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Abstract

The objective of this paper is to establish the decomposition theorem for supermartin-
gales under the G-framework. We first introduce a g-nonlinear expectation via a kind
of G-BSDE and the associated supermartingales. We have shown that this kind of
supermartingales has the decomposition similar to the classical case. The main ideas
are to apply the property on uniform continuity of Sβ

G(0, T ), the representation of the
solution to G-BSDE and the approximation method via penalization.
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1 Introduction

The classical Doob-Meyer decomposition theorem tells us that a large class of sub-
martingales can be uniquely represented as the summation of a martingale and a
predictable increasing process. This is one of the most fundamental results in the theory
of stochastic analysis. This theorem was firstly proved in [9] for the discrete time case.
Then [16, 17] proved this result for the continuous time case. This theorem is important
for the optimal stopping problem used to solve the pricing for the American options
(see [1],[14]). Besides, it can be applied to study the problem of hedging contingent
claims by portfolios constraint to take values in a given closed, convex set (see [6]). A
general case of Doob-Meyer decomposition theorem was introduced in [20] when the
supermartingale Y is defined by a nonlinear operator. It was proved that the nonlinear
version of Doob-Meyer decomposition theorem also holds.
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Supermartingale decomposition theorem under G-expectation

The objective of this paper is to solve the problem of decomposition theorem of
Doob-Meyer’s type for nonlinear supermartingales defined in the G-expectation space.
In order to understand the motivation of this objective, let us recall its special linear
case, namely, in a framework of Wiener probability space (Ω,F , (F)t≥0, P ) in which
the canonical process Bt(ω) = ω(t) for ω ∈ Ω = C0([0,∞)) is a d-dimensional standard
Brownian motion. Given a function g = g(s, ω, y, z) : [0,∞) × Ω × R × Rd → R where
g(·, y, z) satisfies the “usual Lipschitz conditions” in the framework of BSDE (see [18]),
such that, for each T ∈ [0,∞), the following BSDE has a unique solution on [0, T ],

yt = ξ +

∫ T

t

g(s, ys, zs)ds+ (AT −At)−
∫ T

t

zsdBs, s ∈ [0, T ],

where ξ is a given random variable in L2(Ω,FT , P ) and A is a given continuous and
increasing process with A0 = 0 and At ∈ L2(Ω,Ft, P ) for each t ∈ (0, T ]. We call y a
g-supersolution. If A ≡ 0, then y is called a g-solution. For the latter case, since for
each given t ≤ T , the Ft measurable random variable yt is uniquely determined by the
terminal condition yT = ξ ∈ L2(Ω,FT , P ), then we can define a backward semigroup
[19, 21]

Eg
t,T [ξ] := yt, 0 ≤ t ≤ T < ∞. (a)

This semiproup gives us a generalized notion of nonlinear expectation with correspond-
ing Ft-conditional expectation, called g-expectation [19]. By the comparison theorem
of BSDEs we know that any g-supersolution Y is also a g-supermartingale (i.e., we
have Eg

s,t[Yt] ≤ Ys, for each s ≤ t). But the proof of the inverse claim, namely, a
g-supermartingale is a g-supersolution, is not at all trivial (we refer to [20] for detailed
proof). In fact this is a generalization of the classical Doob-Meyer decomposition to the
case of nonlinear expectations, and the linear situation corresponds to the case g ≡ 0.

Moreover, this nonlinear Doob-Meyer decomposition theorem plays a key role to
obtain the following representation theorem of nonlinear expectations: for a given
arbitrary Ft-conditional nonlinear expectation (Es,t[ξ])0≤s≤t<∞ with certain regularity,
there exists a unique function g = g(·, y, z) satisfying the usual conditions of BSDE, such
that,

Et,T [ξ] = Eg
t,T [ξ], for all 0 ≤ t ≤ T < ∞, and ξ ∈ L2(Ω,FT , P ).

We refer to [4], [21], [22] for the proof of this very deep result, also to [7] where a wide
class of time consistent risk measures are identified to be g-expectations.

It is known that volatility model uncertainty (VMU) involves an essentially non-
dominated family of probability measures P on (Ω,F). This is a main reason why
many risk measures, and pricing operators cannot be well-defined within a framework
of a single probability space such as Wiener space (Ω,FT , P ). [23] introduced the
framework of (fully nonlinear) time consistent G-expectation space (Ω, L1

G(Ω), Ê) such
that all probability measures in P are dominated by this sublinear expectation and such
that the canonical process B·(ω) = ω(·) becomes a nonlinear Brownian motion, called
G-Brownian. Many random variables, negligible under the probability measure P ∈ P,
as well as under other measures in P, can be clearly distinguished in this new framework.
The corresponding theory of stochastic integration and stochastic calculus of Itô’s type
have been established in [23, 25]. In particular, the existence and uniqueness of BSDE
driven by G-Brownian motion (G-BSDE) have been established in [10]. Roughly speaking
(see next section for details), a G-BSDE is as follows

yt = ξ +

∫ T

t

g(s, ys, zs)ds−
∫ T

t

zsdBs − (KT −Kt), t ∈ [0, T ],

where g(·, y, z) and ξ satisfy very similar conditions with the classical case. The solution
of thisG-BSDE consists of a triplet of adapted processes (y, z,K) whereK is a decreasing
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G-martingale with K0 = 0. We then call y a g-solution under Ê. From the existence and
uniqueness of the G-BSDE, we can also define Êg

t,T [ξ] = yt which forms a time consistent
nonlinear expectation. If K is just a decreasing process then we call y a g-supersolution
under Ê.

By the comparison theorem of G-BSDE obtained in [11], we can prove that a
g-supersolution under Ê Y is also an Êg-supermartingale, i.e., we have Êg

s,t[Yt] ≤ Ys, for
each s ≤ t. The objective of this paper is to prove its inverse property: a continuous
Êg-supermartingale Y is also a g-supersolution under Ê . Namely, Y can be written as

Yt = YT +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs + (AT −At), t ∈ [0, T ],

where A is a continuous increasing process. A special case of this result is when g ≡ 0.
In this case Y is a G-supermartingale and it can be decomposed into the following

Yt = Y0 +

∫ t

0

ZsdBs −At,

where A is an increasing process. This is still a new and non-trivial result.
The proof of this decomposition theorem involves a penalization procedure,

yns = YT +

∫ T

t

g(s, yns , z
n
s )ds−

∫ T

t

zns dBs − (Kn
T −Kn

t ) + (Ln
T − Ln

t ), t ∈ [0, T ],

for n = 1, 2, · · · , where Ln
t = n

∫ t

0
(Ys − yns )ds and Kn is an decreasing martingale. In

order to prove that yn ↑ Y , it is necessary to show that yn ≤ Y . A main problem is that
the corresponding Doob’s optional sampling is still an open problem. We overcome this
difficulty by proving that, for each probability dominated by P, we have yn ≤ Y . We
also need to introduce some new methods, see Lemma 3.7 and Lemma 3.8, to prove the
uniform convergence of yn. Generally speaking, the well-known Fatou’s lemma cannot
be directly and automatically used in this sublinear expectation framework. Besides, a
bounded subset in Mβ

G(0, T ) is not necessarily weakly compact. Many proofs become
more delicate and challenging.

We believe that the proof of our new decomposition theorem of Doob-Meyer’s type
under G-framework will play a key role for understanding and solving many important
problems. Note that the Doob-Meyer decomposition theorem for g-supermartingale is
the builing block to obtain the representation theorem for "enough regular" filtration
consistent nonlinear expectations. Since our new result is the generalization of the
g-expectation case which represents the drift uncertainty, the decomposition theorem
under G-framework is a key step towards the understanding and solving a general
representation theorem of dynamically consistent nonlinear expectations, as well as
dynamic risk measures and pricing operators in the volatility uncertainty model.

The paper is organized as follows. In Section 2, we set up some notations and results
as preliminaries for the later proofs. Section 3 is devoted to the study of the so-called
Êg-supermartingales. The representation theorem is established with detailed proofs. In
Section 4, we present the relationship between the Êg-supermartingales and the fully
nonlinear parabolic PDEs.

2 Preliminaries

2.1 G-expectation and G-Itô’s calculus

The main purpose of this section is to recall some basic notions and results of
G-expectation, which are needed in the sequel. The readers may refer to [10], [11], [24],
[25] for more details.
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Definition 2.1. Let Ω be a given set and let H be a vector lattice of real valued functions
defined on Ω, namely c ∈ H for each constant c and |X| ∈ H if X ∈ H. H is considered as
the space of random variables. A sublinear expectation Ê on H is a functional Ê : H → R

satisfying the following properties: for all X,Y ∈ H, we have

(a) Monotonicity: If X ≥ Y , then Ê[X] ≥ Ê[Y ];

(b) Constant preserving: Ê[c] = c;

(c) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(d) Positive homogeneity: Ê[λX] = λÊ[X] for each λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. X ∈ H is called a random
variable in (Ω,H, Ê). In the following, unless otherwise stated, we consider the following
sublinear expectation space (Ω,H, Ê): if Y1, . . . , Yn ∈ H, then ϕ(Y1, . . . , Yn) ∈ H for each
ϕ ∈ CLip(R

n). We often call Y = (Y1, . . . , Yd), Yi ∈ H a d-dimensional random vector in
(Ω,H, Ê).

Definition 2.2. LetX1 andX2 be two n-dimensional random vectors defined respectively
in sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically

distributed, denoted by X1
d
= X2, if Ê1[ϕ(X1)] = Ê2[ϕ(X2)], for all ϕ ∈ CLip(R

n), where
CLip(R

n) is the space of real continuous functions defined on Rn such that

|ϕ(x)− ϕ(y)| ≤ C|x− y| for all x, y ∈ Rn,

where C depends only on ϕ.

Definition 2.3. In a sublinear expectation space (Ω,H, Ê), a random vector Y = (Y1, · ·
·, Yn), Yi ∈ H, is said to be independent of another random vector X = (X1, · · ·, Xm),
Xi ∈ H under Ê[·], denoted by Y ⊥ X, if for every test function ϕ ∈ CLip(R

m ×Rn) we
have Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Definition 2.4. (G-normal distribution) A d-dimensional random vector X = (X1, · · ·, Xd)

in a sublinear expectation space (Ω,H, Ê) is called G-normally distributed if for each
a, b ≥ 0 we have

aX + bX̄
d
=

√
a2 + b2X,

where X̄ is an independent copy of X, i.e., X̄
d
= X and X̄⊥X. Here the letter G denotes

the function

G(A) :=
1

2
Ê[〈AX,X〉] : Sd → R,

where Sd denotes the collection of d× d symmetric matrices.

It is proved in [24] that X = (X1, · · ·, Xd) is G-normally distributed if and only if for
each ϕ ∈ CLip(R

d), u(t, x) := Ê[ϕ(x +
√
tX)], (t, x) ∈ [0,∞) × Rd, is the solution of the

following fully nonlinear parabolic equation:

∂tu−G(D2
xu) = 0, u(0, x) = ϕ(x).

where D2
xu = {∂2

xixj
u}di,j=1.

In the case d = 1, the function G : R→ R is a given monotonic and sublinear function
of the form

G(a) =
1

2
(σ̄2a+ − σ2a−), a ∈ R, (2.1)

where σ̄2 = Ê[X2] and σ2 = −Ê[−X2]. In this paper we only consider the non-degenerate
G-normal distribution, i.e., σ > 0 in the 1-dimensional case.
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We present the notion of G-Brownian motion in a sublinear expectation space. For
notational simplification, we only consider the case of 1-dimensional G-Brownian motion.
But the methods of this paper can be directly applied to d-dimensional situations.

Let Ω = C0([0,∞);R) be the space of real valued continuous functions on [0,∞) with
ω0 = 0 endowed with the following distance

ρ(ω1, ω2) :=

∞∑
N=1

2−N [( max
t∈[0,N ]

|ω1
t − ω2

t |) ∧ 1],

and Bt(ω) = ωt, t ≥ 0, ω ∈ Ω be the canonical process. For each T > 0, set ΩT =

{ω(· ∧ T ), ω ∈ Ω}. We denote by B(Ω) the collection of all Borel-measurable subsets of Ω.

Definition 2.5. i)Set

Lip(ΩT ) :={ϕ(Bt1 , ..., Btn) : n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ CLip(R
n)},

Lip(Ω) :=
⋃
T>0

Lip(ΩT ).

Let G : R → R be a given monotonic and sublinear function of the form (2.1). G-
expectation is a sublinear expectation defined on the space of the random variable
(Ω, Lip(Ω)) in the following way: for each X ∈ Lip(Ω) in the form X = ϕ(Bt1 −Bt0 , Bt2 −
Bt1 , · · · , Btm −Btm−1) ∈ Lip(Ω), with t0 < t1 < · · · < tm, we set

Ê[X] = Ẽ[ϕ(
√
t1 − t0ξ1, · · ·,

√
tm − tm−1ξm)],

where ξ1, · · ·, ξn are identically distributed 1-dimensional G-normally distributed random
vectors in a sublinear expectation space (Ω̃, H̃, Ẽ) such that ξi+1 is independent of
(ξ1, · · ·, ξi) for every i = 1, · · ·,m− 1.

The canonical process Bt(ω) = ωt, t ≥ 0, is called a G-Brownian motion on the
sublinear expectation space (Ω, Lip(Ω), Ê[·])

ii) Let us define the conditional G-expectation Êt of ξ ∈ Lip(ΩT ) knowing Lip(Ωt),
for t ∈ [0, T ]. Without loss of generality we can assume that ξ has the representation
ξ = ϕ(Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Btm −Btm−1

) with t = ti, for some 1 ≤ i ≤ m, and we put

Êti [ϕ(Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Btm −Btm−1)]

= ϕ̃(Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Bti −Bti−1
),

where

ϕ̃(x1, · · ·, xi) = Ê[ϕ(x1, · · ·, xi, Bti+1
−Bti , · · ·, Btm −Btm−1

)].

Define ‖X‖Lp
G
= (Ê[|ξ|p])1/p for X ∈ Lip(Ω) and p ≥ 1. Then for all t ∈ [0, T ], Êt[·] is

a continuous mapping on Lip(ΩT ) w.r.t. the norm ‖ · ‖Lp
G
. Therefore it can be extended

continuously to the completion Lp
G(ΩT ) of Lip(ΩT ) under the norm ‖ · ‖Lp

G
. Denis et al.

[8] proved that the completions of Cb(ΩT ) (the set of bounded continuous function on
ΩT ) under the norm ‖ · ‖Lp

G
coincides with Lp

G(ΩT ).

Let πN
t = {tN0 , · · · , tNN}, N = 1, 2, · · · , be a sequence of partitions of [0, t] such that

µ(πN
t ) = max{|tNi+1 − tNi | : i = 0, · · · , N − 1} → 0, the quadratic variation process of B is

defined by

〈B〉t = L2
G– lim

µ(πN
t )→0

N−1∑
j=0

(BtNj+1
−BtNj

)2.

Let us denote the set of all probability measures on (ΩT ,B(ΩT )) by M1(ΩT ).
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Theorem 2.6. ([8, 12]) There exists a tight set P ⊂ M1(ΩT ) such that

Ê[X] = sup
P∈P

EP [X] for all X ∈ Lip(ΩT ).

P is called a set that represents Ê.

Let P be a tight set that represents Ê. For this P, we define capacity

c(A) := sup
P∈P

P (A), A ∈ B(ΩT ).

The set A ⊂ ΩT is said to be polar if c(A) = 0. A property holds “quasi-surely” (q.s. for
short) if it holds outside a polar set. In the following, we do not distinguish two random
variables X and Y if X = Y q.s..

Remark 2.7. Let (Ω,F , P 0) be a probability space and (Wt)t≥0 be a 1-dimensional
Brownian motion under P 0. Let F = {Ft} be the augmented filtration generated by W .
[8] proved that

PM := {Ph|Ph = P 0 ◦X−1, Xt =

∫ t

0

hsdWs, h ∈ L2
F([0, T ]; [σ, σ])},

is a set that represents Ê, where L2
F([0, T ]; [σ, σ]) is the collection of F-adapted measur-

able processes with values in [σ, σ].

For ξ ∈ Lip(ΩT ), let E(ξ) = Ê[supt∈[0,T ] Êt[ξ]], where Ê is the G-expectation. For
convenience, we call E the G-evaluation. For p ≥ 1 and ξ ∈ Lip(ΩT ), define ‖ξ‖p,E =

[E(|ξ|p)]1/p. Let Lp
E(ΩT ) denote the completion of Lip(ΩT ) under ‖ · ‖p,E . We shall give an

estimate between the two norms ‖ · ‖Lp
G
and ‖ · ‖p,E .

Theorem 2.8 ([30]). For any α ≥ 1 and δ > 0, Lα+δ
G (ΩT ) ⊂ Lα

E (ΩT ). More precisely, for
any 1 < γ < β := (α+ δ)/α, γ ≤ 2, we have

‖ξ‖αα,E ≤ γ∗{‖ξ‖α
Lα+δ

G

+ 141/γCβ/γ‖ξ‖
(α+δ)/γ

Lα+δ
G

}, for all ξ ∈ Lip(ΩT ),

where Cβ/γ =
∑∞

i=1 i
−β/γ , γ∗ = γ/(γ − 1).

Independently, [28] proved Lα
G(ΩT ) ⊂ L2

E(ΩT ) for α > 2.

Definition 2.9. Let M0
G(0, T ) be the collection of processes in the following form: for a

given partition {t0, · · ·, tN} = πT of [0, T ],

ηt(ω) =

N−1∑
j=0

ξj(ω)1[tj ,tj+1)(t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N − 1. For each p ≥ 1 and η ∈ M0
G(0, T ), we denote by

‖η‖Hp
G
= {Ê[(

∫ T

0

|ηs|2ds)p/2]}1/p, ‖η‖Mp
G
:= (Ê[

∫ T

0

|ηs|pds])1/p.

We use Hp
G(0, T ) and Mp

G(0, T ) to denote the completion of M0
G(0, T ) under norms ‖ · ‖Hp

G

and ‖ · ‖Mp
G
respectively.

For two processes η ∈ M2
G(0, T ) and ξ ∈ M1

G(0, T ), the G-Itô integrals (
∫ t

0
ηsdBs)0≤t≤T

and (
∫ t

0
ξsd〈B〉s)0≤t≤T are well defined (see Li-Peng [15] and Peng [25]). Moreover,

by Proposition 2.10 in [15] and the classical Burkholder-Davis-Gundy inequality, the
following property holds.
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Proposition 2.10. If η ∈ Hα
G(0, T ) with α ≥ 1, then we can get supu∈[t,T ] |

∫ u

t
ηsdBs|p ∈

L1
G(ΩT ) and

σpcpÊt[(

∫ T

t

|ηs|2ds)p/2] ≤ Êt[ sup
u∈[t,T ]

|
∫ u

t

ηsdBs|p] ≤ σ̄pCpÊt[(

∫ T

t

|ηs|2ds)p/2],

where p ∈ (0, α], cp and Cp are the classical B-D-G constants.

Let S0
G(0, T ) = {h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(R

n+1)}. For p ≥ 1

and η ∈ S0
G(0, T ), set ‖η‖Sp

G
= {Ê[supt∈[0,T ] |ηt|p]}1/p. Let S

p
G(0, T ) denote the completion

of S0
G(0, T ) under the norm ‖ · ‖Sp

G
.

We consider the following type of G-BSDEs

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

f(s, Ys, Zs)d〈B〉s −
∫ T

t

ZsdBs − (KT −Kt), (2.2)

where g and f are given functions

g(t, ω, y, z), f(t, ω, y, z) : [0, T ]× ΩT ×R×R→ R

satisfy the following properties:

(H1) There exists some β > 1 such that for any y, z, g(·, ·, y, z), f(·, ·, y, z) ∈ Mβ
G(0, T );

(H2) There exists some L > 0 such that

|g(t, y, z)− g(t, y′, z′)|+ |f(t, y, z)− f(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|).

For simplicity, we denote by Sα
G(0, T ) the collection of processes (Y, Z,K) such

that Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), K is a decreasing G-martingale with K0 = 0 and
KT ∈ Lα

G(ΩT ).

Definition 2.11. Let ξ ∈ Lβ
G(ΩT ) and g and f satisfy (H1) and (H2) for some β > 1. A

triplet of processes (Y, Z,K) is called a solution of Equation (2.2) if for some 1 < α ≤ β

the following properties hold:

(a) (Y, Z,K) ∈ Sα
G(0, T );

(b) Yt = ξ +
∫ T

t
g(s, Ys, Zs)ds+

∫ T

t
f(s, Ys, Zs)d〈B〉s −

∫ T

t
ZsdBs − (KT −Kt).

Theorem 2.12 ([10]). Assume that ξ ∈ Lβ
G(ΩT ) and g, f satisfy (H1) and (H2) for some

β > 1. Then Equation (2.2) has a unique solution (Y, Z,K). Moreover, for any 1 < α < β

we have Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ) and KT ∈ Lα
G(ΩT ).

We also have the comparison theorem for G-BSDEs.

Theorem 2.13 ([11]). Let (Y i
t , Z

i
t ,K

i
t)t≤T , i = 1, 2, be the solutions of the following two

G-BSDEs:

Y i
t = ξi +

∫ T

t

gi(s)ds+

∫ T

t

fi(s)d〈B〉s + V i
T − V i

t −
∫ T

t

Zi
sdBs − (Ki

T −Ki
t),

where gi(s) = gi(s, Y
i
s , Z

i
s), fi(s) = fi(s, Y

i
s , Z

i
s), ξi ∈ Lβ

G(ΩT ), {V i
t }t∈[0,T ] are RCLL

processes such that Ê[supt∈[0,T ] |V i
t |β ] < ∞, gi, fi satisfy (H1) and (H2) with β > 1.

Assume that ξ1 ≥ ξ2, f1 ≥ f2, g1 ≥ g2 and {V 1
t − V 2

t } is a nondecreasing process, then
Y 1
t ≥ Y 2

t .
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Supermartingale decomposition theorem under G-expectation

2.2 Some results of classical penalized BSDEs

In this subsection, we will introduce some notions and results following Peng [20].
The probability space and filtration is given in Remark 2.7. For a given stopping time τ ,
we now consider the following classical BSDE:

yt = ξ +

∫ τ

t∧τ

g(s, ys, zs)ds+ (Aτ −At∧τ )−
∫ τ

t∧τ

zsdWs, (2.3)

where ξ ∈ L2(Ω,Fτ ) and g satisfies the following conditions:

(A1) g(·, y, z) ∈ L2
F(0, T ;R), for each (y, z) ∈ R2;

(A2) There exists a constant L > 0 such that

|g(t, y, z)− g(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|).

Here A is a given RCLL increasing process with A0 = 0 and E[A2
τ ] < ∞. We call (yt)

the g-supersolution on [0, τ ] if (y, z) solves (2.3). In particular, when A ≡ 0, (yt) is called
a g-solution on [0, τ ].

Definition 2.14. An Ft-progressively measurable real-valued process (Yt) is called a
g-supermartingale on [0, T ] in strong sense if, for each stopping time τ ≤ T , E[|Yτ |2] < ∞,
and the g-solution (yt) on [0, τ ] with terminal condition yτ = Yτ , satisfies yσ ≤ Yσ for all
stopping time σ ≤ τ .

Definition 2.15. An Ft-progressively measurable real-valued process (Yt) is called a
g-supermartingale on [0, T ] in weak sense if, for each deterministic time t ≤ T , E[|Yt|2] <
∞, and the g-solution (yt) on [0, t] with terminal condition yt = Yt, satisfies ys ≤ Ys for all
deterministic time s ≤ t.

It is obvious that a g-supermartingale in strong sense is also a g-supermartingale
in weak sense. [3] proved that, under assumptions similar to the classical case, a
g-supermartingale in weak sense coincides with a g-supermartingale in strong sense.
This result is a generalization of the classical Optional Stopping Theorem. If (Yt)

is a g-supersolution on [0, T ], it follows from the comparison theorem that (Yt) is a
g-supermartingale. In fact, [20] proved that the inverse problem, i.e., nonlinear version
of Doob-Meyer decomposition theorem, also holds. The method of proof is to apply the
penalization approach and the first step is the following lemma.

Lemma 2.16 ([20]). Let (Yt) be a right-continuous g-supermartingale on [0, T ] in strong
sense with E[sup0≤t≤T |Yt|2] ≤ ∞. Assume that g satisfies (A1) and (A2). For each
n = 1, 2, · · · , consider the following BSDEs:

ynt = YT +

∫ T

t

g(s, yns , z
n
s )ds+ n

∫ T

t

(Ys − yns )ds−
∫ T

t

zns dWs.

Then, for each n = 1, 2, · · · , Yt ≥ ynt .

Remark 2.17. Set Mt =
∫ t

0
hsdWs, where h ∈ L2

F([0, T ]; [σ, σ]). If the BSDE (2.3) is
driven by M ,

yt = ξ +

∫ τ

t∧τ

g(s, ys, zs)ds+ (Aτ −At∧τ )−
∫ τ

t∧τ

zsdMs,

then, we can define a gM -supersolution (also gM -solution) and a gM -supermartingale in
strong sense (also in weak sense). Furthermore, we have a similar result as Lemma 2.16.
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3 Nonlinear expectations generated by G-BSDEs and the associ-
ated supermartingales

For simplicity, we only consider the following G-BSDE driven by 1-dimensional
G-Brownian motion. The result still holds for multi-dimensional cases.

Y T,ξ
t = ξ +

∫ T

t

g(s, Y T,ξ
s , ZT,ξ

s )ds−
∫ T

t

ZT,ξ
s dBs − (KT,ξ

T −KT,ξ
t ), (3.1)

where g satisfies the following conditions:

(H1’) There exists some β > 2 such that for any y, z, g(·, ·, y, z) ∈ Mβ
G(0, T );

(H2) There exists some L > 0 such that

|g(t, y, z)− g(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|).

For each ξ ∈ Lβ
G(ΩT ) with β > 2, we define

Ê
g
t,T [ξ] := Y T,ξ

t .

Definition 3.1. A process {Yt}t∈[0,T ] is called an Êg-supermartingale if, for each t ≤ T ,

Yt ∈ Lβ
G(Ωt) with β > 2 and Êg

s,t[Yt] ≤ Ys, ∀0 ≤ s ≤ t ≤ T .

Remark 3.2. (i)If g = 0, the Êg-supermartingale (Yt) is in fact a G-supermartingale.
(ii)If the decreasing G-martingale (Kt) in (3.1) is replaced by a continuous decreasing
process A with A0 = 0, Ê[A2

T ] < ∞, then (Yt) is called a g-supersolution under Ê on [0, T ].
It follows from the comparison theorem of G-BSDE that a g-supersolution under Ê is
also an Êg-supermaringale.
(iii)If there exists a generator f corresponding to the d〈B〉 term in (3.1), we can define
the operator Êg,f

t,T [·] and the associated Êg,f -supermartingales.

The following theorem, which is a main result of this paper, tells us that an Êg-
supermartingale is also a g-supersolution under Ê. It generalizes the well-known decom-
position theorem of Doob-Meyer’s type to a framework of fully nonlinear expectation–G-
expectation.

Theorem 3.3. Let Y = (Yt)t∈[0,T ] ∈ Sβ
G(0, T ) be an Êg-supermartingale with β > 2.

Suppose that g satisfies (H1’) and (H2). Then (Yt) has the following decomposition

Yt = Y0 −
∫ t

0

g(s, Ys, Zs)ds+

∫ t

0

ZsdBs −At, q.s., (3.2)

where {Zt} ∈ M2
G(0, T ) and {At} is a continuous nondecreasing process with A0 = 0 and

AT ∈ L2
G(ΩT ). Furthermore, the above decomposition is unique.

We divide the proof into a sequence of lemmas. For P ∈ PM , F-stopping time τ ,
and Fτ -measurable random variable η ∈ L2(P ), let (Y P , ZP ) denote the solution to the
following standard BSDE:

Y P
s = η +

∫ τ

s

g(r, Y P
r , ZP

r )dr −
∫ τ

s

ZP
r dBr, 0 ≤ s ≤ τ, P -a.s..

We recall from [29] that every P ∈ PM satisfies the martingale representation
property. Then there exists a unique adapted solution (Y P , ZP ) of the above equation.
We defineEg,P

t,τ [η] := Y P
t . For P ∈ PM and t ∈ [0, T ], set P(t, P ) := {Q ∈ PM

∣∣Q|Ft
= P |Ft

}.
The following lemma provides a representation for solution Y T,ξ of Equation (3.1).
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Lemma 3.4 ([29]). For each ξ ∈ Lβ
G(ΩT ) with β > 2, we have, for P ∈ PM and t ∈ [0, T ]

Ê
g
t,T [ξ] = ess sup

Q∈P(t,P )

PEg,Q
t,T [ξ], P-a.s.,

where ess supP means that the essential supremum is taken under the probability P .

For reader’s convenience, we give a brief proof here.

Proof. By the comparison theorem of classical BSDE, for Q ∈ P(t, P ), we have Eg,Q
t,T [ξ] ≤

Ê
g
t,T [ξ], Q-a.s.. Consequently, we have Eg,Q

t,T [ξ] ≤ Ê
g
t,T [ξ], P -a.s.. Besides, by Theorem

16 in [13] (see also Proposition 3.4 in [28]) and noting that (KT,ξ
t ) is a decreasing

G-martingale, we have

0 = Êt[K
T,ξ
T −KT,ξ

t ] = ess sup
Q∈P(t,P )

PEQ
t [KT,ξ

T −KT,ξ
t ], P -a.s.,

where P(t, P ) is the closure of P(t, P ) with respect to the weak topology. Then there
exists Q ∈ P(t, P ), such that EQ[KT,ξ

T − KT,ξ
t ] = 0. Choose {Qn} ⊂ P(t, P ) such that

Qn → Q weakly, by Lemma 29 in [8], then we obtain

EQn [|KT,ξ
T −KT,ξ

t |1+α] ≤ {EQn [|KT,ξ
T −KT,ξ

t |
1

1−α ]}1−α{EQn [|KT,ξ
T −KT,ξ

t |]}α → 0,

where 0 < α < 1− 1
β . By Proposition 3.2 in [2], we derive that

|Êg
t,T [ξ]− Eg,Qn

t,T [ξ]|1+α ≤ CαE
Qn

t [|KT,ξ
T −KT,ξ

t |1+α], Qn-a.s..

Consequently, the above inequality holds P -a.s.. Then we have

EP [|Êg
t,T [ξ]− Eg,Qn

t,T [ξ]|1+α] ≤ CαE
Qn [|KT,ξ

T −KT,ξ
t |1+α] → 0.

The proof is complete.

Lemma 3.5. Let Y = (Yt)t∈[0,T ] ∈ Sβ
G(0, T ) be an Êg-supermartingale with β > 2. Sup-

pose that g satisfies (H1’) and (H2). For each n = 1, 2, · · · , consider the following
G-BSDEs:

ynt = YT +

∫ T

t

g(s, yns , z
n
s )ds+ n

∫ T

t

(Ys − yns )ds−
∫ T

t

zns dBs − (Kn
T −Kn

t ). (3.3)

Then, for n = 1, 2, · · · , Yt ≥ ynt , q.s..

Proof. Suppose the lemma were false. Then we could find some t ∈ [0, T ] and P ∗ ∈ PM

such that P ∗(ynt > Yt) > 0.
Applying Lemma 3.4 and the definition of Êg-supermartingales, we have for any

P ∈ PM and s ≤ t,

Eg,P
s,t [Yt] ≤ ess sup

P ′∈P(s,P )

PEg,P ′

s,t [Yt] = Ê
g
s,t[Yt] ≤ Ys, P -a.s..

This shows that, under the measure P ∈ PM , (Yt) can be seen as an gB-supermartingale
in weak sense (see Remark 2.17). Since (Yt) ∈ Sβ

G(0, T ) is continuous, it is an gB-
supermartingale in strong sense. For any Q ∈ P(t, P ∗), let (Ȳ Q, Z̄Q) denote the solution
to the following standard BSDE:

Ȳ Q
s = YT +

∫ T

s

gn(r, Ȳ
Q
r , Z̄Q

r )dr −
∫ T

s

Z̄Q
r dBr, Q-a.s..

where gn(s, y, z) = f(s, y, z)+n(Ys−y). Since (Yt) is an gB-supermartingale and g satisfies
the assumptions in Lemma 2.16, then it is easy to check that Yt ≥ Egn,Q

t,T [YT ](= Ȳ Q
t ), Q-

a.s.. By the definition of P(t, P ∗), we obtain that Yt ≥ Egn,Q
t,T [YT ], P ∗-a.s.. Again by Lemma

3.4, we have ess supP
∗

Q∈P(t,P∗) E
gn,Q
t,T [YT ] = ynt , P

∗-a.s.. This leads to a contradiction.

EJP 23 (2018), paper 50.
Page 10/20

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP173
http://www.imstat.org/ejp/


Supermartingale decomposition theorem under G-expectation

It follows from the comparison theorem that ynt ≤ yn+1
t . Thus for all n = 1, 2, · · · , |ynt |

is dominated by |y1t | ∨ |Yt|. Then we can find a constant C independent of n, such that for
1 < α < β, and for all n = 1, 2, · · · ,

Ê[ sup
t∈[0,T ]

|ynt |α] ≤ Ê[ sup
t∈[0,T ]

(|y1t | ∨ |Yt|)α] ≤ C. (3.4)

Now let Ln
t = n

∫ t

0
(Ys − yns )ds, then (Ln

t )t∈[0,T ] is an increasing process. We can
rewrite G-BSDE (3.3) as

ynt = YT −
∫ T

t

zns dBs +

∫ T

t

g(s, yns , z
n
s )ds− (Kn

T −Kn
t ) + (Ln

T − Ln
t ).

Lemma 3.6. There exists a constant C independent of n, such that for 1 < α < β,

Ê[(

∫ T

0

(znt )
2dt)

α
2 ] ≤ C, Ê[|Kn

T |α] ≤ C, Ê[|Ln
T |α] = nαÊ[(

∫ T

0

|Ys − yns |ds)α] ≤ C.

Proof. By a similar analysis as Proposition 3.5 in [10], we have

Ê[(

∫ T

0

|zns |2ds)
α
2 ] ≤ Cα{Ê[ sup

t∈[0,T ]

|ynt |α] + (Ê[ sup
t∈[0,T ]

|ynt |α])
1
2 (Ê[(

∫ T

0

|g(s, 0, 0)|ds)α]) 1
2 },

Ê[|Ln
T −Kn

T |α] ≤ Cα{Ê[ sup
t∈[0,T ]

|ynt |α] + Ê[(

∫ T

0

|g(s, 0, 0)|ds)α]},

where the constant Cα depends on α, T,G and L. Thus we conclude that there exists a
constant C independent of n, such that for 1 < α < β,

Ê[(

∫ T

0

|znt |2dt)
α
2 ] ≤ C, Ê[|Ln

T −Kn
T |α] ≤ C.

Since Ln
T and −Kn

T are nonnegative, we get

Ê[|Kn
T |α] ≤ C, Ê[|Ln

T |α] = nαÊ[(

∫ T

0

|Ys − yns |ds)α] ≤ C.

For 1 < α < β, we obtain the following inequality.

nÊ[

∫ T

0

(Ys − yns )
αds]

≤ CnÊ[

∫ T

0

(Ys − yns )|Ys|α−1ds] + CnÊ[

∫ T

0

(Ys − yns )|yns |α−1ds]

≤ Cn(Ê[ sup
s∈[0,T ]

|Ys|(α−1)p])1/p(Ê[(

∫ T

0

(Ys − yns )ds)
q])1/q

+ Cn(Ê[ sup
s∈[0,T ]

|yns |(α−1)p])1/p(Ê[(

∫ T

0

(Ys − yns )ds)
q])1/q,

where p, q > 1 satisfy 1
p + 1

q = 1, (α− 1)p < β and q < β. By Estimate (3.4) and Lemma
3.6, there exists a constant C independent of n, such that

nÊ[

∫ T

0

(Ys − yns )
αds] ≤ C.

This implies that yn converges to Y in Mα
G(0, T ). In fact, this convergence holds in

Sα
G(0, T ). In order to prove this conclusion, we need the following property on uniform

continuity for any Y ∈ Sp
G(0, T ) with p > 1.
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Lemma 3.7. For Y ∈ Sp
G(0, T ) with p > 1, we have, by setting Ys := YT for s > T ,

F (Y ) := lim sup
ε→0

(Ê[ sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Yt − Ys|p])
1
p = 0.

Proof. For Y ∈ S0
G(0, T ), the conclusion is obvious. Noting that for Y, Y ′ ∈ Sp

G(0, T ) we
have

|F (Y )− F (Y ′)| ≤ C‖Y − Y ′‖Sp
G
,

which implies that F (Y ) = 0 for any Y ∈ Sp
G(0, T ).

Lemma 3.8. For some 1 < α < β, we have

lim
n→∞

Ê[ sup
t∈[0,T ]

|Yt − ynt |α] = 0.

Proof. By applying G-Itô’s formula to e−ntynt , we get

ynt = entÊt[e
−nTYT +

∫ T

t

ne−nsYsds+

∫ T

t

e−nsg(s, yns , z
n
s )ds].

Then we obtain

0 ≤ Yt − ynt ≤ Êt[Ỹ
n
t −

∫ T

t

en(t−s)g(s, yns , z
n
s )ds],

where Ỹ n
t = en(t−T )(Yt − YT ) +

∫ T

t
nen(t−s)(Yt − Ys)ds. By Hölder’s inequality, it follows

that

|
∫ T

t

en(t−s)g(s, yns , z
n
s )ds| ≤

1√
2n

(

∫ T

0

g2(s, yns , z
n
s )ds)

1/2

≤ C√
n
( sup
s∈[0,T ]

|yns |2 +
∫ T

0

(g2(s, 0, 0) + |zns |2)ds)1/2.

Then for 1 < α < β, we have

Ê[ sup
t∈[0,T ]

|
∫ T

t

en(t−s)g(s, yns , z
n
s )ds|α] → 0, as n → ∞. (3.5)

For ε > 0, it is simple to show that

|Ỹ n
t | = |en(t−T )(Yt − YT ) +

∫ T

t+ε

nen(t−s)(Yt − Ys)ds+

∫ t+ε

t

nen(t−s)(Yt − Ys)ds|

≤ en(t−T )|Yt − YT |+ e−nε sup
s∈[t+ε,T ]

|Yt − Ys|+ sup
s∈[t,t+ε]

|Ys − Yt|.

For T > δ > 0, from the above inequality we obtain

sup
t∈[0,T−δ]

|Ỹ n
t | ≤e−nδ sup

t∈[0,T−δ]

|Yt − YT |+ sup
t∈[0,T−δ]

sup
s∈[t,t+ε]

|Ys − Yt|

+ e−nε sup
t∈[0,T−δ]

sup
s∈[t+ε,T ]

|Yt − Ys|

≤2 sup
t∈[0,T ]

|Yt|(e−nε + e−nδ) + sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ys − Yt|.

It is easy to check that for each fixed ε, δ > 0,

Ê[ sup
t∈[0,T−δ]

|Ỹ n
t |β ] ≤ C[(e−nβε + e−nβδ)Ê[ sup

t∈[0,T ]

|Yt|β ] + Ê[ sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ys − Yt|β ]]

→ CÊ[ sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ys − Yt|β ], as n → ∞.
(3.6)
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For 1 < α < β and 0 < δ < T , noting that y1t ≤ ynt ≤ Yt, n = 1, 2, · · · , we have

Ê[ sup
t∈[0,T ]

|Yt − ynt |α]

≤ Ê[ sup
t∈[0,T−δ]

|Yt − ynt |α] + Ê[ sup
t∈[T−δ,T ]

|Yt − ynt |α]

≤ Ê[ sup
t∈[0,T−δ]

Êt[|Ỹ n
t −

∫ T

t

en(t−s)g(s, yns , z
n
s )ds|α]] + Ê[ sup

t∈[T−δ,T ]

|Yt − y1t |α]

≤ Ê[ sup
t∈[0,T−δ]

Êt[ sup
u∈[0,T−δ]

|Ỹ n
u |α]] + Ê[ sup

t∈[T−δ,T ]

|Yt − y1t |α]

+ Ê[ sup
t∈[0,T−δ]

Êt[ sup
u∈[0,T ]

|
∫ T

u

en(t−s)g(s, yns , z
n
s )ds|α]] =: I + II + III.

(3.7)

Theorem 2.8 and (3.5) yield that III → 0, as n → ∞. Note that Y − y1 ∈ Sα
G(0, T ) and

YT − y1T = 0. By Lemma 3.7, we obtain II → 0, as δ → 0. Then by applying Theorem 2.8
agian and (3.6), we derive that

I ≤ C{Ê[ sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ys − Yt|β ] + (Ê[ sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ys − Yt|β ])α/β}, as n → ∞.

First let n → ∞ and then send ε, δ → 0 in (3.7). The above analysis proves that for
1 < α < β,

lim
n→∞

Ê[ sup
t∈[0,T ]

|Yt − ynt |α] = 0.

Lemma 3.9. The sequence {yn, zn, An}∞n=1 of the solutions of G-BSDE (3.3) satisfies the
following properties:

lim
m,n→∞

Ê[ sup
t∈[0,T ]

|ynt − ymt |α] = 0, for 1 < α < β, (3.8)

lim
m,n→∞

Ê[

∫ T

0

|zms − zns |2ds] = 0, lim
m,n→∞

Ê[ sup
t∈[0,T ]

|Am
t −An

t |2] = 0, (3.9)

where we set An
t = n

∫ t

0
(Ys − yns )ds−Kn

t .

Proof. By Lemma 3.8, it is easy to check (3.8). Set ŷt = ynt − ymt , ẑt = znt − zmt , K̂t =

Kn
t −Km

t , L̂t = Ln
t − Lm

t and ĝt = g(t, ynt , z
n
t ) − g(t, ymt , zmt ). Applying Itô’s formula to

|ŷt|2, we get

|ŷt|2 +
∫ T

t

|ẑs|2d〈B〉s

=

∫ T

t

2ŷsĝsds−
∫ T

t

2ŷsdK̂s +

∫ T

t

2ŷsdL̂s −
∫ T

t

2ŷsẑsdBs

≤ 2L

∫ T

t

|ŷs|2 + |ŷs||ẑs|ds−
∫ T

t

2ŷsdK̂s +

∫ T

t

2ŷsdL̂s −
∫ T

t

2ŷsẑsdBs.

(3.10)

Note that for each ε > 0,

2L

∫ T

t

|ŷs||ẑs|ds ≤ L2/ε

∫ T

t

|ŷs|2ds+ ε

∫ T

t

|ẑs|2ds.
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By simple calculation, we have∫ T

t

ŷsdL̂s =

∫ T

t

(yns − yms )[n(Ys − yns )−m(Ys − yms )]ds

≤
∫ T

t

(m+ n)(Ys − yms )(Ys − yns )ds.

Choosing ε < σ2 and taking expectations on both sides of (3.10), we get

Ê[

∫ T

0

|ẑs|2ds] ≤ CÊ[

∫ T

0

(m+ n)(Ys − yns )(Ys − yms )ds+

∫ T

0

|ŷs|2ds−
∫ T

0

ŷsdK̂s]

≤ CÊ[ sup
s∈[0,T ]

|Ys − yns ||Lm
T |+ sup

s∈[0,T ]

|Ys − yms ||Ln
T |

+

∫ T

0

|ŷs|2ds+ sup
t∈[0,T ]

|ŷs|(|Kn
T |+ |Km

T |)].

By Lemma 3.6 and Lemma 3.8, we obtain the first convergence of (3.9). For the second
one, we observe that, for each n, the process An

t is nondecreasing in t, and

Am
t −An

t = (ym0 − yn0 )− (ymt − ynt ) +

∫ t

0

(zms − zns )dBs −
∫ t

0

(g(s, yms , zms )− g(s, yns , z
n
s ))ds.

It follows from the generalized Burkholder-Davis-Gundy inequality in Proposition 2.10
and Hölder’s inequality that

Ê[ sup
t∈[0,T ]

|An
t −Am

t |2] ≤ C(Ê[ sup
t∈[0,T ]

|ynt − ymt |2] + Ê[

∫ T

0

(zns − zms )2ds]) → 0.

We are now in the final position to prove Theorem 3.3:

Proof of Theorem 3.3. From (3.8) and (3.9), the sequences of {yn}∞n=1 converges to
Y ∈ Sα

G(0, T ), {zn} converges to a process Z ∈ M2
G(0, T ) and {An} converges to a

nondecreasing process A ∈ S2
G(0, T ). Thus we obtain the Decomposition (3.2) by letting

n → ∞ in (3.3).
To prove the uniqueness, let Z,Z ′ ∈ M2

G(0, T ) and A,A′ ∈ S2
G(0, T ) be such that

Yt = Y0 −
∫ t

0

g(s, Ys, Zs)ds+

∫ t

0

ZsdBs −At = Y0 −
∫ t

0

g(s, Ys, Z
′
s)ds+

∫ t

0

Z ′
sdBs −A′

t,

where A,A′ are nondecreasing processes with A0 = A′
0 = 0. By applying Itô’s formula to

(Yt − Yt)
2(≡ 0) on [0, T ] and taking expectation, we get

Ê[

∫ T

0

(Zs − Z ′
s)

2d〈B〉s] = 0.

Therefore Zt ≡ Z ′
t. From this it follows that At ≡ A′

t.

Remark 3.10. If g = 0, then the Êg-supermartingale {Yt}t∈[0,T ] is a G-supermartingale.
Theorem 3.3 also holds for this special case which is in fact the Doob-Meyer decompo-
sition theorem for G-supermartinales. The penalized G-BSDE is of the following form,
n = 1, 2, · · · ,

ynt = YT + n

∫ T

t

(Ys − yns )ds−
∫ T

t

Zn
s dBs − (Kn

T −Kn
t ).
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We can show Lemma 3.5 in a simple way. Since the above G-BSDE is linear, we can
solve it explicitly by applying Itô’s formula to e−ntynt ,

e−ntynt +

∫ T

t

e−nsZn
s dBs +

∫ T

t

e−nsdKn
s = e−nT +

∫ T

t

ne−nsY n
s ds.

According to Lemma 3.4 in [10], {
∫ t

0
e−nsdKn

s }t∈[0,T ] is a G-martingle. Thus we get

ynt = entÊt[e
−nTYT +

∫ T

t

ne−nsYsds]

≤ en(t−T )Êt[YT ] +

∫ T

t

nen(t−s)Êt[Ys]ds

≤ en(t−T )Yt +

∫ T

t

nen(t−s)Ytds = Yt.

Furthermore, if g is a linear function, the proof is similar.

Remark 3.11. By Theorem 4.5 in [30] (see also Theorem 5.1 in [28]), for a G-martingale
Xt = Êt[ξ], t ∈ [0, T ], where ξ ∈ Lβ

G(ΩT ) with β > 1, we have

Xt = X0 +

∫ t

0

ZsdBs +Kt,

here {Kt} is a decreasing G-martingale. Similar to the classical case, given a G-
supermartingale Y , one may conjecture that

Yt = Y0 +

∫ t

0

ZsdBs +Kt − Lt, (3.11)

where {Kt} is a decreasing G-martingale and {Lt} is a nondecreasing process with
L0 = 0. The problem is that the above representation is not unique unless K ≡ 0: K̃ ≡ 0,
L̃ = L − K is a different decomposition. That is why we put the increasing process
{Lt −Kt} as an integral.

It is worth pointing out that unlike with the classical case, considering the de-
composition theorem for G-submartingales is fundamentally different from that for
G-supermartingales. Indeed, if Y is a G-submartingale, {Lt} in (3.11) should be a nonin-
creasing process. Therefore {Lt −Kt} ends up with a finite variation process. Then this
situation becomes much more complicated. We would like to refer the reader to [27]
which defines a new norm for G-submartingales. As a byproduct, the decomposition is
unique.

Then we establish the decomposition theorem for Êg,f -supermartingales.

Theorem 3.12. Let Y = (Yt)t∈[0,T ] ∈ Sβ
G(0, T ) be an Êg,f -supermartingale under with

β > 2. Suppose that f and g satisfy (H1’) and (H2). Then (Yt) has the following
decomposition

Yt = Y0 −
∫ t

0

g(s, Ys, Zs)ds−
∫ t

0

f(s, Ys, Zs)d〈B〉s +
∫ t

0

ZsdBs −At, q.s., (3.12)

where {Zt} ∈ M2
G(0, T ) and {At} is a continuous nondecreasing process with A0 = 0 and

AT ∈ L2
G(ΩT ). Furthermore, the above decomposition is unique.

4 Êg-supermartingales and related PDEs

In this section, we present the relationship between the Êg-supermartingales and the
fully nonlinear parabolic PDEs. For this purpose, we will put the Êg-supermartingales in
a Markovian framework.
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We will make the following assumptions throughout this section. Let b, h, σ :

[0, T ]×R→ R and g : [0, T ]×R3 → R be deterministic functions and satisfy the following
conditions:

(H4.1) b, h, σ, g are continuous in t;

(H4.2) There exists a constant L > 0, such that

|b(t, x)− b(t, x′)|+ |h(t, x)− h(t, x′)|+ |σ(t, x)− σ(t, x′)| ≤ L|x− x′|,
|g(t, x, y, z)− g(t, x′, y′, z′)| ≤ L(|x− x′|+ |y − y′|+ |z − z′|).

For each t ∈ [0, T ] and ξ ∈ L2
G(Ωt), we consider the following type of SDE driven by

1-dimensional G-Brownian motion:

dXt,ξ
s = b(s,Xt,ξ

s )ds+ h(s,Xt,ξ
s )d〈B〉s + σ(s,Xt,ξ

s )dBs, Xt,ξ
t = ξ. (4.1)

We have the following estimates which can be found in Chapter V in [25].

Proposition 4.1. Let ξ, ξ′ ∈ Lp
G(Ωt,R) with p ≥ 2. Then we have, for each δ ∈ [0, T − t]

Êt[|Xt,ξ
t+δ −Xt,ξ′

t+δ|
p] ≤ C|ξ − ξ′|p,

Êt[ sup
s∈[t,t+δ]

|Xt,ξ
s − ξ|p] ≤ C(1 + |ξ|p)δp/2,

Êt[ sup
s∈[t,T ]

|Xt,ξ
s |p] ≤ C(1 + |ξ|p),

where the constant C depends on L, p, T and the function G. Consequently, for each
(x, y, z) ∈ R3 and p ≥ 2, we have {Xt,x

s }s∈[t,T ], {g(s,Xt,x
s , y, z)}s∈[t,T ] ∈ Mp

G(0, T ).

Consider the following type of PDE:

∂tu+ F (D2
xu,Dxu, u, x, t) = 0, (4.2)

where G(a) = 1
2 (σ̄

2a+ − σ2a−) and

F (D2
xu,Dxu, u, x, t) =G(H(D2

xu,Dxu, u, x, t)) + b(t, x)Dxu+ g(t, x, u, σ(t, x)Dxu),

H(D2
xu,Dxu, u, x, t) =σ2(t, x)D2

xu+ 2h(t, x)Dxu.

Now we shall recall the definition of viscosity solution to Equation (4.2), which is
introduced in [5]. Let u ∈ C((0, T )×R) and (t, x) ∈ (0, T )×R. Denote by P2,−u(t, x) (the
“parabolic subjet" of u at (t, x)) the set of triples (a, p,X) ∈ R3 such that

u(s, y) ≥ u(t, x) + a(s− t) + p(y − x) +
1

2
X(y − x)2 + o(|s− t|+ |y − x|2).

Similarly, we define P2,+u(t, x) (the “parabolic superjet" of u at (t, x)) by P2,+u(t, x) :=

−P2,−(−u)(t, x).

Definition 4.2. u ∈ C((0, T )×R) is called a viscosity supersolution (resp. subsolution)
of (4.2) on (0, T )×R if at any point (t, x) ∈ (0, T )×R, for any (a, p,X) ∈ P2,−u(t, x) (resp.
∈ P2,+u(t, x))

a+ F (X, p, u, x, t) ≤ 0 (resp. ≥ 0).

u ∈ C((0, T ) × R) is said to be a viscosity solution of (4.2) if it is both a viscosity
supersolution and a viscosity subsolution.
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Remark 4.3. We then give the following equivalent definition (see [5]). u ∈ C((0, T )×R)
is called a viscosity supersolution (resp. subsolution) of (4.2) on (0, T ) × R if for each
fixed (t, x) ∈ (0, T ) × R, v ∈ C1,2((0, T ) × R) such that u(t, x) = v(t, x) and v ≤ u (resp.
v ≥ u) on (0, T )×R, we have

∂tv(t, x) + F (D2
xv(t, x), Dxv(t, x), v(t, x), x, t) ≤ 0 (resp. ≥ 0).

We state the main result of this section.

Theorem 4.4. Assume (H4.1) and (H4.2) hold. Let u : [0, T ] × R → R be uniformly
continuous with respect to (t, x) and satisfy

|u(t, x)| ≤ C(1 + |x|k), t ∈ [0, T ], x ∈ R,

where k is a positive integer. Then u is a viscosity supersolution of Equation (4.2), if
and only if {Y t,x

s }s∈[t,T ] := {u(s,Xt,x
s )}s∈[t,T ] is an Ê

gt,x

-supermartingale, for each fixed
(t, x) ∈ (0, T )×R, where gt,x = g(s,Xt,x

s , y, z) and {Xt,x
s }s∈[t,T ] is given by (4.1).

To prove this theorem, we introduce the following lemma.

Lemma 4.5. We have, for each p > 2 and (t, x) ∈ [0, T )×R, {Y t,x
s }s∈[t,T ] ∈ Sp

G(0, T ).

Proof. Note that

sup
s∈[t,T ]

|Y t,x
s |p ≤ C sup

s∈[t,T ]

(1 + |Xt,x
s |kp).

By Proposition 4.1, we have Ê[sups∈[t,T ] |Y t,x
s |p] < ∞. Since u is uniformly continuous,

we get the desired result.

Proof of Theorem 4.4. For a given function u satisfying the conditions in Theorem 4.4
and for each n = 1, 2, · · · , (t, x) ∈ [0, T )×R, let us consider the following G-BSDEs:

yn,t,xs =Y t,x
T +

∫ T

s

g(r,Xt,x
r , yn,t,xr , zn,t,xr )dr + n

∫ T

s

(Y t,x
r − yn,t,xr )dr

−
∫ T

s

zn,t,xr dBr − (Kn,t,x
T −Kn,t,x

s ),

and, correspondingly, the following viscosity solution of PDEs:

∂tv
n(t, x) + F (D2

xv
n(t, x), Dxv

n(t, x), vn(t, x), x, t) + n(u(t, x)− vn(t, x)) = 0,

defined on (0, T )×R with the Cauchy condition

vn(T, x) = u(T, x).

From the nonlinear Feynman-Kac formula obtained in [11] (i.e., Theorem 4.5 in [11]), it
follows that yn,t,xs = vn(s,Xt,x

s ), s ∈ [t, T ].
To prove the “if" part of the Theorem, we assume that, for each (t, x), {Y t,x

· } is an
Êgt,x

-supermartingale on [t, T ]. Observing that (yn,t,xs , zn,t,xs ,Kn,t,x
s )s∈[t,T ] is a special

case of (3.3), we can apply Lemma 3.5 and Lemma 3.9 to prove that yn,t,xs ≤ Y t,x
s and

then to get the convergence of {yn,t,x· } to {Y t,x
· } on [t, T ], similar to (3.8). By the proof of

Theorem 3.3, for any (t, x) ∈ [0, T ]×R, we have

vn(s,Xt,x
s ) = yn,t,xs ≤ Y t,x

s = u(s,Xt,x
s ),

and vn ↑ u. Since u is uniformly continuous on [0, T ]×R, the convergence is also locally
uniform. By Theorem 4.5 in [11] and noting that vn ≤ u, vn is a viscosity supersolution of
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PDE (4.2). It follows from the stability theorem of the viscosity solutions (see Proposition
4.3 in [5]) that the limit function u is also a viscosity supersolution of PDE (4.2).

Now we prove the “only if" part of the Theorem. For each t1 ∈ (0, T ), let vt1,u(t1,·) be
the viscosity solution of PDE (4.2) on (0, t1)×R with Cauchy condition vt1,u(t1,·)(t1, x) =

u(t1, x). By the comparison theorem for viscosity solutions, for each (s, x) ∈ [0, t1]×R,
it is easy to check that vt1,u(t1,·)(s, x) ≤ u(s, x). For any t ≤ s ≤ r ≤ T , by the nonlinear
Feymann-Kac formula in [11], we have

Êgt,x

s,r [Y t,x
r ] = Êgt,x

s,r [u(r,Xt,x
r )] = Êgt,x

s,r [vr,u(r,·)(r,Xt,x
r )]

= vr,u(r,·)(s,Xt,x
s ) ≤ u(s,Xt,x

s ) = Y t,x
s ,

(4.3)

which implies that {Y t,x
s }s∈[t,T ] := {u(s,Xt,x

s )}s∈[t,T ] is an Êgt,x

-supermartingale. The
proof is complete.

Remark 4.6. It is worth pointing out that under the Assumptions (H4.1) and (H4.2),
the PDE (4.2) has at most one viscosity solution in the class of continuous functions
satisfying polynomial growth at infinity.

The following result can be considered as the “inverse" comparison theorem for
viscosity solutions of PDEs.

Corollary 4.7. Let V : [0, T ]×R→ R be uniformly continuous with respect to (t, x) and
satisfy

|V (t, x)| ≤ C(1 + |x|k), t ∈ [0, T ], x ∈ R,

where k is a positive integer. Assume that

V (t, x) ≥ ut1,V (t1,·)(t, x), ∀(t, x) ∈ [0, t1]×R, t1 ∈ [0, T ],

where ut1,V (t1,·) denotes the viscosity solution of PDE (4.2) on (0, t1) × R with Cauchy
condition ut1,V (t1,·)(t1, x) = V (t1, x). Then V is a viscosity supersolution of PDE (4.2) on
(0, T )×R.

Proof. For each fixed (t, x), set {Y t,x
s }s∈[t,T ] := {V (s,Xt,x

s )}s∈[t,T ]. Similar with (4.3),

{Y t,x
s }s∈[t,T ] is an Ê

gt,x

-supermartingale. It follows from Theorem 4.4 that V is a viscosity
supersolution of PDE (4.2).

Conclusion

We obtain the decomposition theorem of Doob-Meyer’s type for Êg-supermartingales,
which is a generalization of the results of Peng [20]. Our theorem provides the first step
for solving the representation theorem of dynamically consistent nonlinear expectations.
Different from the classical case, the decomposition theorem for Êg-submartingales
remains open.
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