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Abstract

The present paper addresses the following question: for a geometric random tree in
R2, how many semi-infinite branches cross the circle Cr centered at the origin and with
a large radius r? We develop a method ensuring that the expectation of the number
χr of these semi-infinite branches is o(r). The result follows from the fact that, far
from the origin, the distribution of the tree is close to that of an appropriate directed
forest which lacks bi-infinite paths. In order to illustrate its robustness, the method is
applied to three different models: the Radial Poisson Tree (RPT), the Euclidean First-
Passage Percolation (FPP) Tree and the Directed Last-Passage Percolation (LPP) Tree.
Moreover, using a coalescence time estimate for the directed forest approximating
the RPT, we show that for the RPT χr is o(r1−η), for any 0 < η < 1/4, almost surely
and in expectation.
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1 Introduction

The present paper focuses on geometric random trees embedded in R2 and on
their semi-infinite paths. When each vertex of a given geometric random tree T built
on a countable vertex set has finite degree then T automatically admits at least one
semi-infinite path. Excepting this elementary result, describing the semi-infinite paths
of T (their number, their directions etc.) is nontrivial. An important step was taken
by Howard and Newman in [15]. They develop an efficient method (Proposition 2.8)
ensuring that, under certain hypotheses, a geometric random tree T satisfies the two
following statements : with probability 1, every semi-infinite path of T has an asymptotic
direction [S1] and for every direction θ ∈ [0; 2π), there is at least one semi-infinite path
of T with asymptotic direction θ [S2]. As a consequence, the number χr of semi-infinite
paths of T crossing the circle Cr tends to infinity as r → ∞. Thenceforth, a natural
question already mentioned in the seminal 1965 article of Hammersley and Welsh [13]
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Sublinearity of semi-infinite branches

as the highways and byways problem concerns the growth rate of χr. To our knowledge,
this problem has not been studied until now.

In this paper, we state bounds for this rate in three particular models: the Radial
Poisson Tree (RPT), the Euclidean First-Passage Percolation (FPP) Tree and the Directed
Last-Passage Percolation (LPP) Tree.

In the last 15 years, many geometric random trees satisfying [S1] and [S2] are
appeared in the literature. Among these trees, two different classes can be distinguished.
The first one is that of greedy trees (as the RPT). The graph structure of a greedy tree
results from local rules. Its paths are obtained through greedy algorithms, e.g. each
vertex is linked to the closest point inside a given set. On the contrary, optimized trees
are built from global rules as first or last-passage percolation procedure. This is the
case of the Euclidean FPP Tree and the Directed LPP Tree. Besides, for these trees, one
refers to geodesics instead of branches or paths.

Our first main result says that the mean number of semi-infinite paths is asymptoti-
cally sublinear, i.e.

IEχr = o(r) , (1.1)

for many examples of greedy and optimized trees. This result means that among all the
edges crossing the circle Cr, whose mean number is of order r, a very few number of
them belong to semi-infinite paths.

Let us first give some examples of greedy trees studied in the literature. From now
on, N denotes a homogeneous Poisson Point Process (PPP) in R2 with intensity 1. The
Radial Spanning Tree (RST) has been introduced by Baccelli and Bordenave in [1] to
modelize communication networks. This tree, rooted at the origin O and whose vertex
set is N ∪ {O}, is defined as follows: each vertex X ∈ N is linked to its closest vertex
among (N ∪ {O}) ∩ D(O, |X|) where D(O, |X|) denotes the open Euclidean disk with
center O and radius |X|. A second example is given by Bonichon and Marckert in [3].
The authors study the Navigation Tree in which each vertex is linked to the closest one
in a given sector– with angle θ –oriented towards the origin O (see Section 1.2.2). This
tree satisfies [S1] and [S2] whenever θ is not too large (Theorem 5). In Section 2.1 of this
paper, a third example of greedy tree is introduced, called the Radial Poisson Tree (RPT).
For any vertex X ∈ N , let Cyl(X, ρ) be the set of points of the disk D(O, |X|) whose
distance to the segment [O;X] is smaller than a given parameter ρ > 0. Then, in the RPT,
X is linked to the element of Cyl(X, ρ) ∩ (N ∪ {O}) having the largest Euclidean norm.
The main motivation to study this model comes from the fact it is closely related to a
directed forest studied by Ferrari and his coauthors in [9, 8]. In Theorem 8.1 of Section
8, we prove that statements [S1] and [S2] hold for the RPT.

Our first example of optimized tree is called the Euclidean FPP Tree and has been
introduced by Howard and Newman in [15]. In this tree, the geodesic joining each vertex
X of a PPP N to the root XO, which is the closest point of N to the origin O, is defined as
the path X1 = XO, . . . , Xn = X minimizing the weight

∑n−1
i=1 |Xi −Xi+1|α, where α > 0

is a given parameter. A second example is given by Pimentel in [20]. First, the author
associates i.i.d. nonnegative random variables to the edges of the Delaunay triangulation
built from the PPP N . Thus, he links each vertex Y of the triangulation to a selected root
by a FPP procedure. Our third example of optimized tree is slightly different from the
previous ones since its vertex set is the deterministic grid N2. The Directed LPP Tree is
obtained by a LPP procedure from i.i.d. random weights associated to the vertices of N2.
Under suitable hypotheses, this tree satisfies [S1] and [S2] (see Georgiou et al.[11]).

The sublinear result (1.1) has been already proved for the RST. But its proof is
scattered in several works [1, 2, 7] and its robust and universal character has not been
sufficiently highlighted. We claim that our method allows to show that (1.1) holds for
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Sublinearity of semi-infinite branches

all the trees mentioned above and we explicitly prove it for the RPT (Theorem 2.3), the
Euclidean FPP Tree (Theorem 2.5) and the Directed LPP Tree (Theorem 2.7).

When the law of the geometric random tree is isotropic, the limit (1.1) follows from

IEχr(θ, 2π) = o(1) , (1.2)

where χr(θ, 2π) is the number of semi-infinite paths of the considered tree T crossing
the arc of Cr centered at reßθ and with length 2π. The proof of (1.2) is mainly based on
two ingredients. First, we approximate the distribution of T , locally and around the
point reßθ, by a directed forest F with direction −eßθ. The proof of this approximation
result and the definition of the approximating directed forest F are completely different
according to the nature (greedy or optimized) of T . Roughly speaking, in the greedy
case, the approximating directed forest F is obtained from T by sending the target,
i.e. the root of T , to infinity in the direction −eßθ. In particular, the directed forest
approximating the RPT is the collection of coalescing one-dimensional random walks
with uniform jumps in a bounded interval with radius ρ (see [9]). When T is optimized,
the approximating directed forest is given by the collection of semi-infinite geodesics
having the same direction −eßθ and starting at all the vertices. The existence of these
semi-infinite geodesics is ensured by [S2]. Their uniqueness is stated in Proposition 3.2.
The second ingredient is the absence of bi-infinite path in the approximating directed
forest. Actually, this is the only part of our method where the dimension two is used, and
even required for optimized trees. Let us also add that our method applies even if the
limit shape of the considered model is unknown.

In Theorems 2.3, 2.5 and 2.7, it is also established that a.s. χr(θ, 2π) does not tend to
0. This is due to the absence of double semi-infinite paths with the same deterministic
direction.

Our second main result (also in Theorem 2.3) is a substantial improvement of (1.1)
and (1.2) in the case of the RPT. We prove that as r → ∞

IEχr(θ, r
η) = o(1) , (1.3)

for any 0 < η < 1/4, and then by isotropy IEχr is o(r1−η). As for the proof of (1.2), the
one of (1.3) also uses the approximation result by a suitable directed forest F but this
times in a non local way (see Lemma 6.2). Indeed, unlike χr(θ, 2π), the arc involved in
χr(θ, r

η) has a size growing with r. Moreover, accurate estimates on fluctuations of paths
of F and on the coalescence time of two given paths are needed. It is worth pointing out
here that a deep link seems to exist between the rate at which χr tends to 0 and the rate
at which semi-infinite paths merge in the approximating directed forest.

Furthermore, we deduce from (1.3) an almost sure convergence: with probability 1,
the ratio χr/r

1−η tends to 0 as r → ∞ for any 0 < η < 1/4. This result is based on the
fact that two semi-infinite paths of the RPT, far from each other, are independent with
high probability. This argument does not hold in the FPP/LPP context.

Let us finally remark that the convergences in mean obtained in this paper for the RPT
(i.e. limits (2.2) of Theorem 2.3) do not require the statements [S1] and [S2]. However,
this is not the case of the almost sure results (i.e. limits (2.3) and (2.4) of Theorem
2.3) and this is the reason why we prove in Section 8 that the RPT satisfies these two
statements.

Our paper is organized as follows. In Section 2, the RPT, the Euclidean FPP Tree and
the Directed LPP Tree are introduced, and the sublinearity results (Theorems 2.3, 2.5
and 2.7) are stated. The general scheme of the proof of (1.2) is developped in Section 3.1
but the reader must refer to Sections 4 and 5 respectively for details about the Euclidean
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FPP Tree and the Directed LPP Tree. The last three sections concern the RPT. The proof
of (1.3) is devoted to Section 6. The almost sure convergence of χr/r

1−η to 0 is given in
Section 7. Finally, in Section 8, we prove that the RPT satisfies statements [S1] and [S2]

(Theorem 8.1).

2 Models and sublinearity results

Let O be the origin of R2 which is endowed with the Euclidean norm | · |. We denote
by D(x, r) (resp. D̄(x, r)) the open (resp. closed) Euclidean disk with center x and radius
r, and by C(x, r) the corresponding circle. We merely set Cr instead of C(O, r). Let ar(θ, c)
be the arc of Cr centered at reßθ and with length c > 0. The Euclidean scalar product is
denoted by 〈·, ·〉. Throughout the paper, the real plan R2 and the set of complex numbers
C are identified. Hence, according to the context, a point X will be described by its
cartesian coordinates (X(1), X(2)) or its Euclidean norm |X| and its argument arg(X)

which is the unique (when X 6= O) real number θ in [0; 2π) such that X = |X|eßθ. We
denote by [X;Y ] the segment joining X,Y ∈ R2 and by (X;Y ) the corresponding open
segment.

All the trees and forests considered in the sequel are graphs with out-degree 1 (except
for their roots). Hence, they are naturally directed. The outgoing vertex Y of any edge
(X,Y ) will be denoted by A(X) and called the ancestor of X. We will also say that X is a
child of A(X). Moreover, it will be convenient to keep the same notation for these trees
and forests that they are considered as random graphs with directed edges (X,A(X)) or
as subsets of R2 made up of segments [X;A(X)].

A sequence (Xn)n∈N of vertices defines a semi-infinite path (resp. a bi-infinite path) of
a geometric random graph if for any n ∈ N (resp. n ∈ Z), A(Xn+1) = Xn. A semi-infinite
path (Xn)n∈N admits θ ∈ [0; 2π) as asymptotic direction if

lim
n→∞

Xn

|Xn|
= eßθ .

The number of semi-infinite paths at level r, i.e. crossing the circle Cr, will be denoted
by χr. This notion should be specified according to the context.

In the sequel, N denotes a homogeneous PPP in R2 with intensity 1. The number of
Poisson points in a given measurable set Λ is N (Λ).

2.1 The Radial Poisson Tree

Let ρ > 0 be a positive real number. Considering N ∩D(O, ρ)c instead of N , we can
assume for this section that N has no point in D(O, ρ). The Radial Poisson Tree (RPT)
Tρ is a directed graph whose vertex set is given by N ∪ {O}. Let us define the ancestor
A(X) of any vertex X ∈ N as follows. First we set

Cyl(X, ρ) = ([O;X]⊕D(O, ρ)) ∩D(O, |X|) ,

where⊕ denotes the Minkowski sum. If Cyl(X, ρ)∩N is empty thenA(X) = O. Otherwise,
A(X) is the element of Cyl(X, ρ) ∩N having the largest Euclidean norm:

A(X) = argmax {|Y |, Y ∈ Cyl(X, ρ) ∩N} . (2.1)

Hence, the set Cyl(X, ρ)∗ = Cyl(X, ρ) \ D̄(O, |A(X)|) avoids the PPP N . See Figure 1.
Let us note that the definition of ancestor A(X) can be extended to any X ∈ R2.

This construction ensures the a.s. uniqueness of the ancestor A(X) of any X ∈ R2.
This means that the RPT has no loop. Furthermore, A(X) is closer than X to the origin.
Since the PPP N is locally finite, then any X ∈ R2 is linked to the origin by a finite
number of edges.

Here are some basic properties of the RPT Tρ.
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Figure 1: This picture represents the ancestor A(X) ∈ N of X = (x, 0). The bold lines
delimit the cylinder Cyl(X, ρ)∗. Remark that the distance between A(X) and the segment
[O;X] is smaller than ρ in the RPT Tρ whereas it is unbounded in the Radial Spanning
Tree (see [1]).

Lemma 2.1. The Radial Poisson Tree Tρ satisfies the following non-crossing property:
for any vertices X,X ′ ∈ N with X 6= X ′, (X;A(X)) ∩ (X ′;A(X ′)) = ∅. Moreover, the
number of children of any X ∈ N ∪ {O} is a.s. finite but unbounded.

Proof. Let X,X ′ ∈ N with X 6= X ′. By symmetry, we assume that a.s. |X| > |X ′|.
Actually, we can focus on the case where |X ′| > |A(X)|. Otherwise, |X| > |A(X)| ≥
|X ′| ≥ ρ since the PPP N avoids the disk D(O, ρ). Henceforth the interval (X;A(X)) is
outside the disk D(O, |X ′|) whereas (X ′;A(X ′)) is inside. They cannot overlap. Hence,
let us assume that a.s. min{|X|, |X ′|} > max{|A(X)|, |A(X ′)|}. If the ancestors A(X) and
A(X ′) belong to Cyl(X, ρ) ∩ Cyl(X ′, ρ) then they necessarily are equal. Otherwise A(X)

belongs to Cyl(X, ρ) \Cyl(X ′, ρ) or A(X ′) belongs to Cyl(X ′, ρ) \Cyl(X, ρ). In both cases,
the sets (X;A(X)) and (X ′;A(X ′)) cannot overlap. [This is the reason of the hypothesis
N ∩D(O, ρ) = ∅ which ensures that pathes of Tρ do not cross.]

About the second statement, we only treat the case of the origin O. These are the
same arguments for anyX ∈ N . LetK be the number of children of O. By the Campbell’s
formula,

IEK =
∑
n∈N

IE

 ∑
X∈N

n≤|X|<n+1

1A(X)=O


=

∑
n∈N

2π

∫ n+1

n

IP(A((x, 0)) = O)x dx

≤
∑
n∈N

2π(n+ 1) IP(A((n, 0)) = O)

≤
∑
n∈N

2π(n+ 1)e−ρ(n−ρ) <∞ .

Then, the random variable K is a.s. finite.
Let R > ρ be a (large) real number. Consider a clockwise ordered, deterministic

sequence of k points u1, . . . , uk on the circle CR such that |ui − ui+1| = 2ρ for i = 1, . . . , k.
Such a sequence exists when

k =

⌊
π

arcsin(ρ/R)

⌋
,
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and in this case, |uk − u1| ≥ 2ρ. Recall that b·c denotes the integer part. Let 0 < ε < ρ/2.
On the event “each disk D(ui, ε) contains exactly one point of N and these are the only
points of N in the (large) disk D(O,R+ ε)” which occurs with a positive probability, the
number K of children of O is at least equal to k. Finally, the integer k = k(R) tends to
infinity with R.

Figure 2: Built on the same realization of the PPP N , the Radial Poisson Tree with ρ = 1

(to the left) and ρ = 2 (to the right).

Theorem 8.1 of Section 8 says that the RPT is straight. Roughly speaking, this means
that the subtrees of T are becoming thinner when their roots are far away from the one
of T . This notion has been introduced in Section 2.3 of [15] to prove that any semi-infinite
path has an asymptotic direction and in each direction there is a semi-infinite path (see
Proposition 2.8 of [15]). This is case of the RPT:

Proposition 2.2. The Radial Poisson Tree Tρ a.s. satisfies statements [S1] and [S2].

The random integer χr denotes the number of intersection points of the circle Cr
with the semi-infinite paths of the RPT. Proposition 2.2 implies that χr a.s. converges to
infinity as r → ∞. Thus, consider two real numbers θ ∈ [0; 2π) and c > 0. We denote by
χr(θ, c) the number of semi-infinite paths of the RPT crossing the arc ar(θ, c) of Cr. Here
is the sublinearity result satisfied by the RPT:

Theorem 2.3. Let θ ∈ [0; 2π) and 0 < η < 1/4. Then,

lim
r→∞

IE
χr

r1−η
= 0 and lim

r→∞
IEχr(θ, r

η) = 0 . (2.2)

Furthermore,
lim
r→∞

χr

r1−η
= 0 a.s. (2.3)

whereas, for any c > 0, the sequence (χr(θ, c))r>0 does not tend to 0 a.s.:

IP

(
lim sup
r→∞

χr(θ, c) ≥ 1

)
= 1 . (2.4)

Let us remark that the ratio χr/r should still tend to 0 in L1 and a.s. in any dimension
d ≥ 3. Indeed, the definition of the RPT and the proofs of Steps 1, 3 and 4 should
be extended to any dimension without major changes. Moreover, the approximating
directed forest still has no bi-infinite path in dimension d ≥ 3– even if it is a tree for
d = 3 and a collection of infinitely many trees for d ≥ 4. See Theorem 3.1 of [9] for the
corresponding result.

EJP 23 (2018), paper 37.
Page 6/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP115
http://www.imstat.org/ejp/


Sublinearity of semi-infinite branches

2.2 The Euclidean FPP Tree

Let α > 0 be a positive real number. The Euclidean First-Passage Percolation Tree
Tα introduced and studied in [14, 15], is a planar graph whose vertex set is given by
the homogeneous PPP N . Unlike the RPT whose graph structure is local, that of the
Euclidean FPP Tree is global and results from a minimizing procedure. Let X,Y ∈ N . A
path from X to Y is a finite sequence (X1, . . . , Xn) of points of N such that X1 = X and
Xn = Y . To this path, the weight

n−1∑
i=1

|Xi −Xi+1|α

is associated. Then, a path minimizing this weight is called a geodesic from X to Y and
is denoted by γX,Y :

γX,Y = argmin

{
n−1∑
i=1

|Xi −Xi+1|α , n ≥ 2 and (X1, . . . , Xn) is a path from X to Y

}
.

(2.5)
By concavity of x 7→ xα for 0 < α ≤ 1, the geodesic from X to Y coincides with the
straight line [X;Y ]. Since a.s. no three points of N are collinear, it is reduced to the
trivial path (X,Y ). So, from now on, to get nontrivial geodesics, we assume α > 1.

Existence and uniqueness of the geodesic γX,Y are a.s. ensured whenever α > 1.
This is Proposition 1.1 of [15]. Let XO be the closest Poisson point to the origin O. The
Euclidean FPP Tree Tα is defined as the collection {γXO,X , X ∈ N}. By uniqueness of
geodesics, Tα is a tree rooted at XO.

Thanks to Proposition 1.2 of [15], any vertex X of Tα a.s. has finite degree. Remark
also that, unlike the RPT, the outgoing vertex of X 6= XO (i.e. its ancestor A(X)) may
have a larger Euclidean norm than X.

The straight character of the Euclidean FPP Tree is stated in Theorem 2.6 of [15] (for
α > 1). It then follows:

Proposition 2.4 (Theorems 1.8 and 1.9 of [15]). For any α > 1, the Euclidean FPP Tree
Tα a.s. satisfies statements [S1] and [S2].

The definition of the number χr of semi-infinite geodesics of the Euclidean FPP Tree
Tα at level r requires to be more precise than in Section 2.1. Since the vertices of
geodesics of Tα are not sorted w.r.t. their Euclidean norms, geodesics may cross many
times any given circle. So, let us consider the graph obtained from Tα after deleting all
geodesics (XO, X2, . . . , Xn) with n ≥ 2 (except the endpoint Xn) such that the vertices
XO, X2, . . . , Xn−1 belong to the disk D(O, r) but Xn is outside. Then, χr counts the
unbounded connected components of this graph. Now, let θ ∈ [0; 2π) and c > 0. The
random integer χr(θ, c) denotes the number of these unbounded connected components
emanating from a vertex X such that the edge [A(X);X] crosses the arc ar(θ, c) of the
circle Cr. Here is the sublinearity result satisfied by the Euclidean FPP Tree:

Theorem 2.5. Let θ ∈ [0; 2π) and c > 0 be real numbers. Assume α ≥ 2. Then,

lim
r→∞

IE
χr

r
= 0 and lim

r→∞
IEχr(θ, c) = 0 . (2.6)

Furthermore, the sequence (χr(θ, c))r>0 does not tend to 0 a.s.:

IP

(
lim sup
r→∞

χr(θ, c) ≥ 1

)
= 1 . (2.7)

The hypothesis α ≥ 2 is added so that the Euclidean FPP Tree Tα satisfies the
noncrossing property given in Lemma 5 of [14]: for any vertices X 6= Y , the open
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segments (X;A(X)) and (Y ;A(Y )) do not overlap. This property which also holds for
the approximating directed forest Fα, will be crucial to obtain the absence of bi-infinite
geodesic in Fα.

2.3 The Directed LPP Tree

The Directed Last-Passage Percolation Tree is quite different from the RPT or the
Euclidean FPP Trees. Indeed, its vertex set is given by the deterministic grid N2. As
a result, its random character comes from random times allocated to vertices of N2.
See Martin [18] for a complete survey. A directed path from the origin O to a given
vertex z ∈ N2 is a finite sequence of vertices (z0, z1, . . . , zn) with z0 = O, zn = z and
zi+1 − zi = (1, 0) or (0, 1), for 0 ≤ i ≤ n− 1. The time to go from the origin to z along the
path (z0, z1, . . . , zn) is equal to the sum ω(z0) + . . .+ ω(zn−1), where {ω(z), z ∈ N2} is a
family of i.i.d. positive random variables such that

IEω(z)2+ε <∞ for some ε > 0 and Var(ω(z)) > 0 (2.8)

and
IP(ω(z) ≥ r) is a continuous function of r. (2.9)

A directed path maximizing this time over all directed paths from the origin to z is
denoted by γz and called a geodesic from the origin to z:

γz = argmax

{
n−1∑
i=0

ω(zi) , (z0, . . . , zn) is a directed path from O to z

}
. (2.10)

Hypothesis (2.9) ensures the almost sure uniqueness of geodesics. Then, the collection
of all these geodesics provides a random tree rooted at the origin and spanning all the
quadrant N2. It is called the Directed Last-Passage Percolation Tree and is denoted by
T . See Figure 3 for an illustration. Given z ∈ N2 \ {O}, the ancestor A(z) of z is the
vertex among z − (1, 0) and z − (0, 1) by which its geodesic passes. The chidren of z are
the vertices among z + (1, 0) and z + (0, 1) whose z is the ancestor.

The study of geodesics of the Directed LPP Tree has started in [10] with the case
of exponential weights and has been recently generalized in [11] to a larger class
corresponding to (2.8). However, a third hypothesis is required so that the Directed LPP
Tree T satisfies [S1] and [S2]. If G(z) denotes the times realized along the geodesic γz,
then there exists a nonrandom continuous function g : R2

+ → R defined by

a.s. g(x) = lim
n→∞

G(bnxc)
n

and called the shape function. See for instance Proposition 2.1 of [17]. The shape
function g is symmetric, concave and 1-homogeneous. In the sequel, we also assume that

g is strictly concave. (2.11)

Proposition 2.6 (Theorem 2.1 of [11]). With hypotheses (2.8), (2.9) and (2.11), the
Directed LPP Tree T a.s. satisfies statements [S1] and [S2].

In the case of exponential weights, the LPP model is deeply linked to the Totally
Asymmetric Simple Exclusion Process (TASEP). As a consequence, more precise results
exist about semi-infinite geodesics of the Directed LPP Tree: see [6].

Let θ ∈ [0;π/2] and c > 0. The number of intersection points between the arc ar(θ, c)

of the circle Cr, and the semi-infinite geodesics of the Directed LPP Tree T is denoted
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Figure 3: Here is a realization of the Directed LPP Tree T restricted to the set [0; 60]2

in the case of the exponential distribution with parameter 1. This realization presents
a remarkable feature; the geodesics to (60, 59) and to (59, 60) have only one common
vertex which is the origin.

by χr(θ, c). Due to its directed character, T always contains two trivial semi-infinite
geodesics which are the horizontal and vertical axes. This implies that, for any c > 0,
χr(0, c) and χr(π/2, c) are larger than 1. This is the reason why the extreme values θ = 0

and θ = π/2 are excluded from the first part of Theorem 2.7.

Theorem 2.7. Assume (2.8), (2.9) and (2.11) hold. Let θ ∈ (0;π/2) and c > 0 be real
numbers. Then,

lim
r→∞

IEχr(θ, c) = 0 . (2.12)

Furthermore, for any θ ∈ [0;π/2] and c > 0, the sequence (χr(θ, c))r>0 does not tend to 0

a.s.:

IP

(
lim sup
r→∞

χr(θ, c) ≥ 1

)
= 1 . (2.13)

Because of the lack of isotropy of the Directed LPP Tree, we cannot immediatly
deduce from (2.12) that IEχr/r tends to 0. In the case of exponential weights, a possible
way to overcome this obstacle would be to take advantage of the coupling between the
LPP model and the TASEP.

In order to avoid extra definitions, we do not mention explicitly in Theorem 2.7 the
following extension: (2.12) still holds without the strict concacivity of the shape function
g, i.e. the restriction of g to {(t, 1− t), 0 ≤ t ≤ 1} may admit flat segments. In this case,
thanks to Theorem 2.1 of [11], geodesics are no longer directed according to a given
direction but according to a semi-cone (generated by a flag segment).
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Sublinearity of semi-infinite branches

3 Sketch of the proofs

In this section, we use the generic notation T to refer to the RPT Tρ, to the Euclidean
FPP Tree Tα and to the Directed LPP Tree T .

3.1 Sublinearity results and comments

First of all, the isotropic property allows to reduce the study to any given direction θ:

IEχr = r IEχr(θ, 2π) .

This is the case of the RPT and the Euclidean FPP Tree, but not the Directed LPP Tree.
So, our goal is to show that the expectation of χr(θ, 2π) tends to 0 as r tends to infinity.
The scheme of the proof can be divided into four steps.

STEP 1: The first step consists in approximating locally (i.e. around the point reßθ)
and in distribution the tree T by a suitable directed forest, say F , with direction −eßθ.
To do it, we need local functions. Let us consider two oriented random graphs G and G′

with out-degree 1 defined on the same probability space and having the same vertex set
V ⊂ R2. As previously, we call ancestor of v, the endpoint of the outgoing edge of v.

Definition 3.1. With the previous assumptions, a measurable function F is said local
if there exists a (deterministic) set D, called the stabilizing set of F , such that for any
X ∈ R2; F (X,G) = F (X,G′) whenever each vertex v ∈ V ∩ (X + D) has the same
ancestor in G and G′.

Thenceforth, the approximation result will be expressed as follows. Given a local func-
tion F , the distribution of F (reßθ, T ) converges in total variation towards the distribution
of F (O,F) as r tends to infinity.

The directed forest F approximating the RPT has been introduced by Ferrari et
al.[9]. This forest is given by the collection of coalescing one-dimensional random walks
with uniform jumps in a bounded interval (with radius ρ) and starting at the points of
a homogeneous PPP in R2. Its graph structure is based on local rules. Conversely, the
directed forests used to approximate the Euclidean FPP Tree and the Directed LPP Tree
are collections of coalescing semi-infinite geodesics with direction −eßθ: their graph
structures obey to global rules. Consequently, the proofs of Step 1 for the RPT (see
Lemma 6.4 and comments just after Proposition 6.3) and for the FPP/LPP Trees will be
radically different. In particular, a key argument used in the proof for optimized trees is
that a geodesic from X to Y coincides with the one from Y to X– which does not hold in
general for greedy trees.

STEP 2: The goal of the second step is to prove that the directed forest F (with
direction −eßθ) a.s. has no bi-infinite path. In other words, each backward path (i.e.
with direction eßθ) of F is a.s. finite. Such a proof is now classic. First one states
that all the paths eventually coalesce (towards the direction −eßθ). This can be easily
done if the directed forest presents some Markov property; this is the case of the
forest approximating the RPT (see Section 4 of [9]). Otherwise, an efficient topological
argument originally due to Burton and Keane [4] may apply. See Licea and Newman
[16] for an adaptation of this argument to the FPP/LPP context. This argument is
fundamentally based on the fact that paths do not cross in dimension two.

In a second time, we deduce from the coalescence result that F does not contain any
bi-infinite path. Roughly speaking, when one looks to the past (i.e. towards the direction
eßθ), all the paths are finite. This part essentially uses the translation invariance property
of the directed forest F .

Step 2 also says that the directed forest F a.s. has only one topological end.
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STEP 3: Combining results of the two previous steps, we get that χr(θ, 2π) tends to
0 in probability, as r tends to infinity. Let us roughly describe the underlying idea. The
event χr(θ, 2π) ≥ 1 implies the existence of a very long path of T crossing the arc of the
circle Cr centered at reßθ and with length c. Thanks to Step 1, this means that in the
directed forest F , there exists a path crossing the segment centered at O, with length c
and orthogonal to −eßθ, and coming from very far in the past (i.e. towards the direction
eßθ). Now, thanks to Step 2, this should not happen.

STEP 4: In this last step, we exhibit a uniform (on r) moment condition for χr(θ, 2π)

to strengthen its convergence to 0 in the L1 sense using the Cauchy-Schwarz inequality:

IEχr(θ, 2π) = IEχr(θ, 2π)11χr(θ,2π)≥1 ≤M
√
IP(χr(θ, 2π) ≥ 1)

for any r large enough.

As recalled in Introduction, this method has already been applied to the Radial
Spanning Tree (RST) in a series of articles. The RST is locally approximated by the
Directed Spanning Forest (Step 1): see Theorem 2.4 of [1] for the precise result and
Section 2.1 for the construction of the DSF. The fact that this forest has no bi-infinite
path is the main result of Coupier and Tran [7] (Step 2). Finally, Steps 3 and 4 are given
in Coupier et al.[2] and lead to the sublinearity result (Theorem 2).

This method can be performed in the case of the RPT Tρ to obtain a better rate of
convergence, namely IEχr is o(r3/4+ε). See Section 6 for details. Besides, this performed
method should apply to the RST provided a coalescence time estimate exists for its
approximating directed forest.

Unlike the FPP/LPP context, the approximation method (STEP 1) for greedy trees
(as RPT, RST) does not require the existence of semi-infinite paths in each deterministic
direction– which generally follows from the straight character of the considered tree.
Hence, we can try to apply our method to the geometric random tree of Coletti and
Valencia [5] without assuming that it admits an infinite number of semi-infinite paths
(which should certainly be true).

Actually, our method says a little bit more. Conditionally on the fact that STEPS 1, 3
and 4 work, IEχr(θ, c) tends to 0 if and only if the corresponding directed forest contains
no bi-infinite path. Hence, it seems possible to use Example 2.5 of [11], to prove that

lim inf
r→∞

IEχr(π/4, 1) > 0 ,

where χr(π/4, 1) concerns the rightmost semi-infinite paths (directed according to a
cone with axis eßπ/4) of some particular Directed LPP Tree satisfying (2.8) but not (2.9)
and (2.11).

3.2 Absence of directional almost sure convergence

For each of the three random trees studied in this paper, the r.v. χr(θ, 2π) tends to 0

in probability but not almost surely. This absence of almost sure convergence is based
on the same key result.

Proposition 3.2. Almost surely, there is at most one semi-infinite path (or geodesic) of
T with deterministic direction θ. This statement holds for the RPT with θ ∈ [0; 2π) and
ρ > 0; for the Euclidean FPP Tree with θ ∈ [0; 2π) and α ≥ 2; for the Directed LPP Tree
with θ ∈ [0;π/2] and hypotheses (2.8), (2.9) and (2.11).

This result has been proved in Lemma 6 of [14] for the Euclidean FPP Tree and in
Proposition 5 of [2] for the Radial Spanning Tree. In both cases, a clever application of
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Fubini’s theorem allows to get that, for a.e. θ (w.r.t. the Lebesgue measure), there a.s. is
no semi-infinite path with direction θ. Thus, by isotropy, the result can be extended to
any θ. Actually, the same proof works for the RPT. For this reason, we do not give any
detail.

Proposition 3.2 is given in Theorem 2.1 (iii) of [11] for Directed LPP Tree. Their proof,
completely different from the previous argument, uses cocycles to overcome the lack of
isotropy.

It remains to prove

IP

(
lim sup
r→∞

χr(θ, c) ≥ 1

)
= 1 .

from Proposition 3.2. This has been already written into details in [2] in the case of the
RST (see Corollary 6). Without major changes, the same arguments work for the RPT,
the Euclidean FPP Tree and the Directed LPP Tree. Hence, we will just describe the
spirit of the proof. By contradiction, let us assume that with positive probability, from a
(random) radius r0, there is no semi-infinite path of the tree T crossing the arc ar(θ, c) of
the circle Cr (with a deterministic direction θ). Hence, with positive probability, there
is no semi-infinite path crossing the semi-line L(θ, r0) = {reßθ, r ≥ r0}. Now, from both
unbounded subtrees of T located on each side of the semi-line L(θ, r0), it is possible to
extract two semi-infinite paths, say γ and γ′, which are as close as possible to L(θ, r0).
This construction ensures that the region of the plane delimited by γ and γ′– in which the
semi-line L(θ, r0) is –only contains finite paths of T . Since the tree T satisfies statements
[S1] and [S2], we can then deduce that γ and γ′ have the same asymptotic direction θ.
However, such a situation never happens by Proposition 3.2.

4 Convergence in L1 for the Euclidean FPP Tree

To get Theorem 2.5, it suffices by isotropy to prove that the expectation of χr(0, 2π)

tends to 0 as r → ∞. The proof works as well when 2π is replaced with any constant
c > 0. In the sequel, we assume α ≥ 2.

STEP 1: Proposition 3.2 combined with statement [S2] of Proposition 2.4 says the
Euclidean FPP Tree Tα, rooted at XO, a.s. contains exactly one semi-infinite geodesic
with direction π. Actually, this argument applies to each Euclidean FPP Tree rooted
at any X ∈ N (for the same parameter α). Hence, we denote by γ∞X the semi-infinite
geodesic with direction π of the Euclidean FPP Tree rooted at X. Let Fα be the collection
of the γ∞X ’s, for all X ∈ N . By uniqueness of geodesics, Fα is a directed forest with
direction π which is built on the PPP N . In the geodesic γ∞X , the neighbor of X is called
its ancestor (in Fα), and is denoted by Ā(X). Be careful, the forest Fα is directed to
π whereas the Euclidean FPP Tree rooted at X is directed to its root. In particular,
the ancestor Ā(X) admits X as ancestor in the Euclidean FPP Tree rooted at X, i.e.
A(Ā(X)) = X.

Our goal is to approximate the Euclidean FPP Tree Tα around (r, 0) by the directed
forest Fα:

Proposition 4.1. Let F be a local function whose stabilizing set is D(O,L) (see Defini-
tion 3.1) with L > 0. Then,

lim
r→∞

dTV

(
F ((r, 0), Tα), F (O,Fα)

)
= 0 ,

where dTV denotes the total variation distance.

It is important to notice that the parameter L occurring in the stabilizing set of F
does not depend on r.
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Unlike the Directed Poisson Forest Fρ used in Section 6 to approximate the RPT Tρ,
the graph structure of Fα is clearly non local. Hence, the proof of Proposition 4.1 will be
radically different to the one about the RPT (see the paragraph below Proposition 6.3).

Proof. By the translation invariance property of the directed forest Fα, we can write:

dTV (F ((r, 0), Tα), F (O,Fα)) = dTV (F ((r, 0), Tα), F ((r, 0),Fα))

≤ IP (F ((r, 0), Tα) 6= F ((r, 0),Fα))

≤ IP
(
∃X ∈ N ∩D((r, 0), L), A(X) 6= Ā(X)

)
.

We now consider Tα and Fα built on the same vertex set N . Since the ancestors of X
differ in the Euclidean FPP Tree Tα (rooted at XO) and in Fα, the geodesics γXO,X and
γ∞X have only the vertex X in common. Moreover, for any ε > 0, the root XO belongs to
the disk D(O, rε) with a probability tending to 1. So it suffices to state that

lim
r→∞

IP
(
∃X ∈ N ∩D((r, 0), L), γXO,X ∩ γ∞X = {X} and |XO| ≤ rε

)
= 0 . (4.1)

A key remark is that the geodesic from XO to X (in the Euclidean FPP Tree rooted at
XO) coincides with the geodesic from X to XO (in the Euclidean FPP Tree rooted at X).
It is worth pointing out here this property does not hold in the RPT context. Hence, by
translation invariance, the probability in (4.1) is bounded by

IP (∃X ∈ N ∩D(O,L), ∃X ′ ∈ N ∩D((−r, 0), rε), γX,X′ ∩ γ∞X = {X}) . (4.2)

The idea to prove that (4.2) tends to 0 can be expressed as follows. By Lemmas 4.2
and 4.3 respectively, both geodesics γ∞X and γX,X′ are included in a cone with direction
(−1, 0). However, having two long geodesics with a common deterministic direction
should not happen according to Proposition 3.2.

Let C(Y, η) = {Y ′ ∈ R2, θ(Y, Y ′) ≤ η} where θ(Y, Y ′) is the absolute value of the angle
(in [0;π]) between Y and Y ′ and let γ∞X (M) be the geodesic γ∞X restricted to D(O,M)c.
Lemma 4.2 says that, with high probability, γ∞X (M) is included in the cone C((−1, 0), η)

forM large enough.

Lemma 4.2. For all η > 0,

lim
M→∞

IP (∀X ∈ N ∩D(O,L), γ∞X (M) is included in C((−1, 0), η)) = 1 .

Now, let us proceed by contradiction and assume that the probability (4.2) does not
tend to 0: it is larger than some constant c > 0 for a given r– which can be chosen as
large as we want. Thanks to Lemma 4.2, we can assert that, for any η > 0, there exists
M large enough so that

IP

 ∃X ∈ N ∩D(O,L), ∃X ′ ∈ N ∩D((−r, 0), rε)
such that γX,X′ ∩ γ∞X = {X}

and γ∞X (M) is included in C((−1, 0), η)

 ≥ c (4.3)

where r can be chosen as large as we want.
Let T out

α,X(Y ) be the subtree rooted at Y of the the Euclidean FPP Tree rooted at
X. In other words, T out

α,X(Y ) is the collection of geodesics starting at X and passing by
Y , whose common part– from X to Y –has been deleted. Lemma 4.3 asserts that the
subtrees T out

α,X(Y ) of any Euclidean FPP Tree rooted at a vertex X in the disk D(O,L) are
becoming thinner as their root Y is far away from the origin.

Lemma 4.3. Let c be the constant given in (4.3). For η > 0 and forM large enough,

IP

(
∀X ∈ N ∩D(O,L), ∀Y ∈ N ∩D(O,M)c,

T out
α,X(Y ) is included in C(Y, η)

)
≥ 1− c

2
.
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From now on, we also set ε < 1 so that D((−r, 0), rε) is included in the cone
C((−1, 0), η2 ) for r large enough. Lemma 4.3 implies that with high probability, the
geodesic γX,X′ is also included in the cone C((−1, 0), η). Otherwise, this geodesic would
pass by a Poisson point Z outside the cone C((−1, 0), η) and by X ′ which belongs to
D((−r, 0), rε). For r large enough, this would imply that the subtree T out

α,X(Z) which
contains X ′ is not included in C((−1, 0), η2 ). As a consequence, forM large enough,

IP

 ∃X ∈ N ∩D(O,L), ∃X ′ ∈ N ∩D((−r, 0), rε)
such that γX,X′ ∩ γ∞X = {X} , γX,X′(M)

and γ∞X (M) are included in C((−1, 0), η)

 ≥ c

2
(4.4)

where r can be chosen as large as we want. Above, γX,X′(M) denotes the geodesics
γX,X′ restricted to D(O,M)c. Now, the interpreted event in (4.4) and described in Figure
4 implies that one can find an Euclidean FPP Tree, rooted at a given X in D(O,L), from
which it is possible to extract two geodesics included in C((−1, 0), η) and as long as we
want. By Proposition 3.2, the probability of such an event must tend to 0 with r. This
contradicts (4.4).

Figure 4: This picture represents the event interpreted in (4.4). Poisson points X and X ′

respectively belong to D(O,M) and D((−r, 0), rε). For ε ∈ (0; 1) and r large enough, this
later disk is included in the cone C((−1, 0), η). Both geodesics γX,X′ and γ∞X restricted
to D(O,M)c are inside C((−1, 0), η).

Step 1 ends with the proofs of Lemmas 4.2 and 4.3.

Proof. (of Lemma 4.2) Let η, ε some positive real numbers and n an integer such that the
probability IP(N (D(O,L)) ≤ n) is larger than 1− ε. On the event N (D(O,L)) = k, with
k ≤ n, let us denote by X1, . . . , Xk the k vertices of the PPP N inside the disk D(O,L).
On this event, for 1 ≤ i ≤ k, the semi-infinite geodesic γ∞Xi

with direction π and starting
at Xi is included in the cone C((−1, 0), η) far away from the origin:

lim
M→∞

IP
(
γ∞Xi

(M) is included in C((−1, 0), η)
)
= 1 .

Then it is possible to chooseM large enough so that, for any i, the conditional probability

IP(γ∞Xi
(M) is included in C((−1, 0), η) | N (D((r, 0), L)) = k)

is larger than 1− ε
n . Henceforth,

IP

(
γ∞X1

(M), . . . , γ∞Xk
(M)

are included in C((−1, 0), η)

∣∣∣∣ N (D((r, 0), L)) = k

)
≥ 1− ε ,
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forM large enough, and then

IP

(
∀X ∈ N ∩D(O,L), γ∞X (M)

is included in C((−1, 0), η)

)
≥ (1− ε)

n∑
k=0

IP(N (D((r, 0), L)) = k) ≥ (1− ε)2 .

Proof. (of Lemma 4.3) The proof is very close to the one of Lemma 4.2. We first restrict
our attention to a finite number of vertices inside the disk D(O,L). The Euclidean FPP
Tree rooted at one of them, say X, is a.s. straight. This implies that:

lim
M→∞

IP
(
∀Y ∈ N ∩D(O,M)c, T out

α,X(Y ) is included in C(Y, η)
)

= 1

from which it is not difficult to conclude.

STEP 2: The fact that the directed forest Fα with direction π a.s. has no bi-infinite
geodesic has been proved in Theorem 1.12 of [15] for α ≥ 2. This means that with
probability 1, the progeny of any X ∈ N , i.e. the set {Y ∈ N : X ∈ γ∞Y }, is finite. The
hypothesis α ≥ 2 is crucial here since it assures the noncrossing path property. Without
this property, we are not able to prove the absence of bi-infinite geodesic in Fα.

STEP 3: The goal of this step is to prove that the probability for χr(0, 2π) to be larger
than 1 tends to 0. It is based on Steps 1 and 2.

Let Ir be the vertical segment centered at (r, 0) and with length 2π. The Hausdorff
distance between ar(0, 2π) and Ir tends to 0 with r. So, with probability tending to 1,
any path of the Euclidean FPP Tree Tα crossing ar(0, 2π) also crosses Ir. Hence, for any
ε,R > 0 and r large enough,

IP(χr(0, 2π) ≥ 1) ≤ IP

(
∃ a geodesic of Tα crossing Ir and
afterwards leaving D((r, 0), R)

)
+ ε . (4.5)

The interpreted event mentioned in the r.h.s. of (4.5) means one can extract from
Tα a geodesic (X1, . . . , Xκ), with A(Xi+1) = Xi for 1 ≤ i ≤ κ − 1, whose vertices
X1, . . . , Xκ−1 belong to the disk D((r, 0), R), but not Xκ, and the directed edges (X2, X1)

and (Xκ, Xκ−1) respectively cross Ir and the circle C((r, 0), R).
The approximation of Tα by Fα (i.e. Proposition 4.1) requires the use of local functions.

It is the reason why we need to control the location of Xκ.

Lemma 4.4. Let us consider the event Ar,R corresponding to “Each edge (X,A(X)) of
Tα s.t. A(X) belongs to the disk D((r, 0), R) satisfies X ∈ D((r, 0), 2R)”. Then, as R→ ∞,
its probability tends to 1 uniformly on r.

The proof of Lemma 4.4 is based on the same arguments used and detailled in Step 4
below. For this reason, it is omitted.

Lemma 4.4 leads to:

IP(χr(0, 2π) ≥ 1) ≤ IP

 ∃ a geodesic (X1, . . . , Xκ) in Tα such that
X1, . . . , Xκ−1 ∈ D((r, 0), R), (X2, X1) ∩ Ir 6= ∅

and Xκ ∈ D((r, 0), 2R) \D((r, 0), R).

+ 2ε , (4.6)

for R and r large enough. Let us remark that the uniform limit given by Lemma 4.4
implies that up to now the parameters r and R are free from each other.

The interpreted event mentioned in the r.h.s. of (4.6) can be written using a local
function whose stabilizing set is a disk with radius 2R. Then, Proposition 4.1 implies that

IP(χr(0, 2π) ≥ 1) ≤ IP

 ∃ a geodesic (X1, . . . , Xκ) of Fα such that
X1, . . . , Xκ−1 ∈ D(O,R), (X2, X1) ∩ I0 6= ∅

and Xκ /∈ D(O,R).

+ 3ε , (4.7)
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for r ≥ r∗(R) (where I0 = {0}× [−π;π]). Now, the interpreted event in the r.h.s. just
above provides the existence of a geodesic (X1, . . . , Xκ) in Fα, with Ā(Xi+1) = Xi for
1 ≤ i ≤ κ− 1, crossing the vertical segment I0 and which is as long as we want in the
backward sense, i.e. toward the progeny. Such an event has a probability smaller than ε
thanks to Step 2 for R large enough: IP(χr(0, 2π) ≥ 1) ≤ 4ε.

STEP 4: In order to strengthen the convergence in probability given by Step 3 into a
convergence in L1, it is sufficient to prove that

lim sup
r→∞

IEχr(0, 2π)
2 < ∞ , (4.8)

and then to apply the Cauchy-Schwarz inequality. So, let us denote by ψr the number of
edges of the Euclidean FPP Tree Tα crossing the arc ar(0, 2π) of Cr. Since χr(0, 2π) ≤ ψr,
we aim to prove that IP(ψr > n) decreases exponentially fast (and uniformly on r).

Let R > 0 be a (large) real number. If all the edges counting by ψr have their
endpoints inside the disk D((r, 0), R), then ψr > n forces the PPP N to have more than
n vertices in D((r, 0), R) (otherwise this would contradict the uniqueness of geodesics).
This event occurs with small probability (by Lemma 9.1):

IP(N (D((r, 0), R)) > n) ≤ e
−n ln

(
n

eπR2

)
. (4.9)

Assume now that (at least) one edge crossing the arc ar(0, 2π) admits one endpoint
outside the disk D(O,R). Such a long edge creates a large disk avoiding the PPP N .
Indeed, for any given vertices X,Y , if the geodesic γX,Y is reduced to the edge {X,Y }
then the disk with diameter [X;Y ] does not meet the PPP N . This crucial remark appears
in the proof of Lemma 5 in [14] and requires α ≥ 2. To conclude it remains to exhibit an
empty deterministic region. To do it, we can consider δR = bπRc+ 1 disks D1, . . . , DδR

with radius R/3 and centered at δR points of the circle C((r, 0), R/2). These δR centers
can be chosen so that two consecutive ones are at distance smaller than 1. Therefore, the
existence of one edge crossing the arc ar(0, 2π) and having one endpoint outside D(O,R)

forces (at least) one of the Di’s to avoid the PPP N . This occurs with a probability
smaller than

(bπRc+ 1) e−π(R/3)2 . (4.10)

It remains to take R = n1/4 (for instance) so that the upper bounds (4.9) and (4.10) tends
to 0 as n→ ∞ uniformly on r.

5 Directional convergence in L1 for the LPP Tree

Given an angle θ ∈ (0;π/2), recall that ar(θ, 1) is the arc of Cr centered at reßθ and
with length 1 (replacing 1 by any positive constant does not change the proof). Our goal
is to show that the mean number IEχr(θ, 1) of semi-infinite geodesics of the Directed
LPP Tree T crossing the arc ar(θ, 1) tends to 0 as r tends to infinity.

STEP 1: Let us introduce a directed forest with direction θ + π defined on the whole
set Z2. To do it, we first extend from N2 to Z2 the collection of i.i.d. random weights
ω(z). Replacing the orientation NE with SW, we can define as in Section 2.3 and for
each z ∈ Z2, the SW-Directed LPP Tree on the quadrant z −N2. Such a tree a.s. admits
exactly one semi-infinite geodesic with direction θ + π, say γ(z) (i.e. Statement [S2]
and Proposition 3.2 hold). Then, we denote by F the collection of these semi-infinite
geodesics γ(z) starting at each z ∈ Z2. By uniqueness of geodesics, F is a forest.
Moreover, each vertex z has at most 3 neighbors; one ancestor (among z − (1, 0) and
z − (0, 1)) and 0, 1 or 2 children (among z + (1, 0) and z + (0, 1)).
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Sublinearity of semi-infinite branches

The directed forest F with direction θ + π allows to locally approximate the Directed
LPP Tree T around reßθ. The proof of Proposition 5.1 is based on the same ideas as the
one of Proposition 4.1 in the Euclidean FPP context. Especially, the SW-geodesic from
z to z′ coincides with the NE-geodesic from z′ to z. Indeed, if (z0 = z′, z1, . . . , zn = z)

denotes the geodesic from z′ to z then the sum ω(z0) + ω(z1) + . . .+ ω(zn−1) is maximal
among NE-paths from z′ to z if and only if ω(z1)+ . . .+ω(zn) is maximal among SW-paths
from z to z′. So we do not give the proof.

Proposition 5.1. Let F be a local function. Then,

lim
r→∞

dTV

(
F (reßθ, T ), F (O,F)

)
= 0 .

STEP 2: Thanks to Theorem 2.1 (iii) of [11], we already know that, with probability
1, F has no bi-infinite geodesic.

STEP 3: The proof that χr(θ, 1) tends to 0 in probability, is exactly the same as in
Section 4. Actually, some technical simplications arise because the edges of the Directed
LPP Tree T all are of length 1.

STEP 4: In order to strengthen the convergence in probability given by Step 3 into a
convergence in L1, we need to control the number of edges of the Directed LPP Tree T
crossing the arc ar(θ, 1). Since the vertex set of T is N2, this is automatically fulfilled.

6 Convergence in L1 for the RPT

Let 0 < α < 1/4. By isotropy, to get IEχr = o(r1−α), it suffices to prove that
IEχr(0, 2r

α) tends to 0 as r → ∞. Recall that χr(0, 2r
α) counts the intersection points

between the semi-infinite paths of the RPT Tρ and the arc ar(0, 2r
α) of the circle Cr.

Let us consider the rectangle

Rect(r, β, ε) = [r, r + rβ ]×[−rβ/2+ε, rβ/2+ε] ,

where β, ε are positive real numbers. Let us also introduce the r.v. χr(α, β, ε) which
counts the intersection points between the vertical segment Ir = {r} × [−rα, rα] and
paths γ = (X1, . . . , Xn) of Tρ such that: A(Xi) = Xi+1 for all 1 ≤ i ≤ n− 1; γ starts from
the outside of Rect(r, β, ε), i.e. X1 /∈ Rect(r, β, ε); and γ crosses Ir from right to left, i.e.
[Xn−1;Xn] ∩ Ir 6= ∅ and Xn(1) < r < Xn−1(1). Let us point out here that nothing forbids
edges of Tρ to cross Ir from left to right.

We first claim that:

Lemma 6.1. With the previous notations, for any β, ε > 0,

lim sup
r→∞

IEχr(0, 2r
α) ≤ lim sup

r→∞
IEχr(α, β, ε) .

Proof. Let χ̃r(α) be the number of edges crossing the segment Ir from right to left and
belonging to semi-infinite paths of Tρ. Since χ̃r(α) ≤ χr(α, β, ε) a.s. it is then sufficient
to show that

IE |χr(0, 2r
α)− χ̃r(α)| → 0 ,

as r → ∞. The difference |χr(0, 2r
α)− χ̃r(α)| is bounded from above by the number of

edges of Tρ crossing one of the segments [A+;B+] or [A−;B−] where A+ and A− (resp.
B+ and B−) are the two endpoints of the arc ar(0, 2r

α) (resp. the segment Ir)– with
A+(2) > 0 and B+(2) = rα. As r → ∞, |A+−B+| and |A−−B−| tends to 0. So, the mean
number of edges crossing one of the segments [A+;B+] or [A−;B−] also tends to 0 as
r → ∞.
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The second step consists in approximating the Radial Poisson Tree Tρ in the direction
θ = 0, i.e. in the vicinity of (r, 0), by the directed forest Fρ with direction −(1, 0)

introduced by Ferrari et al.in [9]. First, let us recall the graph structure of the forest Fρ

built on the PPP N . Each vertex X ∈ N is linked to the element of

N ∩
(
X + (−∞; 0)×[−ρ; ρ]

)
having the largest abscissa. It is a.s. unique, called the ancestor of X and denoted
by A(X). By construction, the sequence of ancestors (X0, X1, X2 . . .) starting from any
vertex X in which X0 = X and A(Xn) = Xn+1 for any n, is a semi-infinite path denoted
by γ∞X .

Thus, let us consider the r.v. ηr(α, β, ε) which is the analogue of χr(α, β, ε) but for the
directed forest Fρ. Precisely, ηr(α, β, ε) counts the intersection points between Ir and
paths of Fρ starting from the outside of Rect(r, β, ε). Remark that such paths necessarily
cross Ir from right to left.

Our second claim is:

Lemma 6.2. Assume α ≤ β/2 and β + ε < 1/2. With the previous notations,

lim sup
r→∞

IEχr(α, β, ε) ≤ lim sup
r→∞

IE ηr(α, β, ε) .

The proof of Lemma 6.2 requires the following approximation result which is stronger
than Proposition 4.1 of Section 4 or Proposition 5.1 of Section 5. On the one hand, this
approximation of Tρ by Fρ is no longer local since the size of the rectangle Rect(r, β, ε)

goes to infinity with r. On the other hand, this approximation result concerns the mean
number of errors between Tρ and Fρ and not only the probability that at least one error
occurs.

Proposition 6.3. Assume α ≤ β/2 and β + ε < 1/2. Then,

lim
r→∞

IE#
{
X ∈ N ∩ Rect(r, β, ε) : A(X) 6= A(X)

}
= 0 . (6.1)

Let us underline that, from Proposition 6.3, it is not difficult to derive a similar limit
to Proposition 4.1 of Section 4 or Proposition 5.1 of Section 5. Indeed, let us consider a
sequence of local functions (Fr)r>0 such that the stabilizing set Dr of Fr is equal to the
shifted rectangle Rect(r, β, ε)− (r, 0). Then,

dTV (Fr((r, 0), Tρ), Fr(O,Fρ)) = dTV (Fr((r, 0), Tρ), Fr((r, 0),Fρ))

≤ IP (∃X ∈ N ∩ Rect(r, β, ε), A(X) 6= A(X))

≤ IE#
{
X ∈ N ∩ Rect(r, β, ε) : A(X) 6= A(X)

}
,

which tends to 0 as r → ∞ thanks to (6.1).

Proof. (of Proposition 6.3) Let us set nr = bCr3β/2+εc where C > 0 is a constant chosen
large enough such that IP(N (Rect(r, β, ε)) > nr + k) is smaller than e−(nr+k), for any
integer k and any large r. This is possible by Lemma 9.1 since nr is of the same order
than the area of Rect(r, β, ε). Hence, it is not difficult to show that

IE
[
#
{
X ∈ N ∩ Rect(r, β, ε) : A(X) 6= A(X)

}
11N (Rect(r,β,ε))>nr

]
≤ IE

[
N (Rect(r, β, ε))11N (Rect(r,β,ε))>nr

]
tends to 0 as r → ∞. To get (6.1), it then remains to state that

lim
r→∞

IE
[
#
{
X ∈ N ∩ Rect(r, β, ε) : A(X) 6= A(X)

}
11N (Rect(r,β,ε))≤nr

]
= 0 . (6.2)
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For any integer k,

IE

 ∑
X∈N∩Rect(r,β,ε)

11A(X)6=A(X)

∣∣∣∣∣∣ N (Rect(r, β, ε)) = k

 = IE

[
k∑

i=1

1A(Xi) 6=A(Xi)

]
,

where X1, . . . , Xk are independent random variables uniformly distributed in Rect(r, β, ε).
However, the probability that one of these points admits different ancestors in Tρ and Fρ

is bounded:

Lemma 6.4. Let X = xeßθ and l ∈ (ρ, x/2). Then, there exist positive constants c0, x0
and θ0 (only depending on ρ) such that for any x ≥ x0 and 0 ≤ θ ≤ θ0

IP(A(X) 6= A(X)) ≤ e−2ρl + c0

(
l2θ +

1

x

)
.

Any point xeßθ of Rect(r, β, ε) has an euclidean norm x larger than r and an angle
θ smaller than arctan(rβ/2+ε/r), so smaller than rβ/2+ε/r. Applying Lemma 6.4 with r
large enough, we get:

IE

 ∑
X∈N∩Rect(r,β,ε)

11A(X) 6=A(X)

∣∣∣∣∣∣ N (Rect(r, β, ε)) = k


≤ k

(
e−2ρl + c0

(
l2
rβ/2+ε

r
+

1

r

))
.

It then follows:

IE
[
#
{
X ∈ N ∩ Rect(r, β, ε) : A(X) 6= A(X)

}
11N (Rect(r,β,ε))≤nr

]
≤ nr

(
e−2ρl + c0

(
l2
rβ/2+ε

r
+

1

r

))
.

Finally, this upper bound tends to 0 as r → ∞ since β + ε < 1/2 and taking l = ln(rβ
′
)

with β′ large enough.

The proof of Lemma 6.4 is strongly inspired from Theorem 2.4 of [1].

Proof. (of Lemma 6.4) Let lX be the difference of abscissas between X = xeßθ and its
ancestor A(X) in the directed forest Fρ. The horizontal cylinder UX = X + (−lX ; 0)×
[−ρ; ρ] avoids the PPP N : UX admits A(X) on its west side (see Figure 5). Hence, the
probability that lX is larger than a given l is smaller than e−2ρl.

From now on we assume that lX ≤ l. So as to the ancestors A(X) and A(X) differ,
two alternatives may be distinguished. Either A(X) belongs to the set(

X + [−l; 0)×[−ρ; ρ]
)
\ Cyl(X, ρ) , (6.3)

or A(X) belongs to Cyl(X, ρ). This second alternative forces A(X) to be in(
Cyl(X, ρ) \D(O, |A(X)|)

)
\ UX . (6.4)

By elementary computations, we check that the area of the sets (6.3) and (6.4) is smaller
than c0(l2θ + 1/x) provided x ≥ x0, θ ≤ θ0 and ρ ≤ l ≤ x/2. The constants c0, x0 and θ0
only depend on ρ.

Thanks to Proposition 6.3, we are now able to prove Lemma 6.2.
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Sublinearity of semi-infinite branches

Figure 5: Imagine x is large and the angle θ is small enough so that X = xeßθ is very
close to the horizontal axis. Then the axis of the cylinder Cyl(X, ρ) is almost horizontal
and it becomes difficult for the ancestors A(X) and A(X) to be different.

Proof. (of Lemma 6.2) Let us first denote by Z the following event: each edge (X,A(X))

of the RPT Tρ crossing Ir from right to left (i.e. A(X)(1) < r < X(1)) satisfies X ∈
Rect(r, β, ε). Hence, we write:

IEχr(α, β, ε) ≤ IE (χr(α, β, ε)− ηr(α, β, ε))11Z + IEχr(α, β, ε)11Zc + IE ηr(α, β, ε) . (6.5)

So, in order to obtain Lemma 6.2, we are going to state that

lim
r→∞

IEχr(α, β, ε)11Zc = 0 , (6.6)

thus

a.s. (χr(α, β, ε)− ηr(α, β, ε))11Z ≤ #
{
X ∈ N ∩ Rect(r, β, ε) : A(X) 6= A(X)

}
(6.7)

and then apply Proposition 6.3.
Let us start with the proof of (6.6). The r.v. χr(α, β, ε) is smaller than the number of

edges of the RPT crossing the arc, say a′r, of the circle centered at the origin and passing
through both endpoints of Ir. Let Y (α) this number. Let us cover the (large) arc a′r by
bcrαc nonoverlapping (small) arcs with length 1 and let us denote by Yi the number of
edges of the RPT crossing the i−th small arc. The r.v.’s Yi are identically distributed by
isotropy and admit a second order moment (see Lemma 6.8 at the end of this section).
So, by Cauchy-Schwarz,

IEχr(α, β, ε)
2 ≤ IE

(
Y (α)

)2
≤ IE

 ∑
1≤i≤bcrαc

Yi

2

≤Mr2α ,

for someM > 0. Consequently,

IEχr(α, β, ε)11Zc ≤M1/2rα IP(Zc)1/2

which tends to 0 as r → ∞. Indeed, on the event Zc, there exists an edge crossing Ir of
length larger than min{rβ/2+ε − rα, rβ}. Since β/2 ≥ α, IP(Zc) decreases exponentially
fast.

Let us prove (6.7). Let i1, . . . , in be n = n(ω) different points of Ir counted by
χr(α, β, ε) but not by ηr(α, β, ε). On the event Z, each point ik is generated by a path (at
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least) of Tρ, say γk starting from some Poisson point Xk, which is included in Rect(r, β, ε),
except its last edge crossing Ir. Since the intersection point ik is not counted by
ηr(α, β, ε), the path of the forest Fρ starting from Xk, say γ′k, leaves γk before crossing
Ir. Precisely, γk and γ′k coincide until some Poisson point Yk ∈ Rect(r, β, ε) and A(Yk) 6=
A(Yk). Remark that the bifurcation points Yk, 1 ≤ k ≤ n, are all different. Indeed,
Yk = Yl would imply that γk and γl coincide beyond Yk = Yl and then cross Ir through
the same point: ik = il. Finally, we have exhibited n different vertices of Rect(r, β, ε)
having different ancestors in Tρ and Fρ. (6.7) follows.

The sequel of the proof only concerns the directed forest Fρ and has to state that the
supremum limit of IE ηr(α, β, ε) is smaller than 1 as r → ∞. At the end of this section, a
conclusion will combine all these intermediate steps and will lead to the expected result,
i.e. the convergence to 0 of IEχr(0, 2r

α).
The next step consists in proving that the paths counted by ηr(α, β, ε) actually come

in the rectangle Rect(r, β, ε) from its right side. Let us denote by η̄r(α, β, ε) the number
of intersection points between Ir and paths of Fρ crossing the right side of Rect(r, β, ε),
i.e. Jr = {r + rβ}×[−rβ/2+ε, rβ/2+ε].

Lemma 6.5. Assume α ≤ β/2. The following equality holds:

lim sup
r→∞

IE ηr(α, β, ε) = lim sup
r→∞

IE η̄r(α, β, ε) .

Proof. Let 0 < ε′ < ε and r large enough so that

rα + 2rβ/2+ε′ < rβ/2+ε . (6.8)

Let A = (r+ rβ , rα + rβ/2+ε′). We denote by ∆A
rβ the maximal deviation of the path γ∞A of

Fρ w.r.t. the horizontal axis passing by A over the segment [r, r + rβ ]:

∆A
rβ = sup

{
|y −A(2)|; (x, y) ∈ γA and r ≤ x ≤ r + rβ

}
.

In the same way, we consider the quantity ∆B
rβ for B = (r + rβ ,−rα − rβ/2+ε′). On the

event
Dev =

{
max{∆A

rβ ,∆
B
rβ} < rβ/2+ε′

}
,

the paths γ∞A and γ∞B do not cross the vertical segment Ir. Moreover, γ∞A and γ∞B are
totally included in the rectangle Rect(r, β, ε) before crossing {0}×R, thanks to (6.8). So,
on the event Dev, any intersection point counted by ηr(α, β, ε) is produced by a path
crossing Jr. In other words, ηr(α, β, ε)11Dev is a.s. smaller than η̄r(α, β, ε).

It then remains to show that IE ηr(α, β, ε)11Devc tends to 0. We can proceed as in the
proof of Lemma 6.2. The translation invariance property of the directed forest Fρ and
the Cauchy-Schwarz inequality allow us to write:

IE ηr(α, β, ε)11Devc ≤ Crα IP(Devc)1/2 ,

for some positive constant C. It is then enough to show that:

Lemma 6.6. For any ε′′ > 0 and any integer m, IP(∆r > r1/2+ε′′) is a O(r−m), where ∆r

denotes the maximal deviation of the path γ∞(r,0) of Fρ w.r.t. the horizontal axis over the
segment [0, r].

Indeed, replacing r with rβ and using the translation invariance property of Fρ,
Lemma 6.6 says that IP(Devc) is a O(r−mβ), for any m. This achieves the proof.

Proof. (of Lemma 6.6) Let ε′′ > 0 and m ∈ N. Let us write γ∞(r,0) = (Xn)n≥0 the sequence
of successive ancestors of (r, 0) = X0, and for any index n ≥ 1, let (Yn, Zn) be the
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cartesian coordinates of Xn −Xn−1. Now, if we denote by n(r) the first integer n such
that Xn(1) is negative, the maximal deviation ∆r can be expressed as

∆r = max
1≤k≤n(r)

∣∣∣ k∑
i=1

Zi

∣∣∣ .
Then,

IP
(
∆r > r1/2+ε′′

)
≤ IP(n(r) > bcrc) + IP

(
max

1≤k≤bcrc

∣∣∣ k∑
i=1

Zi

∣∣∣ > r1/2+ε′′
)
. (6.9)

The inequality n(r) > bcrc means that the partial sum
∑bcrc

1 Yi does not exceed r. As the
Yi’s are i.i.d. r.v.’s with an exponential law as common distribution, Lemma 9.2 applies.
Provided the additional parameter c is larger than (IEY1)−1, the quantity IP(n(r) > bcrc)
is a O(r−m).

To treat the second term of the r.h.s. of (6.9), it suffices to apply Lemma 9.3 since the
Zi’s are i.i.d. according to the uniform distribution on [−ρ, ρ].

This section ends with the following limit which requires the hypothesis α < β/2 in a
crucial way and an estimate of the coalescence time between two paths of Fρ stated in
[8].

Lemma 6.7. Assume α < β/2. Then,

lim sup
r→∞

IE η̄r(α, β, ε) ≤ 1 .

Proof. Let us consider the r.v. η̃r(α, β) defined as the number of intersection points
between the vertical axis {r}×R and paths of Fρ crossing the segment {r+rβ}×[−rα, rα].
The translation invariance property of Fρ provides:

IE η̄r(α, β, ε) ≤ IE η̃r(α, β) . (6.10)

Indeed, if I and J are two segments resp. included in {r} × R and {r + rβ} × R then
ηr(I, J) denotes the number of intersection points between I and paths of Fρ which also
cross the segment J . Then,

IE η̄r(α, β, ε) ≤ IE ηr({r}×[−rα, rα], {r + rβ}×R)
≤

∑
k∈Z

IE ηr({r}×[−rα, rα], {r + rβ}×[(2k − 1)rα, (2k + 1)rα])

=
∑
k∈Z

IE ηr({r}×[(−2k − 1)rα, (−2k + 1)rα], {r + rβ}×[−rα, rα])

= IE η̃r(α, β) .

Let X ∈ N and let γ∞X = (Xn)n≥0 the sequence of successive ancestors of X0 = X.
As in Section 2 of [8], we introduce a continuous time Markov process γ∗X = {γ∗X(t), t ≤
X(1)} associated to the sequence (Xn)n≥0 and defined by:

γ∗X(t) = Xn(2), for any t such that Xn+1(1) < t ≤ Xn(1). (6.11)

Then, η̃r(α, β) is a.s. smaller than η∗r (α, β) which counts the intersection points between
the vertical axis {r}×R and paths of {γ∗X , X ∈ N} crossing the segment {r+rβ}×[−rα−
ρ, rα + ρ].

To obtain Lemma 6.7, we are going to prove that the supremum limit of IE η∗r (α, β)
is smaller than 1 as r → ∞. Actually, the passage from the forest Fρ to the collection
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{γ∗X , X ∈ N} acts as a discretization argument. Indeed, by construction, two paths γ∗X
and γ∗Y crossing the axis {r + rβ}×R on two different ordinates x′ and y′ satisfy a.s.
|x′ − y′| > ρ (otherwise, they would have coalesced before crossing {r + rβ}×R). We use
this remark as follows. Let us first consider κr elements of the vertical line {r + rβ}×R,
say x1, . . . , xκr

, such that |xi+1−xi| = 2ρ and [x1;xκr
] contains {r+ rβ}×[−rα− ρ, rα+ ρ].

Hence, κr ≤ c1r
α, for some positive constant c1 which only depends on ρ. Thus, for any

i = 1, . . . , κr, γ∗i is the path starting at xi and defined as in (6.11). As a consequence,
with probability 1,

η∗r (α, β) ≤
κr−1∑
i=1

11γ∗
i (r)6=γ∗

i+1(r)
+ 1 .

In the above upperbound, the term “+1” is inevitable since any two consecutive paths γ∗X
and γ∗Y counted by η∗r (α, β) are separated by one couple (i, i+1) such that γ∗i (r) 6= γ∗i+1(r).
Now, the event {γ∗1 (r) 6= γ∗2(r)} means that the coalescence time of the two paths γ∗1 and
γ∗2 is larger than rβ. Thanks to Lemma 2.10 of [8], its probability is bounded by c2/rβ/2

where the constant c2 > 0 only depends on ρ. It follows,

IE η∗r (α, β) ≤ κr IP
(
γ∗1(r) 6= γ∗2(r)

)
+ 1 ≤ c1r

α c2
rβ/2

+ 1

which tends to 1 as r → ∞ since α < β/2.

We can now conclude. Combining Lemmas 6.1, 6.2, 6.5 and 6.7, we obtain that the
supremum limit of IEχr(0, 2r

α), say c(α), is smaller than 1, for any 0 < α < 1/4. Let
M > 0 and α < α′ < 1/4. By isotropy, for r large enough,

IEχr(0, 2r
α′
) ≥M IEχr(0, 2r

α) .

Taking supremum limits, it follows that 1 ≥Mc(α). WhenM → ∞ this forces c(α) = 0.

This section ends with the proof of the following technical result.

Lemma 6.8. Let ψr be the number of edges of the RPT Tρ crossing the arc ar(0, l) of Cr
(l > 0 does not depend on r). Then,

lim sup
r→∞

IE
[
ψ2
r

]
<∞ .

Proof. The proof is very close to the one of STEP 4 in Section 4 about the Euclidean
FPP Trees. Let us give some details in the context of the RPT. It is enough to prove that
IP(ψr > n) decreases exponentially fast with n and uniformly on r.

By Lemma 9.1, we first control the number of vertices in the disk D((r, 0), R):

IP(N (D((r, 0), R)) > n) ≤ e
−n ln

(
n

eπR2

)
, (6.12)

for any R > 0. Now, the conjunction of ψr > n and N (D((r, 0), R)) ≤ n implies the
existence of a vertex X outside D((r, 0), R) whose edge [A(X);X] crosses the arc ar(0, l).
Then, the random cylinder Cyl(X, ρ)∗ avoids the PPP N . Such situation should occur
with small probability. Indeed, let us consider a family of k(R) ≤ 2πR/ρ deterministic
rectangles of size ρ × R/3 included in D((r, 0), R) \D((r, 0), R/2) and such that one of
them is including in Cyl(X, ρ)∗. This selected rectangle avoids the PPP N :

IP(ψr > n and N (D((r, 0), R)) ≤ n) ≤ 2πR

ρ
e−ρR/3 . (6.13)

To conclude, it suffices to take R = n1/4 in the bounds given in (6.12) and (6.13). Remark
also these two bounds do not depend on r.
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7 Almost sure convergence for the RPT

The goal of this section is to prove that χr/r
α tends to 0 with probability 1 for any

α > 3/4.

We first use Theorem 8.1 of Section 8 which asserts that, for any ε > 0, the event Aε
r

defined below has a probability tending to 1 as r → ∞.

Aε
r =

{
∀X ∈ N ∩D(O, r)c, ∪Y ∈T out

ρ (X)Cyl(Y, ρ)
∗ ⊂ C(X, |X|− 1

2+ε)
}
,

where T out
ρ (X) is the subtree of the RPT Tρ rooted at X and C(X, |X|− 1

2+ε) is the semi-

infinite cone with axis X and opening angle |X|− 1
2+ε. Let us explain the role of Aε

r.
Consider a semi-infinite path (Xn)n≥0 of the RPT with X0 ∈ D(O, r) and X1 /∈ D(O, r).
On the event Aε

r, all the cylinders Cyl(Xi, ρ)
∗ for i ≥ 1 (and especially Cyl(X1, ρ)

∗ which
crosses the circle Cr) are included in the cone C(X, |X|− 1

2+ε). Hence, on the event Aε
r,

(Xn)n≥0 does not depend on the PPP N outside C(X, |X|− 1
2+ε).

Let ε > 0 and r0 such that IP(Aε
r0) ≥ 1/2. For r ≥ r0, we split the circle Cr into r

nonoverlapping arcs a1, . . . , ar with length 2π. The number of semi-infinite paths of Tρ
crossing ai is denoted by X(r)

i . By isotropy of Tρ, the X(r)
i ’s are identically distributed

and satisfy χr =
∑r

i=1X
(r)
i . We also set

Sr =

r∑
i=1

Y
(r)
i where Y

(r)
i = X

(r)
i − IE

[
X

(r)
i |Aε

r0

]
.

Remark that the event Aε
r0 is preserved under rotations. So, the r.v. Y (r)

i ’s are also
identically distributed.

The next lemma reduces the proof of IP(r−αχr → 0) = 1 to: for any r0 large enough,

IP
(
r−αSr → 0 |Aε

r0

)
= 1 . (7.1)

Lemma 7.1. If Sr/r
α a.s. tends to 0 as r → ∞ conditionally on Aε

r0 , for any r0 large
enough, then χr/r

α a.s. tends to 0 as r → ∞ too.

Proof. Let us write
χr

rα
=
Sr

rα
+

1

rα
IE
[
χr |Aε

r0

]
.

By the first part of Theorem 2.3, r−α IE[χr|Aε
r0 ] ≤ 2r−α IE[χr] which tends to 0 as r → ∞.

So the almost sure convergence of Sr/r
α to 0 conditionally onAε

r0 implies the one of χr/r
α

still to 0 and conditionally on Aε
r0 . Since IP(A

ε
r0) → 1 as r0 → ∞, the (unconditionally) a.s.

convergence of χr/r
α to 0 follows.

The next estimate is the key ingredient to obtain (7.1).

Lemma 7.2. There exists C > 0 such that for any r ≥ r0,

IE
[
S2
r |Aε

r0

]
≤ Cr3/2+ε .

The proof of (7.1) is a consequence of Lemma 7.2 and the Borel-Cantelli lemma. Let
l > 1, δ > 0,

IP
(
r−αlSrl > δ |Aε

r0

)
≤ δ−2r−2αl IE

[
S2
rl |A

ε
r0

]
≤ δ−2Crl(−2α+3/2+ε)

which is the general term of a convergent series. Indeed, ε > 0 can be chosen small
enough so that −2α+3/2+ ε < 0 and l large enough so that l(−2α+3/2+ ε) < −1. Thus,

EJP 23 (2018), paper 37.
Page 24/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP115
http://www.imstat.org/ejp/


Sublinearity of semi-infinite branches

the Borel-Cantelli lemma gives the a.s. convergence of Srl/r
αl to 0 conditionally on Aε

r0 .
Then, the a.s. convergence of Sr/r

α to 0 (conditionally on Aε
r0) easily follows. Given r,

we consider the integer n = n(r) such that (n− 1)l ≤ r < nl. Since the sequence (Sr)r>0

is nondecreasing a.s. we can write:

0 ≤ Sr

rα
≤ Snl

(n− 1)αl
≤ Snl

nαl
nαl

(n− 1)αl

which, conditionally on Aε
r0 , tends to 0 as r → ∞ with probability 1.

So, it only remains to state Lemma 7.2 whose proof is based on the conditional
independence (w.r.t. the event Aε

r0) between Y
(r)
i and Y (r)

j provided the difference i− j

is large enough.

Proof. (of Lemma 7.2) Let r ≥ r0. Let us first expand the considered expectation:

IE
[
S2
r |Aε

r0

]
=

r∑
i=1

IE
[
(Y

(r)
i )2 |Aε

r0

]
+
∑
i6=j

IE
[
Y

(r)
i Y

(r)
j |Aε

r0

]
. (7.2)

The first term of the r.h.s. of (7.2) is bounded using isotropy, Lemma 6.8 and IP(Aε
r0) ≥

1/2:

r∑
i=1

IE
[
(Y

(r)
i )2 |Aε

r0

]
= r IE

[
(Y

(r)
1 )2 |Aε

r0

]
≤ r IE

[
(X

(r)
1 )2 |Aε

r0

]
≤ 2r IE

[
(X

(r)
1 )2

]
≤ 2Mr

for some positiveM > 0. Let us now focus on the second term of the r.h.s. of (7.2):∑
i 6=j

IE
[
Y

(r)
i Y

(r)
j |Aε

r0

]
= r

∑
2≤i≤r

IE
[
Y

(r)
1 Y

(r)
i |Aε

r0

]
.

Here is the reason why we have conditioned by Aε
r0 . On this event, the r.v. X(r)

i (so

does Y (r)
i ) only depends on the PPP N restricted to the semi-infinite cone with apex

the origin and whose intersection with Cr is the arc centered with ai and with length
2(π + ρ+ r1/2+ε). Then Y (r)

1 and Y (r)
i are independent conditionally on Aε

r0 provided the
difference i − 1 (taken modulo r) is larger than 2(π + ρ + r1/2+ε)/2π. When this is the
case,

IE
[
Y

(r)
1 Y

(r)
i |Aε

r0

]
= IE

[
Y

(r)
1 |Aε

r0

]
IE
[
Y

(r)
i |Aε

r0

]
= 0 .

Otherwise, by isotropy and the Cauchy-Schwarz inequality,

IE
[
Y

(r)
1 Y

(r)
i |Aε

r0

]
≤ IE

[
(Y

(r)
1 )2 |Aε

r0

]
≤ 2M

as previously. As consclusion, there exists a positive constant κ = κ(ρ) such that the r.h.s.
of (7.2) is bounded from above by 2κMr3/2+ε. This achieves the proof of Lemma 7.2.

8 The Radial Poisson Tree is straight

For any vertex X ∈ N , we denote by T out
ρ (X) the subtree of the RPT Tρ rooted at X;

T out
ρ (X) is the collection of paths of Tρ from O to X ′ ∈ N , passing by X, whose common
part from O to X has been deleted. Let C(X,α) for nonzero X ∈ R2 and α ≥ 0 be the
cone C(X,α) = {Y ∈ R2, θ(X,Y ) ≤ α} where θ(X,Y ) is the absolute value of the angle
(in [0;π]) between X and Y . Theorem 8.1 means the subtrees T out

ρ (X) are becoming
thinner as |X| increases.
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Theorem 8.1. With probability 1, the Radial Poisson Tree Tρ is straight. Precisely, with
probability 1 and for all ε > 0, the subtree T out

ρ (X) is included in the cone C(X, |X|− 1
2+ε)

for all but finitely many X ∈ N .

For a real number r > 0, let us denote by γr the path of the RPT from X0 = (r, 0) to O.
It can be described by the sequence of successive ancestors ofX0, sayX0, X1, . . . , Xh(r) =

O where h(r) denotes the number of steps to reach the origin. Let us denote by ∆r the
maximal deviation of γr w.r.t the horizontal axis:

∆r = max
0≤k≤h(r)

|Xk(2)|

(where Xk(2) is the ordinate of Xk).

Proposition 8.2. The following holds for all ε > 0 and all n ∈ N,

IP(∆r ≥ r
1
2+ε) = O(r−n) . (8.1)

Theorem 8.1 is a consequence of Proposition 8.2. Indeed, (8.1) implies that with high
probability the path γr remains inside the cone C((r, 0), f(r)) with f(r) = r

1
2+ε/r. We

then conclude by isotropy of the RPT Tρ.

Proof. (of Theorem 8.1) We first show that the number of verticesX ∈ N whose deviation
of the path from X to O w.r.t the axis (OX) is larger than |X| 12+ε is a.s. finite. To do
it, we can follow the proof of Theorem 5.4 of [1] and use Proposition 8.2, the isotropic
character of Tρ and the Campbell’s formula. Thus, thanks to the Borel-Cantelli lemma,
we prove that a.s. all but finitely many X ∈ N satisfy |X −A(X)| ≤ |X| 12 . To conclude, it
suffices to apply Lemma 2.7 of [15] replacing 3

4 with 1
2 .

The rest of this section is devoted to the proof of Proposition 8.2. Baccelli and
Bordenave have proved in [1] the same result about the RST. They first bound the
fluctuations of the radial path γr by the ones of a directed path (which actually belongs
to the DSF with direction −(1, 0)), and then compute its fluctuations. The main difficulty
of their work lies in the second step. The main obstacle here consists in comparing the
radial path γr to a directed one having good properties. Indeed, one easily observes
that the ancestor of a given point X (with X(2) > 0) for the RPT Tρ may be above the
ancestor of the same point but for the directed forest Fρ: see Figure 5.

As in [1], let us start with introducing the path γ+r of the RPT defined on N ∩ (R×R+)

starting atX0 = (r, 0) and ending at O. It is not difficult to see that, built on the same PPP
N , γ+r is above γr. Considering the same path γ−r but this time defined on N ∩ (R×R−)

allows to trapp γr between γ+r and γ−r . By symmetry, it follows:

∀t > 0, IP(∆r ≥ t) ≤ 2 IP(∆+
r ≥ t)

where ∆+
r denotes the maximal deviation of γ+r w.r.t. the axis (OX0).

From now on, we only consider the PPP N ∩ (R×R+). We still denote by A(X) the
ancestor of X using N ∩ (R×R+) and by (X0, X1, X2 . . .) the sequence of successive
ancestors of γ+r .

In order to bound its fluctuations, a natural way to proceed would be to consider
the vectors Un+1 = (Xn+1 −Xn)e

−ßarg(Xn), for n ≥ 0. Nevertheless, it is not clear how
to compare the fluctuations of the sequence (U1, U1 + U2 . . .) with the ones of γ+r . In
particular, the inequality Xn(2) ≤ U1(2) + . . .+ Un(2) does not hold (for instance, when
n = 2 and X2(1) larger than X1(1)). Moreover, unlike [1] Section 5, it is not possible
here to control γ+r by a suitable path of the corresponding directed forest Fρ, because
they could cross.
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Hence, our strategy consists in introducing an extra path Z = Z(r) (but not a path
of Tρ) which will be above γ+r (by Lemma 8.5) and whose fluctuations will be bounded
(using the technical Lemma 9.3). The construction of the path Z relies on the one of
∗-ancestor below.

Let X ∈ (R+)
2. Let V −

X be the set of points of Cyl(X, ρ) whose abscissas are larger
than X(1), and let V +

X be its image by the reflection w.r.t. the axis (OX). See Figure
6. We can then define the ∗-ancestor of X as the element A∗(X) of (R+)

2, but not
necessarily of N , satisfying |A∗(X)| = |A(X)| and:

1. If A(X) /∈ V −
X ∪V +

X then A∗(X)(2) = X(2)±d(A(X), (OX)) with the symbol + when
A(X) is above the line (OX), and − when A(X) is below (OX).

2. If A(X) ∈ V −
X then A∗(X)(2) = X(2)−min{ρ, d(A(X), {Y, Y (2) = X(2)})}.

3. If A(X) ∈ V +
X then A∗(X)(2) = X(2) + min{ρ, d(SymA(X), {Y, Y (2) = X(2)})}

where SymA(X) denotes the image of A(X) by the reflection w.r.t. the axis (OX).

Let us give the motivations for this construction. Leaving out the fact that there is
no point of the PPP below the horizontal axis, the construction of the case 1 ensures
that the distribution of the random variable A∗(X)(2) − X(2) is symmetric on [−ρ; ρ]
and A∗(X)(2) ≥ A(X)(2) (see Lemma 8.3). When A(X)(1) ≥ X(1) (case 2) we have to
proceed differently to ensure that A∗(X)(2) ≥ A(X)(2). The case 3 is introduced so as to
conserve a symmetric construction w.r.t. the line (OX).

Finally, remark that the construction of the ∗-ancestor of X is possible provided that

X(1) ≥ 0 and X(2) + ρ ≤ |A(X)| . (8.2)

Figure 6: The gray sets are V −
X and V +

X which are symmetric from each other w.r.t. (OX).
On this picture, the ancestor A(X) does not belong to V −

X ∪ V +
X : this is the case 1. The

distance and the relative position between the ∗-ancestor A∗(X) and the horizontal line
{Y, Y (2) = X(2)} are the same than between A(X) and (OX). Note also that A(X) and
A∗(X) are on the same circle (centered at the origin).

Lemma 8.3. Let X ∈ (R+)
2. Assume that X and its ancestor A(X) built on the PPP

N ∩ (R×R+) satisfy (8.2). Then, A∗(X) is well defined, |A∗(X)| = |A(X)| and A∗(X)(2) ≥
A(X)(2). Moreover, conditionally on Cyl(X, ρ)∗ ⊂ {Y, Y (2) ≥ 0}, the distribution of the
random variable A∗(X)(2)−X(2) is symmetric on [−ρ; ρ].
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Proof. Conditionally on Cyl(X, ρ)∗ ⊂ {Y, Y (2) ≥ 0}, the distance between A(X) and
the line (OX) is a random variable whose distribution is symmetric on [−ρ; ρ]. By
construction of the ∗-ancestor A∗(X), the same holds for A∗(X)(2)−X(2).

It remains to prove that A∗(X)(2) ≥ A(X)(2). In the case 1, the ∗-ancestor A∗(X) has
the same ordinate than A(X)e−ßarg(X), which is larger than A(X)(2) since A(X) /∈ V −

X .
In the case 2, it suffices to write

X(2)−A∗(X)(2) ≤ d(A(X), {Y, Y (2) = X(2)}) = X(2)−A(X)(2) .

Besides, the case 2 is the only way to have A∗(X) = A(X) ∈ N . The case 3 requires more
details. Let D be the horizontal line passing by X, let D′ be the tangent line touching
the circle C|X| at X, and let D′′ be the image of D by the reflection w.r.t. the axis (OX).
Geometrical arguments show that D′ actually is the line bisector of D and D′′. As a
consequence, SymA(X) is closer to D′′ than to D:

d(A(X),D) = d(SymA(X),D′′) ≤ d(SymA(X),D) .

Using A(X) ∈ V +
X and d(V +

X ,D) ≤ ρ, we can then conclude:

A∗(X)(2)−X(2) = min{ρ, d(SymA(X),D)}
≥ min{ρ, d(A(X),D)}
= d(A(X),D)

= A(X)(2)−X(2) .

Now, we need to control that with high probability the ancestorA(X) (build on the PPP
N∩(R×R+)) is not too far fromX. Let Ω(r, κ) = {∀X ∈ (R+)

2∩D(O, r), |X|−|A(X)| ≤ κ}.
Lemma 8.4. Let n ∈ N and α > 0. For r large enough, IP(Ω(r, rα)c) = O(r−n).

Proof. Assume there exists X in (R+)
2 ∩ D(O, r) such that |X| − |A(X)| > rα. Then,

we can find a real number ν > 0 small enough and z ∈ Z2 satisfying |νz − X| ≤
√
2ν

and Cyl(νz, ρ/2) ⊂ Cyl(X, ρ). We can then deduce on the one hand that |z| ≤ 2r/ν for r
large enough, and on the other hand, the existence of a deterministic set Cyl(νz, ρ/2)∗

included in Cyl(X, ρ)∗ (i.e. avoiding the PPP N )and whose area is larger than ρrα/4.
Hence we get

IP(Ω(r, rα)c) ≤ (4r/ν)2e−ρrα/4

from which Lemma 8.4 follows.

For the rest of the proof, we choose real numbers 0 < α < 1
2 , 0 < ε′′ < ε′ < ε < 1

2 and
0 < ϕ < π/2. Let Cϕ,ε be the following set:

Cϕ,ε = {X ∈ R2, 0 < arg(X) < ϕ and |X| > r
1
2+ε} .

On the event Ω(r, rα) and for r large enough, the couple (X,A(X)) satisfies condition
(8.2) whenever X ∈ Cϕ,ε. Indeed,

|A(X)| −X(2) ≥ |X| − rα − |X| sinϕ ≥ r
1
2+ε(1− sinϕ)− rα ≥ ρ

for r large enough. Hence, on the event Ω(r, rα), we can define by induction a sequence
Z0, Z1 . . . of points of R2 as follows. The starting point Z0 satisfies |Z0| = r, Z0(1) ≥ 0

and Z0(2) = r
1
2+ε′ . While Zk belongs to Cϕ,ε, we set Zk+1 = A∗(Zk).

Let us consider the random times

τ1 := min{k ∈ N , |Zk| ≤ r
1
2+ε}
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and
τ2 := min{k ∈ N , |Zk(2)− Z0(2)| > r

1
2+ε′′} .

Thus, we choose r large enough so that k < τ1 ∨ τ2 implies that Zk belongs to Cϕ,ε: see
Figure 7. Henceforth, the path Z = (Z0, . . . , Zτ1∨τ2) is well defined on Ω(r, rα).

Figure 7: Here are two realizations of the path Z = (Z0, . . . , Zτ1∨τ2). The path in solid
line satisfies τ1 < τ2 whereas the path in dotted lines satisfies τ1 > τ2.

Lemma 8.5. Let Z be the path defined above. Assume the event Ω(r, rα) satisfied. On
the ring D(O, r) \D(O, |Zτ1∨τ2 |), the path Z remains above γ+r .

Proof. This result is based on the two following observations. Let k < τ1 ∨ τ2. First, the
ancestors A∗(Zk) and A(Zk) are on the same circle with A∗(Zk)(2) ≥ A(Zk)(2). Second,
the paths of the RPT built on N ∩ (R×R+) and starting at A∗(Zk) and A(Zk) do not cross.
Henceforth, Z– which is not a path of Tρ –remains above all the paths of Tρ starting from
Zk+1 = A∗(Zk) and so above γ+r .

Let n ∈ N and assume that the maximal deviation ∆+
r of γ+r w.r.t. the horizontal axis

(OX0) is larger than r
1
2+ε. Three cases can be distinguished:

Case 1: τ1 ≤ τ2. The path Z = (Z0, . . . , Zτ1∨τ2) enters in the disk D(O, r
1
2+ε) be-

fore getting out the horizontal strip {X, |X(2) − Z0(2)| ≤ r
1
2+ε′′}. So, on the ring

D(O, r) \ D(O, r
1
2+ε), the path γ+r is trapped between the axis (OX0) and the path Z

(Lemma 8.5). So, its maximal deviation ∆+
r is smaller than r

1
2+ε′ + r

1
2+ε′′ which is smaller

than r
1
2+ε for r large enough. Moreover, once γ+r is in D(O, r

1
2+ε), it can no longer

escape. Its maximal deviation inside this disk cannot exceed r
1
2+ε. So Case 1 never

happens.

Case 2: τ1 > τ2 > bcrc. In this case, the path (Z0, . . . , Zbcrc) is well defined but for c

large enough, it should had already entered in the disk D(O, r
1
2+ε). Lemma 8.6, proved

at the end of the section, says that Case 2 occurs with small probability.

Lemma 8.6. There exists a constant c > 0 such that for any integer n and r large enough,
the following statement holds:

IP(τ1 > τ2 > bcrc, Ω(r, rα)) = O(r−n) .
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Case 3: τ1 > τ2 and τ2 ≤ bcrc. Then, there exists an integer m ∈ {1, . . . , bcrc} such
that the path (Z0, . . . , Zm) is well defined and satisfy |Zk(2) − Z0(2)| ≤ r

1
2+ε′′ for any

k ∈ {1, . . . ,m− 1}, but

|Zm(2)− Z0(2)| =
∣∣∣m−1∑

i=0

Zi+1(2)− Zi(2)
∣∣∣ > r

1
2+ε′′ .

Conditionally on τ1 > τ2, τ2 = m, Ω(r, rα) and |Z1|, . . . , |Zm| we make two observations.
First, by construction, the increments (Zi+1(2) − Zi(2))0≤i≤m−1 are independent but
not identically distributed (indeed, the law of Zi+1(2)− Zi(2) depends on |Zi|). Second,
for any i ∈ {1, . . . ,m − 1}, Zi(2) ≥ r

1
2+ε′ − r

1
2+ε′′ ≥ rα for r large enough. So, on

Ω(r, rα), the cylinder Cyl(Zi, ρ)
∗ remains in the set {X,X(2) ≥ 0}. By Lemma 8.3, this

means that the increment Zi+1(2) − Zi(2) is symmetrically distributed on [−ρ; ρ]: its
conditional expectation is null. We can then apply Lemma 9.3 below to our context with
Yi+1 = Zi+1(2)− Zi(2) and P given by the probability IP conditioned to τ1 > τ2, τ2 = m,
Ω(r, rα) and |Z1|, . . . , |Zm|:

IP

(
∀k ∈ {1, . . . ,m− 1}, |Zk(2)− Z0(2)| ≤ r

1
2+ε′′

and |Zm(2)− Z0(2)| > r
1
2+ε′′

∣∣∣∣ τ1 > τ2, τ2 = m

Ω(r, rα), |Z1|, . . . , |Zm|

)

= P

(
∀k ∈ {1, . . . ,m− 1},

∣∣∣ k∑
i=1

Yi

∣∣∣ ≤ r
1
2+ε′′ and

∣∣∣ m∑
i=1

Yi

∣∣∣ > r
1
2+ε′′

)
which is a O(r−n−1). Tacking the expectation, we obtain that the quantity IP(τ1 > τ2, τ2 =

m,Ω(r, rα)) is a O(r−n−1), and then IP(τ1 > τ2, τ2 ≤ bcrc,Ω(r, rα)) is a O(r−n).

In conclusion IP(∆+
r ≥ r

1
2+ε) is also a O(r−n) for all ε > 0. The same holds for

IP(∆r ≥ r
1
2+ε), which achieves the proof of Proposition 8.2.

The section ends with the proofs of Lemma 8.6.

Proof. Let us assume that τ1 > τ2 > bcrc for some positive constant c which will
be specified later, and Ω(r, rα). Then, the path (Z0, . . . , Zbcrc) is well defined. Using
|Zi+1| = |A∗(Zi)| = |A(Zi)|, for any 0 ≤ i ≤ bcrc − 1, we can write

|Z0| − |Zbcrc| =
bcrc−1∑
i=0

|Zi| − |A(Zi)| ≤ r . (8.3)

Now, we are going to define random variables Ui’s, for 0 ≤ i ≤ bcrc − 1, which are
identically distributed, and satisfy

a.s. |Zi| − |A(Zi)| ≥ Ui . (8.4)

To do it, let Ci be the set:

Ci =
(
[O;Zi]⊕D(O, ρ)

)
∩ {X ∈ R2, 〈X,Zi〉 < 1} .

The right side of Ci is rectangular and so Ci contains the cylinder Cyl(Zi, ρ). Thus, we
denote by Hi the element of [O;Zi] with minimal norm such that Ci \ ([O;Hi]⊕D(O, ρ))

avoids the PPP N ∩ (R×R+). In particular, A(Zi) is on the circle C(Hi, ρ). Let us set
Ui = max{|Zi −Hi| − ρ, 0}. By convexity, the disk D(Hi, ρ) is not include in D(O, |A(Zi)|).
This implies that |Zi| − |A(Zi)| is larger than |Zi −Hi| − ρ. So (8.4) is satisfied. Moreover,
the distribution of Ui does not depend on Zi. This is due to the rectangular shape of Ci
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and, on the event Ω(r, rα), |Zi| − |A(Zi)| is smaller than rα. In conclusion, the Ui’s are
identically distributed.

Combining (8.3) and (8.4), it follows:

IP(τ1 > τ2 > bcrc, Ω(r, rα)) ≤ IP(|Z0| − |Zbcrc| ≤ r, Ω(r, rα))

≤ IP

bcrc−1∑
i=0

Ui ≤ r, Ω(r, rα)

 .

By an abstract coupling, the Ui’s can be considered as independent random variables.
Then, by Lemma 9.2, IP(

∑bcrc−1
i=0 Ui ≤ r,Ω(r, rα)) is a O(r−n) whenever c > (IEU1)

−1.
This leads to the searched result.

9 Technical lemmas

This last section contains three technical results which are used many times in this
paper. The first one is due to Talagrand (Lemma 11.1.1 of [21]) and allows to bound from
above the number of Poisson points occuring in a given set in terms of its area.

Lemma 9.1. Let N be a homogeneous PPP in R2 with intensity 1. Then, for any bounded
measurable set Λ having a positive aera and any integer n,

IP
(
N (Λ) ≥ n

)
≤ exp

(
−n ln

(
n

e|Λ|

))
,

where |Λ| denotes the area of Λ.

The second result is a consequence of Theorem 3.1 of [12]. It bounds the probability
for a partial sum of i.i.d. random variables to be too small.

Lemma 9.2. Let (Yi)i≥1 be a sequence of positive i.i.d. random variables such that
IEY1 > 0 and for any integer m, IEY m

1 < ∞. Then, for any m, r ≥ 1 and any constant
c > (IEY1)−1,

IP

bcrc∑
i=1

Yi ≤ r

 = O(r−m) .

Proof. Since c > (IEY1)−1, the inequality
∑bcrc

i=1 Yi ≤ r implies that, for r large enough,∑bcrc
i=1 Xi ≤ −ar where Xi = Yi − IEYi and a > 0 is a constant. Henceforth,

IP

bcrc∑
i=1

Yi ≤ r

 ≤ IP

∣∣∣∣∣∣
bcrc∑
i=1

Xi

∣∣∣∣∣∣ ≥ ar

 = O(r−m)

by Theorem 3.1 of [12] (precisely, equivalence between (3.1) and (3.2)) that we can use
because IEX1 = 0 and for any m, IE |X1|m <∞.

Lemma 9.3 says that with high probability, the maximal deviation of the first t partial
sums of a sequence (Yi)i≥1 of independent bounded random variables (but not necessarily
identically distributed) is smaller than t

1
2+ε′′ .

Lemma 9.3. Let (Yi)i≥1 be a family of independent random variables defined on a
probability space (Ω,F , P ) satisfying for any i ≥ 1, EYi = 0 and P (|Yi| ≤ ρ) = 1 (where E
denotes the expectation corresponding to P ). Then, for all 0 < ε′′ < 1

2 and for all positive
integers n, t:

P

(
max
1≤k≤t

∣∣∣ k∑
i=1

Yi

∣∣∣ ≥ t
1
2+ε′′

)
= O(t−n) .

Moreover, the O only depends on ρ, n and ε′′.
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Proof. Let ε′′ ∈ (0; 1
2 ), n, t ∈ N

∗ and p = n/ε′′. By independence of the Yi’s, (
∑k

i=0 Yi)k≥1

is a martingale. Applying the convex function x 7→ |x|p (p > 1), we get a positive
submartingale (|

∑k
i=0 Yi|p)k≥1. Then, the Kolmogorov’ submartingale inequality gives:

P

(
max
1≤k≤t

∣∣∣ k∑
i=1

Yi

∣∣∣ ≥ t
1
2+ε′′

)
= P

(
max
1≤k≤t

∣∣∣ k∑
i=1

Yi

∣∣∣p ≥ t
p
2+pε′′

)
≤ t−

p
2−nE

∣∣∣ t∑
i=1

Yi

∣∣∣p .
So it remains to prove that E|

∑t
i=1 Yi|p = O(t

p
2 ). At this time, bounding the |Yi|’s by ρ

does not lead to the searched result. It is better to use Petrov [19] p.59:

E
∣∣∣ t∑
i=1

Yi

∣∣∣p ≤ C(p)E
( t∑

i=1

Y 2
i

) p
2 ≤ C(p)ρpt

p
2

where C(p) is a positive constant only depending on p.
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