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Abstract

We compute the exact decay rate of the hole probabilities for β-ensembles and deter-
minantal point processes associated with the Mittag-Leffler kernels in the complex
plane. We show that the precise decay rate of the hole probabilities is determined by
a solution to a variational problem from potential theory for both processes.
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1 Introduction and main results

Let U be an open subset of the complex plane. The probability that U contains no
points of X , a point process (see [DVJ08, p. 7]) in the complex plane, is called hole/gap
probability for U . The hole probability for various point processes in the complex plane
has been studied extensively in the literature.

The hole probabilities for zeros of Gaussian analytic functions have been considered in
[BNPS16, GN16, Nis10, Nis11, Nis12, ST05]. The asymptotics of the hole probabilities
for the eigenvalues of the product of finite matrices with i.i.d. standard complex Gaussian
entries have been calculated in [AS13]. For the asymptotics of the hole probabilities
for the finite and infinite Ginibre ensembles, we refer to [AR16] and [Shi06]. In this
article, we calculate the asymptotics of the hole probabilities for finite β-ensembles and
determinantal point processes associated with the Mittag-Leffler kernels in the complex
plane, which we describe in the next sections.

1.1 Finite β-ensembles in the complex plane

The finite β-ensembles are generalization of the joint probability distribution of
eigenvalues of random matrix ensembles. Let X (g)

n,β denote the finite β-ensemble with n

points in the complex plane, where β > 0 and g satisfies Assumption 1.1.
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Hole probabilities for β-ensembles and determinantal point processes in C

Assumption 1.1. The function g : [0,∞) → [0,∞) satisfies the following conditions:

(A1) g(r) is an increasing function in r such that re−
g(r)
2 → 0 as r → ∞.

(A2) g is a twice differentiable function on (0,∞).

(A3) limr→0+ rg′(r) = 0 and rg′(r) is strictly increasing on (0,∞).

(A4) ck =
∫∞
0

r2k+1e−g(r)dr < ∞ for all k = 0, 1, . . ..

Observe that, for α > 0, g(r) = rα satisfies Assumption 1.1. The joint density of the set

of points of X (g)
n,β (with uniform order) is defined by

1

Z
(g)
n,β

∏
i<j

|zi − zj |βe−n
∑n

k=1 g(|zk|) (1.1)

with respect to Lebesgue measure on Cn, where Z
(g)
n,β is the normalizing constant,

Z
(g)
n,β =

∫
. . .

∫ ∏
i<j

|zi − zj |βe−n
∑n

k=1 g(|zk|)
n∏

k=1

dm(zk),

where m denotes Lebesgue measure on the complex plane.
These ensembles appear in physics to explain the 2-dimensional Coulomb gas models

(see, [HM13, Blo14]). In this model the coordinates of a point are the positions of
particles, the parameter β corresponds to the inverse temperature and g corresponds to
the external potential. If β = 2 and g(|z|) = |z|2, then the set of points of X (g)

n,β has the
same distribution as the eigenvalues of n×n random matrix with i.i.d. complex Gaussian
entries with mean zero and variance 1

n , known as n-th Ginibre ensemble (see [Gin65],
[HKPV09, p. 60]).

Moreover, for β = 2, X (g)
n,2 is a determinantal point process (see, [HKPV09, p. 48]) in

the complex plane with the kernel

K(g)
n (z, w) =

n−1∑
k=0

(zw)k

c
(n)
k

e−
ng(|z|)

2 −ng(|w|)
2 ,

with respect to Lebesgue measure on the complex plane, where the constants c
(n)
k =∫

|z|2ke−ng(|z|)dm(z) for k = 0, 1, . . . , n − 1. In particular, we define X (α)
n = n

1
αX (rα)

n,2 :=

{n 1
α z : z ∈ z ∈ X (rα)

n,2 } for α > 0, i.e., X (α)
n is a determinantal point process with the

kernel

K(α)
n (z, w) =

α

2π

n−1∑
k=0

(zw)k

Γ( 2
α (k + 1))

e−
|z|α
2 − |w|α

2 ,

with respect to Lebesgue measure in the complex plane.
We calculate the hole probabilities for X (g)

n,β and X (α)
n for two classes of domains.

Before stating the result, we introduce a few notation and definitions. Let D(0, T ) denote
the disk of radius T centered at the origin. Tβ denotes the unique solution, by (A3), of

tg′(t) = β. The weighted energy R
(g)
µ,β associated to µ and the minimum weighted energy

R
(g)
U,β for U c, where U is an open subset of C, with the external field 2

β g are defined by

R
(g)
µ,β =

∫∫
log

1

|z − w|
dµ(z)dµ(w) +

2

β

∫
g(|z|)dµ(z) and R

(g)
U,β := inf

P(Uc)
R

(g)
µ,β

where P(U c) denotes the set of all compactly supported probability measures with
support in U c. A probability measure µ with support in U c is said to be weighted
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equilibrium measure of U c with the external field 2
β g if R(g)

µ,β = R
(g)
U,β. For simplicity,

we write equilibrium measure and minimum energy instead of weighted equilibrium
measure and weighted minimum energy.

We consider the following two classes of domains. Let U be an open subset of D(0, Tβ)

such that

(C1) there exists a sequence of open sets Um such that U ⊂ Um ⊆ D(0, Tβ) with
Um+1 ⊆ Um for all m and the equilibrium measure µm of Um with the external field
2
β g converges weakly to the equilibrium measure µ of U with the external field 2

β g.

(C2) there exists ε > 0 such that for every z ∈ ∂U there exists a η ∈ U c such that

U c ⊃ B(η, ε) and |z − η| = ε. (1.2)

Disks and annuli satisfy (C1) for general g (see Example 3.3 and Example 3.4). For
g = tα, if U is an open set such that U ⊂ rU := {rz : z ∈ U} for all r > 1, then U satisfies
(C1) (see Remark 3.1 (3)). All convex domains satisfy (C2) with any ε > 0. Annulus is
not a convex domain but it satisfies (C2). In general verifying (C1) is much harder than
verifying (C2). The following two results gives the hole probabilities for X (g)

n,β .

Theorem 1.2. Let U be an open subset of D(0, Tβ). The following statements are true:

(A) If U satisfies (C1), then

lim sup
n→∞

1

n2
logP[X (g)

n,β(U) = 0] =
β

2
R

(g)
∅,β − β

2
R

(g)
U,β . (1.3)

(B) If U satisfies (C2) and g′ is bounded on [0, Tβ + 1], then (1.3) holds.

As a corollary of the above result we get the hole probabilities for X (α)
n . For simplicity,

we use the term R
(α)
U instead of R(|z|α)

U,2 .

Corollary 1.3. If U is an open subset of D(0, ( 2
α )

1
α ) satisfying (C1) (or (C2)), then

lim
n→∞

1

n2
logP[X (α)

n (n
1
αU) = 0] = R

(α)
∅ −R

(α)
U ,

for α > 0 (or α ≥ 1 respectively).

1.2 Determinantal point processes with Mittag-Leffler kernels

Fix α > 0, let X (α)
∞ denote the determinantal point process in the complex plane with

the kernel K(α)
∞ (z, w) = α

2πE 2
α , 2

α
(zw̄)e−

|z|α
2 − |w|α

2 with respect to Lebesgue measure on
the complex plane, where Ea,b(z) denotes the Mittag-Leffler function (see [HMS11]), an
entire function when a > 0 and b > 0, defined by

Ea,b(z) =

∞∑
k=0

zk

Γ(ak + b)
.

If α = 2, then X (2)
∞ is the determinantal point process with kernel 1

π e
zw̄− |z2|

2 − |w|2
2 with re-

spect to Lebesgue measure in the complex plane, known as infinite Ginibre ensemble (see
[AR16], [HKPV09, p. 61 ]). The point process X (α)

∞ can be viewed as the distributional
limit of X (α)

n , since the kernels K(α)
n (z, w) converge to the kernel K(α)

∞ (z, w).
Following the proof of Theorem 1.1 in [Kos92], it can be shown that the set of

absolute values of the points of X (α)
∞ has the same distribution as {R1, R2, . . .}, where
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Rk are independent and Rα
k ∼ Gamma( 2

αk, 1). Using this fact it can be shown, for
Uc = {z | c < |z| < 1} for fixed 0 ≤ c < 1, that

lim
r→∞

1

r2α
logP[X (α)

∞ (rUc) = 0] = −α

2

(
1

4
− c2α

4
+

(1− cα)2

2α log c

)
. (1.4)

The calculations for proving (1.4) in this method is similar to the proof of Theorem 1.1 in
[AR16], we skip the calculations. But we obtain (1.4) using Theorem 1.4 (Remark 5.1).

But the above method can not be applied to calculate the hole probabilities for
general sets. We use a technique from potential theory, developed in [AR16], to calculate
the hole probabilities for general sets. The next result gives the hole probabilities for
X (α)

∞ .

Theorem 1.4. Let U be an open subset of D(0, ( 2
α )

1
α ) satisfying (C1) (or (C2)), then

lim
r→∞

1

r2α
logP[X (α)

∞ (rU) = 0] = R
(α)
∅ −R

(α)
U ,

for α > 0 (or α ≥ 1 respectively).

1.3 Weighted equilibrium measure and weighted minimum energy

Let U be an open subset of C. For the ease of notation, we use the terms R(g)
U , R(g)

µ

and T instead of R(g)
U,2, R

(g)
µ,2 and T2 respectively.

The equilibrium measure is the uniform probability measure on the unit disk and R
(g)
φ

is 3
4 when g(r) = r2 and U = ∅ (see [AR16, ATW14, ASZ14]). In general, when U = ∅ and

g satisfies Assumption 1.1, the equilibrium measure µ is given by

dµ(z) =

{ 1
4π [g

′′(|z|) + 1
|z|g

′(|z|)]dm(z) if |z| ≤ T

0 otherwise
, (1.5)

where T > 0 such that Tg′(T ) = 2, and the minimum energy is

R
(g)
∅ = log

1

T
+ g(T )− 1

4

∫ T

0

r(g′(r))2dr.

See [ST97, Theorem IV.6.1] for the proof of (1.5). The equilibrium measure for U c, where
U is an open subset of D, has been studied in [AR16, ASZ14] when g(r) = r2.

In the next result we calculate the equilibrium measure and R
(g)
U for U c, where U is

an open subset of D(0, T ), when g satisfies Assumption 1.1. The equilibrium measure
has two components, one component is absolute continuous with respect to Lebesgue
measure and supported on D(0, T )\U , and the other component is singular with respect
to Lebesgue measure and supported on ∂U . The singular measure is the balayage
measure associated to µ

∣∣
U
, where µ as in (1.5).

A measure µbal is said to be the balayage measure associated to a finite Borel measure
µ on a bounded open set U if µbal(∂U) = µ(U), µbal(B) = 0 for every Borel polar set
B ⊂ C and

pµbal(z) = pµ(z) for quasi-everywhere z ∈ U c,

where pµ(z) := −
∫
log |z − w|dµ(w) denotes the logarithmic potential of µ at the point

z ∈ C. A property is said to hold quasi-everywhere (q.e.) on a set E ⊂ C if it holds
everywhere on E except some polar set. A set E is said to be polar if the energy is infinite,
i.e., −

∫∫
log |z − w|dµ(z)dµ(w) = ∞ for all compactly supported probability measures µ

with support in E.
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Theorem 1.5. Let U ⊂ D(0, T ) be an open set, where Tg′(T ) = 2. Then the equilibrium
measure for U c is ν = µout + µbal and

R
(g)
U = R

(g)
∅ +

1

2

[∫
∂U

g(|z|)dµbal(z)−
∫
U

g(|z|)dµin(z)

]
, (1.6)

where µout and µin are restrictions of the measure µ, as in (1.5), on to the sets D(0, T )\U
and U respectively, i.e.,

dµout(z) =

{ 1
4π (g

′′(|z|) + 1
|z|g

′(|z|))dm(z) if z ∈ D(0, T )\U
0 otherwise

dµin(z) =

{ 1
4π (g

′′(|z|) + 1
|z|g

′(|z|))dm(z) if z ∈ U

0 otherwise

and µbal is the balayage measure on ∂U associated to µin.

Note that to calculate R
(g)
U we need to compute the balayage measure. In general

computing balayage measure is not easy. In Section 3.1 we compute the balayage
measure associated to µin when U is a disk or an annulus centered at the origin.

The rest of the article is organized as follows. In Section 2 we shall recall a few basic
definitions and facts from the potential theory. In Section 3 we present the proof of
Theorem 1.5. In Section 4 we give the proofs of Theorem 1.2 and Corollary 1.3. We
prove Theorem 1.4 in Section 5. In the final section we prove Lemmas 4.2 and 4.1.

2 Preliminaries

A weight function w : E → [0,∞), on a closed subset E of C, is said to be admissible
if (a) w is upper semi-continuous, (b) E0 := {z ∈ E|w(z) > 0} has positive capacity, (c)

if E is unbounded, then |z|w(z) → 0 as |z| → ∞, z ∈ E. Note that w(z) = e−
g(|z|)

2 is
an admissible weight function when g satisfies Assumption 1.1 ((A4) is not required).
The following fact, which characterizes the equilibrium measure uniquely, will be used
repeatedly.

Fact 2.1. If w(z) = e−
g(|z|)

2 is an admissible weight function and U is an open subset
of the complex plane, then there exists an unique equilibrium measure ν, for U c with
external field g(|z|). The equilibrium measure ν has compact support and R

(g)
ν is finite.

Further, ν satisfies the following conditions

pν(z) +
g(|z|)
2

= C for q.e. z ∈ supp(ν), and (2.1)

pν(z) +
g(|z|)
2

≥ C for q.e. z ∈ U c , (2.2)

for some constant C. Also, the above conditions uniquely characterize the equilibrium
measure, i.e. a probability measure with compact support in U c and finite energy, which
satisfies the conditions (2.1) and (2.2) for some constant C, is the equilibrium measure
for U c with external field g(|z|).

For a proof of Fact 2.1 see [ST97, Chapter I Theorem 1.3 and Theorem 3.3]. The
following fact (an application of Theorem II.4.7 in [ST97], to bounded open sets) is about
the existence and uniqueness of the balayage measure.

Fact 2.2. Let U be an bounded open subset of C and µ be a finite Borel measure on U (i.e.,
µ(U c) = 0). Then there exists a unique measure µbal on ∂U such that µbal(∂U) = µ(U),
µbal(B) = 0 for every Borel polar set B ⊂ C and pµbal(z) = pµ(z) for q.e. z ∈ U c. µbal is
the balayage measure associated to µ on U .
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We use the following well known fact, see [ST97, Example 0.5.7].

Fact 2.3. For each r > 0,

1

2π

∫ 2π

0

log
1

|z − reiθ|
dθ =

{
log 1

r if |z| ≤ r

log 1
|z| if |z| > r

.

Fekete points: Let E ⊂ C be a closed set and ω = e−
g(|z|)

2 be an admissible weight
function. Define

δωn (E) := sup
z1,z2,...,zn∈E

∏
i<j

|zi − zj |ω(zi)ω(zj)


2

n(n−1)

,

for a fixed positive integer n. A set Fn = {z∗1 , z∗2 , . . . , z∗n} ⊂ E is said to be an n-th
weighted Fekete set for E if

δωn (E) =

∏
i<j

|z∗i − z∗j |ω(z∗i )ω(z∗j )


2

n(n−1)

.

The points z∗1 , z
∗
2 , . . . , z

∗
n in a n-th weighted Fekete set Fn are called n-th weighted Fekete

points. We write Fekete points instead of weighted Fekete points. The set {z∗1 , z∗2 , . . . , z∗n}
always exists, since E is a closed set and w is an upper semi-continuous. But the sets
need not be unique. Observe that, for η ∈ E,

ω(η)n−1
n∏

j=2

|η − z∗j |ω(z∗j )
∏
2<j

|z∗i − z∗j |ω(z∗i )ω(z∗j ) ≤
∏
i<j

|z∗i − z∗j |ω(z∗i )ω(z∗j ).

Which implies that, for η ∈ E,

ω(η)n−1
n∏

j=2

|η − z∗j | ≤ ω(z∗1)
n−1

n∏
j=2

|z∗1 − z∗j |. (2.3)

It is known that the sequence {δωn (E)}∞n=2 decreases to e−R(g)
ν , where ν is the equilib-

rium measure, i.e.

lim
n→∞

δωn (E) = e−R(g)
ν = e− infµ∈P(E) R

(g)
µ . (2.4)

Moreover, the discrete uniform probability measures on n-th Fekete sets converge weakly
to equilibrium measure ν, i.e.

lim
n→∞

νFn = ν, (2.5)

where νFn is the discrete uniform measure on Fn. For the proofs of (2.4) and (2.5), see
[ST97, Chapter III Theorem 1.1 and Theorem 1.3].

3 Proof of Theorem 1.5

In this section give the proof of Theorem 1.5 and some examples of the balayage
measures. Before that we make some remarks, which will be used in calculating the
hole probabilities for X (α)

∞ and X (g)
n,β .

Remark 3.1. 1. If g(r) = rα, then T = ( 2
α )

1
α . From (1.5) we have the equilibrium

measure is dµ(z) = α2

4π |z|
α−2dm(z) on D(0, ( 2

α )
1
α ) and R

(α)
∅ = 3

4 · 2
α − 1

α log 2
α . In

particular if α = 2 then T = 1. The equilibrium measure µ is uniform measure on
D, i.e., dµ(z) = 1

πdm(z) on D and R
(2)
∅ = 3

4 .
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2. If g(r) = rα and α > 0. Then the constant

R
(α)′

U =
1

2

[∫
∂U

g(|z|)dµbal(z)−
∫
U

g(|z|)dµin(z)

]
satisfies the scaling property R

(α)′

aU = a2αR
(α)′

U .

3. Theorem 1.5 implies that the equilibrium measures µm of Um converge to the
equilibrium measure µ of U iff the balayage measures µbal

m associated to µm

∣∣
Um

converge to the balayage measure µbal associated to µ
∣∣
U
and µout

m converges to µout.

In particular, for g = tα, if U is an open set such that U ⊂ rU for all r > 1, then U

satisfies (C1). Because the balayage measure µbal
r on ∂(rU) is given in terms of

the balayage measure µbal on ∂U as µbal
r (rB) = rαµbal(B) for any measurable set

B ⊂ ∂(U). Therefore µbal
r converges weakly to µbal as r → 1.

Remark 3.2. Replacing g by 2
β g in (1.5) and Theorem 1.5, we have

1. The equilibrium measure for C associated to the external field g(|z|)
β is supported

on D(0, Tβ) and given by

dµβ(z) =
1

2βπ
[g′′(|z|) + 1

|z|
g′(|z|)]dm(z) when |z| < Tβ .

The minimum energy is given by

R
(g)
∅,β = log

1

Tβ
+

2

β
g(Tβ)−

1

2β

∫ Tβ

0

|z|(g′(|z|))2dr.

2. Let U be an open subset of D(0, Tβ). Then from Theorem 1.5, we have

R
(g)
U,β = R

(g)
∅,β +

1

β

[∫
g(|z|)dµbal(z)−

∫
g(|z|)dµin(z)

]
,

where µbal is the balayage measure on ∂U associated to µin = µβ

∣∣
U
.

3. If g(t) = tα. Then Tβ =
(

β
α

) 1
α

is the radius of the support of the equilibrium

measure. In particular for α = 2, β = 2 we have T2 = 1, the radius of the support of
the equilibrium measure associated to the quadratic external field.

Proof of Theorem 1.5. Let µ be the equilibrium measure for C, as in (1.5). Let µ =

µout + µin, where µout and µin are µ restricted to U c and U respectively. Fact 2.2 implies
that there exists a measure µbal on ∂U such that µbal(∂U) = µin(U), µbal(B) = 0 for every
Borel polar set and

pµbal(z) = pµin(z) q.e. on U c.

Define ν = µout + µbal. Then we have that the support of ν is D(0, T )\U and

pν(z) = pµout(z) + pµbal(z) = pµout(z) + pµin(z) = pµ(z) q.e. on U c. (3.1)

By Fact 2.3, for |z| ≤ T , we have

pµ(z) =
1

4π

∫ T

0

∫ 2π

0

log
1

|z − reiθ|
(g′′(r) +

1

r
g′(r))rdrdθ

=
1

2

[∫ |z|

0

log
1

|z|
(rg′′(r) + g′(r))dr +

∫ T

|z|
log

1

r
(rg′′(r) + g′(r))dr

]

=
1

2

[
2 log

1

T
+ g(T )− g(|z|)

]
,
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where the last equality follows from the facts that limr→0+ rg′(r) = 0 and Tg′(T ) = 2.
Therefore we get

pµ(z) +
g(|z|)
2

=
1

2

[
2 log

1

T
+ g(T )

]
for |z| ≤ T . (3.2)

On other hand, for |z| > T

pµ(z) =
1

4π

∫ T

0

∫ 2π

0

log
1

|z − reiθ|
(g′′(r) +

1

r
g′(r))rdrdθ

=
1

2

[∫ T

0

log
1

|z|
(rg′′(r) + g′(r))dr

]
(by Fact 2.3)

= log
1

|z|
,

we get last equality by using the facts limr→0+ rg′(r) = 0 and Tg′(T ) = 2. The function

f(r) = log 1
r + g(r)

2 is increasing function on [T,∞). Indeed, f ′(r) = − 1
r + g′(r)

2 ≥ 0 for
r ≥ T , as rg′(r) is increasing. Therefore

pµ(z) +
g(|z|)
2

= log
1

|z|
+

g(|z|)
2

≥ 1

2

[
2 log

1

T
+ g(T )

]
for |z| > T. (3.3)

Therefore from (3.1), (3.2) and (3.3), we have

pν(z) +
g(|z|)
2

=
1

2

[
2 log

1

T
+ g(T )

]
for q.e. z ∈ supp(ν)

pν(z) +
g(|z|)
2

≥ 1

2

[
2 log

1

T
+ g(T )

]
for q.e. z ∈ U c.

The energy of the measure ν,

Iν =

∫
pν(z)dν(z) =

1

2

[
2 log

1

T
+ g(T )

]
− 1

2

∫
g(|z|)dν(z), (3.4)

is finite. The second equality follows from the fact that ν(B) = 0 for all Borel polar sets
B. So, ν has finite energy and satisfies conditions (2.1) and (2.2). Therefore, by Fact 2.1,
ν is the equilibrium measure for U c.

Value of R(g)
U : We have

R(g)
ν =

∫
pν(z)dν(z) +

∫
g(|z|)dν(z) = Iν +

∫
g(|z|)dν(z).

Therefore, by (3.4), we have

R(g)
ν =

1

2

[
2 log

1

T
+ g(T )

]
+

1

2

∫
g(|z|)dν(z)

=
1

2

[
2 log

1

T
+ g(T )

]
+

1

2

∫
g(|z|)dµout(z) +

1

2

∫
g(|z|)dµbal(z)

= R
(g)
∅ − 1

2

∫
U

g(|z|)dµin(z) +
1

2

∫
∂U

g(|z|)dµbal(z)

= R
(g)
∅ +

1

2

[∫
∂U

g(|z|)dµbal(z)−
∫
U

g(|z|)dµin(z)

]
.

The result follows from the fact that R(g)
U = R

(g)
ν .
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3.1 Examples of balayage measures

We calculate the balayage measures for disks and annuli centered at the origin
associated to µ

∣∣
U
, where µ as in (1.5).

Example 3.3. Let U = D(0, a) be a disk of radius a < T centered at origin. Then the
balayage measure on ∂U associated to µ

∣∣
U
, where µ as in (1.5), is

dµbal(z) =

{
1
4πag

′(a)dθ if |z| = a,

0 otherwise.

Example 3.4. Let U = {z : 0 < a < |z| < b < T} be an annulus centered at the
origin with the inner radius a and the outer radius b. Then the balayage measure on ∂U

associated to µ
∣∣
U
, where µ as in (1.5), is

dµbal(z) =



λ
4π (bg

′(b)− ag′(a))dθ if |z| = a,

(1−λ)
4π (bg′(b)− ag′(a))dθ if |z| = b,

0 otherwise,

where λ is given by

λ =
(g(b)− g(a))− ag′(a) log(b/a)

(bg′(b)− ag′(a)) log(b/a)
.

Example 3.5. Suppose g(t) = tα, for α > 0 and U = D(0, a), where a ≤ ( 2
α )

1
α . Then the

balayage measure on ∂U and minimum energy are given below:

dµbal(z) =

{
α
4πa

αdθ if |z| = a,

0 otherwise,
and R

(α)
U −R

(α)
∅ =

a2αα

8
. (3.5)

Example 3.6. Suppose g(t) = tα, for α > 0 and U = {z : 0 < a < |z| < b < ( 2
α )

1
α } is an

annulus centered at the origin with the inner radius a and the outer radius b. Then the
balayage measure on ∂U is

dµbal(z) =



λα
4π (b

α − aα)dθ if |z| = a,

(1−λ)α
4π (bα − aα)dθ if |z| = b,

0 otherwise,

where λ =
(bα − aα)− αaα log(b/a)

α(bα − aα) log(b/a)
.

The minimum energy is given by

R
(α)
U −R

(α)
∅ =

α

2

(
b2α

4
− a2α

4
− (bα − aα)2

2α log(b/a)

)
. (3.6)

We show the computations for the Example 3.4 and we skip the (similar) calculations for
the other examples.

Computations for Example 3.4. If |z| ≤ a, then by Fact 2.3 we have

pµin(z) =
1

4π

∫ b

a

∫ 2π

0

log
1

|z − reiθ|

[
g′′(r) +

1

r
g′(r)

]
rdrθ

=
1

2

∫ b

a

[rg′′(r) + g′(r)] log
1

r
dr

=
1

2

[
−bg′(b) log b+ ag′(a) log a+

∫ b

a

g′(r)dr

]

=
1

2
[(g(b)− g(a))− bg′(b) log b+ ag′(a) log a] .
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Again for |z| ≤ a, the logarithmic potential of µbal at z is

pµbal(z) =
1

4π

∫ 2π

0

λ(bg′(b)− ag′(a)) log
1

|z − aeiθ|
dθ

+
1

4π

∫ 2π

0

(1− λ)(bg′(b)− ag′(a)) log
1

|z − beiθ|
dθ

=
λ

2
[bg′(b)− ag′(a)] log(b/a)− 1

2
[bg′(b)− ag′(a)] log b,

where the last equality follows from the Fact 2.3. By equating pµin(z) = pµbal(z) for
|z| ≤ a, we get

λ =
(g(b)− g(a))− ag′(a) log(b/a)

(bg′(b)− ag′(a)) log(b/a)
.

Similarly, it can be shown that pµin(z) = pµbal(z) for |z| ≥ b for all choice of λ. Therefore
pµin(z) = pµbal(z) if z ∈ U c for the above particular choice of λ. Hence the result.

4 Proofs of Theorem 1.2 and Corollary 1.3

In this section we give the proofs of Theorem 1.2 and Corollary 1.3.

Proof of Corollary 1.3. Recall X (α)
n is the determinantal point process with kernel

K
(α)
n (z, w) with respect to Lebesgue measure in the complex plane. Equivalently, the

vector of points of X (α)
n (in uniform random order) has density

αn

n!(2π)n
∏n−1

k=0 Γ(
2
α (k + 1))

e−
∑n

k=1 |zk|α
∏
i<j

|zi − zj |2,

with respect to Lebesgue measure on Cn. Therefore we have

P[X (α)
n (n

1
αU) = 0]

=
αn

n!(2π)n
∏n−1

k=0 Γ(
2
α (k + 1))

∫
(n

1
α U)c

· · ·
∫
(n

1
α U)c

e−
∑n

k=1 |zk|α
∏
i<j

|zi − zj |2
n∏

k=1

dm(zk)

=
1

Z
(α)
n

∫
Uc

· · ·
∫
Uc

e−n
∑n

k=1 |zk|α
∏
i<j

|zi − zj |2
n∏

k=1

dm(zk)

where Z
(α)
n denotes the normalizing constant,

Z(α)
n =

∫
C

· · ·
∫
C

e−n
∑n

k=1 |zk|α
∏
i<j

|zi − zj |2
n∏

k=1

dm(zk).

Therefore, for g(t) = tα, we have

P[X (α)
n (n

1
αU) = 0] = P[X (g)

n,2(U) = 0]. (4.1)

The function g(t) = tα gives T2 = ( 2
α )

1
α , the solution of tg′(t) = 2. If U satisfies (C1), then

by Theorem 1.2 from (4.1) we get

lim
r→∞

1

n2
logP[X (α)

n (n
1
αU) = 0] = R

(α)
∅ −R

(α)
U ,

for all α > 0. On the other hand, for g(t) = tα, g′ is bounded on [0, T2 + 1] only when
α ≥ 1. Therefore if U satisfies (C2), then the last equality holds for α ≥ 1.
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Proof of Theorem 1.2. The proof follows from the following steps:

(I) If U is an open subset of D(0, Tβ), then

lim sup
n→∞

1

n2
logPn[X (g)

n,β(U) = 0] ≤ −β

2
R

(g)
U,β − lim inf

n→∞

1

n2
logZ

(g)
n,β .

(II) If U satisfies (C1), then

lim inf
n→∞

1

n2
logPn[X (g)

n,β(U) = 0] ≥ −β

2
R

(g)
U,β − lim sup

n→∞

1

n2
logZ

(g)
n,β . (4.2)

(III) If U satisfies (C2) and g′ is bounded on [0, Tβ + 1], then (4.2) holds.

(IV) The normalizing constant Z(g)
n,β has the following asymptotics

lim
n→∞

1

n2
logZ

(g)
n,β = −β

2
R

(g)
∅,β .

In the next two subsections we give the proofs of (I), (II), (III) and (IV).

4.1 Upper bound

Proof of (I). From (1.1) we have

Pn[X (g)
n,β(U) = 0] =

1

Z
(g)
n,β

∫
Uc

. . .

∫
Uc

e−n
∑n

k=1 g(|zk|)
∏
i<j

|zi − zj |β
n∏

k=1

dm(zk)

=
1

Z
(g)
n,β

∫
Uc

. . .

∫
Uc

∏
i<j

|zi − zj |ω(zi)ω(zj)


β

n∏
k=1

e−g(|zk|)dm(zk), (4.3)

where ω(z) = e−
g(|z|)

β . Let z∗1 , z
∗
2 , . . . , z

∗
n be n-th Fekete points for U c with weight ω(z).

Therefore we have

δωn (U
c) =

∏
i<j

|z∗i − z∗j |ω(z∗i )ω(z∗j )


2

n(n−1)

.

Therefore from (4.3), we have

P[X (g)
n,β(U) = 0] ≤ 1

Z
(g)
n,β

(δωn (U
c))

β
2 n(n−1)

n∏
k=1

(∫
Uc

e−g(|zk|)dm(zk)

)
=

1

Z
(g)
n,β

an(δωn (U
c))

β
2 n(n−1),

where a =
∫
Uc e

−g(|z|)dm(z). (A4) implies that a is finite. By taking logarithm and diving
by n2 in both sides, we get

lim sup
n→∞

1

n2
logP[X (g)

n,β(U) = 0] ≤ lim sup
n→∞

1

n2
log(δωn (U

c))
β
2 n(n−1) − lim inf

n→∞

1

n2
logZ

(g)
n,β .

Therefore by (2.4), we get

lim sup
n→∞

1

n2
logPn[X (g)

n,β(U) = 0] ≤ −β

2
inf

µ∈P(C\U)
R

(g)
µ,β − lim inf

n→∞

1

n2
logZ(g)

n

= −β

2
R

(g)
U,β − lim inf

n→∞

1

n2
logZ

(g)
n,β .

Hence the upper bound.
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Note that, by the same arguments it can be shown that

Z
(g)
n,β ≤ an(δωn (C))

β
2 n(n−1),

where a =
∫
C
e−g(|z|)dm(z). Therefore by (2.4), we have

lim sup
n→∞

1

n2
logZ

(g)
n,β ≤ −β

2
inf

µ∈P(C)
R

(g)
µ,β = −β

2
R

(g)
∅,β . (4.4)

4.2 Lower bound

We prove (II) using the following lemma, we give the proof of the lemma in Appendix.

Lemma 4.1. Let U ⊂ D(0, Tβ) be an open set. Then

lim inf
n→∞

1

n2
logP[X (g)

n,β(U) = 0] ≥ −β

2
inf
µ∈A

R
(g)
µ,β − lim sup

n→∞

1

n2
logZ

(g)
n,β ,

where A = {µ ∈ P(C) : dist(Supp(µ), U )> 0}.

Proof of (II). Let U,U1, U2, . . . be open subsets of D(0, Tβ) as in (C1). By Lemma 4.1, we
have

lim inf
n→∞

1

n2
logP[X (g)

n,β(U) = 0] ≥ −β

2
inf
µ∈A

R
(g)
µ,β − lim sup

n→∞

1

n2
logZ

(g)
n,β ,

≥ −β

2
inf

µ∈Am

R
(g)
µ,β − lim sup

n→∞

1

n2
logZ

(g)
n,β ,

where A = {µ ∈ P(C) : dist(Supp(µ),U )> 0}, Am = {µ ∈ P(C) : µ(Um) = 0}. The last
inequality follows from the facts that U ⊂ Um and Am ⊂ A. We have

R
(g)
Um,β =

∫
pµm

(z)dµm(z) +
2

β

∫
g(|z|)dµm(z) = Cβ,g +

1

β

∫
g(|z|)dµm(z), (4.5)

where the last equality follows from (2.1). Observe that the constant Cβ,g does not
depend on the domain Um (see the proof of Theorem 1.5 for the details). Since µm

converges weakly to µ and g is continuous function, we have∫
g(|z|)dµm(z) →

∫
g(|z|)dµ(z)

as g(|z|) is a bounded continuous function on D(0, Tβ)\Um. Therefore, from (4.5), R(g)
Um,β

converges to R
(g)
U,β as m → ∞. Therefore we have

lim inf
n→∞

1

n2
logP[X (g)

n,β(U) = 0] ≥ −β

2
R

(g)
U,β − lim sup

n→∞

1

n2
logZ

(g)
n,β .

Hence the result.

Now we prove (III) using the following lemma, which provides separation between
n-th Fekete points. The lemma says that two Fekete points cannot be too close. This
is not the tightest separation result but it suffices for our purpose. The separation of
Fekete points has been studied by many authors, e.g., see [AR16, AOC12, BLW08] and
references therein.

Lemma 4.2. Let g′ be bounded in [0, Tβ + 1] and U ⊆ D(0, Tβ) be an open set satisfying

(C2). If z∗1 , z
∗
2 , . . . , z

∗
n are the n-th Fekete points for U c with weight ω(z) = e−

g(|z|)
β , then

for large n,

min{|z∗i − z∗k| : 1 ≤ i 6= k ≤ n} ≥ C.
1

n3

for some constant C > 0 (which does not depend on n).
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We give the proof of Lemma 4.2 in Appendix.

Proof of (III). Let z∗1 , z
∗
2 , . . . , z

∗
n be n-th Fekete points for U c with the weight function

ω(z) = e−
g(|z|)

β . Since the support of the Fekete points is contained in support of
equilibrium measure (see [ST97, Chapter III Theorem 2.8]), it follows that |z∗` | ≤ Tβ for
` = 1, 2, . . . , n. Let B` = U c ∩B(z∗` ,

C
n4 ) for ` = 1, 2, . . . , n. Then, for large n, we have

P[X (g)
n,β(U) = 0] =

1

Z
(g)
n,β

∫
Uc

. . .

∫
Uc

e−n
∑n

k=1 g(|zk|)
∏
i<j

|zi − zj |β
n∏

k=1

dm(zk)

≥ 1

Z
(g)
n,β

∫
B1

. . .

∫
Bn

∏
i<j

|zi − zj |ω(zi)ω(zj)


β

n∏
k=1

e−g(|zk|)dm(zk),

≥ e−g(Tβ+1)n

Z
(g)
n,β

∫
B1

. . .

∫
Bn

∏
i<j

|zi − zj |ω(zi)ω(zj)


β

n∏
k=1

dm(zk).

By Lemma 4.2, for large n, we have |z∗i − z∗j | ≥ C
n3 for i 6= j, for some constant C

independent of n. Suppose zi ∈ B(z∗i ,
C
n4 ) and zj ∈ B(z∗j ,

C
n4 ) for i 6= j, then for large n

|zi − zj | ≥ |z∗i − z∗j | −
2C

n4
≥ |z∗i − z∗j | −

2

n
|z∗i − z∗j | ≥ |z∗i − z∗j |

(
1− 2

n

)
.

Therefore we have

P[X (g)
n,β(U) = 0] ≥ e−g(Tβ+1)n

Z
(g)
n,β

∫
B1

. . .

∫
Bn

∏
i<j

|z∗i − z∗j |
(
1− 2

n

)
ω(zi)ω(zj)


β

n∏
k=1

dm(zk)

Since g′ is bounded on [0, Tβ +1], therefore |g(|z|)− g(|w|)| ≤ K.|z−w| for some constant
K, for all z, w ∈ D(0, Tβ + 1). Therefore for large n,

e−
1
2 g(|zi|) ≥ e−

1
2 g(|z

∗
i |)e−

C′
n4 ,

for zi ∈ B(z∗i ,
C
n4 ), i = 1, 2, . . . , n, where C ′ = CK/2. Hence for large n, we have

P[X (g)
n,β(U) = 0]

≥e−g(Tβ+1)n

Z
(g)
n,β

(
1− 2

n

)βn(n−1)

e−
C′
n2

∏
i<j

|z∗i − z∗j |ω(z∗i )ω(z∗j )


β

n∏
k=1

∫
Bk

dm(zk)

For large n, we have
∫
Bi

dm(zi) ≥ π( C
2n4 )

2, i = 1, 2, . . . , n (condition (1.2) implies that Bi

contains at least a ball of radius C
2n4 ). Hence we have

P[X (g)
n,β(U) = 0] ≥ e−g(Tβ+1)n

Z
(g)
n,β

(
1− 2

n

)βn(n−1)

e−
C′
n2 (δωn (U

c))
β
2 n(n−1)

(
π

(
C

2n4

)2
)n

.

Therefore by (2.4), we have

lim inf
n→∞

1

n2
logP[X (g)

n,β(U) = 0] ≥ −β

2
inf

µ∈P(C\U)
R

(g)
µ,β − lim sup

n→∞

1

n2
logZ

(g)
n,β

= −β

2
R

(g)
U,β − lim sup

n→∞

1

n2
logZ

(g)
n,β .

Hence the result.
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Proof of (IV). By the same arguments as in the proof of Lemma 4.1 it can be shown that

lim inf
n→∞

1

n2
logZ

(g)
n,β ≥ −β

2
R

(g)
µ,β , (4.6)

for all compactly supported probability measures µ in the complex plane. The result
follows from (4.4) and (4.6).

5 Proof of Theorem 1.4

Before proving the theorem we have following remarks.

Remark 5.1. 1. Choose a > 0 such that a < ( 2
α )

1
α . From Theorem 1.4 we have

lim
r→∞

1

r2α
logP[X (α)

∞ (rD) = 0] = lim
r→∞

1

r2α
logP[X (α)

∞

( r
a
aD
)
= 0]

=
1

a2α

[
R

(α)
∅ −R

(α)
U

]
,

where U = D(0, a). Therefore by (3.5) we get

lim
r→∞

1

r2α
logP[X (α)

∞ (rD) = 0] = − 1

a2α
a2α

8
= −α

8
.

2. Let b > 0 such that b < ( 2
α )

1
α and Uc = {z : 0 < c < |z| < 1}. Then

lim
r→∞

1

r2α
logP[X (α)

∞ (rUc) = 0] = lim
r→∞

1

r2α
logP[X (α)

∞

(r
b
bUc

)
= 0]

=
1

b2α

[
R

(α)
∅ −R

(α)
bUc

]
,

where bUc = {z : 0 < cb < |z| < b} is an annulus with the inner radius cb and the
outer radius b. Therefore by (3.6), for a = cb, we get

lim
r→∞

1

r2α
logP[X (α)

∞ (rUc) = 0] = − α

2b2α

(
b2α

4
− a2α

4
− (bα − aα)2

2α log(b/a)

)
= −α

2

(
1

4
− c2α

4
+

(1− cα)2

2α log(c)

)
.

3. In particular α = 2 gives the asymptotics of the hole probabilities for infinite
Ginibre ensemble X (2)

∞ , proved in [AR16]. Let U be an open subset of D satisfying
(C1) or (C2). Then

lim
r→∞

1

r4
logP[X (2)

∞ (rU) = 0] = R
(2)
∅ −R

(2)
U .

Proof of Theorem 1.4. Fix α > 0. Since X (α)
n converges in distribution to X (α)

∞ as n → ∞,
therefore we have

P[X (α)
∞ (rU) = 0] = lim

n→∞
P[X (α)

n (rU) = 0]. (5.1)

Again X (α)
n is a determinantal point process with kernel K(α)

n (z, w) with respect to

Lebesgue measure. The kernel K(α)
n (z, w) can be expressed as

K(α)
n (z, w) =

n−1∑
k=0

ϕk(z)ϕk(w) where ϕk(z) =
√
αzk√

2πΓ( 2
α (k+1))

e−
|z|α
2 .
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Hole probabilities for β-ensembles and determinantal point processes in C

The joint density of the points of X (α)
n , with uniform order, is

1

n!
det
(
K(α)

n (zi, zj)
)
1≤i,j≤n

,

with respect to the Lebesgue measure in Cn. Therefore

P[X (α)
n (rU) = 0] =

1

n!

∫
(rU)c

· · ·
∫
(rU)c

det(Kn(zi, zj))1≤i,j≤n

n∏
i=1

dm(zi)

=
1

n!

∫
(rU)c

· · ·
∫
(rU)c

det(ϕk(zi))1≤i,k≤n det(ϕk(zi))1≤i,k≤n

n∏
i=1

dm(zi)

=
1

n!

∫
(rU)c

· · ·
∫
(rU)c

∑
σ,τ∈Sn

sgn(σ)sgn(τ)

n∏
i=1

ϕσ(i)(zi)ϕτ(i)(zi)

n∏
i=1

dm(zi)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

∫
(rU)c

ϕi(z)ϕσ(i)(z)dm(z)

= det

(∫
(rU)c

ϕi(z)ϕj(z)dm(z)

)
1≤i,j≤n

.

Let us define

Mn(rU) :=

(∫
(rU)c

ϕi(z)ϕj(z)dm(z)

)
1≤i,j≤n

=
(
〈ϕi, ϕj〉(rU)c

)
1≤i,j≤n

,

where 〈ϕi, ϕj〉(rU)c =
∫
(rU)c

ϕi(z)ϕj(z)dm(z). Therefore, for all x = (x1, . . . , xn)
T ∈ Cn,

we have

x∗Mn(rU)x =

〈
n∑

k=1

xkϕk,

n∑
k=1

xkϕk

〉
(rU)c

≥ 0.

Hence Mn(rU) is a positive definite matrix. Similarly, we have Mn(rU) − Mn(rD) =(
〈ϕi, ϕj〉(rU)c\(rD)c

)
1≤i,j≤n

, where 〈ϕi, ϕj〉(rU)c\(rD)c =
∫
(rU)c\(rD)c

ϕi(z)ϕj(z)dm(z). So,

we have that Mn(rU) ≥ Mn(rD) ≥ 0 for all n and U ⊆ D = D(0, ( 2
α )

1
α ). Again, for a

positive definite matrix

[
A B

B∗ F

]
we have

det

[
A B

B∗ F

]
= det(A−BF−1B∗) det(F ) ≤ det(A) det(F ),

since BF−1B∗ is positive definite. Therefore (by taking F as 1× 1 block matrix) we have

det(Mn(rU)) ≤ det(Mn−1(rU))

∫
(rU)c

ϕn(z)ϕn(z)dm(z) ≤ det(Mn−1(rU)),

since
∫
C
ϕn(z)ϕn(z)dm(z) = 1. So P[X (α)

n (rU) = 0] = det(Mn(rU)) is decreasing to (5.1).
Therefore, for all n ≥ 2rα, we have

P[X (α)
2rα(rU) = 0] ≥ P[X (α)

n (rU) = 0] ≥ P[X (α)
∞ (rU) = 0]. (5.2)

Again for n ≥ 2rα, we have

P[X (α)
n (rU) = 0] = det(Mn(rU)) = det(M2rα(rU)) det([Mn(rU)/M2rα(rU)]), (5.3)
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where [Mn(rU)/M2rα(rU)] is the Schur complement of the block M2rα(rU) of the matrix
Mn(rU). Recall, the Schur complement of the block F of the matrix

M =

[
A B

C F

]
is [M/F ] = A−BF−1C.

The inverse of block matrix M is given by

M−1 =

[
[M/F ]−1 −A−1B[M/A]−1

−F−1C[M/F ]−1 [M/A]−1

]
,

where [M/A] = F − CA−1B. For n ≥ 2rα, we have

Mn(rU) =

[
M2rα(rU) ∗

∗ ∗

]
and (Mn(rU))−1 =

[
∗ ∗
∗ [Mn(rU)/M2rα(rU)]−1

]
.

Since Mn(rU) ≥ Mn(rD) ≥ 0, we have (Mn(rD))−1 ≥ (Mn(rU))−1. Which implies that
[Mn(rD)/M2rα(rD)]−1 ≥ [Mn(rU)/M2rα(rU)]−1, since any principal block matrix of a
positive definite matrix is a positive definite matrix. Therefore the Schur complements
satisfy the inequality

[Mn(rU)/M2rα(rU)] ≥ [Mn(rD)/M2rα(rD)].

Therefore, the min-max theorem for eigenvalues we have that the i-th largest eigenvalue
of [Mn(rU)/M2rα(rU)] is greater than the i-th largest eigenvalue of [Mn(rD)/M2rα(rD)].
Hence we have

det([Mn(rU)/M2rα(rU)]) ≥ det([Mn(rD)/M2rα(rD)]). (5.4)

As D is rotationally invariant, we have∫
(rD)c

ϕi(z)ϕj(z)dm(z) = 0 for all i 6= j.

Therefore Mn(rD) = diag
(∫

(rD)c
|ϕ1(z)|2dm(z), . . . ,

∫
(rD)c

|ϕn(z)|2dm(z)
)
. From (5.4)

det([Mn(rU)/M2rα(rU)]) ≥
n∏

k=2rα+1

∫
(rD)c

|ϕk(z)|2dm(z)

≥
∞∏

k=2rα+1

∫
(rD)c

|ϕk(z)|2dm(z). (5.5)

Again, for k > 2rα, we have∫
(rD)c

|ϕk(z)|2dm(z) = P

[
Rα

k+1 >
2

α
rα
]
= 1−P

[
Rα

k+1 ≤ 2

α
rα
]

≥ 1−P

[
Rα

k+1 <
k + 1

α

]
= 1−P

[
Rα

k+1

k + 1
<

1

α

]
≥ 1− e−c.k,

where the last inequality follows from the probability of errors in strong law of large

number (Cramer’s bound) for Gamma( 2
α , 1) random variable, as Rα

k
d
= X1 +X2 + · · ·+Xk

and EX1 = 2
α (where X1, . . . , Xk are i.i.d. Gamma( 2

α , 1) distributed). Therefore, for large
r

∞∏
k=2rα+1

∫
(rD)c

|ϕk(z)|2dm(z) ≥ e−2
∑∞

k=2rα e−ck

≥ C > 0.
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Using the last inequality in (5.5) we get

det([Mn(rU)/M2rα(rU)]) ≥ C.

Which implies, from (5.3), that

P[X (α)
∞ (rU) = 0] = lim

n→∞
P[X (α)

n (rU) = 0] ≥ CP[X (α)
2rα(rU) = 0], (5.6)

for large r. Therefore from (5.2) and (5.6), we get

lim
r→∞

1

r2α
logP[X (α)

∞ (rU) = 0] = lim
r→∞

1

r2α
logP[X (α)

2rα(rU) = 0]

= lim
n→∞

4

n2
logP[X (α)

n (n
1
α 2−

1
αU) = 0]. (5.7)

Since U satisfies (C1) (or (C2)), by Corollary 1.3, we have

lim
r→∞

1

r2α
logP[X (α)

∞ (rU) = 0] = 4
(
R

(α)
∅ −R

(α)

2−
1
α U

)
= −4R

(α)′

2−
1
α U

= −R
(α)′

U = R
(α)
∅ −R

(α)
U ,

for α > 0 (or, α ≥ 1 resp.), the third equality follows from (1.6) and R
(α)′

aU = a2αR
(α)′

U .

6 Appendix

In this section we prove Lemmas 4.1 and 4.2. The proofs are similar to the proofs of
Lemmas 5.1 and 1.2 respectively in [AR16], for the completeness we give the proofs.

Proof of Lemma 4.1. From (1.1), the density of the set of points of X (g)
n,β , we have

P[X (g)
n,β(U) = 0] =

1

Z
(g)
n,β

∫
Uc

. . .

∫
Uc

e−n
∑n

k=1 g(|zk|)
∏
i<j

|zi − zj |β
n∏

k=1

dm(zk)

≥ 1

Z
(g)
n,β

∫
Uc

. . .

∫
Uc

e−n
∑n

k=1 g(|zk|)
∏
i<j

|zi − zj |β
n∏

k=1

f(zk)

M
dm(zk),

where f is a compactly supported probability density function with support in U c and
uniformly bounded by M . Applying logarithm on both sides we have

logP[X (g)
n,β(U) = 0]

≥ − log(Z
(g)
n,βM

n) + log

∫
Uc

. . .

∫
Uc

e−n
∑n

k=1 g(|zk|)
∏
i<j

|zi − zj |β
n∏

k=1

f(zk)dm(zk)


≥ − log(Z

(g)
n,βM

n) +

∫
Uc

. . .

∫
Uc

log

e−n
∑n

k=1 g(|zk|)
∏
i<j

|zi − zj |β
 n∏

k=1

f(zk)dm(zk)

= − log(Z
(g)
n,βM

n) +

(
n

2

)∫
Uc

∫
Uc

(β log |z1 − z2| −
2n

(n− 1)
g(|z1|))

2∏
k=1

f(zk)dm(zk),

where the second inequality follows from Jensen’s inequality. Therefore by taking limits
on both sides, we have

lim inf
n→∞

1

n2
logP[X (g)

n,β(U) = 0] ≥ − lim sup
n→∞

1

n2
logZ

(g)
n,β − β

2
R

(g)
µ,β (6.1)
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for any probability measure µ with density bounded and compactly supported on U c.
Let µ be probability measure with density f compactly supported on U c. Consider the
sequence of measures with bounded densities

dµM (z) =
fM (z)dm(z)∫
fM (w)dm(w)

,

where fM (z) = min{f(z),M}. From the monotone convergence theorem for the positive
and the negative parts of the logarithm, it follows (as positive part of logarithm is
bounded) that

lim
M→∞

∫
Uc

∫
Uc

log |z1 − z2|
2∏

i=1

fM (zi)dm(zi) =

∫
Uc

∫
Uc

log |z1 − z2|
2∏

i=1

f(zi)dm(zi).

From monotone convergence theorem, it follows that limM→∞
∫
fM (w)dm(w) = 1 and

since g is continuous function, limM→∞
∫
g(|z|)fM (z)dm(w) =

∫
g(|z|)f(z)dm(w). There-

fore
lim

M→∞
R

(g)
µM ,β = R

(g)
µ,β .

So (6.1) is true for any measure with density compactly supported on U c.
Let µ be a probability measure with compact support at a distance of at least δ from

U . Then the convolution µ ∗σε, where σε is uniform probability measure on disk of radius
ε around origin, has density compactly supported in U c, if ε is less than δ. We have

Iµ∗σε
=

∫∫
log |z − w|d(µ ∗ σε)(z)d(µ ∗ σε)(w)

=

∫∫ 1∫
r1=0

1∫
r2=0

2π∫
θ1=0

2π∫
θ2=0

log |z + εr1e
iθ1 − w − εr2e

iθ2 |r1dr1dθ1
π

r2dr2dθ2
π

dµ(z)dµ(w)

≥
∫∫

log |z − w|dµ(z)dµ(w),

where the inequality follows from the repeated application of the mean value property of
the subharmonic function log |z|. In addition, we have

Iµ∗σε
≤
∫∫

log[|z − w|+ 2ε]dµ(z)dµ(w).

Therefore, limε→0 Iµ∗σε
= Iµ and hence limε→0 R

(g)
µ∗σε,β

= R
(g)
µ,β . Thus (6.1) is true for all

µ ∈ A. Hence the result.

Proof of Lemma 4.2. Let P (z) = (z − z∗2) · · · (z − z∗n). Now we show that

min{|z∗1 − z∗k| : 2 ≤ k ≤ n} ≥ C
1

n3

for some constant C. Suppose |z∗1 − z∗2 | ≤ 1
n2 . By Cauchy integral formula we have

|P (z∗1)| = |P (z∗1)− P (z∗2)|

=

∣∣∣∣∣ 1

2πi

∫
|ζ−z∗

1 |=
2
n2

P (ζ)

(ζ − z∗1)
dζ − 1

2πi

∫
|ζ−z∗

1 |=
2
n2

P (ζ)

(ζ − z∗2)
dζ

∣∣∣∣∣
≤ 1

2π

∫
|ζ−z∗

1 |=
2
n2

|P (ζ)||z∗1 − z∗2 |
|ζ − z∗1 ||ζ − z∗2 |

|dζ|

≤ 1

2π
|P (ζ∗)|n

2

2
n2|z∗1 − z∗2 |2π

2

n2
, (as |ζ − z∗2 | ≥ 1

n2 )
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where ζ∗ ∈ {ζ : |ζ − z∗1 | = 2
n2 } such that P (ζ∗) = sup{|P (ζ)| : |z∗1 − ζ| = 2

n2 }. Therefore
we have

|P (z∗1)| ≤ n2|z∗1 − z∗2 ||P (ζ∗)|. (6.2)

Since g′ is bounded on [0, Tβ ], therefore |g(|z|) − g(|w|)| ≤ K|z − w| for some positive
constant K, for all z, w ∈ D(0, Tβ). Therefore for z, w ∈ D(0, Tβ) and |z − w| ≤ 2

n ,

e−(n−1)
g(|z|)

β ≤ C1e
−(n−1)

g(|w|)
β , (6.3)

where C1 is a constant. Indeed, if z, w ∈ D(0, Tβ) and |z − w| ≤ 2
n , we have

e−
(n−1)

β (g(|z|)−g(|w|)) ≤ e
(n−1)

β K|z−w| ≤ e
(n−1)

β K 2
n = e

2K
β .

Case I: Suppose ζ∗ ∈ U c. Since z∗1 , z
∗
2 , . . . , z

∗
n are the n-th Fekete points for U c with the

weight function ω(z) = e−
g(|z|)

β , then by (2.3) we have

|P (ζ∗)|e−(n−1)
g(|ζ∗|)

β ≤ |P (z∗1)|e
−(n−1)

g(|z∗1 |)
β .

Then from (6.2) and (6.3) we get

|P (z∗1)|e
−(n−1)

g(|z∗1 |)
β ≤ n2|z∗1 − z∗2 ||P (ζ∗)|C1e

−(n−1)
g(|ζ∗|)

β

≤ C1n
2|z∗1 − z∗2 ||P (z∗1)|e

−(n−1)
g(|z∗1 |)

β .

And hence we get

|z∗1 − z∗2 | ≥
1

C1n2
.

Case II: Suppose ζ∗ ∈ U . Therefore dist(z∗1 , ∂U) = inf{|z − z∗1 | : z ∈ ∂U} < 2
n2 .

Choose large n such that 1
n < ε. Since U satisfies (C2), we can choose η ∈ U c such that

z∗1 ∈ B(η, 1
n ) ⊆ U c. By taking the power series expansion of P around η and by triangle

inequality, we get

|P (ζ∗)| ≤ |P (η)|+ |ζ∗ − η| |P
(1)(η)|
1!

+ · · ·+ |ζ∗ − η|(n−1) |P (n−1)(η)|
(n− 1)!

, (6.4)

where P (r)(·) denotes the r-th derivative of P . From the Cauchy integral formula we
have

|P (r)(η)|
r!

≤ 1

2π

∫
|z−η|= 1

n

|P (z)|
|z − η|r+1

|dz| ≤ |P (η∗)|nr,

where η∗ ∈ {z : |z − η| = 1
n} such that P (η∗) = sup{|P (z)| : |z − η| = 1

n}. Note that
|ζ∗ − η| ≤ |ζ∗ − z∗1 |+ |z∗1 − η| ≤ 2

n2 + 1
n , therefore we have

|ζ∗ − η|r |P
(r)(η)|
r!

≤
(
1 +

2

n

)r

|P (η∗)| ≤ e2|P (η∗)|,

for r = 1, 2, . . . , n− 1. Using the above estimate in (6.4) we get

|P (ζ∗)| ≤ |P (η)|+ e2n|P (η∗)|.

By (6.2), (6.3) and (2.3), we have

|P (z∗1)|e
−(n−1)

g(|z∗1 |)
β ≤ n2|z∗1 − z∗2 |C1

(
|P (η)|e−(n−1)

g(|η|)
β + ne2|P (η∗)|e−(n−1)

g(|η∗|)
β

)
≤ n2|z∗1 − z∗2 |C1

(
1 + ne2

)
|P (z∗1)|e

−(n−1)
g(|z∗1 |)

β ,
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since z∗1 , z
∗
2 , . . . , z

∗
n are the n-th Fekete points for U c with weight e−(n−1)

g(|z|)
β and η, η∗ ∈

U c. Therefore we get

|z∗1 − z∗2 | ≥
1

2C1e2n3
.

By Case I and Case II we get that if |z∗1 − z∗2 | ≤ 1
n2 , then |z∗1 − z∗2 | ≥ 1

2C1e2n3 . Similarly, if

|z∗1 − z∗k| ≤ 1
n2 for k = 2, 3, . . . , n, then |z∗1 − z∗k| ≥ 1

2C1e2n3 . Therefore we have

min{|z∗1 − z∗k| : k = 2, 3, . . . , n} ≥ 1

2C1e2n3
.

Similarly it can be shown that |z∗` − z∗k| ≥ 1
2C1e2n3 for all 1 ≤ ` 6= k ≤ n and hence

min{|z∗` − z∗k| : 1 ≤ ` 6= k ≤ n} ≥ 1

2C1e2n3
.

Hence the result.
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