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The Schrödinger equation with spatial white noise
potential
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Abstract

We consider the linear and nonlinear Schrödinger equation with a spatial white noise
as a potential over the two dimensional torus. We prove existence and uniqueness of
solutions to an initial value problem for suitable initial data. Our construction is based
on a change of unknown originally used in [13] and conserved quantities.
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1 Introduction

In this work we study a linear or nonlinear Schrödinger equation on a periodic domain
with a random potential given by a spatial white noise in dimension 2. This equation
is important for various purposes. In the linear case, it is used to study Anderson
localisation. It is a complex version of the famous PAM model. In the nonlinear case, it
describes the evolution of nonlinear dispersive waves in a totally disorder medium (see
for instance [9], [12] and the references therein).

If u denotes the unknown, the equation is given by:

i
du

dt
= ∆u+ λ|u|2u+ uξ, x ∈ T2, t ≥ 0,

where T2 denotes the two dimensional torus, identified with [0, 2π]2, and ξ is a real-valued
spatial white noise. Of course, λ = 0 for the linear equation. A positive λ corresponds to
the focusing case and λ < 0 to the defocusing case. For simplicity, we take λ = ±1 in the
nonlinear case. The qualitative properties of the solutions are completely different in
these two cases.

We are here interested in the question of existence and uniqueness of solutions. This
is a preliminary but important step before studying other phenomena, such as solitary
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NLS with spatial noise

waves, blow up phenomena or Anderson localisation. The main difficulty is due to the
presence of the rough potential. Recall that in dimension 2, a white noise has a negative
regularity which is strictly less than −1. In the parabolic case (i.e. replace idudt by du

dt )
renormalized solutions were recently constructed in [13]. However, their argument
relies strongly on the strong regularising properties of the heat semigroup which are not
available for the Schrödinger equation. Some smoothing properties for the Schrödinger
equation are known when it is set on the plane. For instance in [6], section 2.5, it is
shown that localized initial data yield smooth solutions. Further results are mentioned
in Remark 2.7.8 of the same book. See also [8, 14, 16, 18] for further results as well as
[4, 17] for deterministic nonlinear smoothing in the euclidean setting. In the periodic
case, considered here however, similar linear smoothing results do not hold. Some
deterministic nonlinear smoothing hold for the cubic NLS on the one dimensional torus
(see [10, 11, 15]), but there is no such deterministic smoothing for the quintic or higher,
and it is believed not to hold in dimensions bigger than 2 regardless of the nonlinearity.

Instead of using regularising estimates for the Schrödinger semigroup we rely on
the Hamiltonian structure of the equation and its conserved quantities. We use the
same transformation introduced in [13]. On the level of this transformed equation, the
conservation of mass and energy gives enough control to construct solutions taking
values in almost H2(T2), the standard Sobolev space of functions with derivatives up to
order 2 in L2(T2). Inverting the transformation this yields solutions in almost H1(T2).
This is rather surprising since the regularity is comparable to what is obtained in the
parabolic case, when strong smoothing properties are available. However, we have to
assume more structure on the initial datum than is needed in the parabolic case: On
the level of the transformed equation the initial datum has to have H2(T2) regularity,
which translates to the assumption that the initial datum for the original equation is the
product of an H2(T2) function and a explicit function of regularity almost H1(T2) which
depends on the specific realisation of the noise ξ .This may be surprising at a first glance
but, remembering that the domain of the linear operator appearing in the equation is
random ([1]), this is in fact natural.

As in the parabolic case, a renormalization is necessary and at the level of the original
equation, the renormalized equation rewrites formally:

i
du

dt
= ∆u+ λ|u|2u+ u(ξ −∞), x ∈ T2, t ≥ 0.

The transformation u → ei∞tu transforms the original equation into the renormalized
one. Therefore, the renormalization amounts to renormalize only the phase. A similar
remark was made in [3] in a related but different context.

We first consider the linear equation, λ = 0. In this way the ideas can be explained in
a simpler setting. We use a transformation introduced in [13] in the parabolic case, it
transforms the equation into a less singular one. Conservation of the L2(T2) and H1(T2)

norm imply some bounds in these spaces, but these are not yet sufficient to construct
a solution. We then use conservation of the L2(T2) norm of the time derivative to get
bounds in H2 on the transformed equation with a smoothed noise. The bound explodes
when the smoothing disappears but thanks to an idea reminiscent of interpolation theory
we show that this implies uniform Hγ , γ < 2, bounds on the smoothed solutions. This
bound is sufficient to prove that they converge to a solution of our transformed equation.
Going back to the original equation yields a solution in H1.

For λ < 0, we obtain global solutions for any initial data satisfying some smoothness
assumptions. For λ > 0, as in the deterministic case, we need a smallness assumption on
the initial data. The ideas are similar but the estimates are more delicate.

We could of course consider the equation with a more general nonlinearity: |u|2σu
with σ ≤ 1. For σ < 1, no restriction on the size of the initial data is required for λ > 0.
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NLS with spatial noise

Another easy generalization is to consider a general bounded domain and Dirichlet
boundary conditions, as long as they are sufficiently smooth and the properties of the
Green function of the Laplace operator are sufficiently good so that Lemma 2.1 below
holds.

The study of the linear equation is closely related to the understanding of the
Schrödinger operator with white noise potential. This is the subject of a recent very
interesting article by Allez and Chouk ([1]) where the paracontrolled calculus is used to
study the domain and spectrum of this operator. It is not clear how this can be used for
the nonlinear equation.

Notation

We use the classical Lp = Lp(T2) spaces for p ∈ [1,∞], as well as the L2 based
Sobolev spaces Hs = Hs(T2) for s ∈ R and the Besov spaces Bsp,q = Bsp,q(T

2), for
s ∈ R, p, q ∈ [1,∞]. These are defined in terms of Fourier series and Littlewood-Paley
theory (see [2]). Recall that for s > 2

p the space Bsp,q(T
2) embeds into L∞(T2).

Throughout the article, c denotes a constant which may change from one line to
the next. Also, we use a small parameter 0 < ε < e−1 and Kε is a random constant
which can also change but such that EKp

ε is uniformly bounded in ε for all p. Similarly,
for 0 < ε1, ε2 < e−1, the random constant Kε1,ε2 may depend on ε1, ε2 but EKp

ε1,ε2 is
uniformly bounded in ε1, ε2 for all p.

2 Preliminaries

We consider the following nonlinear Schrödinger equation in dimension 2 on the
torus, that is periodic boundary conditions are assumed, for the complex-valued unknown
u = u(x, t):

i
du

dt
= ∆u+ λ|u|2u+ uξ, x ∈ T2, t ≥ 0. (2.1)

It is supplemented with initial data

u(x, 0) = u0(x), x ∈ T2.

We need to choose the initial data of special form which depends on the realisation of
the noise ξ. This will be made precise below. In the focusing case λ > 0 we need an extra
assumption on the size of ‖u0‖L2 which has be small enough (see (4.3) below).

The potential ξ is random and is a real valued spatial white noise on T2. For simplicity,
we assume that it has a zero spatial average. The general case could be recovered by
adding an additional Gaussian random potential which is constant in space. This would
not change the analysis below.

Formally equation (2.1) has two invariant quantities. Given a solution u of (2.1), the
mass:

N(u(t)) =

∫
T2

|u(x, t)|2dx

is constant in time as well as the energy:

H(u(t)) =

∫
T2

1

2
|∇u(x, t)|2 − λ

4
|u(x, t)|4 − 1

2
ξ(x)|u(x, t)|2dx.

This is formal because the noise ξ is very rough. In dimension 1, the noise has regularity
−1/2− and belongs to Bα∞,∞ for any α < −1/2, therefore the product ξ|u|2 can be defined
rigorously for u ∈ H1 and this provides a bound in H1. Existence and uniqueness through
regularization of the noise and a compactness argument can then be obtained.
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NLS with spatial noise

In dimension 2, the noise lives in any space with regularity −1−, that is any regularity
strictly less than −1, and the solution is not expected to be sufficiently smooth to
compensate this. In fact, the product is almost well defined for u ∈ H1 and we are in
a situation similar to the two dimensional nonlinear heat equation with spatial white
noise (i.e. the two dimensional continuous parabolic Anderson model). We expect that a
renormalization is necessary.

Inspired by [13], we introduce:

Y = ∆−1ξ

(note that this is well defined since we consider a zero average noise, we choose Y also
with a zero average) and v = ueY . Then the equation for v reads

i
dv

dt
= ∆v − 2∇v · ∇Y + v|∇Y |2 + λ|v|2ve−2Y . (2.2)

The random field Y has regularity 1− and∇Y is of regularity 0−. Thus this transformation
has lowered the roughness of the most irregular term on the right hand side. At this
point it is easier to see why we need a renormalization: the term |∇Y |2 is not well defined
since ∇Y is not a function. However, the roughness is mild here and it has been known
for long that up to renormalization by a log divergent constant this square term can be
defined in the second order Wiener chaos based on ξ.

Let us be more precise. Let ρε = ε−2ρ( ·ε ) be a compactly supported smooth mollifier
and consider the smooth noise ξε = ρε ∗ ξ. We denote by Yε = ∆−1ξε. Then it is proved in
[13] that for every κ > 0, ξ belongs almost surely to B−1−κ

∞,∞ and, as ε→ 0, ξε converges
in probability to ξ in B−1−κ

∞,∞ .

Also, denoting by

Cε = E
(
|∇Yε|2

)
the quantity : |∇Yε|2 := |∇Yε|2 − Cε converges in Lp(Ω;B−κ∞,∞) for any p ≥ 1, κ > 0 to a
random variable : |∇Y |2 : in the second Wiener chaos associated to ξ. It is easy to see
that Cε goes to∞ as | ln ε| as ε→∞:

E
(
|∇Yε|2

)
∼ K0| ln ε|

for some K0 > 0. By stationarity this quantity does not depend on x ∈ T2.

This discussion is summarised in the following Lemma whose proof can be found in
[13, Lemma 1.1 and Proposition 1.3] in the more difficult case of the space variable in
R2.

Lemma 2.1. For 1 ≥ κ′ > κ′′ > 0 and any p ≥ 1, there exist a constant c independent of
ε such that: [

E

(
‖Yε − Y ‖p

B1−κ′
∞,∞

)] 1
p

≤ cεκ
′′− 2

p

and [
E

(
‖ : |∇Yε|2 : − : |∇Y |2 : ‖p

B−κ
′

∞,∞

)] 1
p

≤ cεκ
′′− 2

p .

Remark 2.2. Using the monotonicity of stochastic Lp norms in p, one can drop the
exponent − 2

p in the right hand side. We state the result in this way because this is the

bound that one actually proves. Below, we use this bound with κ′′ − 2
p = κ′

2 .

Note that for s < s̃, p, r ≥ 1, we have Bs̃∞,∞ ⊂ Bsp,r. Thus, bounds in the latter Besov
spaces follow.
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NLS with spatial noise

Instead of solving equation (2.2) for vε, we consider:

i
dvε
dt

= ∆vε − 2∇vε · ∇Yε + vε : |∇Yε|2 : +λ|vε|2vεe−2Yε (2.3)

and setting uε = vεe
−Yε :

i
duε
dt

= ∆uε + λ|uε|2uε + uε(ξε − Cε), x ∈ T2, t ≥ 0. (2.4)

Since Yε is smooth, it is classical to prove that these equations have a unique global
solution in C([0, T ];Hk) for any T > 0 for an initial data in Hk, k = 1, 2, provided the
L2 norm is small for λ > 0 (see for instance [6], Section 3.6). More details are given in
Section 4.

The mass and energy are transformed into the two following quantities which are
invariant under the dynamics for vε:

Ñε(vε(t)) =

∫
T2

|vε(x, t)|2e−2Yε(x)dx

and

H̃ε(vε(t)) =

∫
T2

(
1

2
|∇vε(x, t)|2 +

1

2
|vε|2 : |∇Yε|2 : −λ

4
|vε(x, t)|4e−2Yε(x)

)
e−2Yε(x)dx.

Since the most irregular term : |∇Yε|2 : here is not as rough as ξ, this transformed energy
is a much better quantity than the original one. It is possible to give a meaning to it for
ε = 0 and use it to get bounds in H1.

Below, we use the following simple results.

Lemma 2.3. For any κ ∈ (0, 1) and any p ≥ 1, there exists a constant independent on ε
such that: [

E
(
‖e−2Yε − e−2Y ‖p

B1−κ
∞,∞

)] 1
p ≤ cεκ2 .

Proof. Since B1−κ
∞,∞ is equal to the Hölder space C1−κ(T2) we have:

‖e−2Yε − e−2Y ‖B1−κ
∞,∞

= ‖e−2Y (e−2(Yε−Y ) − 1)‖B1−κ
∞,∞
≤ ‖e−2Y ‖B1−κ

∞,∞
‖e−2(Yε−Y ) − 1‖B1−κ

∞,∞
.

Then we write:

‖e−2Y ‖B1−κ
∞,∞
≤ 2‖e−2Y ‖L∞‖Y ‖B1−κ

∞,∞
+ ‖e−2Y ‖L∞ ,

‖e−2(Yε−Y ) − 1‖B1−κ
∞,∞
≤ 2‖e−2Y ‖L∞‖e−2Yε‖L∞‖Yε − Y ‖B1−κ

∞,∞

The result follows by Hölder inequality, Lemma 2.1 (in the form of Remark 2.2 with
κ′′ = κ) and Gaussianity to bound exponential moments of Y and Yε.

Lemma 2.4. There exists a constant c independent of ε such that:

E
(
‖∇Yε‖4L4

)
≤ c| ln ε|2

and
E
(
‖ : |∇Yε|2 : ‖4L4

)
≤ c(| ln ε|)4.

Proof. It suffices to write:

E

(∫
T2

|∇Yε(x)|4dx
)

=

∫
T2

E
(
|∇Yε(x)|4

)
dx = 12π2C2

ε .

Similarly:

E

(∫
T2

| : |∇Yε(x)|2 : |4dx
)

= E

(∫
T2

(|∇Yε(x)|2 − Cε)4dx

)
= 51πC4

ε .
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NLS with spatial noise

3 The linear case

In this section, we start with the linear case: λ = 0. Then the equation for vε reads

i
dvε
dt

= ∆vε − 2∇vε · ∇Yε + vε : |∇Yε|2 : . (3.1)

There exists a unique solution in C([0, T ];H2) if vε(0) ∈ H2. Indeed, for ε > 0, Yε is
smooth so that uε,0 = v0e

−Yε is also in H2. Existence and uniqueness of a global solution
in C([0, T ];H2) ∩ C1([0, T ];L2) of

i
duε
dt

= ∆uε + uε(ξε − Cε), x ∈ T2, t ≥ 0, uε(0) = uε,0, (3.2)

is easy to prove, for instance by a fixed point argument on a mild form of the equation
- recall that (eit∆)t is a strongly continuous group of isometries on any Hs. This mild
solution satisfies (3.1) as an inequality in L2, see for instance [7], chapter 4. Setting vε =

uεe
Yε gives a solution in C([0, T ];H2) ∩ C1([0, T ];L2) to (3.1). Uniqueness of uε implies

uniqueness of vε. In fact, the same argument gives a unique solution in C([0, T ];Hk+2) ∩
C1([0, T ];Hk) if vε(0) ∈ Hk, k ∈ N.

We take the initial data

vε(0) = v0 = u0e
Y

and assume below that it belongs to H2. Note that this gives an initial data depending
on ε for uε for (3.2), but we recover the good initial data at the limit ε→ 0.

The mass and energy of a solution are now:

Ñε(vε(t)) =

∫
T2

|vε(x, t)|2e−2Yε(x)dx

and

H̃ε(vε(t)) =

∫
T2

(
1

2
|∇vε(x, t)|2 +

1

2
|vε|2 : |∇Yε|2 :

)
e−2Yε(x)dx.

They are constant in time under the evolution (3.1). This follows from standard computa-
tions. Since the solution is in C([0, T ];H2) ∩ C1([0, T ];L2), these can be done rigorously.
For instance, thanks to this property we have:

d

dt

∫
T2

1

2
|∇vε(x, t)|2e−2Yε(x)dx = Re

∫
T2

∆vε(x, t)
dv̄ε
dt
e−2Yε(x)dx.

Since Yε converges in B1−κ
∞,∞ for any κ > 0 as ε tends to zero, we see that the mass

gives a uniform bound in L2 on vε. More precisely:

‖vε(t)‖2L2 ≤ ‖e2Yε‖L∞‖e−2Yε‖L∞‖v0‖2L2 = Kε‖v0‖2L2 (3.3)

with

Kε = ‖e2Yε‖L∞‖e−2Yε‖L∞ . (3.4)

The energy enables us to get a bound on the gradient.

Proposition 3.1. Let κ ∈ (0, 1/2), there exists a random constant Kε bounded in Lp(Ω)

with respect to ε for any p ≥ 1 such that if v0 ∈ H1:∫
T2

|∇vε(x, t)|2dx ≤ Kε

(
H̃ε(v0) + ‖v0‖2L2

)
.
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NLS with spatial noise

Proof. Since B−κ∞,2 is in duality with Bκ1,2 we deduce by the standard multiplication rule
in Besov spaces (see e.g. [2], Section 2.8.1)∣∣∣∣∫

T2

|vε|2 : |∇Yε|2 : dx

∣∣∣∣ ≤ ‖v2
ε‖Bκ1,2‖ : |∇Yε|2 : ‖B−κ∞,2 ≤ Kε‖v2

ε‖Bκ1,2 ≤ Kε‖vε‖2Bκ2,2 .

Then we note that ‖vε‖2Bκ2,2 = ‖vε‖2Hκ so that by interpolation∣∣∣∣∫
T2

|vε|2 : |∇Yε|2 : dx

∣∣∣∣ ≤ Kε‖vε‖2(1−κ)
L2 ‖vε‖2κH1 .

It follows∫
T2

|∇vε(x, t)|2dx ≤ KεH̃(vε(t)) +Kε‖vε(t)‖2(1−κ)
L2 ‖vε(t)‖2κH1

≤ KεH̃ε(v0) +Kε‖vε(t)‖2L2 +Kε‖vε(t)‖2(1−κ)
L2 ‖∇vε‖2κL2

≤ KεH̃ε(v0) +Kε‖v0‖2L2 +
1

2
‖∇vε‖2L2

and hence, by absorbing the last term in the left hand side,∫
T2

|∇vε(x, t)|2dx ≤ Kε

(
H̃ε(v0) + ‖v0‖2L2

)
.

Since H̃ε(v0) is bounded for v0 ∈ H1, we obtain a (random) bound on vε in H1 using
similar arguments as above.

Corollary 3.2. There exists a random constant Kε bounded in Lp(Ω) with respect to ε
for any p ≥ 1 such for any v0 ∈ H1:

‖vε(t)‖H1 ≤ Kε‖v0‖H1 , t ≥ 0.

Unfortunately, this regularity is not sufficient to control the product ∇vε · ∇Yε on the
right hand side of (3.1).

The next observation is that, wε = dvε
dt is formally a solution of:

i
dwε
dt

= ∆wε − 2∇wε · ∇Yε + wε : |∇Yε|2 :, (3.5)

and since wε satisfies the same equation as vε, it has the same invariant quantities. We
use in particular the mass:

Ñ(wε(t)) = Ñ(wε(0)).

Hence:
‖wε(t)‖2L2 ≤ KεÑ(wε(0)) ≤ Kε‖wε(0)‖2L2 . (3.6)

This formal argument can be justified as follows. We take a sequence (vε,η(0))η>0 in
H4 which converges to vε(0) in H2. Then, as noted above, the corresponding solution
vε,η of (3.2) lives in C([0, T ];H4) ∩ C1([0, T ], H2) and converges to vε in C([0, T ];H2) ∩
C1([0, T ], L2). The argument above holds for wε,η =

dvε,η
dt and

‖wε,η(t)‖2L2 ≤ KεÑ(wε,η(0)) ≤ Kε‖wε,η(0)‖2L2 .

Letting η → 0, we obtain that (3.6) is true under the assumption that v0 ∈ H2.

Proposition 3.3. There exists a random constant Kε bounded in Lp(Ω) with respect to
ε for any p ≥ 1 such that if v0 ∈ H2:

‖vε‖H2 ≤ cKε

(
‖v0‖H2 + ‖v0‖L2 | ln ε|2

)
.
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NLS with spatial noise

Proof. From (3.1), we have:

wε(0) = −i(∆v0 − 2∇v0 · ∇Yε + v0 : |∇Yε|2 :),

so that, thanks to the embedding H1/2 ⊂ L4,

‖wε(0)‖L2 ≤ c
(
‖v0‖H2 + ‖v0‖H3/2‖∇Yε‖L4 + ‖v0‖H1/2‖ : |∇Yε|2 : ‖L4

)
.

By interpolation we deduce:

‖wε(0)‖L2 ≤ c
(
‖v0‖H2 + ‖v0‖3/4H2 ‖v0‖1/4L2 ‖∇Yε‖L4 + ‖v0‖1/4H2 ‖v0‖3/4L2 ‖ : |∇Yε|2 : ‖L4

)
≤ c

(
‖v0‖H2 + ‖v0‖L2‖∇Yε‖4L4 + ‖v0‖L2‖ : |∇Yε|2 : ‖4/3L4

)
≤ c

(
‖v0‖H2 +Kε‖v0‖L2 | ln ε|2

)
,

(3.7)
where:

Kε = ‖∇Yε‖4L4 | ln ε|−2 + ‖ : |∇Yε|2 : ‖4/3L4 | ln ε|−2.

By Lemma 2.4 and gaussianity, we know that the moments of this random variable are
bounded with respect to ε.

It follows
‖wε(t)‖L2 ≤ Kε

(
‖v0‖H2 + ‖v0‖L2 | ln ε|2

)
.

This in turn allows us to control ‖vε‖H2 . Indeed, from (3.1),

‖∆vε‖L2 ≤ ‖wε(t)‖L2 + 2‖∇vε · ∇Yε‖L2 + ‖vε : |∇Yε|2 : ‖L2

and by similar arguments as above

‖∆vε‖L2 ≤ ‖wε(t)‖L2 +
1

2
‖∆vε‖L2 + cKε‖vε(t)‖L2 | ln ε|2

and finally
‖∆vε‖L2 ≤ Kε

(
‖v0‖H2 + ‖v0‖L2 | ln ε|2

)
.

The result follows thanks to (3.3).

This bound does not seem to be very useful since it explodes as ε→ 0. To use it, we
consider the difference of two solutions.

Proposition 3.4. Let ε2 > ε1 > 0 then for κ ∈ (0, 1], p ≥ 1 there exists a random constant
Kε1,ε2 bounded in Lp(Ω) with respect to ε1, ε2 for any p ≥ 1 such that if v0 ∈ H2

sup
t∈[0,T ]

‖vε1(t)− vε2(t)‖2L2 ≤ Kε1,ε2ε
κ/2
2 | ln ε2|1+2κ‖v0‖2H2

Proof. We set r = vε1 − vε2 and write:

i
dr

dt
= ∆r− 2∇r · ∇Yε1 + r : |∇Yε1 |2 : −2∇vε2 · ∇(Yε1 − Yε2) + vε2(: |∇Yε1 |2 : − : |∇Yε2 |2 :).

By standard computations, we deduce:

1

2

d

dt

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

= Im

∫
T2

(
−2∇vε2 · ∇(Yε1 − Yε2) + vε2(: |∇Yε1 |2 : − : |∇Yε1 |2 :)

)
r̄e−2Yε1 (x)dx

≤ 2‖∇vε2 r̄e−2Yε1‖Bκ1,2‖∇(Yε1 − Yε2)‖B−κ∞,2 + ‖vε2 r̄e−2Yε1 ‖Bκ1,2‖ : |∇Yε1 |2 : − : |∇Yε2 |2 : ‖B−κ∞,2
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the first term of the right hand side is bounded thanks to interpolation and paraproduct
inequalities (see [2]) and we have

‖∇vε2 r̄e−2Yε1‖Bκ1,2 ≤ c‖vε2‖H1+κ (‖vε1‖Hκ + ‖vε2‖Hκ) ‖e−2Yε1 ‖Bκ∞,2 .

Then, by Proposition 3.3 and interpolation:

‖vε2‖H1+κ ≤ c‖vε2‖
(1+κ)/2
H2 ‖vε2‖

(1−κ)/2
L2 ≤ Kε2(‖v0‖H2 + ‖v0‖L2 | ln ε2|2)(1+κ)/2‖v0‖(1−κ)/2

L2

and, by Corollary 3.2, for i = 1, 2

‖vεi‖Hκ ≤ ‖vεi‖κH1‖vεi‖1−κL2 ≤ Kεi‖v0‖κH1‖v0‖1−κL2 ≤ Kεi‖v0‖κ/2H2 ‖v0‖1−κ/2L2 .

It follows

‖∇vε2 r̄e−2Yε1‖Bκ1,2 ≤ Kε1,ε2‖e−2Yε1‖Bκ∞,2‖v0‖
3
2−κ
L2 (‖v0‖H2 + ‖v0‖L2 | ln ε2|2)

1
2 +κ

The second term is bounded by the same quantity and we deduce:

1

2

d

dt

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

≤ Kε2‖e−2Yε1‖Bκ∞,2‖v0‖
3
2−κ
L2 (‖v0‖H2 + ‖v0‖L2 | ln ε2|2)

1
2 +κ

×
(
‖∇(Yε1 − Yε2)‖B−κ∞,2 + ‖ : |∇Yε1 |2 : − : |∇Yε2 |2 : ‖B−κ∞,2

)
.

The result follows thanks to integration in time and Lemma 2.1. For instance, we have:

‖∇(Yε1 − Yε2)‖B−κ∞,2 ≤ c‖∇(Yε1 − Yε2)‖
B
− 7κ

8
∞,∞
≤ c‖Yε1 − Yε2‖

B
1− 7κ

8
∞,∞

≤ Kε1,ε2ε
κ
2
2 ,

thanks to Lemma 2.1 with κ′ = 7κ
8 , κ′′ = 3κ

4 and p = 8
κ .

By interpolation, we deduce from Proposition 3.3 and 3.4 the following result.

Corollary 3.5. Let ε2 > ε1 > 0 then for κ ∈ (0, 1], γ ∈ [0, 2), p ≥ 1 there exists a random
constant Kε1,ε2 bounded in Lp(Ω) with respect to ε1, ε2 for any p ≥ 1 such that if v0 ∈ H2:

sup
t∈[0,T ]

‖vε1(t)− vε2(t)‖2Hγ ≤ Kε1,ε2ε
κ
2 (1− γ2 )
2 | ln ε1|4‖v0‖2H2

We are now ready to state and prove the main result of this section.

Theorem 3.6. Assume that v0 = u0e
Y ∈ Lp(Ω;H2) for some p > 1. For any T ≥ 0,

q < p, γ ∈ (1, 2), when ε→ 0, the solution vε of (3.1) satisfying vε(0) = v0 converges in
Lq(Ω;C([0, T ];Hγ)) to v which is the unique solution to

i
dv

dt
= ∆v − 2∇v · ∇Y + v : |∇Y |2 : (3.8)

in C([0, T ];Hγ) such that v(0) = v0. Here, by solution, we mean that (3.8) holds as an
equality in C([0, T ];Hγ−2)

Proof. Let us first prove pathwise uniqueness. Since the equation is linear, this amounts
to prove that a solution with v(0) = 0 is 0. Let us consider such a solution and write:∫

T2

|v(x, t)|2e−2Y (x)dx = lim
ε→0

∫
T2

|v(x, t)|2e−2Yε(x)dx
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as can be seen from Lemma 2.1. Then, v ∈ C([0, T ];Hγ) implies that dv
dt ∈ C([0, T ];Hγ−2)

and we may differentiate for ε > 0:

d

dt

∫
T2

|v(x, t)|2e−2Yε(x)dx = 2(
dv

dt
, ve−2Yε) = −2(i∆v − 2i∇v · ∇Y + iv : |∇Y |2 :, ve−2Yε),

where (·, ·) has to be understood as the duality between Hγ−2 and H2−γ - note that
2− γ ≤ γ. Recall that:

(i∆v − 2i∇v · ∇Yε + iv : |∇Yε|2 :, ve−2Yε) = 0,

and deduce:

d

dt

∫
T2

|v(x, t)|2e−2Yε(x)dx = (−2i∇v · ∇(Y − Yε) + iv(: |∇Yε|2 : − : |∇Yε|2) :, ve−2Yε).

We then repeat the estimate of the proof of Proposition 3.4 but estimate the H1+κ norm
by the Hγ norm and obtain∣∣∣∣ ddt

∫
T2

|v(x, t)|2e−2Yε(x)dx

∣∣∣∣ ≤ Kεε
κ
2 .

The random constant Kε depends on the norm of v1, v2 in C([0, T ];Hγ) and on Yε. We
take ε = 2−k. By Lemma 2.1 and Borel-Cantelli, we know that supkK2−k < ∞ a.s..
Integrating in time and letting k →∞, we get

∫
T2 |v(x, t)|2e−2Y (x)dx = 0.

Now let εk = 2−k, Corollary 3.5 implies that (vεk) is Cauchy in Lq(Ω;C([0, T ];Hγ)). It
is not difficult to prove that the limit v is a solution of (3.8) and

E

(
sup
t∈[0,T ]

‖vεk(t)‖qHγ

)
≤ cE

(
‖v0‖pH2

)q/p
,

E

(
sup
t∈[0,T ]

‖v(t)‖qHγ

)
≤ cE

(
‖v0‖pH2

)q/p
.

Let ε > 0 and k such that εk < ε. By interpolation, with γ < γ̃ < 2,

sup
t∈[0,T ]

‖vε(t)− vεk(t)‖2Hγ

≤ c sup
t∈[0,T ]

‖vε(t)− vεk(t)‖2(1−γ/γ̃)
L2 sup

t∈[0,T ]

‖vε(t)− vεk(t)‖2γ/γ̃
Hγ̃

≤ c sup
t∈[0,T ]

‖vε(t)− vεk(t)‖2(1−γ/γ̃)
L2 sup

t∈[0,T ]

(‖vε(t)‖H2 + ‖vεk(t)‖Hγ̃ )
2γ/γ̃

.

By Proposition 3.4, Proposition 3.3 and the above inequality, we deduce:

E

(
sup
t∈[0,T ]

‖vε(t)− vεk(t)‖qHγ

)
≤ cεκ2 (2−γ/γ̃))| ln ε|4E

(
‖v0‖pH2

)q/p
.

Letting k → ∞, we deduce that the whole family (vε)ε>0 converges to v in Lq(Ω;

C([0, T ];Hγ)). It remains to let ε→ 0 in each term of (3.1) to prove that v is a solution.

4 The nonlinear equation

We now study the nonlinear equation (2.2) and consider its approximation (2.3) with
initial condition

vε(0) = v0 = u0e
Y
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and assume below that it belongs to H2. Using the same argument as in [5], we can
prove existence of a solution to (2.4) in C([0, T ∗);H2) ∩ C1([0, T∗);L2) where T ∗ is the
maximal time of existence. It is either infinite or finite and in the latter case the H2 norm
blows up. This implies local existence and uniqueness for (2.3). Proposition 4.2 below
shows that, under condition 4.2, the H2 norm is bounded on finite time intervals and
thus implies that T ∗ =∞.

Again the solution is sufficiently regular to justify the computations yielding conser-
vation of the mass and energy.

The mass gives a uniform bound in L2 on vε:

‖vε(t)‖2L2 ≤ Kε‖v0‖2L2 . (4.1)

The estimate on the H1 norm using the energy is similar to the linear case. Recall
that the energy is given by:

H̃ε(vε(t)) =

∫
T2

(
1

2
|∇vε(x, t)|2 +

1

2
|vε|2 : |∇Yε|2 : −λ

4
|vε(x, t)|4e−2Yε(x)

)
e−2Yε(x)dx

and it can be checked that for all t ≥ 0 we have H̃ε(vε(t)) = H̃ε(v0).

Proposition 4.1. There exists a constant Kε bounded in Lp(Ω) for any p ≥ 1 such that if
v0 ∈ H1 and

‖e−2Yε‖3L∞‖e2Yε‖L∞‖v0‖L2 ≤ 1 if λ = 1 (4.2)

then
‖vε(t)‖2H1 ≤ Kε

(
‖v0‖2H1 + ‖v0‖2L2‖v0‖2H1

)
.

Moreover, the sequence (Kk) = (K2−k) is bounded almost surely, i.e. supkK2−k is almost
surely finite.

Proof. We proceed as in the proof of Proposition 3.1. We first have∣∣∣∣∫
T2

v2
ε : |∇Yε|2 : dx

∣∣∣∣ ≤ Kε‖vε‖2(1−κ)
L2 ‖vε‖2κH1

and ∫
T2

|∇vε(x, t)|2dx

≤ KεH̃(vε(t)) +Kε‖vε(t)‖2(1−κ)
L2 ‖vε(t)‖2κH1 +

λ

4

∫
T2

|vε(x, t)|4e−2Yε(x)e−2Yε(x)dx

≤ KεH̃ε(v0) +Kε‖v0‖2L2 +
1

2
‖∇vε‖2L2 +

λ

4

∫
T2

|vε(x, t)|4e−2Yε(x)e−2Yε(x)dx.

For λ = −1, the result follows after dropping the last term and using∫
T2

|v0(x)|4e−4Yε(x)dx ≤ Kε‖v0‖4L4 ≤ Kε‖v0‖4H1/2 ≤ Kε‖v0‖2L2‖v0‖2H1

thanks to the Sobolev embedding H1/2 ⊂ L4 and interpolation.
For λ = 1, Gagliardo-Nirenberg inequality (see for instance [5] for a simple proof

with the constant 1/2 used below):∫
T2

|vε(x, t)|4e−4Yε(x)dx ≤ ‖e−2Yε‖2L∞
∫
T2

|vε(x, t)|4dx

≤ 1

2
‖e−2Yε‖2L∞

∫
T2

|vε(x, t)|2dx
∫
T2

|∇vε(x, t)|2dx

≤ 1

2
‖e−2Yε‖3L∞‖e2Yε‖L∞‖v0‖2L2

∫
T2

|∇vε(x, t)|2dx,
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where we have made use of ‖vε(t)‖2L2 ≤ ‖e2Yε‖L∞‖e−2Yε‖L∞‖v0‖2L2 according to (3.3).
The result follows easily under assumption (4.2).

The constant Kε is a polynomial in ‖ : |∇Yε|2 : ‖B−κ∞,2 , ‖e−2Yε‖L∞ and ‖e2Yε‖L∞ .

By Lemma 2.1 and Lemma 2.3 and Borel-Cantelli, we know that : |∇Y2−k |2 : and
Y2−k converge almost surely in B−κ∞,∞ and B1−κ

∞,∞ so that Kk is indeed bounded almost
surely.

We now proceed with the H2 bound.

Proposition 4.2. There exists a random constants Kε bounded in Lp(Ω) with respect to
ε for any p ≥ 1 such that if v0 = u0e

−Y ∈ H2 and (4.2) holds:

‖vε(t)‖H2

≤ cKε

(
1 + ‖v0‖H2 + ‖v0‖L2 | ln ε|4 + ‖v0‖3H1 + ‖v0‖3L2‖v0‖3H1

)exp(Kε(‖v0‖2H1+‖v0‖2L2‖v0‖2H1)t)
.

Moreover Kk = K2−k is bounded almost surely.

Proof. As in Section 3, we set wε = dvε
dt which now satisfies:

i
dwε
dt

= ∆wε − 2∇wε · ∇Yε + wε : |∇Y |2 : +λ
(
|vε|2wε + 2Re(vεw̄ε)vε

)
e−2Yε .

From (2.3), we have:

wε(0) = −i(∆v0 − 2∇v0 · ∇Yε + v0 : |∇Yε|2 :) + λ|v0|2v0e
−2Yε ,

and as in Proposition 3.3 and using the embedding H1 ⊂ L6:

‖wε(0)‖L2 ≤ c‖v0‖H2 + ‖v0‖L2

(
‖∇Yε‖4L4 + ‖ : |∇Yε|2 : ‖4/3L4

)
+ ‖e−2Yε‖L∞‖v0‖3H1 .

By Lemma 2.4:
P(‖∇Yε‖4L4 + ‖ : |∇Yε|2 : ‖4/3L4 ≥ | ln ε|4) ≤ c| ln ε|−2

it follows that
‖wε(0)‖L2 ≤ c‖v0‖H2 +Kε‖v0‖L2 | ln ε|4 +Kε‖v0‖3H1

with Kε having all moments finite and such that K2−k is almost finite by Borel-Cantelli.We
have taken | ln ε|4 instead of | ln ε|2 in the estimate above in order to have this latter
property. Recall that Y2−k converges a.s. in L∞.

We do not have preservation of the L2 norm but:

1

2

d

dt

∫
T2

|wε(x, t)|2e−2Yε(x)dx

= 2λ

∫
T2

Re(vε(x, t)w̄ε(x, t))Im(vε(x, t)w̄ε(x, t))e
−4Yε(x)dx

≤ Kε‖vε(t)‖2L∞
∫
T2

|wε(x, t)|2e−2Yε(x)dx

≤ Kε‖vε(t)‖2H1 (1 + ln(1 + ‖vε(t)‖H2))

∫
T2

|wε(x, t)|2e−2Yε(x)dx

≤ Kε

(
‖v0‖2H1 + ‖v0‖2L2‖v0‖2H1

)
(1 + ln(1 + ‖vε(t)‖H2))

∫
T2

|wε(x, t)|2e−2Yε(x)dx

thanks to the Brezis-Gallouet inequality ([5]) and to Proposition 4.1.
This computation is not rigorous. We proceed as in the linear case to justify it. We

take a sequence of smooth initial data, say in H4. In this case, using Theorem 5.4.1 in
[6], we know that the solution is sufficiently regular to do the computations above. This
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theorem is proved in the R2 framework but the proof in fact works on any domain. The
estimate above is obtained at the limit for an initial data in H2.

Then as above we have:

‖∆vε(t)‖L2 ≤ 2‖wε(t)‖L2 + cKε‖vε(t)‖L2 | ln ε|4 + λ‖|vε(t)|2vεe−2Yε‖L2

≤ 2‖wε(t)‖L2 +Kε‖vε(t)‖L2 | ln ε|4 +Kε‖vε(t)‖3L6 .

By the embedding H1 ⊂ L6 and Proposition 4.1, we deduce

‖vε(t)‖H2 ≤ c‖wε(t)‖L2 +Kε

(
‖v0‖L2 | ln ε|4 + ‖v0‖3H1 + ‖v0‖3L2‖v0‖3H1

)
.

Again, the almost sure boundedness of the different constant Kk is obtained thanks to
Lemma 2.3, Lemma 2.4 and Borel-Cantelli.

To lighten the following computation, we use the temporary notations:

w̃ε = ‖wεe−Yε‖2L2 , αε = Kε

(
‖v0‖2H1 + ‖v0‖2L2‖v0‖2H1

)
,

βε = Kε

(
‖v0‖L2 | ln ε|4 + ‖v0‖3H1 + ‖v0‖3L2‖v0‖3H1

)
.

Then we have:
d

dt
w̃ε ≤ αε (1 + ln(1 + ‖vε‖H2)) w̃ε

≤ αε (1 + ln(1 + c‖wε‖L2 + βε)) w̃ε

≤ αε (1 + ln(1 +Kεw̃ε + βε)) w̃ε.

Hence
d

dt
(1 + ln(1 +Kεw̃ε(t) + βε)) ≤ αε(1 + ln(1 +Kεw̃ε(t) + βε)).

By Gronwall’s Lemma we deduce:

1 + ln(1 +Kεw̃ε(t) + βε) ≤ (1 + ln(1 +Kεw̃ε(0) + βε)) exp(αεt)

and taking the exponential

‖wε(t)‖L2 ≤ Kεw̃ε(t) ≤ cKε(1 +Kεw̃ε(0) + βε)
exp(αεt)

≤ Kε(1 +Kε‖wε(0)‖L2 + βε)
exp(αεt)

≤ Kε(1 +Kε‖v0‖H2 + βε)
exp(αεt).

The result follows.

We see that this H2 bound is not as good as in the linear case. Due to the double
exponential, we do not have moments here. However, this is sufficient to prove existence
and uniqueness. We now state the main result of this section.

Theorem 4.3. Assume that v0 = u0e
Y ∈ H2 and

‖e−2Y ‖3L∞‖e2Y ‖L∞‖v0‖L2 < 1 if λ = 1. (4.3)

For any T ≥ 0, p ≥ 1, γ ∈ (1, 2), when ε→ 0, the solution vε of (2.3) satisfying vε(0) = v0

converges in probability in C([0, T ];Hγ)) to v which is the unique solution to

i
dv

dt
= ∆v − 2∇v · ∇Y + v : |∇Y |2 : +λ|v|2ve−2Y (4.4)

with paths in C([0, T ];Hγ) such that v(0) = v0.
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Proof. Pathwise uniqueness is proved as in the linear case. Let v1, v2 be two solutions of
(4.4) with paths in C([0, T ];Hγ) and starting with the same initial data. We set r = v1−v2

which satisfies

i
dr

dt
= ∆r − 2∇r · ∇Y + r : |∇Y |2 : +λ(|v1|2v1 − |v2|2v2)e−2Y .

The following computation can be done thanks to the regularity of v1 and v2:

d

dt

∫
T2

|r(x, t)|2e−2Yε(x)dx

= 2(
dr

dt
, re−2Yε)

= −2(i∆r − 2i∇r · ∇Y + ir : |∇Y |2 : +λ(|v1|2v1 − |v2|2v2)e−2Y , re−2Yε)

≤ (−2i∇r · ∇(Y − Yε) + ir(: |∇Y |2 : − : |∇Yε|2) : +λ(|v1|2v1 − |v2|2v2)e−2Y , re−2Yε).

After similar manipulations as above:

d

dt

∫
T2

|r(x, t)|2e−2Yε(x)dx ≤ Kε(ε
κ/2 +

∫
T2

|r(x, t)|2e−2Yε(x)dx)

with Kε such that supkK2−k <∞ a.s.. It remains to use Gronwall Lemma, take ε = 2−k

and let k →∞ to conclude that r = 0 a.s.

Under assumption (4.3), we know that (4.2) holds for ε small enough. Thus we may
use Propositions 4.1 and 4.2.

We take ε2 > ε1 > 0, set r = vε1 − vε2 and write:

i
dr

dt
= ∆r − 2∇r · ∇Yε1 + r : |∇Yε1 |2 : −2∇vε2 · ∇(Yε1 − Yε2) + vε2(: |∇Yε1 |2 : − : |∇Yε2 |2 :)

+λ|vε1 |2re−2Yε1 − λ(|vε2 |2 − |vε1 |2)vε2e
−2Yε1 + λ|vε2 |2vε2(e−2Yε1 − e−2Yε2 ).

By the same arguments as in Section 3 and standard estimates we obtain;

1

2

d

dt

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

≤ c‖e−2Yε1 ‖Bκ∞,2‖vε2(t)‖H1+κ(‖vε1(t)‖Hκ + ‖vε2(t)‖Hκ)

×
(
‖∇(Yε1 − Yε2)‖B−κ∞,2 + ‖ : |∇Yε1 |2 : − : |∇Yε2 |2 : ‖B−κ∞,2

)
+Kε1(‖vε1‖L∞ + ‖vε2‖L∞)‖vε2‖L∞

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

+Kε1‖vε2‖3L∞(‖vε1‖L2 + ‖vε2‖L2)‖e−2Yε1 − e−2Yε2 ‖L2

≤ Kε1,ε2‖vε2(t)‖κH2(‖vε1(t)‖H1 + ‖vε2(t)‖H1)2−κε
κ/2
2

+Kε1(‖vε1‖H1 + ‖vε2‖H1)2(1 + ln(1 + ‖vε1‖H2) + ln(1 + ‖vε2‖H2))

×
∫
T2

|r(x, t)|2e−2Yε1 (x)dx

+Kε1,ε2‖vε2‖3H1(1 + ln(1 + ‖vε1‖H2))3/2(‖vε1‖L2 + ‖vε2‖L2)εκ2 ,

by the Brezis-Gallouet inequality. We have used for κ ∈ (0, 1):

‖e−2Yε1 − e−2Yε2 ‖L2 ≤ 2‖Yε1 − Yε2‖L2(‖e−2Yε1 ‖L∞ + ‖e−2Yε2‖L∞)

≤ c|ε2|κ‖Y ‖Bκ∞,∞(‖e−2Yε1‖L∞ + ‖e−2Yε2 ‖L∞)

≤ Kε1,ε2 |ε2|κ.
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Again, the constants Kε1 , Kε1,ε2 above have all moments bounded independently of ε1, ε2

are almost surely bounded in k for ε1 = 2−(k+1), ε2 = 2−k.
We deduce from Gronwall’s Lemma:

ln ‖r‖L2 ≤ Kε1,ε2P (v0)(1 + lnP (v0) + ln | ln ε1|)exp(Kε1,ε2P (v0)t)

+κ exp(Kε1,ε2P (v0)t)(lnKε1,ε2 + lnP (v0) + ln | ln ε1|)−
κ

2
| ln ε2|,

where P (v0) denotes a polynomial in ‖v0‖H2 . By interpolation, we have

ln ‖r‖Hγ ≤ c+ (1− γ

2
) ln ‖r‖L2 +

γ

2
ln ‖r‖H2

so that a similar estimate holds for ln ‖r‖Hγ , γ < 2.
The constants Kε1,ε2 are bounded almost surely when ε1 = 2−(k+1), ε2 = 2−k so that

‖v2−(k+1) − v2−k‖Hγ ≤ C(v0)| ln 2−(k+1)|C(v0)2−
κ
2 (k+1),

where now C(v0) is a random constant depending on ‖v0‖H2 . It follows that v2−k is
Cauchy in C([0, T ], Hγ).

Finally, we reproduce the estimate above for ‖vε(t)− v2−k‖L2 but bound ‖v2−k‖L∞ by
‖v2−k‖Hγ instead of using Brezis-Gallouet inequality. We obtain:

ln ‖vε(t)− v2−k‖L2 ≤ K̃ε,2−kP (v0)(1 + lnP (v0) + ln | ln ε|)exp(K̃
ε,2−kP (v0)t)

+κ exp(K̃ε,2−kP (v0)t)(ln K̃ε,2−k + lnP (v0) + ln | ln ε|)− κ

2
| ln ε|,

where K̃ε,2−k are constants with moments bounded independently on ε and k. Again,
a similar bound holds for the Hγ norm thanks to an interpolation argument. Letting
k →∞ yields:

ln ‖vε(t)− v‖L2 ≤ K̃εP (v0)(1 + lnP (v0) + ln | ln ε|)exp(K̃εP (v0)t)

+κ exp(K̃εP (v0)t)(ln K̃ε + lnP (v0) + ln | ln ε1|)−
κ

2
| ln ε|,

where again K̃ε are constants with bounded moments.
The conclusion follows.

Remark 4.4. Condition (4.3) is probably not optimal. It can easily be weakened to
λK3

2,εK1,ε‖v0‖L2 < 2, but this is probably not optimal either.
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