≤ C0, where C0 is a universal constant.

The next lemma is usually referred to as the Borell, or Ibragimov-Sudakov-Tsirelson,
inequality. See, e.g., [16, (7.4), (2.26)] as well as discussions in [16, Page 61].

Lemma 2.2. Let {ηz : z ∈ B} be a Gaussian field on a finite index set B. Set σ2 =

maxz∈B Var(ηz). Then for all λ, a > 0,

E[exp{λ(max
z∈B

ηz − Emax
z∈B

ηz)}] ≤ e
λ2σ2

2 , and P(|max
z∈B

ηz − Emax
z∈B

ηz| ≥ a) ≤ 2e−
a2

2σ2 .

Proposition 2.3. Suppose k is large. For all r ≥ 1,

E(ϕr(x)− ϕr(y))
2 ≤ 2kr|x− y|, ∀x, y ∈ T.

Proof. Use the notation in Section 2.1. Let d = |x− y|, r0 = r0(d). By (2.1) and (2.4),

E(hj(x)− hj(y))
2 ≤

{
2k log 2
π

(
2θj,d + sin(2θj,d)) ≤ 2kd2kj , ∀j ≤ r0,

2k, ∀j > r0,

where we use sin(θj,d) = 2kjd/2 in the case j ≤ r0.
If r0 ≥ r − 1,

E(ϕr(x)− ϕr(y))
2 =

r−1∑
j=0

E(hj(x)− hj(y))
2 ≤ 2kd

r−1∑
j=0

2kj ≤ 2krd.

Otherwise, r0 ≤ r − 2.

E(ϕr(x)− ϕr(y))
2 = 2k(r − r0 − 1) +

r0∑
j=0

2kd2kj ≤ 2k(r − r0 − 1) + 4kd2kr0 .

Note 2krd ≥ 2k(r−r0−1)+1 and r − r0 − 1 ≥ 1. It follows that

E(ϕr(x)− ϕr(y))
2 ≤ k(r − r0 − 1)

2k(r−r0−1)
2krd+

4k

2k(r−r0)
2krd ≤ 2krd,

since k is large enough.

Corollary 2.4. Suppose k is large. Let B denote a box of side length `, and set M :=

maxz∈B ϕr(z). Then, EM ≤
√
2C0

√
2kr`.

Proof. We discretize B by dividing B into 22n identical boxes B̃’s and identifying the
lower left corner c̃ of each B̃ as a point in Z2. Denote by Mn the maximum value
of ϕr over these c̃’s. By the continuity of the coarse field, Mn increases to M as
n → ∞. By Proposition 2.3, we can apply Lemma 2.1 to ϕr/

√
2kr2` and conclude that

EMn ≤
√
2C0

√
2kr`. The monotone convergence theorem yields the result.

Corollary 2.5. There exist r0 = r0(k, δ) such that the following holds for k large and
r ≥ r0. Enumerate the boxes in BDr arbitrarily as Bi, i = 1, . . . , 22(kr+2). Denote
Mi = maxx∈B∗

i
ϕr(x), M

f
i = supx∈B∗

i
|ϕr(x) − ϕr(cBi)|, and Mf = max1≤i≤22(kr+2) M

f
i .

Then
P(Mi ≥ δkr log 2) ≤ 2e−

1
8 δ

2kr log 2, P(Mf ≥ δkr log 2) ≤ e−r.
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Proof. Note that, for all x, Eϕr(x)2 = kr log 2. By Corollary 2.4, EMi ≤
√
2C0

√
5 ≤

1
2δkr log 2 for r ≥ r0(k, δ). By Lemma 2.2,

P(Mi ≥ δkr log 2) ≤ P(Mi − EMi ≥
1

2
δkr log 2) ≤ 2e−( 1

2 δkr log 2)2/(2kr log 2) = 2e−
1
8 δ

2kr log 2.

Denote M̂f
i := supx∈B∗

i
(ϕr(x) − ϕr(cBi

)). Similarly, we have P(M̂f
i ≥ δkr log 2) ≤

2e−
1
32 (δkr log 2)2 , noting EM̂f

i = EMi and by Proposition 2.3, E(ϕr(x)−ϕr(cBi
))2 ≤ 2kr|x−

cBi
| ≤ 4 for all x ∈ B∗

i . Furthermore, by a union bound and symmetry,

P(Mf ≥ δkr log 2) ≤
22(kr+2)∑
i=1

2P(M̂f
i ≥ δkr log 2) ≤ 64× 22kre−

(δk log 2)2

32 r2 ≤ e−r,

where in the last inequality we use r ≥ r0(k, δ).

2.3 Construction of the LBM and LHK

There are several ways to construct the Liouville measure µγ with respect to h, say,
via the method of Gaussian multiplicative chaos [15]. In our case, since we deal with
γ < 1/2, it is particulaly simple by applying L2 methods. So, in the rest of this section
we concentrate on the construction of the LBM and LHK.

Suppose ε = 2−kr. Noting (2.3) and d ≤ 2, we can assume x, y ∈ [−1, 1]2, which is
regarded as a subset of T. Then,

G(x, y) = G(2)
r (εx, εy), i.e. G(εx, εy) = G(x, y) +G(1)

r (εx, εy) (2.5)

since A(εx, εy; 2−k(r+j)) = A(x, y; 2−kj). By (2.1),

G(1)
r (εx, εy) ≤ G(1)

r (εx, εx) = kr log 2 = log
1

ε
.

It follows that

G(εx, εy) ≤ G(x, y) + log
1

ε
. (2.6)

By a standard reasoning (see [19, Theorem 2.14] for example), one has

Eµγ(B(0, ε))q ≤ Ĉ(q)εξ(q),

where Ĉ(q) is a constant depending on q (as well as γ), and

ξ(q) = (2 +
γ2

2
)q − γ2

2
q2.

For any 2−k(r+1) < ε ≤ 2−kr, we take C(q) = Ĉ(q)2−kξ(q) and conclude that

Eµγ(B(0, ε))q ≤ Eµγ(B(0, 2−kr))q ≤ Ĉ(q)2−krξ(q) ≤ C(q)εξ(q). (2.7)

Recall that the coarse field ϕr is smooth, so

Hr(u) :=

∫ u

0

eγϕr(Xv)− 1
2γ

2Eϕr(Xv)
2

dv

is well-defined.
With (2.6) and (2.7), one can follow the arguments in [13, Section 2] and obtain the

following conclusions. Let F denote the PCAF associated with µγ . Then, P-a.s., the limit
of Hr in P x-probability exists and it is the PCAF F ; that is, P x(sup0≤t≤T |F (u)−Hr(u)| >
a) →r→∞ 0, for all a > 0 and T > 0. Further, the process Yt := XF−1(t) is a strong
Markov process, which is called the LBM with respect to µγ . The LHK pγt (x, y) exists and
satisfies Exf(Yt) =

∫
f(y)pt(x, y)µ

γ(dy). Furthermore, by [14, Theorem 0.1] and parallel
arguments in [17], pγt (x, y) is continuous in (t, x, y).
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On the Liouville heat kernel for k-coarse MBRW

3 Fast/slow points/boxes of the fine field

This section is devoted to the study of properties of the fine field. For the lower bound
on the LHK, we need to construct regions which are fast to cross for the LBM, while for
the upper bound we will need to create obstacles, i.e. regions which force the LBM to be
slow. Toward this end, we introduce in Definitions 3.1 and 3.2 the notions of fast/slow
points and boxes, and estimate, in Lemmas 3.3 and 3.4, the probability that a point/box
is fast/slow.

Throughout, we fix s = 2−kr for an appropriate integer r ≥ 1 (as explained in the
introduction, r, and hence s, are chosen so that t = s1+

1
2γ

2+o(1)). This choice determines
the fine field ψr, see (1.4). With this choice, one can construct the PCAF Fr based
on ψr in the same way as F was constructed, by replacing the measure µγ with the

truncated measure µγr written formally as µγr (dx) = eγψr(x)− γ2

2 Eψr(x)
2

dx (as before, the
actual construction involves the smooth cutoff ψr,w :=

∑w
j=r hj and taking the limit as

w → ∞). Formally, we write

Fr(v) =

∫ v

0

eγψr(Xu)− 1
2γ

2Eψr(Xu)
2

du.

We note also that the sequence of approximating PCAF

Fr,w(v) :=

∫ v

0

eγψr,w(Xu)− 1
2γ

2Eψr,w(Xu)
2

du

converges as w → ∞, in the sense described at the end of Section 2, to Fr.
Fix δ1, δ2, δ3, ε1, ε2, ε3 > 0 small, possibly depending on k, γ and s. Fix z ∈ T and

recall that B`(z) denotes the `-box centered at z. Let σz,` denote the time that the SBM
(starting from z) hits ∂B`(z).

Definition 3.1 (Fast points and boxes). A point z is said to be fast if

P z(Fr(s
2 ∧ σz,6s) ≤ s2/δ1) ≥ 1− δ2.

The set of fast points is denoted by F . An s-box B is said to be fast if |B ∩ F| ≥ δ3s
2.

Definition 3.2 (Slow points and boxes). A point z is said to be slow if

P z(Fr(σz,s) ≥ ε1s
2) ≥ ε2. (3.1)

The set of slow points is denoted by S. An s-box B is said to be slow if |B ∩ S| ≥ ε3s
2.

We emphasize that the notions of fast/slow points and boxes depend on the fine field
ψr only. Further, a point (or box) may be fast and slow simultaneously.

Our fundamental estimate concerning fast/slow points is contained in the next lemma.

Lemma 3.3. There exist universal positive constants C2, C3 such that the following hold.
(i) P(z ∈ F) ≥ 1− δ1

δ2
.

(ii) For ε1 ≤ C2 and ε2 ≤ C3e
−6kγ2

, we have P(z ∈ S) ≥ 120C3e
−6kγ2

.

Proof. (i) Set ξ = F zr (s
2 ∧ σz,6s) and η = P z(ξ > s2/δ1). By definition,

P(z /∈ F) = P(η > δ2) ≤ Eη/δ2.

Note that

Eη = EzP(ξ > s2/δ1) ≤
δ1
s2
EzEξ =

δ1
s2
Ez(s2 ∧ σz,6s) ≤ δ1.

Combining the last two displays, one obtains P(z /∈ F) ≤ δ1/δ2, completing the proof.
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On the Liouville heat kernel for k-coarse MBRW

(ii) We use the abbreviation σ = σz,s and set now ξ = F zr (σ) and η = P z(ξ ≥ ε1s
2).

Without loss of generality, we suppose z = (0, 0) and consistently drop z from the notation,
writing Bs = Bs(z). Since η ≤ 1, we have Eη = Eη1{η≥ε2} + Eη1{η<ε2} ≤ P(η ≥ ε2) + ε2.
By definition,

P((0, 0) ∈ S) = P(η ≥ ε2) ≥ Eη − ε2 = EP(ξ ≥ ε1s
2)− ε2. (3.2)

We are going to estimate P(ξ ≥ ε1s
2) via the second moment method. Recall that Eξ = σ,

which is of order s2. To compute the second moment, note that since γ < 1/2, the
sequence of squares of approximating PCAFs (Fr,w)2 are uniformly (in w) integrable (see
the argument just after (3.3) below) and therefore

Eξ2 = EFr(σ)
2 =

∫ σ

0

∫ σ

0

Eeγψr(Xu)− 1
2γ

2Eψr(Xu)
2+γψr(Xv)− 1

2γ
2Eψr(Xv)

2

dudv

=

∫ σ

0

∫ σ

0

eγ
2G(2)

r (Xu,Xv)dudv =

∫
w,w′∈Bs

eγ
2G(2)

r (w,w′)ν(dw)ν(dw′) =: Iγ2 ,

where {Xu} is the SBM starting from (0, 0), G(2)
r is defined in (1.5), and ν denotes the

occupation measure of {Xu} before exiting Bs, i.e.∫
w∈Bs

f(w)ν(dw) =

∫ σ

0

f(Xu)du.

Let ŵ = 2krw and ŵ′ = 2krw′, with ŵ, ŵ′ ∈ T. By (1.1) and (2.5),

G(2)
r (w,w′) = G(ŵ, ŵ′) ≤ log

1

|ŵ − ŵ′|
+ 6k = log

s

|w − w′|
+ 6k.

Consequently,

Iγ2 ≤ e6kγ
2

sγ
2

∫
w,w′∈Bs

1

|w − w′|γ2 ν(dw)ν(dw
′) = e6kγ

2

sγ
2

∫ σ

0

∫ σ

0

1

|Xu −Xv|γ2 dudv.

Let X̂u = 1
sXs2u, and let σ̂ = σ/s2 be the time that the SBM {X̂u} started at (0, 0) exits

[−1/2, 1/2]2. Then

Iγ2 ≤ e6kγ
2

s4
∫ σ̂

0

∫ σ̂

0

1

|X̂u − X̂v|γ2
dudv.

Note | X̂u−X̂v√
2

|γ2 ≥ | X̂u−X̂v√
2

|1/4, since |X̂u − X̂v| ≤
√
2 and γ2 ≤ 1/4. Thus,

|X̂u − X̂v|γ
2

≥ 1

2
|X̂u − X̂v|1/4.

It follows that

Iγ2 ≤ 2e6kγ
2

s4Î , where Î =

∫ σ̂

0

∫ σ̂

0

1

|X̂u − X̂v|1/4
dudv. (3.3)

Note that Î is a random variable depending only on the SBM {X̂u}. By [18, Theorem 4.33],
EÎ <∞. Consequently, there exists a universal constant C1 such that P (Î ≤ 1

2C1) ≥ 3/4.

Hence, the event E1 := {Eξ2 ≤ C1e
6kγ2

s4} has probability P (E1) ≥ 3/4. By the scaling
invariance of the SBM, there exists a universal positive constant C2 such that the event
E2 = {σ ≥ 2C2s

2} has probability ≥ 3/4. Thus, P (E1 ∩ E2) ≥ 1/4.
Assume E1 ∩ E2 happens. On the one hand, on E1,

P(ξ ≥ ε1s
2) ≥

(
Eξ1{ξ≥ε1s2}

)2
Eξ2

≥ 1

C1e6kγ
2s4

(
Eξ1{ξ≥ε1s2}

)2
.
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On the other hand, on E2, ξ = Fr(σ) ≥ Fr(2C2s
2) =: ζ. Note that 2C2s

2 = Eζ ≤
Eζ1{ζ≥ε1s2} + ε1s

2. We have Eξ1{ξ≥ε1s2} ≥ Eζ1{ζ≥ε1s2} ≥ (2C2 − ε1)s
2 ≥ C2s

2, where we
use the assumption ε1 ≤ C2. Thus,

P(ξ ≥ ε1s
2) ≥

(
C2s

2
)2

C1e6kγ
2s4

=
C2

2

C1
e−6kγ2

, on E1 ∩ E2.

Consequently,

EP(ξ ≥ ε1s
2) ≥ E

(
P(ξ ≥ ε1s

2)1{E1∩E2}
)
≥ C2

2

C1
e−6kγ2

× P (E1 ∩ E2) ≥
C2

2

4C1
e−6kγ2

.

Take C3 := C2
2/(484C1). Then EP(ξ ≥ ε1s

2) ≥ 121C3e
−6kγ2

. This, together with (3.2) and
the assumption ε2 ≤ C3e

−6kγ2

, implies the result.

The next lemma estimates the probability that an s-box B is fast/slow.

Lemma 3.4. (i) P(B is fast) ≥ 1− δ1
δ2

− δ3.

(ii) Suppose ε2 ≤ C3e
−6kγ2

and ε3 ≤ C2
3e

−12kγ2

. Then, P(B is slow) ≥ 1− εC3e
−6kγ2

2−2k

1 if
ε1 is less than some constant ε1(γ, k).

Proof. (i) By Lemma 3.3(i) and the translation invariance of the fine field ψr, E|B ∩ F| ≥
(1− δ1

δ2
)s2. Since |B∩F| ≤ |B| ≤ s2, |B∩F| ≤ |B∩F|1{|B∩F|<δ3s2}+|B∩F|1{|B∩F|≥δ3s2} ≤

δ3s
2 + s21{|B∩F|≥δ3s2}. Hence, E|B ∩ F| − δ3s

2 ≤ s2P(|B ∩ F| ≥ δ3s
2) = s2P(B is fast).

Therefore, P(B is fast) ≥ 1
s2

(
E|B ∩ F| − δ3s

2
)
≥ 1− δ1

δ2
− δ3.

(ii) Our strategy is as follows. We will divide B into n2 identical boxes B̃ of side
length s̃ = s/n, where n is to be chosen properly to support the following arguments.
In each box B̃, one can find O(s2/n2) slow points in average, by Lemma 3.3(ii). Then,
we would like to use large deviations to show that, with high probability, there are at
least δ3s2 slow points in B, i.e. B is slow. Unfortunately, the random variables |B̃ ∩ S|’s,
measuring the size of the cluster of slow points in the smaller boxes B̃, are heavily
dependent. To obtain the appropriate large deviation estimates by independence, we
will replace σz,s in (3.1) by σz,s̃, and use a new parameters ε̃1 to define the property of a

point to be s̃low. Let S̃ consist of s̃low points. Then, the random variables |Bi ∩ S̃|’s are
almost independent, and good large deviation estimates for their sums can be obtained.
Finally, we will show that by choosing ε̃1 properly, B ∩ S̃ ⊆ B ∩ S with high probability,
completing the proof.

The actual proof is in four steps. In the first step, we set the parameters n and ε̃1,
and give the definition of being s̃low. In the second step, we will show |B ∩ S̃| ≥ δ3s

2

with high probability. In the third step, we will show B ∩ S̃ ⊆ B ∩ S with high probability.
In the last step, we collect the results obtained and show (ii).

Step 1. Let

κ :=
√

− log ε1, r0 := b1
k
log2 κc, n := 2kr0 . (3.4)

Equivalently, we write ε1 in the form of e−κ
2

, pick r0 such that 2kr0 ≤ κ < 2k(r0+1), and
set n = 2kr0 . Take

ε̃1 = n2γn+
γ2

2 +2ε1. (3.5)

The parameters n and ε̃1 depend only on ε1 (and k,γ). As ε1 → 0, we have κ → ∞, and
r0 → ∞ as well as n → ∞. Furthermore, ε̃1 → 0, since ε̃1 ≤ e(2γn+γ

2/2+2) logne−κ
2 ≤

e(2γn+γ
2/2+2) logn−n2

and n → ∞. Therefore, there exists a constant ε1(γ, k) such that
ε̃1 ≤ C2 if ε1 ≤ ε1(γ, k). Furthermore, we pick ε1(γ, k) such that

2e−
(2n log n−2C0

√
n)2

2 log n ≤ e−n
2 logn, e−2C3e

−6kγ2
n2

+ e−n
2 logn ≤ e−C3e

−6kγ2
n2

(3.6)
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as ε1 ≤ ε1(γ, k). Note that ε̃1 and ε2 satisfy the assumptions in Lemma 3.3(ii) for ε1
and ε2.

Let s̃ := s/n, and r̃ := r + r0 such that s̃ = 2−kr̃. We say that

a point z is s̃low if P z(Fr̃(σz,s̃) ≥ ε̃1s̃
2) ≥ ε2.

Denote by S̃ the set of s̃low points.

Step 2. Suppose B̃ is an s̃-box. Applying Lemma 3.3(ii) to the s̃low points, we obtain
E|B̃ ∩ S̃| ≥ 120C3e

−6kγ2

s̃2 = 2as̃2, where we denote

a = 60C3e
−6kγ2

. (3.7)

Note that |B̃ ∩ S̃| ≤ s̃2, which implies that E|B̃ ∩ S̃| = E|B̃ ∩ S̃|1{|B̃∩S̃|≥as̃2} + E|B̃ ∩
S̃|1{|B̃∩S̃|<as̃2} ≤ s̃2P(|B̃ ∩ S̃| ≥ as̃2) + as̃2. It follows that

P
(
|B̃ ∩ S̃| ≥ as̃2

)
≥ 1

s̃2

(
E|B̃ ∩ S̃| − as̃2

)
≥ a. (3.8)

Without loss of generality, we suppose B = [0, s)2. We next partition B into n2

identical s̃-boxes, from which we pick those of the form [4is̃, (4i+ 1)s̃)× [4js̃, (4j + 1)s̃),
i, j ∈ Z ∩ [0, n/4), and enumerate them arbitrarily as B̃i, i = 1, · · · , (n/4)2. Note that
B̃i ∩ S̃ depends on the restriction of the fine field ψr̃ to the (2s̃)-box centered at cB̃i

, and
ψr̃(w) is independent of ψr̃(w′) if |w − w′| ≥ 2s̃. It follows that the random variables
|B̃i ∩ S̃|’s are mutually independent. Let

χi = 1 if |B̃i ∩ S̃| ≥ as̃2, χi = 0 otherwise.

Then
∑n2/16
i=1 χi ≥ ε3s

2/(as̃2) implies |B ∩ S̃| ≥ as̃2 × ε3s
2/(as̃2) = ε3s

2. It follows that

P(|B ∩ S̃| ≥ ε3s
2) ≥ P

n2/16∑
i=1

χi ≥
ε3s

2

as̃2

 . (3.9)

Now we estimate the right hand side of (3.9) via large deviations. Note that the χi’s
are Bernoulli random variables, with P (χi = 1) ≥ a, see (3.8), and therefore

Ee−χi = 1− (1− e−1)P(χi = 1) ≤ 1− (1− e−1)a ≤ exp(−(1− e−1)a).

Using independence and Chebyshev’s inequality we get

P

n2/16∑
i=1

χi <
ε3s

2

as̃2

 ≤ exp

(
ε3s

2

as̃2

)(
Ee−χ1

)n2/16 ≤ exp

(
ε3s

2

as̃2
− n2

16
(1− e−1)a

)
. (3.10)

Recall that s̃ = s/n, a = 60C3e
−6kγ2

, see (3.7), and ε3 ≤ C2
3e

−12kγ2

= ( a60 )
2 by assumption.

Thus,
ε3s

2

as̃2
− n2

16
(1− e−1)a ≤

(
1

602
− 1− e−1

16

)
an2 ≤ −2C3e

−6kγ2

n2.

Combining (3.10) and (3.9), we conclude that

P(|B ∩ S̃| < ε3s
2) ≤ P

n2/16∑
i=1

χi <
ε3s

2

as̃2

 ≤ e−2C3e
−6kγ2

n2

. (3.11)
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Step 3. Abbreviate σ = σz,s and σ̃ = σz,s̃. Recall that z ∈ S if P z(Fr(σ) ≥ ε1s
2) ≥ ε2

while z ∈ S̃ if P z(Fr̃(σ̃) ≥ ε̃1s̃
2) ≥ ε2. Since s̃ < s, it holds that σ̃ < σ. Consequently,

F zr (σ̃) ≤ F zr (σ). Therefore,

P z(Fr(σ) ≥ ε1s
2) ≥ P z(Fr(σ̃) ≥ ε1s

2), for all z. (3.12)

We are going to compare F zr (σ̃) with F
z
r̃ (σ̃), and show below that

P (E) ≥ 1− e−n
2 logn, where E = {P z(Fr(σ̃) ≥ ε1s

2) ≥ P z(Fr̃(σ̃) ≥ ε̃1s̃
2) for all z ∈ B}.

(3.13)
Combined (3.12), it follows that if E occurs then z ∈ S̃ ⇒ z ∈ S, for all z ∈ B, and in
particular E ⊂ {B ∩ S̃ ⊆ B ∩ S}. It follows then from (3.13) that

P(B ∩ S̃ * B ∩ S) ≤ P(Ec) ≤ e−n
2 logn, (3.14)

which we will use in the next step. Before doing that, we first complete the proof of
(3.13).

Let φ = ψr − ψr̃, which has covariance

Gr,r̃(w1, w2) = k log 2

r̃−1∑
j=r

A(w1, w2; 2
−kj).

Set

M = max
w∈B̆

(−φ(w)), where B̆ = [−1

2
s,

3

2
s)2 is the 2s-box centered at cB.

Set B̂ = 2krB̆, which has side length 2. Note that A(w1, w2, 2
−kj) = A(ŵ1, ŵ2, 2

−k(j−r)),
where ŵi = 2krwi. Therefore, {φ(w), w ∈ B̆} is a copy of the coarse field {ϕr0(ŵ), w ∈ B̂},
with w being identified as ŵ = 2krw, where we recall that r0 = r̃ − r and is defined in
(3.4). By Corollary 2.4, EM ≤

√
2C0

√
2kr0 × 2 = 2C0

√
n. Since Eφ(w)2 = kr0 log 2 = log n

for all w, we have

P(M ≥ 2n log n) ≤ 2e−
(2n log n−2C0

√
n)2

2 log n ≤ e−n
2 logn, (3.15)

where we use Lemma 2.2, and the last inequality holds by (3.6). Noting for all z ∈ B,
the s̃-box centered at z is contained in B̆, we have Xu ∈ B̆ for u ≤ σ̃, where we drop the
superscript z in Xu. Therefore, on the event {M < 2n log n}, it holds that for all z ∈ B,

F zr (σ̃) =

∫ σ̃

0

eγψr̃(Xv)− γ2

2 Eψr̃(Xv)
2

× eγφ(Xv)− γ2

2 Eφ(Xv)
2

dv

≥ e−γM− γ2

2 kr0 log 2Fr̃(σ̃) ≥ e−γ2n logn− γ2

2 lognFr̃(σ̃),

where in the first equality we use the independence of ψr̃ and φ. By the definition of ε̃1
in (3.5),

P z(Fr(σ̃) ≥ ε1s
2) ≥ P z(Fr̃(σ̃) ≥ eγ2n logn+ γ2

2 lognε1s
2) = P z(Fr̃(σ̃) ≥ ε̃1s̃

2).

Therefore, we conclude that {M < 2n log n} ⊆ E . This, together with (3.15), implies
(3.13) and completes the proof of (3.14).

Step 4. If |B∩S̃| ≥ ε3s
2 and B∩S̃ ⊆ B∩S, we have |B∩S| ≥ ε3s

2, i.e. B is slow. Hence,

1− P(B is slow) ≤ P(|B ∩ S̃| < ε3s
2) + P(B ∩ S̃ * B ∩ S).
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By (3.11) and (3.14), it follows that

1− P(B is slow) ≤ exp{−2C3e
−6kγ2

n2}+ exp{−n2 log n}

≤ exp{−C3e
−6kγ2

n2} ≤ exp{−C3e
−6kγ2

2−2kκ2} = εC3e
−6kγ2

2−2k

1 ,

where in the second inequality we use (3.6) and in the last two inequalities we use (3.4).
This implies (ii) and completes the proof of the lemma.

The next lemma bounds below F zr (σz,3s) uniformly in z in slow boxes.

Lemma 3.5. There exists a universal positive constant C4 such that the following holds.
Suppose B is slow. Then, P z(Fr(σz,3s) ≥ ε1s

2) ≥ C4ε2ε3 for all z in the closure of B.

Proof. Abbreviate σ′ = σz,3s. Let ρ1(w,w′) denote the heat kernel of the SBM, killed upon
exiting [0, 3]2, at time 1. Let C4 := minw,w′∈[0.5,2.5]2 ρ1(w,w

′), which is positive. Suppose
that the SBM started from z hits B ∩ S at time σ∗ and point w. Since |B ∩ S| ≥ ε3s

2,
we have that P z(σ∗ < σ′) ≥ C4ε3. On σ∗ < σ′, F zr (σ

′) ≥ σ, where σ is the time that
the ψr-LBM started from w exits Bs(w). Since w ∈ S, Pw(σ ≥ ε1s

2) ≥ ε2. By the
strong Markov property, P z(Fr(σ′) ≥ ε1s

2) ≥ P z(σ∗ < σ′, σ ≥ ε1s
2) ≥ C4ε3 × ε2, which

completes the proof.

4 Lower bound

We continue to take s := 2−kr = t
1

1+ 1
2
γ2 +o(1)

. To obtain the lower bound on the LHK,
we will force the LBM {Y xu }, started at x ∈ T, to hit y ∈ T according to the following
three steps. First, we will force the LBM to hit inside BDr(y) a point which is very fast (a
notion to be defined below), then hit inside B(y, s1+β

′
) (where β′ > 0 is a parameter to be

chosen), and finally we force the LBM to hit y. We will allow time about t/3 for each step,

and show that these steps respectively bring factors e−s
−(1+o(1))

, s2+2β′+o(1) and O(1) for

the lower bound of the heat kernel. This will give the lower bound e−s
−(1+o(1))

s2+2β′+o(1),

which is ≥ exp(−t
− 1

1+ 1
2
γ2 −ε

) as required.
The argument is naturally split according to these steps. In Section 4.1, we compute

the probabilities of the first step in Lemma 4.1 and of the second one in Lemma 4.3, after
introducing the notion of very fast points; in that section, r will be arbitrary, i.e. not tied
to the value of t. We pick the value of r according to t in Section 4.2, where we will deal
with the third step and show the lower bound.

4.1 Lower bound for hitting probability

Suppose δ > 0, r ≥ 1 integer, and set s = 2−kr. Take δ1 = s3δ, δ2 = s2δ, δ3 = sδ, and
define fast points/boxes with respect to the parameters δ1, δ2 and δ3.

Lemma 4.1. There exist positive constants c, k0 = k0(δ), c0 = c0(k, δ) and r0 =

r0(x, y, γ, δ, k), not depending on r but possibly depending on k, γ, such that the fol-
lowing holds for k ≥ k0 and r ≥ r0. Suppose D is a random set (i.e. depending on h)
and D ⊆ BDr(y). Let ς1 be the hitting time of D by the LBM started from x. Then, with
P-probability at least 1− e−c0r − P(|D| < δ3s

2),

P x(ς1 ≤ s1+
1
2γ

2−4δ−cγδ) ≥ e−s
−(1+2δ)

. (4.1)

Proof. We construct a sequence of neighboring s-boxes connecting x and y, as follows.
Discretize T by regarding each B ∈ BDr (equivalently, its center cB) as a point in Z2.
We investigate the discrete Gaussian field Φ := {ϕr(cB), B ∈ BDr}, together with the
Bernoulli process Ξ := {ξB , B ∈ BDr} defined by ξB := 1 iff B is fast. Next we will apply
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[6, Theorem 1.7] to (Φ,Ξ). Set N = 2kr, and correspond B, ϕr(cB), ξB respectively to
w ∈ Z2, ϕN,w, ξN,w in [6]. Then,

• Ξ is independent of Φ, since Ξ depends on the fine field while Φ depends on the
coarse field.

• The collection of random variables {ξB}B∈BDr has finite range dependence, in
particular ξB is independent of ξB′ if |cB − cB′ |∞ > 9s. (In the language of [6], Ξ is
q-dependent for q = 9.)

• P(ξB = 1) is equal to a same value p for all B.

For constants c(≥ 2), δ, r, we introduce the event E1 = E1(c, δ, r, k) defined as the existence
of a sequence Bi, i = 1, · · · , I of s-boxes in BDr satisfying the following properties:

(a) ϕr(cBi
) ≤ (c− 1)δkr log 2, i = 1, . . . , I.

(b) Bi is fast (i.e., ξBi = 1), i = 1, . . . , I.

(c) I ≤ s−(1+δ).

(d) B1 = BDr(x), BI = BDr(y), and Bi+1 is a neighbor of Bi, i.e. |cBi+1
− cBi

| = s,
i = 1, . . . , I − 1.

By Lemma 3.4, p ≥ 1 − 2sδ → 1 as r → ∞. In particular, p is larger than p1 defined in
[6, Theorem 1.7], when r ≥ r1(δ). As in [6, Theorem 1.7], there exist positive constants
c(≥ 2), k0, c̃0 = c̃0(δ) and r2 = r2(x, y, γ, δ, k) ≥ r1 so that, for k ≥ k0 and r ≥ r2,

P(E1) ≥ 1− (1− p)1/400 − e−c̃0r, (4.2)

where we use q = 9 and p→ 1 as r → ∞.

Remark 4.2. (i) The space is the torus T here, while it is a box in [6]. One can identify
the torus as [0, 4)2, and consider the box [1, 3]2 where we locate x and y, noting that h(z)
is independent of h(w) if |z − w| ≥ 2. (ii) To achieve (4.2), it is not crucial whether one
uses balls B(x,R) (as in our situation) or boxes B2R(x) (as in [6]) to define A(x, y;R).
That is, the proof of (4.2) is similar to that of [6, Theorem 1.7].

Let E2 be the event that the following properties hold.

(a′) |ϕr(z)− ϕr(cB)| ≤ δkr log 2 for all z ∈ B∗ and B ∈ BDr.

(b′) x is fast.

By Corollary 2.5, P(a′) ≥ 1− e−r. By Lemma 3.3, P(b′) ≥ 1− δ1/δ2 = 1− 2−kδr. Take c0
such that 2

1
400 2−

kδ
400 r + e−c̃0r + e−r + 2−kδr ≤ e−c0r. Then, we have

P(E) ≥ 1− e−c0r − P(|D| < δ3s
2), where E = E1 ∩ E2 ∩ {|D| ≥ δ3s

2}.

Next, we are going to show that (4.1) holds on E , completing the proof. Suppose E
holds. We will force the SBM to follow this sequence of boxes; to control the LBM time,
we will force also passage through fast points, and some additional properties, as follows.
Recall that {Xx

u} is the SBM starting from x. Construct a sequence of hitting times σi as
follows. Let σ1 = 0. Then Xx

σ1
= x ∈ B1 ∩ F by (b′). Suppose that σi has been defined,

such that xi := Xx
σi

∈ Bi ∩ F . Define

σi+1 := inf{u ≥ σi : X
x
u ∈ A}, and τi = σi+1−σi, where A =

{
Bi+1 ∩ F , if i ≤ I − 2,

D, if i = I − 1.

Informaly, τi is the time it takes for the SBM to cross Bi into the next box Bi+1 and hit a
fast point.

Note that (a) together with (a′) implies that

(a′′) For all z ∈ ∪iB∗
i , ϕr(z) ≤ cδkr log 2.
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In order to take advantage of (a′′), we need to also control the path of the SBM when
traveling from xi to Bi+1 ∩ F . Toward this end, define

σ̃i = inf{u ≥ σi : X
x
u ∈ ∂B∗

i } and τ̃i = σ̃i − σi.

Thus, τ̃i is the time it takes the SBM to exit B∗
i when starting at xi. We will force the

events τi ≤ s2 and τi ≤ τ̃i to ensure that the LBM stays inside B∗
i and spends a short

enough time to hit Bi+1 ∩ F .
Let ρ1(w,w′) denote the heat kernel of the SBM, killed at exiting [0, 5]2, at time 1. Let

C5 :=
1

2
min

w,w′∈[1,4]2
ρ1(w,w

′), (4.3)

which is positive. Then, for any i ≥ 1,

P x(τi ≤ s2 ≤ τ̃i) ≥ 2C5δ3

since on E , |Bi+1 ∩ F| ≥ δ3s
2 by (b), and |D| ≥ δ3s

2. Let

τ̂i := inf{u ≥ 0 : Xσi+u ∈ ∂B6s(xi)}.

Recall that xi is a fast point, ∀i ≤ I − 1. By the strong Markov property of the ψr-LBM,

P x(Fr(σi + s2 ∧ τ̂i)− Fr(σi) ≤ s2/δ1) = P xi(Fr(s
2 ∧ σxi,6s) ≤ s2/δ1) ≥ 1− δ2.

Therefore,

P x(τi ≤ s2 ≤ τ̃i, Fr(σi + s2 ∧ τ̂i)− Fr(σi) ≤ s2/δ1) ≥ 2C5δ3 − δ2 ≥ C5δ3

for r larger than r3 := r3(x, y, γ, δ, k) ≥ r2, where we used that δ2 = o(δ3) as r → ∞.
By definition, τ̃i ≤ τ̂i. Hence, if τi ≤ s2 ≤ τ̃i, we have τi ≤ s2 ∧ τ̂i thus Fr(σi+1) ≤
Fr(σi + s2 ∧ τ̂i), and by (a′′),

F x(σi+1)− F x(σi) ≤ eγcδkr log 2− 1
2γ

2kr log 2
(
F xr (σi+1)− F xr (σi)

)
.

Collecting the above inequalities, we have that for i = 1, . . . , I − 1,

P x(F (σi+1)− F (σi) ≤ eγcδkr log 2− 1
2γ

2kr log 2s2/δ1) ≥ C5δ3. (4.4)

Finally, note that ς1 ≤
∑I−1
i=1 (F

x(σi+1) − F x(σi)). By (c), (4.4) and the strong Markov
property of the LBM,

P x(ς1 ≤ Ieγcδkr log 2− 1
2γ

2kr log 2s2/δ1)) ≥ (C5δ3)
I ≥ e−s

−(1+2δ)

(4.5)

for r ≥ r0 ≥ r3. Note however that Ieγcδkr log 2− 1
2γ

2kr log 2s2/δ1 ≤ s1+
1
2γ

2−4δ−cγδ. Together
with (4.5), this completes the proof of the lemma.

Let β′ > 0 be fixed. Abbreviate B = BDr(y), and set A = B ∩B(y, s1+β
′
). Denote by

τA (respectively, τ∗) the times that the SBM hits A (respectively, ∂B∗). A point z ∈ B is
called very fast if P z(Fr(s2) ≤ s2−δ|τA ≤ s2 ≤ τ∗) ≥ 1/2. Let VF denote the set of very
fast points. We would like to mention that the very fast property does not imply the fast
property.

Lemma 4.3. (i) P(|VF| ≥ δ3s
2) ≥ 1− 3sδ.

(ii) Let ς2 denote the time that the LBM hits A. Then, there exists r1 = r1(δ, γ, k) such
that the following holds for r ≥ r1. With P-probability at least 1− 2e−

1
8 δ

2kr log 2,

P z(ς2 ≤ s2+
1
2γ

2−δ−γδ) ≥ s2+2β′+δ, ∀z ∈ VF . (4.6)
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Proof. The proof of (i) is parallel to Lemma 3.4(i) combined with Lemma 3.3(i), while
that of (ii) is parallel to (4.4).

(i) Set ξ = F zr (s
2) and η = P z(ξ > s2−δ|τA ≤ s2 ≤ τ∗). By a proof similar to that of

Lemma 3.3(i), P(z /∈ VF) = P(η > 1/2) ≤ 2Eη = 2Ez
(
P(ξ > s2−δ)|τA ≤ s2 ≤ τ∗

)
≤ 2sδ

since P(ξ > s2−δ) ≤ sδ−2Eξ = sδ, for all z ∈ B. Then, (1− 2sδ)s2 ≤ E|VF| ≤ s2P(|VF| ≥
δ3s

2) + δ3s
2, i.e. P(|VF| ≥ δ3s

2) ≥ 1− 2sδ − δ3 = 1− 3sδ, where we recall that δ3 = sδ.
(ii) For any z ∈ VF ,

P z(Fr(s
2) ≤ s2−δ, τA ≤ s2 ≤ τ∗) ≥ 1

2
P z(τA ≤ s2 ≤ τ∗).

With C5 defined in (4.3), we have P z(τA ≤ s2 ≤ τ∗) ≥ 2C5|A| ≥ 2C5 × 1
4πs

2(1+β′), noting

that A contains at least a quarter of B(y, s1+β
′
). It follows that, for r large enough,

P z(Fr(s
2) ≤ s2−δ, τA ≤ s2 ≤ τ∗) ≥ C5π

4
s2+2β′

≥ s2+2β′+δ.

By Corollary 2.5, with probability ≥ 1 − 2e−
1
8 δ

2kr log 2, we have ϕr(w) ≤ δkr log 2 for all
w ∈ B∗. On this event,

{Fr(s2) ≤ s2−δ, τA ≤ s2 ≤ τ∗} ⇒ {ςz2 ≤ eγδkr log 2− 1
2γ

2kr log 2s2−δ}

for all z ∈ B. Noting that eγδkr log 2− 1
2γ

2kr log 2s2−δ = s2+
1
2γ

2−δ−γδ completes the proof.

4.2 Proof of the lower bound in (1.2)

We take

rt = d− log t− log 3

(1 + 1
2γ

2 − 4δ − cγδ)k log 2
e,

and set s = 2−krt so that

2−k(t/3)
1

1+ 1
2
γ2−4δ−cγδ < s ≤ (t/3)

1

1+ 1
2
γ2−4δ−cγδ . (4.7)

The following lemma is a straight forward adaptation of [17, Corollary 5.20]. We omit
the details.

Lemma 4.4. There exists a constant β = β(γ, k) and a positive random variable U0 =

U0(γ, k;h) such that for all u ≤ U0,

inf
z∈T

inf
w∈T,|w−z|≤uβ

pγu(z, w) ≥ 1.

Set β′ = (1 + 1
2γ

2 − 4δ − cγδ)β. By (4.7), ` := s1+β
′ ≤ sβ

′ ≤ s(1+
1
2γ

2−4δ−cγδ)β ≤ (t/3)β.
Let ς be the time the LBM hits the small ball B(y, `). It follows that ` ≤ uβ . Consequently,
by strong Markov property and Lemma 4.4, it follows

pγt (x, y) ≥ P x(ς ≤ 2t/3), ∀t ≤ U0. (4.8)

Next, we estimate P x(ς ≤ 2t/3). We follow the notations in Lemma 4.1 and Lemma 4.3.
Define very fast points with respect to the parameter β′, and take D as VF . Then, for
any r ≥ r0 ∨ r1, (4.1) and (4.6) hold simultaneously, with probability 1 − e−c0r − 3sδ −
2e−

1
8 δ

2kr log 2. Note that t→ 0 is equivalent to rt → ∞. By the Borel-Cantelli Lemma, we
can find T0 = T0(x, y, γ, ε, k;h) < U0 such that for all t ≤ T0, both (4.1) and (4.6) hold for
r = rt, and furthermore

e−s
−(1+2δ)

s2+2β′+δ ≥ exp

(
−t

− 1

1+ 1
2
γ2 −ε

)
(4.9)

where we take δ (according to ε) such that 1+2δ
1+ 1

2γ
2−4δ−cγδ <

1
1+ 1

2γ
2 + ε. By the strong

Markov property, P x(ς ≤ 2t/3) ≥ P x(ς1 ≤ t/3)minz∈VF P
z(ς2 ≤ t/3) ≥ e−s

−(1+3δ)

s2+2β′+δ.
This, together with (4.8) and (4.9), gives the lower bound in (1.2).

EJP 23 (2018), paper 62.
Page 16/20

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP189
http://www.imstat.org/ejp/


On the Liouville heat kernel for k-coarse MBRW

5 Proof of the upper bound in (1.2)

We begin with the following lemma, whose proof is a slight adaptation of that of [17,
Theorem 4.2]. We omit further details of the proof.

Lemma 5.1. For any ε > 0 there exist β = β(ε, γ, k) > 0 and positive random constants
c1 = c1(h) and c2 = c2(h) such that, for all z, w ∈ T and u > 0,

pγu(z, w) ≤
c1
u1+ε

exp

(
−c2

(
|z − w|
u1/β

) β
β−1

)
.

We turn to the proof of the upper bound in (1.2). Fix α such that

α > 1 and (
α

β
− 2)

β

β − 1
≥ 1

1 + 1
2γ

2
,

and set u = tα in Lemma 5.1. Then, for z /∈ B(y, t2),

pγtα(z, y) ≤
c1

tα(1+ε)
exp

(
−c2

(
t2

tα/β

) β
β−1

)

≤ c1
tα(1+ε)

exp

(
−c2t

− 1

1+ 1
2
γ2

)
≤ exp

(
−t

− 1

1+ 1
2
γ2 + 1

2 ε
)
,

where the last two inequalities hold for t smaller than some T1(γ, ε, k, h). It follows that∫
|z−y|≥t2

pγt−tα(x, z)p
γ
tα(z, y)µ

γ(dz) ≤ exp(−t
− 1

1+ 1
2
γ2 + 1

2 ε
). (5.1)

On the other hand, again from Lemma 5.1, pγtα(z, y) ≤ c1
tα(1+ε) for all z. Thus,∫

|z−y|<t2
pγt−tα(x, z)p

γ
tα(z, y)µ

γ(dz) ≤ c1
tα(1+ε)

P x
(
|Yt−tα − y| < t2

)
.

Assume t2 ≤ |x− y|/2 and set

ς := inf{u ≥ 0 : Y xu /∈ B(x, |x− y|/2)}.

Note that {|Yt−tα − y| < t2} ⇒ {ς ≤ t}. In Lemma 5.2 below, we will show

P x(ς ≤ t) ≤ exp

(
−t

− 1

1+ 1
2
γ2 + 1

2 ε
)

(5.2)

for t smaller than some T2(γ, k, ε;h). It then follows that∫
|z−y|<t2

pγt−tα(x, z)p
γ
tα(z, y)µ

γ(dz) ≤ c1
tα(1+ε)

exp(−t
− 1

1+ 1
2
γ2 + 1

2 ε
).

Combining the above inequality with (5.1), we conclude that

pγt (x, y) =

∫
pγt−tα(x, z)p

γ
tα(z, y)µ

γ(dz)

=

∫
|z−y|<t2

pγt−tα(x, z)p
γ
tα(z, y)µ

γ(dz) +

∫
|z−y|≥t2

pγt−tα(x, z)p
γ
tα(z, y)µ

γ(dz)

≤ (1 +
c1

tα(1+ε)
) exp(t

− 1

1+ 1
2
γ2 + 1

2 ε
) ≤ exp(t

− 1

1+ 1
2
γ2 +ε

)

for t less than some T0. This completes the proof of the upper bound in (1.2), modulu the
proof of Lemma 5.2.
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Lemma 5.2. There exists k0 = k0(ε) and a random variable T2 = T2(γ, k, ε;h) such that,
for all k ≥ k0 and t < T2, (5.2) holds, P-a.s.

Proof. The proof is similar to that of Lemma 4.1. We will discretize T using BDr, and
show that for δ > 0 and k large enough,

P x(ς ≤ 2−kr(1+
1
2γ

2+3δ+cγδ)) ≤ e−2kr(1−2δ)

(5.3)

for all r ≥ r0(γ, k, δ;h), P-a.s., where c > 0 is a constant. Then, we will pick a proper δ
(according to ε) and a proper r (according to t), to obtain the lemma.

We begin by discretizing T, fixing r ≥ 1 and s = 2−kr. We identify each B ∈ BDr

(equivalently, its center cB) as a point in Z2 in the natural way. We next define inductively
the discrete path associated with the path {Xu : u ≤ ς̃}, where {Xu} is the SBM starting
from x and ς̃ is the time {Xu} hits ∂B(x, 14 |x− y|). We use the radius 1

4 |x− y| rather than
1
2 |x − y| for the convenience that we do not involve the last point in the discrete path
(defined below) to ∂B(x, 12 |x− y|).

Let τ1 = 0. Suppose τi has been defined. Set Bi := BDr(Xτi). Then, define

τi+1 := inf{u ≥ τi : Xu ∈ ∂B∗
i }.

This procedure stops naturally when τi+1 cannot be defined. We call this sequence of
Bi’s a discrete path from x to ∂B(x, 14 |x− y|).

Next, set ε1 := sδ, ε2 := C3e
−6kγ2

, ε3 := C2
3e

−12kγ2

, and define slow points/boxes
with respect to ε1, ε2 and ε3. Set ξB := 1{B is slow}. We study the discrete Gaussian
field Φ = {ϕr(cB), B ∈ BDr} and the Bernoulli process Ξ = {ξB , B ∈ BDr}. Note
that Ξ is of finite range dependence (4-dependent in the language of [6]), and by

Lemma 3.4, P (ξB = 1) = p ≥ 1 − 2−rkδC3e
−6kγ2

2−2k

, which converges to 1 as r → ∞.
For (Φ,Ξ), similarly to [6, Theorem 1.5], we can find positive constants c, k0, c̃0 = c̃0(δ)

and r1 = r1(x, y, γ, δ, k) such that the following holds for k ≥ k0 and r ≥ r1. With
probability ≥ 1− e−c̃0r, we can find boxes Bij , j = 1, · · · , I in any discrete path from x

to ∂B(x, 14 |x− y|) such that ϕr(cBij
) ≥ −(c− 1)δkr log 2, ∀j, and the following properties

hold.

(a) Bij is slow (i.e. ξBij
= 1), ∀j.

(b) I ≥ s−(1−δ).

Furthermore, by Corollary 2.5, with probability at least 1− e−c̃0r − e−r, we have (a),
(b) and the following property (c) all hold.

(c) ϕr(z) ≥ −cδkr log 2, ∀z ∈ B∗
ij
, ∀j.

Remark 5.3. When a discrete path is identified as a sequence of points v0, v1, · · · on Z2,
vi+1 may not be a neighbour of vi. However, we have |vi+1 − vi|∞ ≤ 2 for all i. Then, the
proof in [6, Theorem 1.5] automatically extends to the current setup.

Set σj = F xr (τij+1) − F xr (τij ) and χj := 1{σj≥ε1s2}. By (a) and Lemma 3.5, P x(χj =

1) ≥ C4ε2ε3 for all j, which implies that Ee−χj ≤ 1 − C4ε2ε3(1 − e−1) ≤ e−C4ε2ε3(1−e−1).
Note that the σj ’s are mutually independent by the strong Markov property of the
ψr-LBM, and so are the χj ’s. Therefore,

P x

 I∑
j=1

χ` ≤ ε1I

 ≤ (eε1Ee−χj )I ≤ e−(C4ε2ε3(1−e−1)−ε1)I ≤ e−
1
2C4ε2ε3I , (5.4)

where we use that ε1 = 2−krδ < C4ε2ε3(1 − e−1 − 1
2 ) for all r larger than some

r2 := r2(γ, δ) > r1. By (c), χj = 1 implies that

F x(τij+1)− F x(τij ) ≥ e−γcδkr log 2− 1
2γ

2kr log 2σj ≥ 2−γcδkr−
1
2γ

2krε1s
2.
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Thus,
∑I
j=1 χj > ε1I implies that

ς > 2−γcδkr−
1
2γ

2krε1s
2 × ε1I ≥ 2−kr(1+

1
2γ

2+3δ+cγδ).

This, together with (5.4) implies that

P x(ς ≤ 2−kr(1+
1
2γ

2+3δ+cγδ)) ≤ P

 I∑
j=1

χj ≤ ε1I

 ≤ e−
1
2C4ε2ε32

kr(1−δ)

≤ e−2kr(1−2δ)

,

for all r larger than some r3 := r3(γ, δ, k) ≥ r2. By the Borel-Cantelli Lemma, there exists
a random number r0 = r0(γ, k, δ;h) such that (5.3) holds for all r ≥ r0, P-a.s..

For any t, define

rt := b− log t(
1 + 1

2γ
2 + 3δ + cγδ

)
k log 2

c.

Equivalently,

2krt ≤ t
− 1

1+ 1
2
γ2+3δ+cγδ < 2k(rt+1). (5.5)

Note that t → 0 is equivalent to rt → ∞. Therefore, there exists a random constant
T̃0 = T̃0(γ, k, δ;h) such that for any t ≤ T̃0 (equivalently, rt ≥ r0), (5.3) holds for r = rt.
This together with (5.5) yields that

P x(ς ≤ t) ≤ exp

(
−(2−kt

− 1

1+ 1
2
γ2+3δ+cγδ )1−2δ

)
.

Finally, we pick δ such that 1−2δ
1+ 1

2γ
2+3δ+cγδ

> 1
1+ 1

2γ
2 − 1

2ε, and then pick T0(γ, k, ε;h) ≤ T̃0

such that the right hand side above is less than exp(−t
− 1

1+ 1
2
γ2 + 1

2 ε
), completing the

proof.
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