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Abstract

We characterize recurrence and transience of nonnegative multivariate autoregres-
sive processes of order one with random contractive coefficient matrix, of subcritical
multitype Galton-Watson branching processes in random environment with immigra-
tion, and of the related max-autoregressive processes and general random exchange
processes. Our criterion is given in terms of the maximal Lyapunov exponent of the co-
efficient matrix and the cumulative distribution function of the innovation/immigration
component.
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1 Introduction

The classification of irreducible Markov chains as recurrent or transient is one of the
fundamental objectives in the study of Markov chains. Scalar nonnegative autoregressive
processes (Xn)n∈N0 of the form

Xn = aXn−1 + Yn, where 0 < a < 1 and (Yn)n∈N is i.i.d.,

and, closely related, subcritical Galton-Watson processes (Zn)n∈N0
with immigration

(Yn)n∈N and average offspring a ∈ (0, 1) are classical Markov chains. The study of these
processes has a rich history which started more than half a century ago. However,
most of the literature on these processes deals only with the positive recurrent case,
i.e. the case where there exists a stationary probability distribution. To the best of our
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Recurrence and transience of autoregressive processes

knowledge there is at present no complete classification in simple terms of recurrence
versus transience of these processes although this problem has been investigated for
several decades, see [30], [31], [21, Part I], [15, p. 1196], [39], [4], and the review below.

In the present article we characterize recurrence and transience of these processes
in terms of a and the cumulative distribution function of Y1. More precisely, we show
that either process is

recurrent iff
∑
n≥0

n∏
m=0

P [Y1 ≤ ya−m] =∞ (1.1)

for some y ∈ (0,∞), see Theorem 3.1. (For the branching process we need to assume
a certain moment condition on the offspring distribution.) Note that the divergence or
convergence of the series in (1.1) can often be easily checked by ratio tests.

We also extend this result to certain multidimensional cases in random environment
by classifying nonnegative multivariate autoregressive processes of order one with
random contractive coefficient matrix and subcritical multitype Galton-Watson processes
in random environment with immigration, see Theorem 4.2. The same criterion also
applies to two other related processes, sometimes called max-autoregressive process
and general random exchange process.

We first introduce these four processes and review the existing literature on the
subject. (The precise definition of recurrence and transience is given in the next section.)

Autoregressive processes. Autoregressive models are among the most widely used
stochastic models, see e.g. [23], [7], [29], [8]. We consider nonnegative multidimensional
autoregressive processes X = (Xn)n≥0 of order one (AR(1) processes) with random
coefficient matrix, defined as follows. Fix a dimension d ∈ N. Let Y = (Yn)n≥0 be a
sequence of [0,∞)d-valued random vectors, called innovations, and let (An)n≥1 be a
sequence of [0,∞)d×d-valued random matrices. Assume that (An, Yn)n≥1 is i.i.d. and
independent of Y0. To avoid cases which are not interesting in the present context we
suppose that the support of the law of Y1 is unbounded. Set X0 := Y0 and

Xn := AnXn−1 + Yn for n ≥ 1. (1.2)

Relation (1.2) is sometimes called a random difference equation or random affine
recursion, see also [8, p. 1]. Solving this recursion we obtain the explicit expression

Xn =

n∑
m=0

AnAn−1 . . . Am+1Ym for n ≥ 0. (1.3)

We only consider the subcritical (contractive) case where the maximal Lyapunov exponent
of An is strictly less than 0. For convenience we phrase our statements in terms of the
negative λ of the Lyapunov exponent, defined as

λ := sup
n≥1

E[Sn]

n
, where Sn := − ln ‖A1 . . . An‖, (1.4)

see also (4.1) for alternative expressions for λ. It has been shown for the subcritical case
(λ > 0) that under various conditions X is positive recurrent iff

E[ln+ ‖Y1‖] <∞, (1.5)

see e.g. [38, Theorem 1.6 (b)], [21, Part III, Theorem (8.5)], [15, Corollary 4.1 (b)], [8,
Theorem 2.1.3] for d = 1 and [39, Proposition 2] for d ≥ 1 and constant coefficient matrix
A = An. For the multidimensional case with random An see [6] and [11]. (Note that the

EJP 23 (2018), paper 27.
Page 2/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP152
http://www.imstat.org/ejp/


Recurrence and transience of autoregressive processes

equivalence of positive recurrence and the existence of an invariant probability measure,
which is well-known for countable state spaces, also holds in this setting, see e.g. [22,
Section 6].) The case where (1.5) fails is sometimes referred to as super-heavy tailed,
see [39].

Among the few works which deal with recurrence and transience of AR(1) processes
are [39], [4], and the unpublished preprint [21, Part I]. All three articles deal with the
one-dimensional case and both [21, Part I] and [39] consider only the case of constant
coefficients A1 = a ∈ (0, 1). In [21, Part I, Theorem (3.1)] Kellerer shows that X is

transient if lim inf
t→∞

t · P [lnY1 > t] > − ln a and (1.6)

recurrent if lim sup
t→∞

t · P [lnY1 > t] < − ln a. (1.7)

Note that (1.6) and (1.7) follow from (1.1) and Raabe’s test.
In [39, Theorem 1] Zeevi and Glynn consider log-Pareto distributed innovations Yn,

whose common distribution is given by P [ln(1 + Y1) > t] = (1 + βt)−p for some β > 0

and p > 0. For this case they completely characterize recurrence and transience by
showing that X is positive recurrent if p > 1, null recurrent if p = 1 and β ln(1/a) ≥ 1,
and transient otherwise. Note that in this example the distinction between recurrence
and transience also follows from Kellerer’s result (1.6) and (1.7) except in the critical
case p = 1, β ln(1/a) = 1. In the critical case the result follows from (1.1) and Raabe’s
test. Moreover, in [39, Lemma 1] the authors provide a (strictly) sufficient condition for
recurrence in terms of the divergence of an integral, which resembles our criterion (1.1).

In the proof of [4, Theorem 2.2, pp. 642, 643] Bauernschubert shows that Kellerer’s
transience criterion (1.6) can be extended to the case of random coefficients by proving
that under some moment conditions X is

transient if lim inf
t→∞

t · P [lnY1 > t] > −E[lnA1]. (1.8)

We postpone the discussion of the recent work [2], which appeared as a preprint
several months after the present work, to Appendix B, where we also comment on
assumption (BA) of our second main result, Theorem 4.2.

Branching processes with immigration. The classical Galton-Watson model as
a basic model for branching populations, see e.g. [16] and [3], has been extended in
various directions, for example by allowing finitely many different types of individuals
with different offspring distributions [3, Chapter V], by letting the offspring distribution
depend on time in a random way [3, Chapter VI.5], or by allowing immigration [3,
Chapter VI.7]. Following e.g. [24], [35], and [36], we consider a combination of these
three generalizations, namely multitype Galton-Watson branching processes Z = (Zn)n≥0

in random environment with immigration.
We postpone the precise definition of Z to the next section and first give an informal

description of the model. Let d ∈ N and (Yn)n≥0 be as above and let us assume for the
moment that all Yn are Nd0-valued. There are d different types of individuals, enumerated
by 1, . . . , d. The i-th component of the Nd0-valued random variable Zn is the number of
individuals of type i present in generation n. Given Zn−1, the n-th generation is obtained
as follows. Each member of generation n− 1 gets independently of the other members
of that generation a random number of children of the d different types. The distribution
of the number of children of a certain type may depend on the type of the parent. It may
also depend in an i.i.d. way, called the random environment, on the number n− 1 of the
generation. The n-th generation consists of the children of the individuals of the previous
generation and additional immigrants of type 1, . . . , d, whose numbers are given by Yn.

This process Z is closely related to AR(1) processes in the following way. Define the
(i, j)-th entry of the matrix An as the conditional expectation of the number of children
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of type i in generation n of a parent of type j given the random environment. Then the
conditional expected value of Z given the random environment and given the numbers
of immigrants satisfies the recursion (1.2) and is therefore an AR(1) process, see (2.3)
below.

The process Z is called subcritical iff λ > 0, where λ is defined as in (1.4). As for
AR(1) processes, positive recurrence of a subcritical Z is related to the validity of (1.5),
see e.g. [33], [12, Corollary 2], [31, Theorem A], [24, Theorem 3.3], [35], and [36].

In the one-dimensional case the results in the literature concerning the distinction
between recurrence and transience of Z are more complete than the corresponding
results for autoregressive processes. Pakes considers in [30] and [31] subcritical single-
type processes with immigration in an environment which is constant in time. He gives
several sufficient conditions for recurrence or transience in terms of generating functions
and provides several examples.

For subcritical single-type branching processes in random environment Bauernschu-
bert shows in [4, Theorem 2.2] that (1.8) also holds for Z and derives in [4, Theorem 2.3]
the analogous condition for recurrence by showing that under suitable assumptions Z is

recurrent if lim sup
t→∞

t · P [lnY1 > t] < −E[lnA1]. (1.9)

For a different but similar model in continuous time, Li, Chen, and Pakes [26, Theorem
3.3 (ii)] give a necessary and sufficient criterion for recurrence and transience in terms
of generating functions. Unfortunately, “it is not easily applicable in specific cases” [26,
p. 136]. This raises the question whether a modification of our criterion (1.1) also holds
for that model.

Max-autoregressive processes. By replacing the sum in (1.2) with the maximum
we obtain the process M = (Mn)n≥0 defined by M0 := Y0 and

Mn := max{AnMn−1, Yn}, n ≥ 1. (1.10)

Here the maximum is taken for each coordinate of Rd separately. Such processes have
been studied e.g. in [14] and [34] and are sometimes called max-autoregressive. They ap-
pear naturally in our proof. If d = 1 then similarly to (1.3), Mn = maxnm=0An . . . Am+1Ym
for all n ≥ 0. For general dimension d ≥ 1 we have

Xn ≥Mn ≥ Nn :=
n

max
m=0

An . . . Am+1Ym (1.11)

componentwise. We are not aware of any results in the literature on the classification of
recurrence versus transience of max-autoregressive processes.

General random exchange processes. These are one-dimensional processes R =

(Rn)n≥0 which have been studied e.g. in [17] and are defined as follows. Let (Wn)n≥0 be a
sequence of nonnegative random variables with unbounded support and let (Tn)n≥1 be a
sequence of real-valued random variables such that (Tn,Wn)n≥1 is i.i.d. and independent
of W0. Set R0 := W0 and

Rn := max{Rn−1 − Tn,Wn}, n ≥ 1. (1.12)

The starting point of our investigation were the recurrence/transience conditions given by
Lamperti and Kesten in [25] in the special case where Tn is a positive constant (random
exchange process). Their results were phrased in terms of long range percolation. While
Lamperti derived the counterparts of (1.6) and (1.7), Kesten gave in the appendix to
[25] a necessary and sufficient criterion. Later Kesten’s criterion was stated in a more
general form in terms of Markov chains by Kellerer [22, pp. 268, 269].
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Proposition 1.1 (Random exchange process; Kesten, Kellerer). Let Wn, n ≥ 1, be i.i.d.
N0-valued random variables satisfying P [W1 = 0] > 0. Then the state 0 is recurrent for
the Markov chain R satisfying Rn := max{Rn−1 − 1,Wn} if and only if

∑
n≥0

n∏
m=0

P [W1 ≤ m] =∞. (1.13)

Proof. It is well-known, see e.g. [9, Theorem 6.4.2], that 0 is recurrent iff
∑
n≥1 P [Rn =

0] =∞. Solving the recursion with initial state R0 = 0 yields Rn = maxnm=1(Wm − n+m)

for all n ≥ 1. Since (Wn)n≥1 is i.i.d. we have for all n ≥ 1,

P [Rn = 0] =

n∏
m=1

P [Wm ≤ n−m] =

n−1∏
m=0

P [W1 ≤ m].

The claim follows.

The significance of Proposition 1.1 in the present context is that on a heuristic level
one can easily deduce from it in several steps the recurrence/transience criterion for our
processes X,Z and M introduced above. However, our actual proof will not follow these
steps.

Step 1. If R satisfies only the more general recursion Rn = max{Rn−1 − c,Wn} for
some constant c ∈ N then the event {W1 ≤ m} in (1.13) has to be replaced by {W1 ≤ mc}.

Step 2. If we do not require the minimum y of the support of W1 to be 0 then the
event {W1 ≤ mc} in Step 1 has to be replaced by {W1 ≤ y+mc}. In fact, one may choose
any y satisfying P [W1 ≤ y] > 0.

Step 3. It is easy to guess but much harder to prove that for the general random
exchange process satisfying (1.12) and E[T1] > 0 the event {W1 ≤ y +mc} from Step 2
has to be replaced by {W1 ≤ y +mE[T1]}, see Corollary 4.4 below.

Step 4. The process eR is a one-dimensional max-autoregressive process M which
satisfies the recursion Mn = max{AnMn−1, Yn} with An = e−Tn and Yn = eWn . It
follows from Step 3 that if y is such that P [Y1 ≤ y] > 0 then M should be recurrent iff∑
n≥0

∏n
m=0 P [Y1 ≤ ye−mE[lnA1]] is infinite.

Step 5. By the strong law of large numbers, λ = −E[lnA1] if d = 1. Thus for multi-
dimensional max-autoregressive processes one should replace −E[lnA1] in Step 4 by λ
and get that for all y satisfying P [‖Y1‖ ≤ y] > 0, M is recurrent iff

∑
n≥0

n∏
m=0

P [‖Y1‖ ≤ yemλ] =∞. (RR)

Step 6. It is a well-known phenomenon (max-sum-equivalence) that the sum of heavy
tailed random variables tends to be comparable to the largest summand. Thus one might
expect that the recurrence criterion for M derived in Step 5 also applies to X and, due
to the relation between X and Z described above, to Z as well.

That the conclusion of this heuristics is indeed true under suitable conditions is the
content of our main results, Theorem 3.1 and Theorem 4.2.

Remark 1.2. Since positive recurrence implies recurrence, (1.5) should imply (RR). This
implication can easily be derived directly as follows. Note that (1.5) is equivalent to∑
m≥0 P

[
‖Y1‖ > yemλ

]
< ∞. This in turn is equivalent to

∏
m≥0 P

[
‖Y1‖ ≤ yemλ

]
> 0,

which implies (RR).

Let us now describe how the remainder of the present article is organized. In the next
section we provide additional definitions and collect some elementary statements. In
Section 3 we first treat the special case of constant, deterministic environments because
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in this case our proof is shorter and requires weaker assumptions than in the genuinely
random case. We also provide an application to so-called frog processes on the integers.
The general case of random environments is dealt with in Section 4, where we also
give an application to random walks in random environments perturbed by cookies. In
Appendix A we collect some general bounds which we need for the multidimensional
case with random environment. Appendix B comments on [2] and our condition (BA).

2 Preliminaries

2.1 Notation

The `p-vector norms (1 ≤ p ≤ ∞) on Rd and their associated matrix norms are
denoted by ‖ · ‖p. We abbreviate ‖ · ‖∞ by ‖ · ‖. Recall that for a matrix A, ‖A‖ is the
maximum row sum and ‖A‖1 is the maximum column sum. The i-th coordinate of a
vector x is denoted by [x]i and the (i, j)-th entry of a matrix A by [A]i,j . For x, y ∈ [0,∞)d

we write x ≤ y (or y ≥ x) iff [x]i ≤ [y]i for all i = 1, . . . , d. By c1, c2, . . . we mean suitable
strictly positive and finite constants which may depend on other constants.

2.2 Branching processes

While branching processes are most often defined and studied in terms of generating
functions we prefer to use a different, but equivalent definition which allows us to couple
the branching process in a natural way to the AR(1) process introduced above, see (2.3)
below.

Fix d ≥ 1 and let D be the set of all cadlag functions ψ : [0, 1]→ Nd0. Endow D with
the σ-field generated by the Skorohod topology. An environment for a multitype Galton-
Watson branching process is a sequence (ψn)n≥1 = ((ψjn)j=1,...,d)n≥1 ∈ (Dd)N. Here ψn
determines the reproduction behavior of the individuals in the (n − 1)-st generation,
namely, if U is distributed uniformly on [0, 1] then P [ψjn(U) = (x1, . . . , xd)], j = 1, . . . , d,

is interpreted as the probability that an individual of type j in the (n− 1)-st generation
gets xi children of type i, i = 1, . . . , d.

Let Ψ = (Ψn)n≥1 = ((Ψj
n)j=1,...,d)n≥1 be an i.i.d. sequence of Dd-valued random

variables, called the random environment for the branching process, and let Y =

(Yn)n≥0 be a sequence of [0,∞)d-valued random vectors such that (Ψn, Yn)n≥1 is i.i.d.
and independent of Y0. The vector bYnc of integer parts of the components of Yn gives
the numbers of immigrants of the d possible types who join the population at time n.
Moreover, let (U jm,n,k)0≤m<n;1≤k;1≤j≤d be an i.i.d. family of random variables which are
distributed uniformly on [0, 1]. Assume that this family is independent of Ψ and Y . Set

ξi,jm,n,k := [Ψj
n(U jm,n,k)]i. (2.1)

We interpret ξi,jm,n,k as the (random) number of children of type i of the k-th individual of
type j in generation n−1 whose ancestors immigrated at time m, provided that there are
at least k individuals of this kind. The descendants of the individuals who immigrated at
time m constitute a Galton-Watson process (Bm,n)n≥m in random environment (without
immigration), which is defined by Bm,m := bYmc and

Bm,n :=

 d∑
j=1

[Bm,n−1]j∑
k=1

ξi,jm,n,k


i=1,...,d

, n ≥ m+ 1.

The process (Zn)n≥0 defined by

Zn :=

n∑
m=0

Bm,n, n ≥ 0, (2.2)
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(and any other process with the same distribution) is called a branching process with
immigration bY c in the random environment Ψ. Here [Zn]j is the number of individuals
of type j present at time n. The random matrix

An :=
(
E
[
ξi,j0,n,1 | Ψ

])
i,j=1,...,d

contains at position (i, j) the expected value, given the environment, of the number of
children of type i of a member of type j of the (n − 1)-st generation. As above in the
definition of the AR(1) process X, the sequence (An, Yn)n≥1 is i.i.d. and independent of
Y0. It is well-known that for all 0 ≤ m ≤ n,

E[Bm,n | Ψ, Y ] = An . . . Am+1bYmc,

see for example [16, Chapter II, (4.1)]. It follows from (1.3) and (2.2) that for all n ≥ 0

a.s.
E[Zn | Ψ, Y ] = Xn if Ym ∈ Nd0 a.s. for all m ≥ 0. (2.3)

2.3 Recurrence and transience

We use the notion of recurrence and transience of [0,∞)d-valued Markov chains which
was used by Kellerer in [22] in a more general setting. Let H be the set of continuous
functions from [0,∞)d to [0,∞)d which are monotone with respect to the partial order ≤
and endow H with the σ-field generated by the topology of compact convergence. Then
a [0,∞)d-valued Markov chain (Vn)n≥0 is called order-preserving if it fulfills a recursion
of the form Vn = Hn(Vn−1) for an i.i.d. sequence (Hn)n≥1 of H-valued random variables
which is independent of the initial value V0. Observe that all four processes X,Z,M , and
R defined above are order-preserving Markov chains.

Let π be the transition kernel of such an order-preserving Markov chain. Then π

(and any Markov chain with transition kernel π) is called irreducible for the state space
[0,∞)d iff for any x ∈ [0,∞)d there is some n ≥ 0 such that P [Vn ≥ x] > 0, where
V = (Vn)n≥0 is a Markov chain with kernel π starting at 0, see [22, Definition 1.1].

Proposition 2.1. Let K ∈ N be such that P [A1 . . . AK ∈ (0,∞)d×d] > 0. Then the
processes X,Z, and M are irreducible for the state space [0,∞)d.

Proof. Without loss of generality we assume that a.s. Y1 ∈ Nd0. Let µ be the minimum of
the entries of the matrix AK+1AK . . . A2 and choose ε > 0 such that P [µ ≥ ε] > 0. Then
we have for all x ∈ [0,∞)d due (2.3) and (1.11) that

P [E[ZK+1 | Ψ, Y ] ≥ x] = P [XK+1 ≥ x] ≥ P [MK+1 ≥ x] ≥ P [NK+1 ≥ x]

≥ P [AK+1AK . . . A2Y1 ≥ x] ≥ P [µ‖Y1‖ ≥ ‖x‖, µ ≥ ε]
≥ P [‖Y1‖ ≥ ‖x‖/ε]P [µ ≥ ε]

by independence. Therefore, P [VK+1 ≥ x] > 0 for all V ∈ {Z,X,M}.

If π is irreducible then π (and any Markov chain with transition kernel π) is called
recurrent iff there exists b ∈ (0,∞) such that∑

n≥0

P [‖Vn‖ ≤ b] =∞, (2.4)

where V is a Markov chain with kernel π starting at 0. In fact, the initial state is not
important here. Condition (2.4) holds either for all Markov chains with transition kernel
π or for none, see [22, Definition 2.5]. A Markov chain V is recurrent iff there is a
finite b such that a.s. ‖Vn‖ ≤ b infinitely often. If π is not recurrent then it is called
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transient. Transience is equivalent to the almost sure divergence of the Markov chain
in all components to∞, see [22, Section 2]. (For the definition and characterization of
positive recurrence in this context see [22, Section 6].)

In order to deduce from the recurrence of one process the recurrence of another
process we will need to infer from the divergence of a series of the form

∑
n≥0 an the

divergence of another series
∑
n≥0 bn. Sometimes we will do this by showing either

supn an/bn <∞ or infn bn/an > 0. Sometimes we shall use the following lemma instead.

Lemma 2.2. For n ≥ 0 let Un and Vn be Rd-valued random variables. Assume that there
are b, c > 0 such that

∑
n P [‖Un‖ ≤ b] =∞ and E[‖Vn‖; ‖Un‖ ≤ b] ≤ cP [‖Un‖ ≤ b] for all

n ≥ 0. Then
∑
n P [‖Vn‖ ≤ 2c] =∞.

Proof. By Markov’s inequality,

P [‖Vn‖ ≤ 2c] ≥ P [‖Vn‖ ≤ 2c, ‖Un‖ ≤ b]
= P [‖Un‖ ≤ b]− P [‖Vn‖ > 2c, ‖Un‖ ≤ b]

≥ P [‖Un‖ ≤ b]−
E[‖Vn‖; ‖Un‖ ≤ b]

2c
≥ P [‖Un‖ ≤ b]

2
,

which is not summable in n by assumption.

3 Constant environment

Recall that a matrix A ∈ [0,∞)d×d is called primitive iff there is a K ∈ N such that
AK ∈ (0,∞)d×d.

Theorem 3.1 (Subcritical case, constant environment). Assume that there is a primitive
matrix A with spectral radius % < 1 such that a.s. An = A for all n ≥ 1. Let y ∈ (0,∞) be
such that P [‖Y1‖ ≤ y] > 0. Then the following three assertions are equivalent.

The autoregressive processes X is recurrent. (XR)

The max-autoregressive process M is recurrent. (MR)∑
n≥0

n∏
m=0

P
[
‖Y1‖ ≤ y%−m

]
=∞. (RC)

If we assume in addition that there is a ψ ∈ Dd such that a.s. Ψn = ψ for all n ≥ 1 and
that E[ξi,j0,1,1 ln ξi,j0,1,1] <∞ for all i, j ∈ {1, . . . , d} then (XR), (MR), and (RC) are equivalent
to the following assertion.

The branching process with immigration Z is recurrent. (ZR)

Proof. By Proposition 2.1, X,Z, and M are irreducible since A is primitive. When
checking (XR), (MR), and (ZR) we assume without loss of generality that Y0 has the same
distribution as Yn, n ≥ 1, since the initial state does not matter, see Section 2.3. Recall
from (1.11) that Nn := maxnm=0A

n−mYm and note that

‖Nn‖ =
n

max
m=0
‖An−mYm‖ for all n ≥ 0. (3.1)

We consider the following auxiliary conditions.

(NR) There exists b ∈ N such that
∑
n≥0 P [‖Nn‖ ≤ b] =∞.

(RC’) There exists b ∈ N such that
∑
n≥0

∏n
m=0 P [‖Y1‖ ≤ b%−m] =∞.
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Recurrence and transience of autoregressive processes

We shall prove the equivalence of the conditions (XR), (MR), (ZR), (RC), (NR), and (RC’)
as indicated in the following diagram.

(XR)⇒(MR)⇒(NR): These implications follow from (1.11).
(NR)⇒(XR): Due to % < 1,

σ :=
∑
m≥0

‖Am‖ <∞. (3.2)

In particular, there exists b ∈ N such that P [‖AmY1‖ ≤ b] ≥ 1/2 for all m ≥ 0 and, due to
(NR),

∑
n≥0 P [‖Nn‖ ≤ b] =∞. By (1.3), (3.1) and since Y is i.i.d. we have for all n ≥ 0

that

E [‖Xn‖ | ‖Nn‖ ≤ b] ≤
n∑

m=0

E

[
‖An−mYm‖

∣∣∣∣∣
n⋂
i=0

{‖An−iYi‖ ≤ b}

]

=

n∑
m=0

E
[
‖An−mYm‖ | ‖An−mYm‖ ≤ b

]
≤
∑
m≥0

E[‖AmY1‖; ‖AmY1‖ ≤ b]
P [‖AmY1‖ ≤ b]

. (3.3)

Note that T := inf{m ≥ 0 : ‖AmY1‖ ≤ b} is a.s. finite due to (3.2). Therefore and by our
choice of b, the right-hand side of (3.3) can be bounded form above by

2E

∑
m≥T

‖AmY1‖

 = 2E

∑
m≥0

‖Am+TY1‖

 (3.2)

≤ 2E
[
σ‖ATY1‖

]
≤ 2σb =: c <∞.

Applying Lemma 2.2 to (U, V ) = (N,X) we obtain the claim (XR).
(NR)⇔(RC’): Since Y is i.i.d. and due to (3.1), (NR) is satisfied iff there is a b ∈ N such

that
∑
n

∏n
m=0 P [‖AmY1‖ ≤ b] =∞. Recall from Perron-Frobenius theory, see e.g. [20,

Appendix, Theorem 2.3], that there is a matrix H ∈ (0,∞)d×d such that limn→∞ %−nAn =

H. Therefore, there exist k, L ∈ N such that k−1%m ≤ [Am]i,j ≤ k%m for all m ≥ L and all
i, j = 1, . . . , d. Hence, k−1%m‖Y1‖ ≤ ‖AmY1‖ ≤ dk%m‖Y1‖ for all m ≥ L. This implies the
claim.

(RC’)⇔(RC): The implication ⇐ is trivial. For the reverse implication let b ∈ (0,∞)

be according to (RC’) and k ∈ N0 be such that y%−k ≥ b. Then∑
n≥0

n∏
m=0

P
[
‖Y1‖ ≤ y%−m

]
≥
∑
n≥k

n∏
m=0

P
[
‖Y1‖ ≤ y%−m

]
=

(
k−1∏
m=0

P
[
‖Y1‖ ≤ y%−m

])∑
n≥0

n∏
m=0

P
[
‖Y1‖ ≤

(
y%−k

)
%−m

]
=∞.

(XR)⇒(ZR): Let b ∈ (0,∞) be such that
∑
n P [‖Xn‖ ≤ b] = ∞. Due to monotonicity

we may assume without loss of generality that a.s. Y1 ∈ Nd0. Note that for all x ∈ [0,∞)d,
‖x‖ ≤ ‖x‖1 = x1 + . . .+ xn ≤ d‖x‖. Therefore, by (2.3),

E[‖Zn‖; ‖Xn‖ ≤ b] ≤ E [‖Zn‖1; ‖Xn‖ ≤ b] = ‖E[E[Zn; ‖Xn‖ ≤ b | Ψ, Y ]]‖1
= ‖E[E[Zn | Ψ, Y ]; ‖Xn‖ ≤ b]‖1 ≤ ‖E[Xn; ‖Xn‖ ≤ b]‖1
≤ E[d‖Xn‖; ‖Xn‖ ≤ b] ≤ bdP [‖Xn‖ ≤ b].
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Recurrence and transience of autoregressive processes

Lemma 2.2 applied to (U, V ) = (X,Z) implies (ZR).
(ZR)⇒(RC’): Since (RC’) holds iff it holds for bY1c instead of Y1 we assume without

loss of generality that Y1 is a.s. Nd0-valued. Denote by qj,k the probability that a given
individual of type j does not have any descendants k generations later, i.e. with a slight
abuse of notation, qj,k := P [B0,k = 0 | Y0 = ej ], where ej ∈ Zd is the j-th standard
unit vector. Due to the moment assumption on ξi,j0,1,1 and [18, Theorems 2 (3.6) and 4],
%−k(1− qj,k) tends as k →∞ for all j = 1, . . . , d, to a strictly positive and finite limit. In
particular, there are c, ` ∈ N such that

0 < qj,k ≤ 1− %k/c for all k ≥ ` and j = 1, . . . , d. (3.4)

Set Z̃n :=
∑n−`
m=0Bm,n for n ≥ `. By (ZR) and subadditivity there is some z ∈ Nd0 such that∑

n P [Zn = z] =∞. Then on the one hand by the Markov property and independence,∑
n≥`

P [Z̃n = 0] ≥
∑
n≥`

P [Zn−` = z]

d∏
j=1

q
[z]j
j,` =∞ (3.5)

by our choice of z and (3.4). On the other hand, since the processes (Bm,m+n)n≥0, m ≥ 0,
are i.i.d., we have for all n ≥ `,

P [Z̃n = 0] = P

[
n−`⋂
m=0

{Bm,n = 0}

]
=

n∏
k=`

E[P [B0,k = 0|Y0]]

=

n∏
k=`

E

 d∏
j=1

q
[Y0]j
j,k

 (3.4)

≤
n∏
k=`

E
[
(1− %k/c)‖Y0‖

]

=

n∏
k=`

∫ 1

0

P
[
(1− %k/c)‖Y0‖ ≥ t

]
dt ≤

n∏
k=`

∫ 1

0

G(c(− ln t)%−k) dt,

where G is the cumulative distribution function of ‖Y1‖. Choose b ∈ N such that
G(b) > 1/2 and set Ḡ := 1−G. Then by the above for all n ≥ `,

P [Z̃n = 0]∏n
k=`G(b%−k)

≤
n∏
k=`

∫ 1

0

G
(
c(− ln t)%−k

)
G(b%−k)

dt

=

n∏
k=`

(
1 +

∫ 1

0

Ḡ(b%−k)− Ḡ
(
c(− ln t)%−k

)
G(b%−k)

dt

)

≤ exp

(
2

n∑
k=`

∫ 1

0

(
Ḡ(b%−k)− Ḡ

(
c(− ln t)%−k

))
+
dt

)

= exp

(
2

∫ exp(−b/c)

0

n∑
k=`

Ḡ(b%−k)− Ḡ
(
c(− ln t)%−k

)
dt

)
. (3.6)

We set f(t) := (ln(c/b) + ln(− ln t)) /(− ln %) and use the telescopic form of the sum in
(3.6) for estimating this sum for all t ∈ (0, e−b/c) from above by

n∨(`+df(t)e)∑
k=`

Ḡ(b%−k)− Ḡ
(
c(− ln t)%−k

)
≤ df(t)e+

(n−df(t)e)∨`∑
k=`

Ḡ(b%−(k+df(t)e))− Ḡ
(
c(− ln t)%−k

)
≤ f(t) + 1 (3.7)

since all the differences in (3.7) are nonpositive. Since
∫ exp(−b/c)

0
f(t) dt <∞, the right-

hand side of (3.6) is bounded from above uniformly in n. Therefore, (3.5) implies that∑
n≥`

∏n
k=`G(b%−k) diverges. The claim (RC’) follows.
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3.1 An application to frog processes

For a survey on frog processes we refer to [32]. The following application is related
to [32, Theorem 4.3]. Let (Yn)n≥0 be an i.i.d. sequence of N0-valued random variables.
Put on each n ≥ 0 a number Yn of sleeping frogs. Fix r ∈ (0, 1) and p ∈ (0, 1] such that
r < 1/2 or p < 1 holds. Wake up the frogs at 0 (if there are any). Once woken up, every
frog performs a nearest-neighbor random walk, jumping independently of everything
else with probability r to the right and with probability 1− r to the left, until it dies after
an independent number of steps which is geometrically distributed with parameter 1− p
and may be 0. (If p = 1 then the frog never dies.) Whenever a frog visits a site with
sleeping frogs those frogs are woken up as well and start their own independent lives.

Theorem 3.2. Let y ∈ (0,∞) be such that P [Y0 ≤ y] > 0. Then the following statements
are equivalent.

Almost surely only finitely many different frogs visit 0. (3.8)

Almost surely only finitely many frogs are woken up. (3.9)∑
n≥0

n∏
m=0

P
[
Y0 ≤ y%−m

]
=∞, where % :=

1−
√

1− 4p2r(1− r)
2p(1− r)

. (3.10)

Proof. Let a± ∈ (0, 1) be the probability that a frog which starts at 0 ever hits ±1 before
it dies.

(3.9)⇒(3.8): This implication is obvious.

(3.9)⇔(3.10): By conditioning on the first step we see that a+ satisfies a+ = pr+p(1−
r)a2

+ and get a+ = % < 1. Assign to each frog the trajectory which the frog will follow
once it has been woken up. For any 0 ≤ m ≤ n let Bm,n be the number of frogs originally
sleeping at m whose trajectories reach the site n. Then for all m ≥ 0, Bm,m = Ym
and (Bm,m+k)k≥0 is a Galton-Watson branching processes with offspring distribution
Bernoulli(a+). Moreover, the processes (Bm,m+k)k≥0,m ≥ 0, are independent. Hence,
if we denote by Zn, n ≥ 0, the total number of frogs originating in {0, 1, . . . , n} whose
trajectories visit n then (Zn)n≥0 is a subcritical branching process with immigration.
By Theorem 3.1, (Zn)n≥0 is recurrent iff (3.10) holds. On the other hand, (Zn)n≥0 is
recurrent iff there is a.s. an n ≥ 1 such that Zn = Yn, i.e. iff there is a site n which is
never visited, which is equivalent to (3.9).

(¬(3.9)∧¬(3.10))⇒ ¬(3.8): Since the frogs jump between nearest neighbors, ¬(3.9)
implies that with positive probability all frogs are woken up. Moreover, as shown in
Remark 1.2, ¬(3.10) implies E[ln+ Y0] =∞ and hence a.s.

∑
n≥0 Yna

n
− =∞, see e.g. [27,

Theorem 5.4.1]. Since an− is the probability that a frog starting at n ever reaches 0, ¬(3.8)
follows from the Borel Cantelli lemma.

4 Random environment

For the case of genuinely random environments we need the following bounds on the
coefficient matrices An.

If d = 1 then lnA1 − E[lnA1] is sub-Gaussian.
If d ≥ 2 then there exist K, γ ∈ N and κ > 0 such that a.s.
‖A1‖ ≤ γ and A1 . . . AK ∈ [κ,∞)d×d.

(BA)

For an introduction to sub-Gaussian random variables see e.g. [37] and [5]. If (BA) holds
then λ defined in (1.4) can be expressed in various ways, as we state next. In fact, for
this much weaker assumptions would suffice, see [13].
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Proposition 4.1. If (BA) holds then E[|Sn|] <∞ for all n ≥ 1 and

Sn
n

a.s.−−−−→
n→∞

λ := sup
n≥1

E [Sn]

n
= lim
n→∞

E[Sn]

n
∈ R. (4.1)

Proof. The statement follows from Liggett’s subadditive ergodic theorem, see e.g. [9, The-
orem 7.4.1]. The only assumptions of this theorem which rely on (BA) are E[ln+ ‖A1‖] <
∞ and supnE[Sn/n] < ∞. If d = 1 then this follows from Sn = − lnA1 − . . . − lnAn,
(An)n≥1 being i.i.d. and E[| lnA1|] <∞. For d ≥ 2 denote by A ⊆ [0,∞)d×d the support
of A1. Due to (BA) the assumptions of Lemma A.1 from Appendix A are satisfied. Thus,
by (A.2), a.s. ‖A1 . . . An‖ ≥ cn‖A1‖ . . . ‖An‖ and hence supnE[Sn/n] ≤ E[S1]− ln c, which
is finite since κ ≤ ‖AK1 ‖ ≤ ‖A1‖K .

We also need the following mild regularity condition on the tail of the distribution of
Y1. Here λ is the constant defined in (1.4) or (4.1).

lim
x→∞

x2/3(lnx)2P [‖Y1‖ > ex] = 0 or lim inf
x→∞

xP [‖Y1‖ > ex] > λ. (REG)

Roughly speaking, condition (REG) requires that P [‖Y1‖ > ex] does not oscillate between
decaying faster than x−1 and slower than x−2/3. In particular, (REG) holds if P [‖Y1‖ > ex]

varies regularly as x→∞.
The final condition concerns only branching processes. For j = 1, . . . , d we denote by

Vj the covariance matrix of the vector (ξi,j0,1,1)i=1,...,d given Ψ.

There exists C ∈ N such that a.s. ‖V1‖, . . . , ‖Vd‖ ≤ C‖A1‖. (BV)

Theorem 4.2 (Subcritical case, random environment). Assume (BA), (REG), and λ > 0.
Let y ∈ (0,∞) be such that P [‖Y1‖ ≤ y] > 0. Then the following three statements are
equivalent.

The autoregressive processes X is recurrent. (XR)

The max-autoregressive process M is recurrent. (MR)∑
n≥0

n∏
m=0

P [‖Y1‖ ≤ yemλ] =∞. (RR)

If we assume in addition (BV) then (XR), (MR), and (RR) are equivalent to the following
statement.

The branching process with immigration Z is recurrent. (ZR)

For the proof of Theorem 4.2 we denote the cumulative distribution function of ln ‖Y1‖
by F and its tail by F̄ := 1− F .

Lemma 4.3. Assume (REG). Suppose that for all ε > 0 there exists bε ∈ N such
that

∑
n≥0

∏n
i=0 F (bε + (λ + ε)i) = ∞. Then limx→∞ x2/3(lnx)2F̄ (x) = 0 and therefore

E[(ln+ ‖Y1‖)2/3] <∞.

Proof. Raabe’s test implies that for all µ > 1 and ε > 0, F (bε + (λ + ε)i) ≥ 1 − µ/i for
infinitely many i. Therefore, lim infx xF̄ (x) ≤ (λ + ε)µ. Letting µ ↘ 1 and ε ↘ 0 yields
lim infx xF̄ (x) ≤ λ. The statement now follows from (REG).

Proof of Theorem 4.2. By Proposition 2.1 and (BA), X,Z, and M are irreducible. As in
the proof of Theorem 3.1 we assume that Y0 has the same distribution as Yn, n ≥ 1.

Denote by A ⊆ [0,∞)d×d the support of A1. Due to (BA) the assumptions of Lemma
A.1 from Appendix A are satisfied. In addition to the auxiliary condition (NR) introduced
in the proof of Theorem 3.1 we need the following assertions.
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(RR’) There exists b ∈ N such that
∑
n≥0

∏n
m=0 P

[
‖Y1‖ ≤ bemλ

]
=∞.

(R+) E[(ln+ ‖Y1‖)2/3] <∞ and there exists b ∈ N such that∑
n≥0

∏n
i=0 F (b+ λ(i+ i2/3)) =∞.

(R−) There exists b ∈ N such that
∑
n≥0

∏n
i=0 F (b+ λ(i− i2/3)) =∞.

We shall prove the equivalence of the conditions (XR), (MR), (ZR), (NR), (RR), (RR’), (R+),
and (R−) as indicated in the following diagram.

The proofs of (XR)⇒(MR)⇒(NR), of (XR)⇒(ZR) and of (RR)⇔(RR’) are the same as
for the corresponding statements of Theorem 3.1.

(ZR)⇒(R+): Since (R+) holds iff it holds for bY1c instead of Y1 we assume without
loss of generality that Y1 is a.s. Nd0-valued. Set PΨ[·] := P [ · | Ψ]. Denote by qΨ,j,m,n the
probability that in the environment Ψ a given individual of type j who immigrated at
time m does not have any descendants at time n, i.e. with a slight abuse of notation,
qΨ,j,m,n = PΨ[Bm,n = 0 | Ym = ej ]. Proposition A.2 and (BV) yield that for all j = 1, . . . , d,

a.s.

(1− d‖An . . . Am+1‖)+ ≤ qΨ,j,m,n ≤ 1− c1
‖An . . . Am+1‖∑n
k=m+1 ‖An . . . Ak‖

=: qΨ,m,n. (4.2)

Since λ > 0, there exists ` ∈ N with P [d‖A` . . . A1‖ < 1] > 0. Set Z̃n :=
∑n−`
m=0Bm,n for

n ≥ `. By (ZR) there exists z ∈ Nd0 such that
∑
n≥0 P [Zn = z] =∞. Hence

P [Z̃n = 0] ≥ P [Z̃n = 0, Zn−` = z] = P [Zn−` = z]E

 d∏
j=1

q
[z]j
Ψ,j,0,`

 (4.3)

since Ψ is i.i.d.. Due to the lower bound in (4.2) and our choice of ` the expected value in
(4.3) is strictly positive. Therefore,∑

n≥`

P [Z̃n = 0] =∞. (4.4)

For all b ∈ N with F (b) ≥ 1/2 and all functions g : N0 → [0,∞) with ln+ n ≤ g(n) ≤ n for
all n ∈ N0 let

q(b, g) := sup
n≥0

P [Z̃n = 0]∏n
i=` F (b+ λi+ g(i))

. (4.5)

Due to (4.4) it suffices to show for the proof of (R+) that there exists b such that

E[(ln+ ‖Y1‖)2/3] <∞ and q(b, h) <∞, where h : n 7→ λn2/3. (4.6)

To this end we first bound the enumerator in (4.5) by observing that for all n ≥ `,

P [Z̃n = 0] = E

[
PΨ

[
n−`⋂
m=0

{Bm,n = 0}

]]
= E

[
n−∏̀
m=0

PΨ[Bm,n = 0]

]
,
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due to independence, see e.g. [19, Proposition 6.6 and Corollary 6.7 (i)]. Using indepen-
dence once again we have

PΨ[Bm,n = 0] = EΨ [P [Bm,n = 0 | Ψ, Y ]] = EΨ

 d∏
j=1

q
[Ym]j
Ψ,j,m,n

 (4.2)

≤ EΨ

[
q
‖Ym‖
Ψ,m,n

]
=

∫ 1

0

PΨ

[
q
‖Ym‖
Ψ,m,n ≥ t

]
dt =

∫ 1

0

F

(
ln

(
ln t

ln qΨ,m,n

))
dt,

see e.g. [19, Lemma 3.11]. Thus for all b and g as above,

q(b, g) ≤ sup
n≥0

E

n−∏̀
m=0

∫ 1

0

F
(

ln
(

ln t
ln qΨ,m,n

))
F (b+ λ(n−m) + g(n−m))

dt

 . (4.7)

Since (A1, . . . , An) has the same distribution as (An, . . . , A1), (qΨ,0,n, . . . , qΨ,n−1,n) has
the same distribution as (q′Ψ,0,n, . . . , q

′
Ψ,n−1,n), where

q′Ψ,m,n := 1− c1
‖A1 . . . An−m‖∑n

k=m+1 ‖A1 . . . An+1−k‖
≤ 1− c1

‖A1 . . . An−m‖
σ

(4.8)

and σ :=
∑
k≥1 ‖A1 . . . Ak‖. Let rΨ,m := exp (−c1‖A1 . . . Am‖/σ), fΨ,m(t) := ln

(
ln t

ln rΨ,m

)
,

and tΨ,m := r
exp(b+λm+g(m))
Ψ,m . By (4.8), q′Ψ,m,n ≤ rΨ,n−m. Therefore, by (4.7),

q(b, g) ≤ sup
n≥0

E

[
n∏
i=`

∫ 1

0

F (fΨ,i(t))

F (b+ λi+ g(i))
dt

]

= sup
n≥0

E

[
n∏
i=`

(
1 +

∫ 1

0

F̄ (b+ λi+ g(i))− F̄ (fΨ,i(t))

F (b+ λi+ g(i))
dt

)]

≤ E

exp

∑
i≥0

∫ 1

0

(
F̄ (b+ λi+ g(i))− F̄ (fΨ,i(t))

)
+

F (b+ λi+ g(i))
dt


= E

exp

∑
i≥0

∫ tΨ,i

0

(
F̄ (b+ λi+ g(i))− F̄ (fΨ,i(t))

)
+

F (b+ λi+ g(i))
dt


≤ E

exp

2
∑
i≥0

tΨ,iF̄ (b+ λi)

 .
Let Tg := inf{n ≥ 0 | ∀i > n : Si ≤ λi + g(i)/2 − lnσ}. Then for all i > Tg, tΨ,i ≤
exp

(
−c1eb+g(i)/2

)
≤ exp

(
−c1eb

√
i
)

due to g(i) ≥ ln+ i. Hence

q(b, g) ≤ E

exp

2 + 2

Tg∑
i=1

F̄ (b+ λi) + 2
∑
i>Tg

tΨ,i


≤ c2E

exp

2

Tg∑
i=1

F̄ (b+ λi)

 . (4.9)

Next we show that there are numbers c3 = c3(g), c4 = c4(g) ∈ (0,∞) such that

P [Tg = n] ≤ c3 exp
(
−c4g(n)2/n

)
for all n ≥ 1. (4.10)
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To this end let c5 :=
(∑

i≥1 e
−λi/2

)−1

. Then for all t > c−1
5 ,

P [σ ≥ t] ≤
∑
i≥1

P
[
‖A1 . . . Ai‖ ≥ c5e−λi/2t

]
≤
∑
i≥1

P [|Si − λi| ≥ λi/2 + ln(c5t)]

(A.15)

≤
∑
i≥1

c6e
−c7(λi/2+ln(c5t))

2/i ≤ c6
∑
i≥1

e−c7(λ
2i/4+λ ln(c5t))

= c8t
−c9 . (4.11)

Therefore, for all n large enough such that eg(n)/4 > c−1
5 ,

P [Tg = n] ≤ P [λn+ g(n)/2− lnσ ≤ Sn]

≤ P [λn+ g(n)/2− lnσ ≤ Sn ≤ λn+ g(n)/4] + P [Sn ≥ λn+ g(n)/4]

≤ P [σ ≥ eg(n)/4] + P [|Sn − λn| ≥ g(n)/4]

≤ c8 exp(−c10g(n)) + c6 exp(−c7g(n)2/n)

due to (4.11) and (A.15). By using g(n) ≤ n and increasing constants we obtain (4.10).
It remains to show how (4.10) implies (4.6). For ε > 0 and n ∈ N0 let gε(n) := εn.

Then (4.9) yields q(b, gε) ≤ c2E
[
exp

(
2Tgε F̄ (b)

)]
, which is finite for some large b = bε

since Tgε has some finite exponential moment due to (4.10). Therefore, due to (4.4), the
assumptions of Lemma 4.3 are satisfied. This lemma yields the first statement in (4.6)
and the existence of b large enough such that F (b) ≥ 1/2, (ln b)−2 ≤ c4λ8/3/12, and such
that for all i ≥ 1,

F̄ (b+ λi) ≤ (b+ λi)−2/3(ln(b+ λi))−2 ≤ c4λ
8/3

12
(b+ λi)−2/3, (4.12)

where c4 := c4(h). We obtain from (4.9) and (4.12) that

q(b, h) ≤ c2E

[
exp

(
c4λ

8/3

6

Th∑
i=1

(b+ λi)−2/3

)]

≤ c2E

[
exp

(
c4λ

8/3

6

∫ Th

0

(b+ λt)−2/3 dt

)]
≤ c2E

[
exp

(
c4λ

2

2
Th

1/3

)]
(4.10)

≤ c2 + c3
∑
n≥1

exp

(
c4λ

2

2
n1/3 − c4h(n)2

n

)
= c2 + c3

∑
n≥1

exp

(
−c4λ

2

2
n1/3

)
<∞.

(NR)⇒(R+): Let A := (Ak)k≥1. Set N ′n := maxni=0A1 . . . AiYi+1 for all n ≥ 0 and
note that N ′n has the same distribution as Nn since (An, . . . , A1, Yn, . . . , Y0) has the same
distribution as (A1, . . . , An, Y1, . . . , Yn+1). Therefore, by (NR) there is a c11 such that

∞ =
∑
n≥0

P [‖N ′n‖ ≤ c11] =
∑
n≥0

E [P [∀i = 0, . . . , n : ‖A1 . . . AiYi+1‖ ≤ c11 | A]]

=
∑
n≥0

E

[
n∏
i=0

P

[
‖A1 . . . AiYi+1‖ ≤ c11

∣∣∣∣ A]
]

(A.1)

≤
∑
n≥0

E

[
n∏
i=0

P

[
‖A1 . . . Ai‖‖Yi+1‖ ≤ c12

∣∣∣∣ A]
]

= R(c13),

where R(b) :=
∑
n≥0E [

∏n
i=0 F (b+ Si)]. For all functions g : N0 → [0,∞) with g(0) = 0

let Tg := inf{n ≥ 0 | ∀i > n : Si ≤ λi + g(i)}. Moreover, for all such functions g and all
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Recurrence and transience of autoregressive processes

b ∈ N with F (b) ≥ 1/2 let

q(b, g) := sup
n≥0

E [
∏n
i=0 F (b+ Si)]∏n

i=0 F (b+ λi+ g(i))
≤ E

 Tg∏
i=1

(
F (b+ Si)

F (b+ λi+ g(i))
∨ 1

)
≤ E

 Tg∏
i=1

1

F (b+ λi)

 = E

 Tg∏
i=1

(
1 +

F̄ (b+ λi)

F (b+ λi)

)
≤ E

exp

 Tg∑
i=1

F̄ (b+ λi)

F (b)

 ≤ E
exp

2

Tg∑
i=1

F̄ (b+ λi)

 . (4.13)

Since P [Tg = n] ≤ P [Sn ≥ λn+ g(n)] for all n ≥ 1, Lemma A.3 implies that

P [Tg = n] ≤ c6 exp
(
−c7g(n)2/n

)
for all n ≥ 1. (4.14)

The claim (R+) follows now from (4.14) in exactly the same way as (4.6) follows from
(4.10) in the proof of (ZR)⇒(R+).

(R+)⇒(R−): Choose b according to (R+). Define g±(t) := b+ λ(t± t2/3) for t ∈ [1,∞).
Note that both functions g+ and g− are strictly increasing. Denote by g−1

± their inverse
functions. For all x ≥ b+ 2λ we have x = g±(g−1

± (x)), that is

g−1
± (x)±

(
g−1
± (x)

)2/3
=
x− b
λ

. (4.15)

For the proof of (R−) it suffices to show that the following quantities are finite.

sup
n≥1

n∏
i=1

F (g+(i))

F (g−(i))
=
∏
i≥1

(
1 +

F (g+(i))− F (g−(i))

F (g−(i))

)
≤
∏
i≥1

(
1 +

F (g+(i))− F (g−(i))

F (b)

)
.

Therefore, it is enough to show that F (g+(i))−F (g−(i)) is summable in i. Set η := ln ‖Y1‖.
Then ∑

i≥8

F (g+(i))− F (g−(i)) =
∑
i≥8

E[1(g−(i),g+(i)](η); η > g−(8)]

= E

∑
i≥8

1[g−1
+ (η),g−1

− (η))(i); η > g−(8)

 ≤ E[g−1
− (η)− g−1

+ (η); η > g−(8)] + 1

(4.15)
= E

[(
g−1
− (η)

)2/3
+
(
g−1

+ (η)
)2/3

; g−1
− (η) > 8

]
+ 1

≤ E
[
2
(
g−1
− (η)

)2/3
; g−1
− (η) > 8

]
+ 1

≤ 2E

[(
2g−1
− (η)− 2

(
g−1
− (η)

)2/3)2/3

; η > g−(8)

]
+ 1

(4.15)
= 28/3E

[(
η − b
λ

)2/3

; η > g−(8)

]
+ 1,

which is finite due to (R+).
(R−)⇒(RR’): This implication follows from monotonicity.
(RR’)⇒(R+): The first part of (R+) follows from monotonicity and Lemma 4.3. The

second part follows from monotonicity.
(R−)⇒(XR): Let b be according to (R−). Due to (4.1) and λ > 0, we have (Si −

λi2/3/2) → ∞ a.s. as i → ∞. Therefore, there is b′ ≥ b such that P [B] > 0, where
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B := {F (b′ + Si − λi2/3/2) > 1/2 for all i ≥ 0}. For i ∈ N0 set µi := exp
(
b′ − λi2/3/2

)
.

Then µ :=
∑
i≥0 µi < ∞. Recall (1.3) and set for all n ≥ 0, X ′n :=

∑n
i=0A1 . . . AiYi+1.

Then for each n, Xn has the same distribution as X ′n. Therefore, it suffices to show that∑
n≥0 P [‖X ′n‖ < µ] =∞. Hence we estimate

P [‖X ′n‖ < µ] ≥ P

[
n∑
i=0

‖A1 . . . Ai‖ ‖Yi+1‖ < µ

]

≥ E

[
P

[
n⋂
i=0

{ln ‖Yi+1‖ < lnµi + Si}

∣∣∣∣∣(Ak)k≥1

]]
= E

[
n∏
i=0

F (lnµi + Si)

]
.

By Lemma A.3, T := inf{n ≥ 0 | ∀i > n : Si ≥ λ(i− i2/3/2)} is a.s. finite. Therefore,

inf
n≥0

E

[
n∏
i=0

F (lnµi + Si)

F (b′ + λ(i− i2/3))

]
≥ E

∏
i≥1

(
F (lnµi + Si)

F (b′ + λ(i− i2/3))
∧ 1

)
;B


= E

[
T∏
i=1

(
F (b′ + Si − λi2/3/2)

F (b′ + λ(i− i2/3))
∧ 1

)
;B

]
≥ E[2−T ;B] > 0

since P [B] > 0. This implies (XR).

By exponentiating R we obtain the following generalization of Proposition 1.1.

Corollary 4.4 (General random exchange process). Let E[T1] > 0 and let T1 −E[T1] be
sub-Gaussian. Suppose that lim

x→∞
x2/3(lnx)2P [W1 > x] = 0 or lim inf

x→∞
xP [W1 > x] > E[T1].

Let y ∈ (0,∞) be such that P [W1 ≤ y] > 0. Then R is recurrent if and only if

∑
n≥0

n∏
m=0

P [W1 ≤ y +mE[T1]] =∞.

4.1 An application to random walks in random environments perturbed by
cookies of maximal strength

We consider the same version of excited random walks in random environment
as Bauernschubert in [4]. Let ω = (ωx)x∈Z be an i.i.d. family of (0, 1)-valued random
variables and Y = (Yx)x∈Z be an i.i.d. family of N0-valued random variables such that
P [Y0 = 0] > 0. We call ωx the environment at x and Yx the number of cookies at x. The
random walk ξ = (ξn)n≥0 in the random environment ω perturbed by the cookies Y is
defined as follows. The walk starts at ξ0 = 0. Upon any of the first Yx many visits to a
site x the walker reduces the number of cookies at that site by one and then moves in
the next step deterministically to x+ 1. Upon the (Yx + 1)-st or any later visit to x, i.e.
when there are no cookies left at x, the walker jumps independently of everything else
with probability ωx to x+ 1 and with probability 1− ωx to x− 1. More formally, for all
n ≥ 0 and z = ±1 a.s.

P [ξn+1 = ξn + z | (ξk)0≤k≤n, Y, ω] =


1 if z = 1,#{k ≤ n | ξk = ξn} ≤ Yξn
ωx if z = 1,#{k ≤ n | ξk = ξn} > Yξn
1− ωx if z = −1,#{k ≤ n | ξk = ξn} > Yξn .

The random walk ξ is called transient to the right if ξn →∞ as n→∞, transient to the left
if ξn → −∞ as n→∞, and recurrent if ξn = 0 for infinitely many n. In the case without
cookies, i.e. where P [Y0 = 0] = 1, we retrieve the classical one-dimensional random walk
in random environment (RWRE). It is known that that under mild assumptions RWRE
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is a.s. recurrent iff E[ln ρ0] = 0, where ρ0 := (1− ω0)/ω0, and a.s. transient to the right
(resp. left) iff E[ln ρ0] < 0 (resp. > 0), see e.g. [40, Theorem 2.1.2].

We consider the case E[ln ρ0] > 0 in which the underlying RWRE is transient to the
left and ask how many cookies are needed in order to make this walk recurrent or
even transient to the right. Using (1.8), (1.9), and a well-known relationship between
excursions of random walks and branching processes, Bauernschubert obtained in [4,
Theorem 1.1] the following result.

Theorem 4.5 (Excited random walks; Bauernschubert). Assume that the two i.i.d. fami-
lies (ωx)x∈Z and (Yx)x∈Z are independent of each other and let E[| ln ρ0|] <∞, E[ln ρ0] >

0, and E[ω−1
0 ] <∞.

(a) If E[ln+ Y1] <∞ then ξ is a.s. transient to the left.

(b) If E[ln+ Y1] =∞ and if lim supt→∞ t · P [lnY1 > t] < E[ln ρ0], then ξ is a.s. recurrent.

(c) If lim supt→∞ t · P [lnY1 > t] > E[ln ρ0] then ξ is a.s. transient to the right.

Replacing [4, (8),(9)] by Theorem 4.2 we obtain the following characterization of
recurrence/transience of ξ.

Corollary 4.6. Assume that (ωx, Yx)x∈Z is i.i.d., E[ln ρ0] > 0, that ln ρ0 − E[ln ρ0] is
sub-Gaussian, and (REG).

(a) If E[ln+ Y0] <∞ then ξ is a.s. transient to the left.

(b) If E[ln+ Y0] =∞ and if ∑
n≥0

n∏
m=0

P [Y0 ≤ exp (mE[ln ρ0])] (4.16)

is infinite then ξ is a.s. recurrent.

(c) If the series in (4.16) is finite then ξ is a.s. transient to the right.

A Appendix: bounds for the case of random environment

Lemma A.1. Let K, γ ∈ N, κ > 0 and A ⊆ [0,∞)d×d. For n ∈ N0 set Gn := {A1 . . . An :

A1, . . . , An ∈ A} and G :=
⋃
n≥0 Gn. If d ≥ 2 then assume that ‖A‖ ≤ γ for all A ∈ A and

GK ⊆ [κ,∞)d×d. Then there is a constant c = c(K, γ, κ, d) such that

‖A‖‖x‖ ≤ c‖Ax‖ for all A ∈ G, x ∈ [0,∞)d, (A.1)

‖A‖‖B‖ ≤ c‖AB‖ for all A ∈ G, B ∈ [0,∞)d×d, and (A.2)

‖A‖ ≤ c[A]1,1 for all n ≥ K,A ∈ Gn. (A.3)

Proof. If d = 1 then (A.1)-(A.3) hold trivially with c = 1.
Consider now d ≥ 2. For any matrix A let µ(A) := minj maxi[A]i,j . The following two

quantities are used to measure the variation among the entries of A.

δA := ‖A‖1/µ(A) ∈ [1,∞] for A ∈ [0,∞)d×d\{0} and

∆A := max

{
[A]i,j
[A]i,k

,
[A]i,j
[A]k,j

: i, j, k ∈ {1, . . . , d}
}
∈ [1,∞) for A ∈ (0,∞)d×d.

We first show the following relations.

∆AB ≤ max{∆A,∆B} for all A,B ∈ (0,∞)d×d. (A.4)

∆AB ≤ ∆AδB for all A ∈ (0,∞)d×d, B ∈ [0,∞)d×d\{0}. (A.5)

δAB ≤ δAδB for all A,B ∈ [0,∞)d×d\{0}. (A.6)

δA ≤ d∆A for all A ∈ (0,∞)d×d. (A.7)

EJP 23 (2018), paper 27.
Page 18/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP152
http://www.imstat.org/ejp/


Recurrence and transience of autoregressive processes

Statement (A.4) follows from the fact that for all i, j, k ∈ {1, . . . , d},

[AB]i,j
[AB]i,k

=

∑
n [A]i,n[B]n,j∑
n [A]i,n[B]n,k

≤
∑
n[A]i,n∆B [B]n,k∑
n [A]i,n[B]n,k

= ∆B and similarly

[AB]i,j
[AB]k,j

≤ ∆A. (A.8)

To show (A.5) let m and k be such that [B]m,k = maxn[B]n,k = µ(B). Then

[AB]i,j
[AB]i,k

≤
∑
n ∆A[A]i,m[B]n,j
[A]i,m[B]m,k

≤ ∆AδB .

Together with (A.8) this proves (A.5).
For the proof of (A.6) it suffices to show that µ(AB) ≥ µ(A)µ(B) since ‖AB‖1 ≤

‖A‖1‖B‖1. To this end, fix 1 ≤ j ≤ d, choose k such that [B]k,j ≥ µ(B) and m such
that [A]m,k ≥ µ(A). Then maxi[AB]i,j ≥ [AB]m,j ≥ [A]m,k[B]k,j ≥ µ(A)µ(B). Taking the
minimum over j yields (A.6).

To prove (A.7) let k be such that maxi[A]i,k = µ(A). Then

δA =
maxj

∑
i[A]i,j

µ(A)
≤

∆A

∑
i[A]i,k

maxi[A]i,k
≤ d∆A.

This concludes to proof of (A.4)–(A.7). Next we show that

sup{∆A : A ∈ Gn, n ≥ K} < ∞ and (A.9)

sup{δA : A ∈ G} < ∞. (A.10)

First note that c14 := sup{δA : A ∈ A} < ∞. Indeed, let A ∈ A and B ∈ GK−1. Choose
j such that maxi[A]i,j = µ(A). Since BA ∈ GK we have κ ≤ [BA]1,j =

∑
i[B]1,i[A]i,j ≤

‖B‖µ(A) and consequently, δA ≤ ‖A‖1‖B‖/κ ≤ dγK/κ.
Second, due to GK ⊆ [κ,∞)d×d, no element of A has a column of zeros. Hence,

Gn ⊆ (0,∞)d×d for all n ≥ K. Therefore, if we let K ≤ n = mK + r with m ≥ 1 and
0 ≤ r < K then for all A1, . . . , An ∈ A, by (A.5),

∆A1...An
≤ ∆A1...AmK

δAmK+1...An

(A.4),(A.6)

≤ m−1
max
i=0

∆AiK+1...A(i+1)K
δAmK+1

. . . δAn
≤ γKκ−1cK =: c15,(A.11)

where we used in the last step that ∆B ≤ ‖B‖/κ ≤ γK/κ for all B ∈ GK . This implies
(A.9). Moreover, (A.6) implies δA ≤ cK14 for all A ∈ Gn, n ≤ K, and (A.7) and (A.11) imply
δA ≤ dc15 for all A ∈ Gn, n ≥ K. Together this yields (A.10).

For the proof of the first claim of the Lemma, (A.1), let k be such that ‖x‖ = xk. Then
for all A ∈ G,

‖Ax‖ = max
i

∑
j

[A]i,jxj ≥ max
i

[A]i,kxk = ‖x‖max
i

[A]i,k

≥ ‖x‖min
j

max
i

[A]i,j =
‖A‖1‖x‖

δA
≥ ‖A‖‖x‖

dδA
.

Along with (A.10) this implies (A.1). The second claim, (A.2), follows from (A.1) and the
definition of the matrix norm ‖ · ‖. For the proof of (A.3) let n ≥ K and A ∈ Gn. Then

‖A‖ = max
k

∑
`

[A]k,` ≤ ∆A

∑
`

[A]1,` ≤ ∆2
A

∑
`

[A]1,1 = d∆2
A[A]1,1.

This together with (A.9) implies (A.3).
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The following result provides bounds on the extinction time of multitype branching
process in varying environment. The easy bound is standard and based on a first moment
method, i.e. Markov’s inequality. To the best of our knowledge the opposite bound
appeared first in a similar form in [1, Theorem 1]. We prove it by the second moment
method. For precise asymptotics under different assumptions see e.g. [18], [10].

Proposition A.2 (Bounds on extinction time of multitype branching process in varying
environment). Fix ψ = (ψn)n≥1 = ((ψjn)j=1,...,d)n≥1 ∈ (Dd)N. Let (U jn,k)n,k≥1;j∈{1,...,d}
be an i.i.d. family of random variables which are distributed uniformly on [0, 1]. Let
ξi,jn,k := [ψjn(U jn,k)]i. Fix s ∈ {1, . . . , d} and define the branching process (Bn)n≥0 in the
environment ψ starting at time 0 with one individual of type s as follows. Set B0 := es
and define recursively for all n ≥ 1,

Bn :=

 d∑
j=1

[Bn−1]j∑
k=1

ξi,jn,k


i=1,...,d

. (A.12)

Define the matrices An :=
(
E
[
ξi,jn,1

])
i,j=1,...,d

, n ≥ 1, and suppose that γ,K ∈ N, κ > 0,

and A := {An | n ≥ 1} satisfy the assumptions of Lemma A.1. Denote for n ≥ 1 and
j = 1, . . . , d by Vjn the covariance matrix of the vector (ξi,jn,1)i=1,...,d and suppose that

c16 := sup
n≥1,j=1,...,d

‖Vjn‖
‖An‖

<∞. (A.13)

Then there is a constant c1 = c1(γ,K, κ, d, c16) such that for all n ≥ 1,

c1
‖An . . . A1‖∑n
k=1 ‖An . . . Ak‖

≤ P [Bn 6= 0] ≤ d‖An . . . A1‖.

Proof. It follows from (A.12) that E[Bn] = AnE[Bn−1] for all n ≥ 1, see e.g. [16, Chapter
II, (4.1)]. Therefore, E[Bn] = An . . . A1es for all n ≥ 0. Thus

P [Bn 6= 0] = P [‖Bn‖1 ≥ 1] ≤ E[‖Bn‖1] = ‖An . . . A1es‖1 ≤ d‖An . . . A1‖.

For the lower bound set Cn := (E[[Bn]i[Bn]j ])i,j=1,...,d. By the second moment method

P [Bn 6= 0] = P [‖Bn‖ > 0] ≥ (E[‖Bn‖])
2

E [‖Bn‖2]
≥ ‖E[Bn]‖2

E [maxi[Bn]2i ]

≥ ‖An . . . A1es‖2∑d
i=1E [[Bn]2i ]

(A.1)

≥ c17
(‖An . . . A1‖‖es‖)2

maxdi=1E [[Bn]2i ]
(A.14)

≥ c17
‖An . . . A1‖2

‖Cn‖
.

By [16, Chapter II, (4.2)] for all n ≥ 1,

Cn = AnCn−1A
T
n +

d∑
j=1

E
[
[Bn−1]j

]
Vjn

= An . . . A1C0A
T
1 . . . A

T
n +

n∑
k=1

An . . . Ak+1

 d∑
j=1

E[[Bk−1]j ]Vjk

ATk+1 . . . A
T
n
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by induction. Consequently,

‖Cn‖ ≤ c18‖An . . . A1‖2 +

n∑
k=1

‖An . . . Ak+1‖

 d∑
j=1

E[[Bk−1]j ]‖Vjk‖

 ‖(An . . . Ak+1)T ‖

(A.13)

≤ c18‖An . . . A1‖2 + c19

n∑
k=1

‖An . . . Ak+1‖2‖Ak‖‖E[Bk−1]‖1

(A.1)

≤ c18‖An . . . A1‖2 + c20

n∑
k=1

‖An . . . Ak+1‖‖An . . . AkE[Bk−1]‖

≤ c18‖An . . . A1‖2 + c20‖An . . . A1‖‖E[B0]‖
n∑
k=1

‖An . . . Ak+1‖

≤ c21‖An . . . A1‖
n∑
k=1

‖An . . . Ak‖.

Substituting this into (A.14) yields the claim.

Lemma A.3 (Sub-Gaussian concentration inequality). Assume (BA) and let K, γ, κ be
accordingly. Then there are constants c6 and c7 depending on (d,K, γ, κ) such that for
all n ∈ N and t ∈ (0,∞),

P [|Sn − λn| ≥ t] ≤ c6 exp
(
−c7t2/n

)
. (A.15)

Proof. If d = 1 then Sn is the sum of independent random variables and (A.15) is a
Hoeffding-type inequality, which is usually stated for bounded increments Sn+1 − Sn,
see e.g. [5, Theorem 2.8], but also holds for increments which are sub-Gaussian after
centering, see e.g. [37, Proposition 5.10].

Now let d ≥ 2. Denote by A ⊆ [0,∞)d×d the support of A1. Due to (BA) the
assumptions of Lemma A.1 are satisfied. First we show the existence of c22, c23 ∈ (0,∞)

such that for all n ≥ 0 and t > 0,

P [|Sn − E[Sn]| ≥ t] ≤ c22 exp
(
−c23t

2/n
)
. (A.16)

Let n ≥ 1 and f(B) := − ln ‖B1 . . . Bn‖ for B = (B1, . . . , Bn) ∈ An. Suppose B,B′ ∈ An
differ only in a single coordinate, say the i-th one. Then by submultiplicativity and (A.2),

f(B)− f(B′) ≤ ln (‖B1 . . . Bi−1‖‖B′i‖‖Bi+1 . . . Bn‖)
− ln

(
c2‖B1 . . . Bi−1‖‖Bi‖‖Bi+1 . . . Bn‖

)
≤ ln γ − ln c2κ1/K =: c24

due to κ ≤ ‖BKi ‖ ≤ ‖Bi‖K . By symmetry, |f(B)− f(B′)| ≤ c24. Now (A.16) follows from
McDiarmid’s inequality, see [28, Lemma (1.2)] or [5, Theorem 6.2].

For the proof of (A.15) observe that due to (4.1),

sup
n≥1

E [Sn]

n
= λ = lim

n→∞

E[SnK ]

nK
≤ lim inf

n→∞

E[− ln[A1 . . . AnK ]1,1]

nK
. (A.17)

Since [AB]1,1 ≤ [A]1,1[B]1,1 for any A,B ∈ [0,∞)d×d, the subadditive ergodic theorem
yields that the right most side of (A.17) is equal to

inf
n≥1

E[− ln[A1 . . . AnK ]1,1]

nK

(A.3)

≤ inf
n≥1

c25 + E[SnK ]

nK
. (A.18)
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By submultiplicativity, for all 0 ≤ r < K and n ≥ 1, E[SnK+r] ≥ E[SnK ] + rE[S1] ≥
E[SnK ]−KE[|S1|]. Consequently, the right hand side of (A.18) is at most

inf
0≤r<K

inf
n≥1

c26 + E[SnK+r]

nK
≤ inf
n>K

c26 + E[Sn]

n−K
.

Together with (A.17) this implies that |λn− E[Sn]| ≤ λK + c26 for all n > K. The claim
now follows from (A.16).

B Appendix

Several months after the first two versions of the present paper appeared on arxiv.org,
Alsmeyer, Buraczewski, and Iksanov posted a preprint of [2] in the same repository. In
[2, Remark 3.3] they claim our introductory criterion (1.1), but provide neither a proof
nor a reference. Their first main result, [2, Theorem 3.1], states that (1.8) and (1.9) hold
for general nonnegative subcritical autoregressive processes X with random coefficients
as defined in (1.2) in one dimension. This removes the moment assumptions from
Bauernschubert’s extension (1.8) of Kellerer’s result (1.6) concerning transience of
X and extends Kellerer’s result (1.7) about recurrence of X to the case of random
coefficients. Note that under the additional assumption (BA) that lnA1 − E[lnA1] is
sub-Gaussian (resp. bounded according to the first two versions of the present paper)
this result also follows from our Theorem 4.2 and Raabe’s test, see [2, Remark 3.1].

This raises the question to what extent condition (BA) in Theorem 4.2 can be relaxed,
especially for d ≥ 2. We are grateful to an anonymous referee for pointing out that for
d ≥ 2 bounds similar to those in Lemma A.1 were proved under weak moment conditions
by Kesten [23, (2.19) and p. 225]. Unfortunately, we were not able to use these bounds
to weaken assumption (BA) in Theorem 4.2 since we need (BA) also for the proof of the
concentration inequality Lemma A.3, which relies for d ≥ 2 on McDiarmid’s inequality.

References

[1] A. Agresti. On the extinction times of varying and random environment branching processes.
J. Appl. Probability 12:39–46, 1975. MR-0365733

[2] G. Alsmeyer, D. Buraczewski, A. Iksanov. Null-recurrence and transience of random difference
equations in the contractive case. J. Appl. Prob. 54:1089–1110, 2017. arXiv:1612.02148 MR-
3731286

[3] K. B. Athreya, P. E. Ney. Branching processes. Die Grundlehren der mathematischen Wis-
senschaften, Band 196. Springer-Verlag, New York-Heidelberg, 1972. MR-2047480

[4] E. Bauernschubert. Perturbing transient random walk in a random environment with cookies
of maximal strength. Ann. Inst. Henri Poincaré Probab. Stat. 49(3):638–653, 2013. MR-
3112429

[5] S. Boucheron, G. Lugosi, P. Massart. Concentration inequalities. A nonasymptotic theory of
independence. Oxford University Press, Oxford, 2013. MR-3185193

[6] P. Bougerol, N. Picard. Strict stationarity of generalized autoregressive processes. Ann.
Probab. 20(4):1714–1730, 1992. MR-1188039

[7] P. J. Brockwell, R. A. Davis. Time series: theory and methods. Second edition. Springer Series
in Statistics. Springer-Verlag, New York, 1991. MR-2839251

[8] D. Buraczewski, E. Damek, T. Mikosch. Stochastic models with power-law tails. The equation
X = AX +B. Springer Series in Operations Research and Financial Engineering. Springer,
2016. MR-3497380

[9] R. Durrett. Probability: theory and examples. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010. MR-2722836

EJP 23 (2018), paper 27.
Page 22/24

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=0365733
http://arXiv.org/abs/1612.02148
http://www.ams.org/mathscinet-getitem?mr=3731286
http://www.ams.org/mathscinet-getitem?mr=3731286
http://www.ams.org/mathscinet-getitem?mr=2047480
http://www.ams.org/mathscinet-getitem?mr=3112429
http://www.ams.org/mathscinet-getitem?mr=3112429
http://www.ams.org/mathscinet-getitem?mr=3185193
http://www.ams.org/mathscinet-getitem?mr=1188039
http://www.ams.org/mathscinet-getitem?mr=2839251
http://www.ams.org/mathscinet-getitem?mr=3497380
http://www.ams.org/mathscinet-getitem?mr=2722836
http://dx.doi.org/10.1214/18-EJP152
http://www.imstat.org/ejp/


Recurrence and transience of autoregressive processes

[10] E. Dyakonova. On subcritical multi-type branching process in random environment. Fifth
Colloquium on Mathematics and Computer Science, 397–404, Discrete Math. Theor. Comput.
Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008. MR-2508802

[11] T. Erhardsson. Conditions for convergence of random coefficient AR(1) processes and perpe-
tuities in higher dimensions. Bernoulli 20(2):990–1005, 2014. MR-3178525

[12] J. H. Foster, J. A. Williamson. Limit theorems for the Galton-Watson process with time-
dependent immigration. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20:227–235, 1971.
MR-0305494

[13] H. Furstenberg, H. Kesten. Products of random matrices. Ann. Math. Statist. 31:457–469,
1960. MR-0121828

[14] C. M. Goldie. Implicit Renewal Theory and Tails of Solutions of Random Equations. Ann. Appl.
Probab. 1(1):126–166, 1991.MR-1097468

[15] C. M. Goldie, R. A. Maller. Stability of perpetuities. Ann. Probab. 28(3):1195–1218, 2000.
MR-1797309

[16] T. E. Harris. The theory of branching processes. Die Grundlehren der Mathematischen
Wissenschaften, Bd. 119 Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1963. MR-0163361

[17] I. S. Helland, T. S. Nilsen. On a general random exchange model. J. Appl. Probability 13(4):781–
790, 1976. MR-0431437

[18] A. Joffe, F. Spitzer. On multitype branching processes with ρ ≤ 1. J. Math. Anal. Appl.
19:409–430, 1967. MR-0212895

[19] O. Kallenberg. Foundations of Modern Probability. Second edition. Probability and its Appli-
cations. Springer, New York, 2002. MR-1876169

[20] S. Karlin, H. M. Taylor. A first course in stochastic processes. Second edition. Academic Press,
New York-London, 1975. MR-0356197

[21] H. G. Kellerer. Ergodic behaviour of affine recursions I, II, III. Preprints, University of Munich.
(http://www.mathematik.uni-muenchen.de/~kellerer) 1992.

[22] H. G. Kellerer. Random dynamical systems on ordered topological spaces. Stoch. Dyn.
6(3):255–300, 2006. MR-2258486

[23] H. Kesten. Random difference equations and renewal theory for products of random matrices.
Acta Math. 131:207–248, 1973. MR-0440724

[24] E. S. Key. Limiting distributions and regeneration times for multitype branching processes
with immigration in a random environment. Ann. Probab. 15(1):344–353, 1987. MR-0877607

[25] J. Lamperti. Maximal branching processes and ‘long-range percolation’. J. Appl. Probability
7:89–98, 1970. MR-0254930

[26] J. Li, A. Chen, A. G. Pakes. Asymptotic properties of the Markov branching process with
immigration. J. Theoret. Probab. 25(1):122–143, 2012. MR-2886382

[27] E. Lukacs. Stochastic convergence. Second edition. Probability and Mathematical Statistics,
Vol. 30. Academic Press, New York-London, 1975. MR-0375405

[28] C. McDiarmid. On the method of bounded differences. Surveys in combinatorics, 1989
(Norwich, 1989), 148–188, London Math. Soc. Lecture Note Ser., 141, Cambridge Univ. Press,
Cambridge, 1989. MR-1036755

[29] S. P. Meyn, R. L. Tweedie. Markov chains and stochastic stability. Springer-Verlag, London,
1993. Available at: probability.ca/MT MR-1287609

[30] A. G. Pakes. Some results for non-supercritical Galton-Watson processes with immigration.
Math. Biosci. 24:71–92, 1975. MR-0370808

[31] A. G. Pakes. Limit theorems for the simple branching process allowing immigration. I. The
case of finite offspring mean. Adv. in Appl. Probab. 11(1):31–62, 1979. MR-0517550

[32] S. Yu. Popov. Frogs and some other interacting random walks models. Discrete random walks
(Paris, 2003), 277–288 (electronic), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc.
Discrete Math. Theor. Comput. Sci., Nancy, 2003. MR-2042394

EJP 23 (2018), paper 27.
Page 23/24

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2508802
http://www.ams.org/mathscinet-getitem?mr=3178525
http://www.ams.org/mathscinet-getitem?mr=0305494
http://www.ams.org/mathscinet-getitem?mr=0121828
http://www.ams.org/mathscinet-getitem?mr=1097468
http://www.ams.org/mathscinet-getitem?mr=1797309
http://www.ams.org/mathscinet-getitem?mr=0163361
http://www.ams.org/mathscinet-getitem?mr=0431437
http://www.ams.org/mathscinet-getitem?mr=0212895
http://www.ams.org/mathscinet-getitem?mr=1876169
http://www.ams.org/mathscinet-getitem?mr=0356197
http://www.mathematik.uni-muenchen.de/~kellerer
http://www.ams.org/mathscinet-getitem?mr=2258486
http://www.ams.org/mathscinet-getitem?mr=0440724
http://www.ams.org/mathscinet-getitem?mr=0877607
http://www.ams.org/mathscinet-getitem?mr=0254930
http://www.ams.org/mathscinet-getitem?mr=2886382
http://www.ams.org/mathscinet-getitem?mr=0375405
http://www.ams.org/mathscinet-getitem?mr=1036755
http://www.ams.org/mathscinet-getitem?mr=1287609
http://www.ams.org/mathscinet-getitem?mr=0370808
http://www.ams.org/mathscinet-getitem?mr=0517550
http://www.ams.org/mathscinet-getitem?mr=2042394
http://dx.doi.org/10.1214/18-EJP152
http://www.imstat.org/ejp/


Recurrence and transience of autoregressive processes

[33] M. P. Quine. The multi-type Galton-Watson process with immigration. J. Appl. Probability
7:411–422, 1970. MR-0263168

[34] S. T. Rachev, G. Samorodnitsky. Limit laws for a stochastic process and random recursion
arising in probabilistic modelling. Adv. in Appl. Probab. 27(1):185–202, 1995. MR-1315585

[35] A. Roitershtein. A note on multitype branching processes with immigration in a random
environment. Ann. Probab. 35(4):1573–1592, 2007. MR-2330980

[36] V. A. Vatutin. Multitype branching processes with immigration in random environment, and
polling systems. Siberian Adv. Math. 21(1):42–72, 2011. MR-3488488

[37] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. Chapter 5 of:
Compressed sensing, 210–268, Cambridge Univ. Press, Cambridge, 2012. MR-2963170

[38] W. Vervaat. On a stochastic difference equation and a representation of nonnegative infinitely
divisible random variables. Adv. in Appl. Probab. 11(4):750–783, 1979. MR-0544194

[39] A. Zeevi, P. Glynn. Recurrence properties of autoregressive processes with super-heavy-tailed
innovations. J. Appl. Probab. 41(3):639–653, 2004. MR-2074813

[40] O. Zeitouni. Random walks in random environment. In Lectures on probability theory and
statistics, volume 1837 of Lecture Notes in Math., pp. 189–312. Springer, Berlin, 2004.
MR-2071631

Acknowledgments. The author is grateful to Martin Möhle for pointing out [25] and
thanks him and Elena Kosygina for helpful discussions.

EJP 23 (2018), paper 27.
Page 24/24

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=0263168
http://www.ams.org/mathscinet-getitem?mr=1315585
http://www.ams.org/mathscinet-getitem?mr=2330980
http://www.ams.org/mathscinet-getitem?mr=3488488
http://www.ams.org/mathscinet-getitem?mr=2963170
http://www.ams.org/mathscinet-getitem?mr=0544194
http://www.ams.org/mathscinet-getitem?mr=2074813
http://www.ams.org/mathscinet-getitem?mr=2071631
http://dx.doi.org/10.1214/18-EJP152
http://www.imstat.org/ejp/

	Introduction
	Preliminaries
	Notation
	Branching processes
	Recurrence and transience

	Constant environment
	An application to frog processes

	Random environment
	An application to random walks in random environments perturbed by cookies of maximal strength

	Appendix: bounds for the case of random environment
	Appendix
	References

