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Coupling polynomial Stratonovich integrals:
the two-dimensional Brownian case*
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Abstract

We show how to build an immersion coupling of a two-dimensional Brownian motion
(W1,W2) along with

(
n
2

)
+ n = 1

2
n(n+ 1). integrals of the form

∫
W i

1W
j
2 ◦ dW2, where

j = 1, . . . , n and i = 0, . . . , n− j for some fixed n. The resulting construction is applied
to the study of couplings of certain hypoelliptic diffusions (driven by two-dimensional
Brownian motion using polynomial vector fields). This work follows up previous
studies concerning coupling of Brownian stochastic areas and time integrals (Ben
Arous, Cranston and Kendall (1995), Kendall and Price (2004), Kendall (2007), Kendall
(2009), Kendall (2013), Banerjee and Kendall (2015), Banerjee, Gordina and Mariano
(2016)) and is part of an ongoing research programme aimed at gaining a better
understanding of when it is possible to couple not only diffusions but also multiple
selected integral functionals of the diffusions.
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1 Introduction

A coupling of two probability measures µ1 and µ2, defined on respective measure
spaces (Ω1,F1) and (Ω2,F2), is a joint law µ defined on the product space (Ω1 ×Ω2,F1 ×
F2) whose marginals are µ1 and µ2. A coupling of Markov processes X and X̃ is an
immersion coupling when the joint process

{(X(t+ s), X̃(t+ s)) : s ≥ 0} conditioned on Ft

is again a coupling of the laws of X and X̃, but now starting from (X(t), X̃(t)). This
is also called a co-adapted coupling [19], or faithful coupling [29], and is very closely
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Coupling polynomial Stratonovich integrals

related to the near-equivalent notion of a Markovian coupling [7], which additionally
constrains the joint process (X(t), X̃(t)) to be Markovian with respect to the filtration
(Ft)t≥0. Immersion couplings are typically very much easier to describe than general
couplings, since they may be specified in causal ways using, for example, stochastic
calculus.

In the following we consider couplings of smooth elliptic diffusions with d-dimensional
state space Rd. Specifically, for d ≥ 2 and 1 ≤ k ≤ d, consider the following Stratonovich
stochastic differential equation on Rd:

X(t) = x+

∫ t

0

V0(X(s)) ds+

k∑
i=1

∫ t

0

Vi(X(s)) ◦ dWi(s) . (1.1)

Here x ∈ Rd is the initial state, V1, . . . , Vk are smooth vector fields, and (W1, . . . ,Wk) is a
standard Brownian motion on Rk. We will consider couplings of two copies X and X̃ of
this diffusion, starting from arbitrary distinct initial states x, x̃ ∈ Rd. Interest focusses
on the coupling time T , defined as

T = inf{t ≥ 0 : X(s) = X̃(s) for all s ≥ t} .

The coupling is said to be successful if almost surely T < ∞ (where “almost surely”
refers to the coupling measure µ). A major motivation to study couplings arises from the
so-called Aldous’ coupling inequality (see 1):

µ(τ > t) ≥ ‖µt − µ̃t‖TV , for all t ≥ 0 , (1.2)

where µt and µ̃t denote the laws of X(t) and X̃(t) respectively and || · ||TV denotes the
total variation distance between probability measures given by

‖µ1 − µ2‖TV = sup{|µ1(A)− µ2(A)| : measurable A} .

Using inequality (1.2), construction of a coupling of X and X̃ automatically bounds the
total variation distance between the laws of the diffusions at time t. A maximal coupling
is one for which the inequality (1.2) is actually an equality for all t. These have been
shown to exist under very general conditions [14, 28, 13, 30, 11]. However in most
cases the task of explicitly constructing such a maximal coupling is extremely hard, if
not impossible. This provides strong motivation for considering immersion couplings
which, although not maximal in most cases [4, 23], are easier to describe and can provide
helpful bounds via (1.2).

Immersion couplings have been extensively studied for elliptic diffusions (which is
to say diffusions given by (1.1) when k = d and {V1(x), . . . , Vd(x)} form a basis for Rd

at each x ∈ Rd). The simplest example of such a coupling is the reflection coupling of
Euclidean Brownian motions starting from two different points: the second Brownian
path is obtained from the first by reflecting the first path on the hyperplane bisecting
the line joining the starting points until the first path (equivalently, the second, reflected,
path) hits this hyperplane. This coupling turns out to be maximal as well as Markovian!
[24] extended this reflection construction to produce successful Markovian couplings for
elliptic diffusions on Rd with bounded and Lipschitz drift and diffusion coefficients when
the diffusion matrix does not vary too much in space (see also 8). However in general
the construction is not symmetric between the two coupled processes, and this method
is not easily applicable when the diffusion matrix varies appreciably over space. A more
geometric approach, depending symmetrically on the two coupled diffusions, is provided
by the Kendall-Cranston coupling [18, 9]. Consider the positive-definite diffusion matrix
σ(x) formed with columns V1(x), . . . , Vd(x). As x varies over Rd, so this furnishes Rd
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Coupling polynomial Stratonovich integrals

with a Riemannian metric g given by g(x) = (σ(x)σ(x)>)−1. With this intrinsic diffusion
metric, Rd becomes a Riemannian manifold and the diffusion can be recognized as a
Brownian motion with drift on this manifold. One then uses an appropriate generalization
of reflection involving parallel transport along geodesics to obtain reflection couplings.
These couplings are successful when (for example) the Ricci curvature of the manifold is
non-negative and the drift vector field satisfies appropriate regularity conditions. We
note here that the Kendall-Cranston coupling also works for elliptic diffusions whose
state space is any smooth manifold, and can be applied to even more general situations
[32].

The above techniques fail for diffusions which are not elliptic, as there is no natural
Riemannian metric intrinsic to such diffusions. However, an important class of non-
elliptic diffusions has attracted attention in recent times: namely, the hypoelliptic
diffusions. These are diffusions (X(t) : t ≥ 0) such that X(t) has a smooth density
with respect to Lebesgue measure for each t > 0. They arise naturally in a variety of
contexts: for example, modelling the motion of a particle following Newton’s equations
under a potential, white noise random forcing and linear friction (the kinetic Fokker-
Plank diffusion, 31), describing stochastic oscillators (the Kolmogorov diffusion, 26),
quantum mechanics and rough paths theory (Brownian motion on the Heisenberg group,
27, 12) and modelling of macromolecular systems [15]. All these examples place a
premium on gaining a good understanding of the behaviour of hypoelliptic diffusions.
In particular, the construction of successful couplings for these diffusions immediately
implies, via Aldous’ inequality (1.2), that the total variation distance between the laws
of two such diffusions started from distinct points converges to zero as time goes to
infinity. Furthermore, estimates on the coupling time distribution deliver bounds on the
convergence rate. This, in turn, yields estimates of rate of convergence to stationarity,
when a stationary measure exists. Moreover, these couplings can also be used to
furnish gradient estimates for harmonic functions corresponding to the generators of
the diffusions via purely probabilistic means [10, 9, 2].

At the time of writing, coupling of hypoelliptic diffusions have only been studied for
rather specific examples. Hypoelliptic diffusions can be viewed as “high dimensional
processes driven by low dimensional Brownian motions”, which suggests that the goal
of producing successful Markovian couplings of such diffusions may be best achieved
by learning how to produce Markovian couplings of the driving Brownian motion to-
gether with a (typically finite) collection of path functionals. These couplings, sometimes
described as exotic couplings, were first studied in [6]. This described successful Marko-
vian couplings for the Kolmogorov diffusion of order one (given by a Brownian motion B
along with its running time integral

∫ t
0
B(s) ds) and Brownian motion on the Heisenberg

group (a two-dimensional Brownian motion (B1, B2) together with its Lévy stochastic
area

∫ t
0
B1(s) dB2(s)−

∫ t
0
B2(s) dB1(s)). [22] showed how to generate successful Marko-

vian couplings for the Kolmogorov diffusion of any finite order n (a Brownian motion
B along with its n− 1 iterated time integrals

∫
· · ·
∫

0≤s1≤···≤si≤tB(s1) ds1 ds2 . . . dsi for
1 ≤ i ≤ n−1). Later [19, 20] described a construction of a successful Markovian coupling
of Brownian motion on the step-two free nilpotent Lie group of any underlying finite
dimension n (corresponding to an n-dimensional Brownian motion (B1, . . . , Bn) together
with the

(
n
2

)
stochastic areas

∫ t
0
Bi(s) dBj(s)−

∫ t
0
Bj(s) dBi(s) for 1 ≤ i < j ≤ n, or, using

vector notation, B together with the alternating vector-product
∫
B∧ dB). [21] described

how to couple scalar Brownian motion together with local time, and used this to couple
a rather degenerate diffusion arising in stochastic control theory. Even in these rather
simple examples, the coupling constructions turn out to be quite complicated. Simpler
cases use careful combinations of reflection coupling and synchronous coupling (making
Brownian increments agree): [19, 20] show that one also needs to use more varieties
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of coupling (for example what might be called “rotation couplings”) when coupling all
stochastic areas for Brownian motion in dimension of 3 or greater.

In this article, we provide constructions of immersion (in fact, Markovian) couplings
for a considerable range of diffusions of the form given in (1.1) with k = 2, based on
polynomial vector fields Vi. This is a significant step beyond [19, 20] in the development
of the programme of understanding coupling for hypoelliptic diffusions, albeit limited
here to the case of an underlying two-dimensional Brownian motion. Before going into
the detailed description of the problem, we define the parabolic Hörmander condition
which will be a crucial assumption in the coupling construction.

Consider the following sets of vector fields:

V0 = {Vi : i ≥ 1}, Vj+1 = {[U, Vi] : U ∈ Vj , i ≥ 0} for j ≥ 0,

where [U, V ] denotes the Lie bracket of the vector fields U and V . Set Vj(x) =

span{V (x), V ∈ Vj}. We will make the following assumption:

(PHC) The vector fields V0, V1, . . . Vk satisfy the parabolic Hörmander condition, i.e.,⋃
j≥0 Vj(x) = Rd for each x ∈ Rd.

Subject to suitable regularity conditions, (PHC) is a necessary assumption if we want
to construct successful couplings from arbitrary pairs of starting points. To see this,
consider the distribution of sub-spaces {D(x) =

⋃
k≥0 Vj(x), x ∈ Rd} generated by⋃

j≥0 Vj (that is, the smoothly varying subspace of the tangent space spanned by these
vector fields). [25] showed that if D is of “locally finite type” (in particular, if the vector
fields V0, V1, . . . , Vk are real analytic), then it has the maximal integral manifold property,
i.e., for each point x ∈ Rd, there exists an immersed submanifold S (called an integral
manifold) containing x with the property that its tangent bundle coincides with the
distribution D. Moreover, S can be chosen so that any other integral manifold which
intersects S must be an open submanifold of S (note that S need not be complete in Rd).
In this case, Rd splits into disjoint maximal integral manifolds. It follows from support
theorems [16, for example] that if a diffusion starts from a point inside one maximal
integral manifold then almost surely it must stay in this manifold for all time. Thus,
under regularity conditions such as real analyticity, if (PHC) does not hold, then there
must be at least two disjoint maximal integral manifolds. Consequently, two copies of the
diffusion started from points in different maximal integral manifolds will almost surely
never meet.

In order to make progress towards answering the general question of whether it
is possible to construct successful immersion couplings of a diffusion satisfying (PHC)
from arbitrary pairs of distinct starting points, this article considers a simplification.
It will be convenient to view Rd = R × R × Rd−2, with corresponding coordinates
w = (w1, w2, w3) ∈ R×R×Rd−2 etc (in a mild abuse of notation, w3 denotes a (d− 2)-
dimensional vector). We assume that our diffusions satisfy (1.1) when the drift vector
field V0 = 0, the driving Brownian motion is two-dimensional (i.e. k = 2) and the
driving vector fields V1 and V2 are polynomial functions of the driving Brownian motion.
Specifically, for d ≥ 3 and for each w = (w1, w2, w3) ∈ R×R×Rd−2, suppose that X can
be written as

X(t) = (w1 +W1(t), w2 +W2(t), X3(t)) (1.3)

where (W1,W2) is a two-dimensional standard Brownian motion and X3 can be written
in vector format as satisfying the Stratonovich differential equation

X3(t) = w3 +

2∑
i=1

∫ t

0

σi(w1 +W1(s), w2 +W2(s)) ◦ dWi(s). (1.4)
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Here σ1, σ2 are ((d− 2)-dimensional) vector-valued polynomials:

σi(x1, x2) = a0,0
i +

∑
1≤l+m≤n

al,mi xl1x
m
2 , for i = 1, 2 ,

with (d− 2)-dimensional vector-valued coefficients al,mi = (al,mi,3 , . . . , a
l,m
i,d )> ∈ Rd−2. For

convenience, write

σi(x1, x2) = (σi,3(x1, x2), . . . , σi,d(x1, x2))> .

Lemma 1 below describes exactly when the system (1.4) satisfies (PHC).

Several important examples of hypoelliptic diffusions fall in this category, including
Brownian motion on the Heisenberg group [27, 6]. The problem of immersion coupling
for diffusions in the form of (1.4) makes a useful next step in the bigger program of
coupling hypoelliptic diffusions because of the following reasons. Firstly, the zero drift
condition helps to simplify (PHC) and give a clearer exposition, although we believe that
the methods developed here can be used even when the drift is non-zero but satisfies
certain growth conditions. Secondly, the polynomial form of the driving vector fields
ensures that X3 can be written using linear combinations of monomial Stratonovich
integrals of the form (

∫
W i

1W
j
2 ◦ dW2 : i+ j ≤ n) and thus, the problem reduces to

successfully coupling the driving Brownian motions along with these integrals. Moreover,
these polynomial vector fields can be used to approximate a large class of real analytic
and nilpotent vector fields and we hope that our technique will extend to more general
diffusions driven by such vector fields. Thirdly, as proved in Lemma 1 below, (PHC)
for this class of diffusions simplifies to a non-singularity condition for a matrix formed
by the vectors al,mi . Finally, as described in [19] in the simpler context of coupling
stochastic areas, successful Markovian coupling strategies can be achieved using only
reflection/synchronous coupling of Brownian motions when the driving Brownian motion
is two-dimensional (for example, Brownian motion on the Heisenberg group), but for
higher dimensional analogues it is necessary to employ rotation couplings (which is to say,
control strategies using orthogonal matrices), and this complicates the coupling strategy
considerably. As we will see, the restriction to a two-dimensional driving Brownian
motion in the case of (1.4) similarly allows for a rather explicit coupling construction
using only synchronous coupling of W2 at all times together with judicious switching
between synchronous and reflection phases for W1. However, we anticipate that one
of the challenges of dealing with higher-dimensional Brownian motions will be to deal
with complexity entailed by no longer being able to keep one coordinate synchronously
coupled and in agreement for all time. We plan to address the complexities of the higher
dimensional case in a subsequent article.

In the remainder of this section, we will show that, in order to successfully couple two
copies X and X̃ of our diffusion (1.3) started from distinct points, it suffices successfully
to couple simultaneously the driving Brownian motions along with integrals of the form
(
∫
W i

1W
j
2 ◦ dW2 : i+ j ≤ n). Define the ((d− 2)-dimensional) vector-valued function

φ(x1, x2) = σ2(x1, x2)−
∫ x1

w1

∂2σ1(u, x2) du (1.5)

where (x1, x2) ∈ R2 and ∂i denotes the partial derivative with respect to the ith coordinate
(i = 1, 2).

Set Ψ1(x1, x2) =
∫ x1

w1
σ1(u, x2) du. Computing the Stratonovich differential of Ψ1(w1 +

W1(t), w2 + W2(t)), and then integrating this differential, amounts to establishing an
integration-by-parts relation between certain Stratonovich integrals with respect to W1
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and other Stratonovich integrals with respect to W2, holding up to addition of a function
of W1 and W2 whose coupling follows directly from coupling of (W1,W2):∫ t

0

σ1(w1 +W1(s), w2 +W2(s)) ◦ dW1(s) =

Ψ1(w1 +W1(t), w2 +W2(t))−
∫ t

0

∂2Ψ1(w1 +W1(s), w2 +W2(s)) ◦ dW2(s) .

Hence X3 can be expressed as the sum of a function of W1 and W2 and a Stratonovich
integral with respect to W2 alone:

X3(t) = w3 +

∫ t

0

σ1(w1 +W1(s), w2 +W2(s)) ◦ dW1(s)

+

∫ t

0

σ2(w1 +W1(s), w2 +W2(s)) ◦ dW2(s)

= w3 + Ψ1(w1 +W1(t), w2 +W2(t))

+

∫ t

0

[σ2(w1 +W1(s), w2 +W2(s))− ∂2Ψ1(w1 +W1(s), w2 +W2(s))] ◦ dW2(s)

= w3 + Ψ1(w1 +W1(t), w2 +W2(t)) +

∫ t

0

φ(w1 +W1(s), w2 +W2(s)) ◦ dW2(s) .

(1.6)

Let Σ(x1, x2) denote the (d − 2) × n(n−1)
2 matrix formed by arranging in a row

the n(n−1)
2 different (d − 2)-dimensional vector-valued functions ∂l+1

1 ∂m2 φ(x1, x2) (here
1 ≤ l + 1 +m ≤ n). The condition (PHC) is equivalent to a rank condition on the matrix-
valued function Σ:

Lemma 1. The diffusion X satisfies (PHC) if and only if Σ(w1, w2) has full rank d − 2,
where w is the starting point of the diffusion in question.

Proof. Let ∂1, ∂2, . . . , ∂d represent the standard basis vectors of Rd. The diffusion X can
be expressed in the form

X(t) = w +

∫ t

0

V1(X(s)) ◦ dW1(s) +

∫ t

0

V2(X(s)) ◦ dW2(s)

where w = (w1, w2, w3) and the vector fields V1, V2 are given by

Vi(x) = ∂i +

d∑
j=3

σi,j(x1, x2)∂j

for i = 1, 2 and x = (x1, x2, x3) ∈ R × R × Rd−2 (so x3 is a (d − 2)-dimensional vector).
For any word I = (i1, . . . , iN ) ∈ {1, 2}N , write VI = [Vi1 [Vi2 [. . . [ViN−1

, ViN ]] . . . ]. Denote
by n1(I), n2(I) the number of occurrences of 1, 2 respectively in the word I. We claim
that if I is of length 2 or more and iN−1 = 1, iN = 2 then

VI(x) =

d∑
j=3

∂
n1(I)
1 ∂

n2(I)−1
2 φj(x1, x2)∂j . (1.7)

We prove this by induction on the length of the word I. For length 2, (1.7) follows from
the definition of φ in (1.5):

[V1, V2](x) =

d∑
j=3

(∂1σ2,j(x1, x2)− ∂2σ1,j(x1, x2)) ∂j =

d∑
j=3

∂1φj(x1, x2)∂j .
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For any N > 2 assume that the induction hypothesis holds for words of length less than
N . Consider I ∈ {1, 2}N−1 with iN−2 = 1, iN−1 = 2, and examine the case of I∗ = (i0, I).
By the induction hypothesis,

VI(x) =

d∑
j=3

∂
n1(I)
1 ∂

n2(I)−1
2 φj(x1, x2)∂j .

Observe that σ1, σ2 depend only on x1, x2, so that the form of VI implies that VIVi0 = 0

and Vi0VI = ∂i0VI . Therefore

VI∗(x) = ∂i0VI(x) =

d∑
j=3

∂i0∂
n1(I)
1 ∂

n2(I)−1
2 φj(x1, x2)∂j

=

d∑
j=3

∂
n1(I∗)
1 ∂

n2(I∗)−1
2 φj(x1, x2)∂j

proving (1.7) in that case also. Note that the coefficients of ∂1 and ∂2 are zero in
Vi1,...,iN−2,1,2.

Now observe that V1(x) and V2(x) are linearly independent for each x ∈ Rd. Fur-
thermore, Vi1,...,iN−2,2,1 = −Vi1,...,iN−2,1,2 while Vi1,...,iN−2,1,1 = Vi1,...,iN−2,2,2 = 0, so the
coefficients of ∂1 and ∂2 for VI are zero whenever the word I has length greater than
or equal to 2. Thus, for (PHC) to hold, the subspace spanned by {VI : length(I) ≥ 2}
must have dimension d − 2. By (1.7) and the definition of Σ(x1, x2), this is equivalent
to requiring that Σ(x1, x2) has rank d− 2. But φ is a vector polynomial, so Σ(x1, x2) has
rank d− 2 if and only if Σ(w1, w2) has rank d− 2. To see this, note that if Σ(x1, x2) has
rank d− 2 for some x ∈ Rd, then there exists a (d− 2)× (d− 2) sub-matrix Σ∗(x1, x2) of
Σ(x1, x2) which is non-singular. From the continuity of the determinant, we conclude
that Σ∗(y1, y2), and hence Σ(y1, y2), has rank d− 2 for all y in an open neighborhood of
x. Conversely, if Σ(x1, x2) has rank less than d − 2 for some x ∈ Rd, then there exist
constants c1, . . . , cd, not all zero, such that

d∑
k=3

ck∂
l+1
1 ∂m2 φk(x1, x2) = 0 , for 1 ≤ l + 1 +m ≤ n .

As φ(x1, x2) = (φ3(x1, x2), . . . , φd(x1, x2)) is a vector polynomial in x1, x2 of degree n,

∂1φ(y1, y2) =
∑

0≤l+m≤n−1

∂l+1
1 ∂m2 φ(x1, x2)

l! m!
(y1 − x1)l(y2 − x2)m , for y ∈ Rd .

Hence,

d∑
k=3

ck∂1φk(y1, y2) =
∑

0≤l+m≤n−1

d∑
k=3

ck
∂l+1

1 ∂m2 φk(x1, x2)

l! m!
(y1 − x1)l(y2 − x2)m = 0 .

So further differentiation yields

d∑
k=3

ck∂
l+1
1 ∂m2 φk(y1, y2) = 0 , for 1 ≤ l + 1 +m ≤ n, y ∈ Rd .

Thus, Σ(y1, y2) has rank less than d − 2 for all y ∈ Rd. From the connectedness of Rd,
Σ(x1, x2) has rank d−2 for some x ∈ Rd if and only if Σ(w1, w2) has rank d−2, completing
the proof of the lemma.
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Remark 2. It follows from the reasoning in the proof of Lemma 1 that VI = 0 whenever
the length of the word I strictly exceeds n (the maximal degree of the polynomial
coefficients σ1, σ2), regardless of whether (PHC) is satisfied or not. From this observation
it follows that any diffusion of the form implied by (1.4) is nilpotent [5]. Nilpotent
diffusions serve as the starting point for many analyses of hypoelliptic diffusions owing
to their simplicity.

Consider the task of immersion coupling two copies X and X̃ of the diffusion starting
from w and w̃ respectively, using driving Brownian motions (W1,W2) and (W̃1, W̃2).
Reflection coupling can be used to bring together the driving Brownian motions first.
Thus there is no loss of generality in assuming that the Brownian starting points agree:
(w1, w2) = (w̃1, w̃2). Referring to the representation (1.6), it suffices to couple the two
diffusions

X∗(t) =

(
w1 +W1(t), w2 +W2(t), w3 +

∫ t

0

φ(w1 +W1(s), w2 +W2(s)) ◦ dW2(s)

)
,

X̃∗(t) =

(
w1 + W̃1(t), w2 + W̃2(t), w̃3 +

∫ t

0

φ(w1 + W̃1(s), w2 + W̃2(s)) ◦ dW̃2(s)

)
,

with starting points differing only in the third, vectorial, coordinates w3, w̃3. (This is
because coupling of the summands Ψ1(w1 +W1(t), w2 +W2(t)) and Ψ1(w1 + W̃1(t), w2 +

W̃2(t)) in (1.6) is immediately implied by coupling of (W1,W2) and (W̃1, W̃2).) Denote

by I(t) the vector formed by
( ∫ t

0
W1(s)l+1W2(s)m◦ dW2(s)

(l+1)! m! : 1 ≤ l + 1 +m ≤ n
)

and similarly

Ĩ(t). Decomposing the polynomials given by the integrands φ(w1+W1(s), w2+W2(s)) and
φ(w1+W̃1(s), w2+W̃2(s)) according to whether or not monomials involveW1 (respectively
W̃1), the last d− 2 coordinates of X∗, X̃∗ can be written in vector form as X∗3 , X̃∗3 where

X∗3 (t) = w3 + P (w2, w2 +W2(t)) + Σ(w1, w2)I(t) ,

X̃∗3 (t) = w̃3 + P (w2, w2 + W̃2(t)) + Σ(w1, w2)Ĩ(t) ,

where P is a polynomial that arises from Stratonovich integration (with respect to W2) of
monomials in w2 +W2 alone. By Lemma 1, (PHC) implies that Σ(w1, w2) has rank d− 2,
hence w3, w̃3 both lie in the space spanned by the columns of Σ(w1, w2). Thus, there are
z∗3 , z̃

∗
3 ∈ Rn(n−1)/2 such that w3 = Σ(w1, w2)z∗3 , w̃3 = Σ(w1, w2)z̃∗3 . Hence

X∗3 (t) = P (w2, w2 +W2(t)) + Σ(w1, w2)(z∗3 + I(t)) ,

X̃∗3 (t) = P (w2, w2 + W̃2(t)) + Σ(w1, w2)(z̃∗3 + Ĩ(t)) .

It follows that if we can successfully couple

(w1 +W1(t), w2 +W2(t), z∗3 + I(t)) ,

(w̃1 + W̃1(t), w̃2 + W̃2(t), z̃∗3 + Ĩ(t)) (1.8)

from arbitrary pairs of starting points (w1, w2, z
∗
3), (w̃1, w̃2, z̃

∗
3) ∈ R×R×Rn(n−1)/2, then

we can successfully couple X and X̃ from arbitrary pairs of starting points. In the next
section, we construct a coupling of the above processes. We show in Theorem 10 that
this coupling is indeed successful, and that moreover the coupling time has a power
law tail. The existence of such a successful coupling immediately implies the following
theorem.

Theorem 3. Consider the diffusion X(t) = (X1(t), X2(t), X3(t)) ∈ Rd (for d ≥ 3, consid-
ering X3 as a (d−2)-dimensional process) defined by the following stochastic differential
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equation:

dX1(t) = dW1(t) ,

dX2(t) = dW2(t) ,

dX3(t) = σ1(X1(t), X2(t)) ◦ dW1(t) + σ2(X1(t), X2(t)) ◦ dW2(t) ,

where (W1,W2) is a two-dimensional standard Brownian motion and σ1, σ2 are polynomial
vector fields such that (PHC) holds. Then there exists a successful Markovian coupling
of two copies of the above diffusion starting from any pair of distinct points.

Theorem 3 summarizes the qualitative content of (and is a direct consequence of)
Theorem 10 stated and proved in Section 4 below, but omits the tail estimate on the
coupling time distribution. It is stated here as a separate theorem in order to highlight
how the Brownian integral couplings constructed in the subsequent sections connect to
the general theme of coupling hypoelliptic diffusions.

2 Technical preliminaries

To facilitate inductive arguments in the following proofs, we fix a total ordering � of
the discrete simplex ∆n = {(a, b) ∈ Z2 : 0 ≤ a, b, a + b ≤ n} (for some fixed n ≥ 1). We
achieve this by specifying a function f : ∆n → Z and defining the order by (a, b) � (c, d)

if f(a, b) ≤ f(c, d).

We choose f(a, b) = 2na + (2n + 1)b: totality of � follows since f takes values
in the totally ordered set Z; antisymmetry holds by a parity argument showing that
f(a, b) = f(c, d) if and only if a = c and b = d; transitivity is immediate. Note that the
�-maximal element of ∆ is (0, n). We remark that � can be replaced by any other total
ordering extending the partial ordering induced by considering a+ b.

From here onwards, to save cumbersome notation, (W1,W2) will denote a two-
dimensional Brownian motion starting from a general point (W1(0),W2(0)) ∈ R2. Let
(a, b) ∈ ∆n be the index representing the Brownian Stratonovich integral I(a,b)(t) =

I(a,b)(0)+
∫ t

0
W a

1 W
b
2 ◦ dW2 (so I(0,0)(t) = W2). We shall refer to such integrals as monomial

Stratonovich integrals. Consider the�-ordered collection of Brownian integrals (deeming
W1 to have precedence over all I(i,j) for (i, j) ∈ ∆)

X(a,b) =
(
W1, I(c,d); (c, d) � (a, b), c ≥ 1

)
.

In the following, it is only necessary to consider c ≥ 1; in the case c = 0, I(c,d) reduces to
a monomial in W2 and so W2 and its coupled counterpart will take equal values for all
time in our coupling construction. Notice also the following: if a = 0 and (a−, b−) is the
predecessor of (a, b) = (0, b) in the � ordering, then X(a−,b−) = X(a,b). This is because
{(c, d) � (0, b), c ≥ 1} = {(c, d) ≺ (0, b), c ≥ 1} = {(c, d) � (a−, b−), c ≥ 1}.

Scaling arguments play a major rôle in the study of these couplings. The following
lemma records a simple but crucial fact about scaling for Stratonovich integrals of
Brownian motions. Consider the scaling transform Sr, defined for any scalar r by

Sr
(
X(a,b)

)
=

(
rW1, r

i+j+1I(i,j) : (i, j) � (a, b), i ≥ 1
)
.

Further, defineW (r)
i (t) = rWi(0)+(Wi(t)−Wi(0)) for i = 1, 2 and I(r)

(a,b)(t) = ra+b+1I(a,b)(0)+∫ t
0
(W

(r)
1 )a(W

(r)
2 )b ◦ dW2 for 0 ≤ a, b, a+ b ≤ n. Write

X
(r)
(a,b) =

(
W

(r)
1 , I

(r)
(c,d); (c, d) � (a, b), c ≥ 1

)
.
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Lemma 4. The following distributional equality holds:(
Sr
(
X(a,b)

)
(t) : t ≥ 0

) D
=

(
X

(r)
(a,b)(r

2t) : t ≥ 0
)
.

Proof. This is a direct consequence of linearity of Stratonovich integration taken together
with the Brownian scaling property

(rWi(t) : t ≥ 0)
D
=

(
W

(r)
i (r2t) : t ≥ 0

)
for i = 1, 2 .

Note that � is a total ordering extension of the partial order on ∆1 given by the
scaling degree, deg((a, b)) = deg(I(a,b)) = a+ b+ 1. Monomial Stratonovich integrals of
lower degree evolve in time faster than those of higher degree; this is a key reason why
our inductive arguments will work.

The following two technical lemmas complete the list of technical preliminaries.

Lemma 5. Let Bt be a standard Brownian motion adapted to a filtration (Ft : t ≥ 0). Let
Yt be a random process and let τ be a stopping time, both adapted to the same filtration.

(i) Suppose there exists ε > 0 and some constants C, α > 0, β > 0, not depending on ε,
such that for all M ≥ 1 and all t ≥ ε,

P

[
sup
t≤τ
|Yt| ≥M

]
≤ CM−α ,

P [τ ≥ t] ≤ C
(ε
t

)β
. (2.1)

Then there exists a further constant C ′ not depending on ε, and positive indices γ′,
γ′′ depending only on α, β such that

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys dBs

∣∣∣∣ ≥ x] ≤ C ′
( ε
x4

)γ′
for x ≥ ε1/4 ,

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys ds

∣∣∣∣ ≥ x] ≤ C ′
( ε
x2

)γ′′
for x ≥ ε1/2 . (2.2)

Here we may take γ′ = (α ∧ β ∧ 1)/8 and γ′′ = (α ∧ β ∧ 2)/8.

(ii) Suppose there exists ε > 0 and some constants C, α > 0, β > 0, not depending on ε,
such that for all M ≥ ε and all t ≥ 1,

P

[
sup
t≤τ
|Yt| ≥M

]
≤ C

( ε

M

)α
,

P [τ ≥ t] ≤ C t−β . (2.3)

Then there exists a further constant C ′ not depending on ε, and positive indices γ′,
γ′′ depending only on α, β such that

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys dBs

∣∣∣∣ ≥ x] ≤ C ′
( ε
x

)γ′
for x ≥ ε ,

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys ds

∣∣∣∣ ≥ x] ≤ C ′
( ε
x2

)γ′′
for x ≥ ε1/2 . (2.4)

Here we may take γ′ = (α ∧ β ∧ 1)/2 and γ′′ = (α ∧ β ∧ 2)/8.
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Proof. Consider the stopping time

σM = inf{t > 0 : |Yt| ≥M} .

The Burholder-Davis-Gundy (BDG) inequality (see for example 17, p. 163), respectively
the monotonicity of the Lebesgue integral, implies that, for any M,T > 0, there exists a
constant C ′′ > 0 not depending on M,T such that

E

[
sup

t≤T∧σM

∣∣∣∣∫ t

0

Ys dBs

∣∣∣∣2
]
≤ C ′′E

[∫ T∧σM

0

(Ys)
2 ds

]
≤ C ′′M2T ,

E

[
sup

t≤T∧σM

∣∣∣∣∫ t

0

Ys ds

∣∣∣∣] ≤ E

[∫ T∧σM

0

|Ys|ds

]
≤ MT .

Under the hypothesis of (i) it follows that, for arbitrary M ≥ 1 and T ≥ ε,

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys dBs

∣∣∣∣ > x

]
≤ P [τ > σM ] + P [τ > T ] + P

[
sup

t≤T∧σM

∣∣∣∣∫ t

0

Ys dBs

∣∣∣∣ ≥ x]
≤ CM−α + CεβT−β + C ′′M2Tx−2 , (2.5)

where the last inequality follows from the hypothesis of (i) together with a Markov
inequality argument. Similarly,

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys ds

∣∣∣∣ ≥ x] ≤ P [τ > σM ] + P [τ > T ] + P

[
sup

t≤T∧σM

∣∣∣∣∫ t

0

Ys ds

∣∣∣∣ ≥ x]
≤ CM−α + CεβT−β +MTx−1 . (2.6)

The first assertion of (i) now follows by optimization. To be explicit, set T =
√
εx and

M = ε−1/8
√
x in (2.5) and use ε ∈ (0, 1) (second inequality) followed by x ≥ ε1/4 (third

inequality) to obtain

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys dBs

∣∣∣∣ > x

]
≤ C

(
ε1/4

x

)α/2
+ C

( ε
x

)β/2
+ C ′′

(
ε1/2

x

)1/2

≤ C

(
ε1/4

x

)α/2
+C

(
ε1/4

x

)β/2
+C ′′

(
ε1/4

x

)1/2

≤ 3 max{C,C ′′}
(
ε1/4

x

)(α∧β∧1)/2

.

The second assertion of (i) follows similarly: set T =
√
εx1/4 and M = ε−1/4x1/4 in (2.6),

and use ε ∈ (0, 1) (second inequality) followed by x ≥ ε1/2 (third inequality) to obtain

P

[
sup
t≤τ

∣∣∣∣∫ t

0

Ys ds

∣∣∣∣ ≥ x] ≤ C
( ε
x

)α/4
+ C

(
ε2

x

)β/4
+

(
ε1/2

x

)1/2

≤ C

(
ε1/2

x

)α/4
+ C

(
ε1/2

x

)β/4
+

(
ε1/2

x

)1/2

≤ 3 max{C, 1}
(
ε1/2

x

)(α∧β∧2)/4

.

The proof of (ii) follows along similar lines (using M =
√
εx and T = ε−1/2

√
x for the

first assertion and M =
√
εx1/4 and T = ε−1/4x1/4 for the second assertion).

Lemma 6. Let Xi, τi be non-negative random variables adapted to a given filtration
(Fi : i ≥ 1) and satisfying

P [Xi+1 > x | Fi] ≤ Cαx
−α , (2.7)

P [τi+1 > t | Fi] ≤ Cβt
−β , (2.8)
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for some α, β > 0 and x, t ≥ 1, where Cα, Cβ are positive constants that do not depend
on i. Then for any γ < α ∧ β there is ε0 > 0 (depending on α, β and γ) such that

P

[
τ1 +

∞∑
k=1

εk0(Πk
j=1Xj)τk+1 > t

]
≤ C ′βt

−γ

for some constant C ′β depending only on β, and t ≥ 1.

Proof. Set Πk = Πk
j=1Xj for k ≥ 1, with Π0 = 1. Take any γ < α∧β. Using E

[
Xγ
i+1 | Fi

]
≤

1+
∫∞

1
P
[
Xγ
i+1 > x | Fi

]
dx, it follows from (2.7) that E

[
Xγ
i+1 | Fi

]
≤ 1+ γCα

α−γ <∞. Hence,
for ε > 0,

E
[
(εkΠk)γ

]
≤

[
ε

(
1 +

γCα
α− γ

)1/γ
]kγ

. (2.9)

For any ε > 0, we can write for any t ≥ 1,

P

[ ∞∑
k=0

εkΠkτk+1 > tβ/γ

]
≤

P

[ ∞∑
k=0

εkΠkτk+1 >

∞∑
k=0

2−k(εkΠk)1− γβ t

]
+ P

[ ∞∑
k=0

2−k(εkΠk)1− γβ > t
β
γ−1

]
(2.10)

(adopting the convention that P [Z >∞] = 0 for any random variable Z). Take ε0 > 0

satisfying ε0(1 + γCα
α−γ )1/γ = 4−β/γ . Then

P

[ ∞∑
k=0

εk0Πkτk+1 >

∞∑
k=0

2−k(εk0Πk)1− γβ t

]
≤

∞∑
k=0

P
[
τk+1 > 2−k(εk0Πk)−γ/βt

]
≤ max{1, Cβ}t−β

∞∑
k=0

2kβ E
[
(εk0Πk)γ

]
≤ max{1, Cβ}t−β

∞∑
k=0

2−kβ = C ′βt
−β ,

where the second inequality is obtained using (2.8), and the third by using (2.9) together
with the specific choice of ε0. We have used max{1, Cβ} in place of Cβ to account for the
situation when 2−k(εk0Πk)−γ/βt < 1. Furthermore

P

[ ∞∑
k=1

2−k(εk0Πk)1− γβ > t
β
γ−1

]
≤

∞∑
k=1

P
[
(εk0Πk)γ > tβ

]
≤ t−β

∞∑
k=1

E
[
(εk0Πk)γ

]
≤ t−β

∞∑
k=1

4−kβ = C ′βt
−β ,

where we have used the Markov inequality to obtain the second inequality above and
(2.9) together with the choice of ε0 for the third inequality.

The above estimates can be used with (2.10) to show

P

[ ∞∑
k=1

εk0Πkτk+1 > tβ/γ

]
≤ 2C ′βt

−β ,

which proves the lemma.
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3 Coupling BM(R2) and a single monomial Stratonovich integral

In this section, we construct couplings of (W1,W2, I(a,b)) and (W̃1, W̃2, Ĩ(a,b)) for
(a, b) ∈ ∆n, a ≥ 1, b ≥ 0. The cases a + b = 1 (which implies a = 1, b = 0) and a + b > 1

differ in complexity, so we first consider the simpler case a + b = 1 (Lemma 7). This
case is significantly easier to describe, and corresponds to the case of Brownian motion
on the Heisenberg group already treated in [6] and [19] as noted in Remark 8 below;
however the present technique carries through to the case a+ b > 1 (Lemma 9). Thus,
the construction given in the simplest non-trivial case (Lemma 7) is a good model for the
general approach. Lemma 9 deals with coupling just one monomial Stratonovich integral
of more general form, but this is an essential component of the inductive argument that
will be required to establish coupling for a finite set of monomial Stratonovich integrals
in Section 4.

We will use some further notation, namely ∆W1 = W1−W̃1 and ∆I(a,b) = I(a,b)− Ĩ(a,b).

3.1 Case of simplest non-trivial monomial Stratonovich integral

The next lemma establishes a coupling result based on a driving 2-dimensional
Brownian motion W1,W2 plus the single monomial stochastic integral I(1,0).

Lemma 7. For any γ < 1
3 , there exists a successful Markovian coupling Pγ of (W1,W2,

I(1,0)) and (W̃1, W̃2, Ĩ(1,0)) started from distinct points (w1, w2, i) and (w1, w2, ĩ) respec-
tively, with coupling time Tγ , satisfying

sup
w1,w2,|i−̃i|≤1

Pγ [Tγ > t] ≤ Cγt−γ , t ≥ 1. (3.1)

Proof. We first outline the general proof strategy. At all times W2 and W̃2 will be syn-
chronously coupled; hence W2(t) = W̃2(t) for all t ≥ 0. Brownian scaling as given in
Lemma 4 can be used to re-scale to a unit difference between the two stochastic inte-
grals, thus reducing all cases to the case of starting points (w1, w2, i) and (w1, w2, i− 1)

for w, i ∈ R. The coupling decomposes naturally into disjoint cycles. Each cycle consists
of a patterned alternation between phases of reflection and synchronous coupling for
W1 and W̃1, so that the distance between the coupled processes (W1,W2, I(1,0)) and

(W̃1, W̃2, Ĩ(1,0)) at the end of the cycle is roughly a fixed proportion of the distance
between them at the start of the cycle. At the end of each cycle, the next cycle is con-
structed by applying the same coupling strategy as the previous cycle after appropriately
re-scaling the coupled processes via Lemma 4, so that there is unit re-scaled distance
between them at the start of the next cycle. Lemma 6 is then used to show that the
end-points of these cycles have an accumulation point which corresponds to a finite
coupling time. As the coupling strategy within each cycle is the same (modulo re-scaling),
it is sufficient to describe in detail only the construction of the first cycle. Note that
iterated cycles and re-scaling to achieve successful coupling have been used to couple
Kolmogorov diffusions by Ben Arous et al. [6], Kendall and Price [22], Banerjee and
Kendall [3].

A: Description of the first cycle
As noted before, the scaling argument represented by Lemma 4 shows there is no loss
of generality in assuming that |∆I(1,0)(0)| = 1. Choose and fix a constant R > 1. The
estimates derived for the first cycle will be uniform with respect to R > 1 and an optimal
choice of R will be made at the end of the proof. In the proof, C,C1, C2, . . . will denote
generic positive constants whose values will not depend on R,w1, w2, i and whose value
might change from line to line. The first cycle consists of three phases whose end-points
are defined by the following stopping times:
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1: T1 = inf{t ≥ 0 : |∆W1(t)| = R−1}, reflection till W1 − W̃1 hits ±R−1;

2: T2 = inf{t ≥ T1 : ∆I(1,0)(t) = 0}, synchronous till I(1,0) − Ĩ(1,0) hits 0;

3: T3 = inf{t ≥ T2 : ∆W1(t) = 0}, reflection till W1 − W̃1 hits 0.

Phase 1: Using Brownian scaling, independent Brownian increments, and eigenvalues of
the Laplacian with Dirichlet boundary conditions on [−1, 1], together with W1(0) = W̃1(0),
it follows that

P
[
T1 > t/R2

]
≤ Ce−π

2t/8 . (3.2)

Now consider the increment of ∆I(a,b) over the time interval [0, T1]. Since the second

Brownian coordinates satisfy W2 = W̃2 throughout the entire coupling, and the first
Brownian coordinates W1, W̃1 are reflection coupled hence independent of W2 = W̃2, we
may re-write the Stratonovich integral for the increment as an Itô integral:

∆I(1,0)(T1)−∆I(1,0)(0) =

∫ T1

0

∆W1(s) dW2(s) .

On the other hand, supt∈[0,T1] |∆W1(t)| = 1
R by definition of T1. Using the L2-isometry of

the Itô integral,

E

∣∣∣∣∣
∫ T1

0

∆W1(s) dW2(s)

∣∣∣∣∣
2
 = E

[∫ T1

0

(∆W1(s))2 ds

]
≤ 1

R2
E [T1] ≤ C

R4
,

where the last inequality follows from (3.2) using E [T1] =
∫∞

0
P [T1 > t] dt.

By a Markov inequality argument, it now follows for any x > 0 that

P
[
|∆I(1,0)(T1)−∆I(1,0)(0)| > x

]
≤ C

R4x2
.

But we have assumed that |∆I(1,0)(0)| = 1, so for any x ≥ 2

P
[
|∆I(1,0)(T1)| > x

]
≤ P

[
|∆I(1,0)(T1)−∆I(1,0)(0)| > x− 1

]
≤ C

R4(x− 1)2

≤ 4C

R4x2
. (3.3)

Phase 2: Because we are constructing a Markovian coupling, we may condition on
the past of the driving Brownian motions till time T1. Under synchronous coupling
the Stratonovich expression for the increment of ∆I(a,b) over the time interval [T1, T2]

can again be re-written as an Itô integral, only now ∆W1(s) = ∆W1(T1) while s ∈
[T1, T2]. Thus in this time interval ∆I(a,b)(s)−∆I(a,b)(T1) = ∆W1(T1)× (W2(s)−W2(T1)).
Since ∆W1(T1) = R−1 by construction of T1, it follows that T2 − T1 has the same
distribution as the hitting time of a one-dimensional Brownian motion on the level
−R sgn(∆W1(T1))∆I(1,0)(T1). Thus, for x ≥ 2 and t > 0, we can assert that

P [T2 − T1 > t] ≤ P
[
|∆I(1,0)(T1)| > x

]
+ P

[
T2 − T1 > t and |∆I(1,0)(T1)| ≤ x

]
≤ 4C

R4x2
+
CRx√
t
,

where the last inequality is a consequence of (3.3) and a hitting time estimate for
Brownian motions derived from the reflection principle. Taking x = t1/6 in the above
expression and recalling that R > 1,

P [T2 − T1 > t] ≤ 4C

R4t1/3
+
CR

t1/3
≤ 5CR

t1/3
for t ≥ 26 .
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The above expression gives a useful bound on the probability P [T2 − T1 > t] only when
t ≥ (5CR)3. We therefore adjust the above bound (using C as a new generic positive
constant):

P [T2 − T1 > t] ≤ CR

t1/3
for t ≥ CR3 . (3.4)

Note that ∆I(1,0)(T2) = 0 follows from the definition of T2.

Phase 3: Using reflection coupling, and conditioning on the past at time T2, we may
view T3 − T2 as the hitting time of level 1

2R by a standard Brownian motion. Employing
the reflection principle for Brownian motion

P
[
T3 − T2 > t/R2

]
≤

√
2

π

1√
t

for t ≥ 1 . (3.5)

Moreover, for x > R−2, H > R−2, and once again re-writing the Stratonovich integral of
∆I(1,0) as an Itô integral,

P
[
|∆I(1,0)(T3)| > x

]
≤ P [T3 − T2 > H] + P

[
|∆I(1,0)(T3)| > x, T3 − T2 ≤ H

]
≤ P [T3 − T2 > H] + P

[
sup

T2≤t≤T2+H

∣∣∣∣∫ t

T2

(∆W1)(s) dW2(s)

∣∣∣∣ > x

]
≤

√
2

π

1

R
√
H

+
CH

x2
E

[
sup

T2≤t≤T2+H
|∆W1(t)|2

]
(by (3.5), Tchebychev and BDG inequalities)

≤
√

2

π

1

R
√
H

+
CH

x2

(
1

R2
+H

)
(using |∆W1(T2)| = R−1 and Doob’s L2-maximal inequality)

≤
√

2

π

1

R
√
H

+
CH2

x2

(
as H >

1

R2

)
.

Taking H = x4/5

R2/5 , we obtain a bound

P
[
|∆I(1,0)(T3)| > x

]
≤ C

(R2x)2/5
, for x >

1

R2
. (3.6)

Moreover, the combined effect of the estimates in (3.2), (3.4) and (3.5) can be summa-
rized as

P [T3 > t] ≤ CR

t1/3
, for t ≥ CR3 . (3.7)

The estimates (3.6) and (3.7) give bounds on the difference of the integrals I(1,0) and Ĩ(1,0)

at the end of the first cycle and the time taken to complete the first cycle respectively.

B: Describing subsequent cycles and successful coupling
For t ≥ T3, define further stopping times Tk, k > 3, such that for any k ≥ 1,

|∆I(1,0)(T3k)|−1T3k+j , j = 1, 2, 3,

is the time of completion of the jth phase of the first cycle constructed above for the
re-scaled processes

(|∆I(1,0)(T3k)|−1/2W1(T3k+t), |∆I(1,0)(T3k)|−1/2W2(T3k+t), |∆I(1,0)(T3k)|−1I(0,1)(T3k+t))t≥0

and

(|∆I(1,0)(T3k)|−1/2W̃1(T3k+t), |∆I(1,0)(T3k)|−1/2W̃2(T3k+t), |∆I(1,0)(T3k)|−1Ĩ(0,1)(T3k+t))t≥0
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in place of (W1(t),W2(t), I(0,1)(t))t≥0 and (W̃1(t), W̃2(t), Ĩ(0,1)(t))t≥0 respectively.
The concatenation of these cycles does in fact lead to a successful coupling. The

proof of this follows from two facts:

(i) limk→∞∆I(1,0)(T3k) = 0, meaning that the coupled processes, observed at the
end-points of the cycles, come arbitrarily close as the number of cycles becomes
large, and

(ii) limk→∞ T3k <∞ almost surely, meaning that the end points of these cycles have a
finite accumulation point T∞, so that the concatenation completes in finite time.

Continuity of Brownian motion and stochastic integrals then implies successful coupling
at time T∞.

We now demonstrate that these two facts follow from Lemma 6. Define

τ∗k =
T3k − T3k−3

|∆I(1,0)(T3k−3)|
, X∗k =

R2|∆I(1,0)(T3k)|
|∆I(1,0)(T3k−3)|

, for k ≥ 1 , (3.8)

where we take T0 = 0. Applying Lemma 4 to (3.6), the pair (X∗k , 1) satisfies the hypothe-
ses of (Xk, τk) of Lemma 6 with α = 2/5 and any β > 0. Thus, Lemma 6 implies that
there is R0 > 1 such that for all R ≥ R0,

∞∑
k=1

R−2k
(
Πk
j=1X

∗
j

)
< ∞, almost surely.

Choosing R ≥ R0 in the description of the first cycle, |∆I(1,0)(T3k)| = R−2k
(
Πk
j=1X

∗
j

)
and

consequently, limk→∞∆I(1,0)(T3k) = 0 almost surely.
To prove that the coupling is successful in finite time almost surely and that the

coupling time has a power law tail given by (3.1), apply Lemma 4 to (3.6) and (3.7):
(X∗k , τ

∗
k/R

3) satisfies the hypotheses of (Xk, τk) of Lemma 6 with α = 2/5 and β = 1/3.
Thus, by Lemma 6, for any 0 < γ < 1/3, there is Rγ > 1 such that for any R ≥ Rγ ,

P

[
τ∗1 +

∞∑
k=1

R−2k
(
Πk
j=1X

∗
j

)
τ∗k+1 > R3t

]
≤ Ct−γ . (3.9)

Now observe the following product collapses because of the definitions expressed by
(3.8):

R−2k
(
Πk
j=1X

∗
j

)
τ∗k+1 = (T3(k+1) − T3k)/∆I(0,1)(T0) .

Thus, for any 0 < γ < 1/3, the above coupling construction with R = max{R0, Rγ} gives
the required successful coupling satisfying (3.1).

Remark 8. Recall the Brownian motion in the Heisenberg group started at (w1, w2, i),
defined as the R3 valued process given by

((W1(t),W2(t), i +

∫ t

0

W1(s) dW2(s)−
∫ t

0

W2(s) dW1(s)) : t ≥ 0),

where (W1,W2) is a two-dimensional Brownian motion started at (w1, w2). Lemma 7 is of
independent interest as it gives a successful Markovian coupling of Brownian motions
on the Heisenberg group started at (w1, w2, i) and (w1, w2, ĩ) with explicit bounds on the
tail probabilities of the coupling time. To see this, note that by the Itô formula,

W1(t)W2(t)−W1(0)W2(0) =

∫ t

0

W1(s) dW2(s) +

∫ t

0

W2(s) dW1(s) , for t ≥ 0.

EJP 23 (2018), paper 24.
Page 16/43

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP150
http://www.imstat.org/ejp/


Coupling polynomial Stratonovich integrals

From this, we obtain

i +

∫ t

0

W1(s) dW2(s)−
∫ t

0

W2(s) dW1(s)

= 2

(
i

2
+

∫ t

0

W1(s) dW2(s)

)
−
(∫ t

0

W1(s) dW2(s) +

∫ t

0

W2(s) dW1(s)

)
= 2

(
i

2
+

∫ t

0

W1(s) dW2(s)

)
− (W1(t)W2(t)−W1(0)W2(0)) .

Thus, the successful coupling construction given in Lemma 7 for (W1,W2, I(1,0)) and

(W̃1, W̃2, Ĩ(1,0)), started from (w1, w2, i/2) and (w1, w2, ĩ/2) respectively, is also a successful
coupling of the corresponding Brownian motions on the Heisenberg group started from
(w1, w2, i) and (w1, w2, ĩ). Couplings of Brownian motions on the Heisenberg group have
appeared in several papers in recent times: [6] and [19] have constructed successful
Markovian couplings of Brownian motions for the Heisenberg group. Kendall [20,
Theorem 3.1] established some coupling time distribution asymptotics for the coupling
constructed in [19], under some limiting operation on the starting points. But our
result gives explicit bounds on the tail probabilities of the coupling time for each t

and each pair of starting points (w1, w2, i) and (w1, w2, ĩ) (in fact, this coupling can
be extended to general pairs of distinct starting points (w1, w2, i) and (w̃1, w̃2, ĩ) and
associated bounds can be derived). Moreover, the tail probabilities of the coupling time
of Kendall [20, Theorem 3.1] decay at best like t−1/6; the rate in Lemma 7 is significantly
better. We note here however (a) that the treatment by [6] and [19] uses an invariant
difference that permits a generalization which couples all possible stochastic areas for a
d-dimensional Brownian motion [19]; (b) that Banerjee et al. [2, Lemma 3.1] obtained
a non-Markovian coupling for Brownian motions on the Heisenberg group started at
(w1, w2, i) and (w1, w2, ĩ) that attains the total variation bound (the best possible bound on
the tails of coupling time distribution), and decays like t−1, which is significantly better
than the bound in Lemma 7. Moreover Markovian couplings cannot reach a bound that
decays faster than t−1/2 [2, Remark 3.2]. It would be interesting to investigate whether
the bound t−1/2 can be attained, or whether t−1/3 is the best bound for Markovian
couplings.

3.2 Case of general monomial Stratonovich integral

The next lemma generalizes the previous coupling construction, establishing a cou-
pling result based on a driving 2-dimensional Brownian motion plus a single monomial
stochastic integral: (W1,W2, I(a,b)) for a single fixed (a, b) ∈ ∆n with a ≥ 1, b ≥ 0 and
a+ b > 1. Recall from Section 2 that f(k, l) = 2nk + (2n+ 1)l.

Lemma 9. For any (a, b) ∈ ∆n with a ≥ 1, b ≥ 0, a + b > 1, there exists R0 > 1 such
that for each R ≥ R0, we can obtain a successful Markovian coupling construction PR
of (W1,W2, I(a,b)) and (W̃1, W̃2, Ĩ(a,b)) starting from (w,Rw, i) and (w,Rw, ĩ) respectively,
with coupling time TR,(a,b), such that:

(i) There are positive constants γ, C not depending on R such that, for large t,

sup
{
PR
[
TR,(a,b) > R4n+2t

]
: w, i, ĩ ∈ R, |i− ĩ| ≤ 1

}
≤ Ct−γ . (3.10)

In the interval [0, TR,(a,b)] we identify the active region SR,(a,b),

SR,(a,b) = closure of {t ≤ TR,(a,b) : W1(t) 6= W̃1(t)}.
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SR,(a,b) depends on R, a, b; both [0, TR,(a,b)) ∩ SR,(a,b) and [0, TR,(a,b)) \ (interior of
SR,(a,b)) are unions of countable sequences of disjoint random closed intervals,
where for each sequence of intervals the left-end-points of the intervals form an
increasing sequence. Writing the total length of SR,(a,b) by |SR,(a,b)|, the following
holds for large t,

sup
{
PR
[
|SR,(a,b)| > t

]
: w, i, ĩ ∈ R, |i− ĩ| ≤ 1

}
≤ Ct−γ . (3.11)

(ii) There are positive constants α, C not depending on R such that for large t,

sup

{
PR

[
sup

t≤TR,(a,b)
|W1(t)− W̃1(t)| > x/Rf(a−1,b)

]
: w, i, ĩ ∈ R, |i− ĩ| ≤ 1

}
≤ Cx−α . (3.12)

For convenience, we will prove the inequalities (3.10), (3.11) and (3.12) for t ≥ 1.

Proof. As before, W2 and W̃2 will be synchronously coupled at all times so we may take
W2 = W̃2. Brownian scaling (Lemma 4) can be applied to ensure the monomial stochastic
integrals differ by 1: so it suffices to consider starting points (w,Rw, i) and (w,Rw, i− 1)

for w, i ∈ R. Let γ, δ, C,C1, C2 . . . be generic positive constants not depending on R,w, i,
(but often depending on a and b) whose values might change from line to line.

The proof uses some martingale estimates, so we will use the decomposition of the
Stratonovich integral I(a,b) in Itô integral form:

I(a,b)(t) = I(a,b)(0) +

∫ t

0

W1(s)aW2(s)b dW2(s) +
b

2

∫ t

0

W1(s)aW2(s)b−1 ds . (3.13)

In contrast with the case of Lemma 7, here the Stratonovich integral has a drift compo-
nent if b ≥ 1.

As in the previous lemma, the coupling decomposes into disjoint cycles, and the
successive cycles are connected via scaling. We describe the first cycle and then
discusses the total effect of this and subsequent cycles on finiteness and moment
estimates for the coupling time.

A: Description of the first cycle
The first cycle consists of five phases. The coupling strategy alternates between syn-
chronous coupling and reflection coupling ofW1 and W̃1 between the phases. We will first
describe each phase in terms of an arbitrary value of the tuning parameter R ≥ R0 > 1.
The estimates derived for the first cycle will hold uniformly with respect to R > 1 and the
appropriate lower bound R0 for R will arise in the course of the proof and be specified
at the end of the coupling construction. The end-points of the five phases are defined by
the following stopping times. Initially W1(0) = W̃1(0) (W2 = W̃2 throughout.)

1: θ1 = inf{t ≥ 0 : W2(t) = RW1(t) and |W1(t)| ≥ R2n}, synchronous till W1

hits R−1W2

and |W1| ≥ R2n, and

note W1(θ1) = W̃1(θ1);

2: τ1 = inf
{
t ≥ θ1 : |∆W1(t)| = 1

|W1(θ1)|a+b−1Rb

}
, reflection till ∆W1 hits

± 1
|W1(θ1)|a+b−1Rb

,

and note
W1(τ1)−W1(θ1)

= −(W̃1(τ1)− W̃1(θ1));
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3: η1 = inf{t ≥ τ1 : W2(t) = W2(τ1)− a−1 sgn(∆W1(τ1))(sgn(W1(θ1)))a+b−1},
synchronous till W2 −W2(τ1)

hits

− sgn(∆W1(τ1))(sgn(W1(θ1)))a+b−1

a ,
and note
W1(η1)−W1(τ1)

= W̃1(η1)− W̃1(τ1);
4: λ1 = inf{t ≥ η1 : ∆W1(t) = 0}, reflection till ∆W1 hits 0,

and note W1(λ1) = W̃1(λ1);
5: β1 = inf{t ≥ λ1 : W2(t) = RW1(t)}, synchronous till RW1 −W2

hits 0,

and note W1(β1) = W̃1(β1).

Note that the first and last phases both use synchronous coupling. However we do not
amalgamate these across cycles, since at the βk times we have RW1 = W2 as well as
W = W̃ .

Phase 1: In this phase, synchronous coupling of W1 and W̃1 is applied on [0, θ1], where
θ1 is the stopping time defined above. The Brownian motions agree at time 0 and are
synchronously coupled on [0, θ1], so agree over the whole interval [0, θ1]. Therefore
∆I(a,b)(θ1) = ∆I(a,b)(0) = 1.

We first estimate the tail probability of θ1 as follows. If t ≥ 1 then

P
[
θ1 > R4n+2t

]
≤ C log t√

t
. (3.14)

To see this, note that θ1 is obtained by starting a planar Brownian motion located at
distance

√
1 +R2w along the line W2 = RW1 from the origin, and running it till it hits

the diagonal W2 = RW1 at a distance at least R2n from the origin. By Brownian scaling
and rotational invariance of planar Brownian motion, θ1 is stochastically dominated by
R4n+2θ′1, where

θ′1 = inf{t > 0 : W ∗1 (t) = 0, |W ∗2 (t)| ≥
√

2} .

Here (W ∗1 ,W
∗
2 ) is a planar Brownian motion (W ∗1 ,W

∗
2 ) with W ∗1 (0) = 0,W ∗2 (0) =

√
1+R2w
R2n+1 ;

if
√

2 were replaced by
√

1 +R−2 then the stochastic domination would become an
equality (recall, R > 1). If L(t) denotes the local time of W ∗1 at 0 at time t and ζ(t)

denotes the inverse local time, then W ∗2 (ζ(t)) = C(t), where C is a Cauchy process
starting at

√
1 +R2w/R2n+1. If L(θ′1) > s, then the continuity of L implies θ′1 > ζ(s).

The range of ζ is a subset of the set of times where the monotone function L increases
(namely, the times where W ∗1 = 0), so θ′1 > ζ(s) yields

√
2 > W ∗2 (ζ(s)) from the definition

of θ′1. Hence, for t ≥ 1, and u = C−1
2 log t for a certain positive constant C2,

P [θ′1 > t] ≤ P [L(t) ≤ u] + P [θ′1 > t, L(t) > u]

≤ P [L(t) ≤ u] + P [L(θ′1) > u] ≤ P [L(t) ≤ u] + P

[
sup
s≤u
|C(s)| ≤

√
2

]
. (3.15)

By the Lévy transform, the local time process (L(s) : s ≥ 0) has the distribution of the
running supremum of Brownian motion, so

P [L(t) ≤ u] ≤ 2

π

u√
t
.

To bound the second probability in (3.15), recall that the Cauchy process C is a pure jump
Lévy process. Consequently, the increments (C(j)− C(j − 1) : 1 ≤ j ≤ buc) are i.i.d. with
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a common Cauchy distribution. If sups≤u |C(s)| ≤
√

2 holds then |C(j)− C(j − 1)| ≤ 2
√

2

for 1 ≤ j ≤ buc, and therefore (using positive constants C1, C2 not depending on w)

P

[
sup
s≤u
|C(s)| ≤

√
2

]
≤ C1e

−C2u .

Applying these bounds to (3.15),

P [θ′1 > t] ≤
√

2u√
πt

+ C1e
−C2u .

The required bound (3.14) follows by taking u = C−1
2 log t and choosing a suitable C

bearing in mind that t ≥ 1.

Phase 2: This phase employs reflection coupling between W1 and W̃1, and runs from
time θ1 till the stopping time

τ1 = inf

{
t ≥ θ1 : |∆W1(t)| = 1

|W1(θ1)|a+b−1Rb

}
.

Phase 1 leaves |W1(θ1)| ≥ R2n. Using f(a− 1, b) = 2n(a− 1) + (2n+ 1)b,

sup
t∈[θ1,τ1]

|∆W1(t)| =
1

|W1(θ1)|a+b−1Rb
≤ 1

R2n(a+b−1)Rb
=

1

Rf(a−1,b)
.

Thus, for t ≥ 1, applying successively reflection coupling and Brownian scaling,

P
[
τ1 − θ1 > t/R2f(a−1,b)

]
≤ P

[
sup

0≤s−θ1≤t/R2f(a−1,b)

|∆W1(s)| ≤ 1

Rf(a−1,b)

]

= P

[
sup

0≤s−θ1≤t/R2f(a−1,b)

|W1(s)−W1(θ1)| ≤ 1

2Rf(a−1,b)

]

= P

[
sup
s∈[0,t]

|W1(s)| ≤ 1

2

]
≤ C1e

−C2t . (3.16)

Consider the telescoping sum (for s ≥ 0),

(W1(s)a − W̃1(s)a)W2(s)b

= ∆W1(s)(W1(s)a−1 +W1(s)a−2W̃1(s) + · · ·+ W̃1(s)a−1)W2(s)b. (3.17)

Since W2(θ1) = RW1(θ1), we know

sup
s∈[θ1,τ1]

|∆W1(s)| = 1

|W1(θ1)|a+b−1Rb
=

1

|W1(θ1)|a−1|W2(θ1)|b
.

So, for 1 ≤ k ≤ a,

P

[
sup

θ1≤s≤τ1
|∆W1(s)||W1(s)|a−k|W̃1(s)|k−1|W2(s)|b > x

]
≤

P

 sup
θ1≤s≤τ1

∣∣∣∣ W1(s)

W1(θ1)

∣∣∣∣a−k
∣∣∣∣∣ W̃2(s)

W̃1(θ1)

∣∣∣∣∣
k−1 ∣∣∣∣ W2(s)

W2(θ1)

∣∣∣∣b > x

 . (3.18)

As W1 and W̃1 are reflection coupled in [θ1, τ1], therefore

sup
θ1≤s≤τ1

|W1(s)−W1(θ1)| = sup
θ1≤s≤τ1

|W̃1(s)−W̃1(θ1)| =
1

2|W1(θ1)|a+b−1Rb
≤ 1

2Rf(a−1,b)
.

(3.19)
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Writing W1(s) = (W1(s)−W1(θ1)) +W1(θ1) and using R > 1 and |W1(θ1)| ≥ R2n as well
as (3.19),

sup
θ1≤s≤τ1

∣∣∣∣ W1(s)

W1(θ1)

∣∣∣∣ ≤ 2 , sup
θ1≤s≤τ1

∣∣∣∣∣ W̃1(s)

W̃1(θ1)

∣∣∣∣∣ ≤ 2 . (3.20)

If b = 0 then the right-hand side of (3.18) simplifies, and for x > 2a−1 it is immediate that

P

[
sup

θ1≤s≤τ1
|∆W1(s)||W1(s)|a−k|W̃1(s)|k−1|W2(s)|b > x

]
≤

P

 sup
θ1≤s≤τ1

∣∣∣∣ W1(s)

W1(θ1)

∣∣∣∣a−k
∣∣∣∣∣ W̃1(s)

W̃1(θ1)

∣∣∣∣∣
k−1

> x

 = 0 . (3.21)

If b ≥ 1, we can use (3.18) with (3.20) to obtain

P

[
sup

θ1≤s≤τ1
|∆W1(s)||W1(s)|a−k|W̃1(s)|k−1|W2(s)|b > x

]
≤ P

[
2a−1 sup

θ1≤s≤τ1

∣∣∣∣ W2(s)

W2(θ1)

∣∣∣∣b > x

]
= P

[
sup

θ1≤s≤τ1
|W2(s)| > (x1/b/2(a−1)/b)|W2(θ1)|

]
≤ P

[
sup

θ1≤s≤τ1
|W2(s)−W2(θ1)| >

(
(x1/b/2(a−1)/b)− 1

)
|W2(θ1)|

]
.

Now introduce the requirement that x ≥ 2a+b−1, so that (x1/b/2(a−1)/b)−1 ≥ (x/2a+b−1)1/b

for x ≥ 2a+b−1. Applying this together with |W2(θ1)| ≥ R2n+1, and then applying a Markov
inequality argument, followed by an application of the BDG inequality [17, p. 163] after
conditioning on σ{(W1(s),W2(s)) : s ≤ θ1},

P

[
sup

θ1≤s≤τ1
|∆W1(s)||W1(s)|a−k|W̃1(s)|k−1|W2(s)|b > x

]
≤ P

[
sup

θ1≤s≤τ1
|W2(s)−W2(θ1)| > (x/2a+b−1)1/bR2n+1

]

≤
22(a+b−1)/bE

[
supθ1≤s≤τ1 |W2(s)−W2(θ1)|

]2
x2/bR4n+2

≤ 22(a+b−1)/bE [τ1 − θ1]

x2/bR4n+2
C when x ≥ 2a+b−1 . (3.22)

From (3.16), since f(a− 1, b) ≥ 2n+ 1 for a, b ≥ 1,

E [τ1 − θ1] ≤ C

R2f(a−1,b)
≤ C

R4n+2
. (3.23)

Using this estimate in (3.22), and using a new constant C, we obtain the following when
b ≥ 1, when x ≥ 2a+b−1,

P

[
sup

θ1≤s≤τ1
|∆W1(s)||W1(s)|a−k|W̃1(t)|k−1|W2(s)|b > x

]
≤ 22(a+b−1)/b

R8n+4x2/b
C . (3.24)

Note that (3.21) yields an upper bound of 0 when b = 0 (and x > 2a−1). Using (3.24) in
(3.17), for whatever b, and writing x = 2a+b−1M for future convenience of exposition, if
M > 1 then

P

[
sup

θ1≤s≤τ1

∣∣∣∣∣ (W1(s)a − W̃1(s)a)W2(s)b

a2a+b−1

∣∣∣∣∣ > M

]
≤

{
a

R8n+4M2/b C if b ≥ 1 ,

0 if b = 0 .
(3.25)
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We now rewrite (3.25) and (3.16) to match the first assertion in part (i) of Lemma
5 (after conditioning on σ{(W1(s),W2(s)) : s ≤ θ1}). For s > θ1, we set t = s − θ1,

B(t) = W2(t + θ1) −W2(θ1), Yt = (W1(s)a−W̃1(s)a)W2(s)b

a2a+b−1 , τ = τ1 − θ1, ε = R−1. To match
the indices in part (i) of Lemma 5, set α = 2/b, β = 2 if b ≥ 1, and choose any β > 0 if
b = 0. Then (3.25) is equivalent to the following, holding when M > 1:

P

[
sup

0≤t≤τ
|Yt| > M

]
≤

{
aε8n+4

Mα C if b ≥ 1 ,

0 if b = 0 .

Note that ε < 1 (since R > 1), so the above implies the weaker inequality, if M > 1 then

P

[
sup

0≤t≤τ
|Yt| > M

]
≤ aC M−α .

On the other hand (3.16) becomes

P
[
τ > tε4n(a+b−1)+2b

]
≤ C1e

−C2t .

Noting e−C2t ≤ 1/(C2t)
2 for t > 0, and then re-scaling time and using n ≥ 1, a + b > 1,

we obtain

P [τ > t] ≤ C1e
−C2t/ε

4n(a+b−1)+2b

≤ (C1/C
2
2 )ε8n(a+b−1)+4bt−2 ≤ (C1/C

2
2 )ε2/t2 .

We can now apply the first assertion in part (i) of Lemma 5 to deduce the following.
For z > ε1/4,

P

[∣∣∣∣∫ τ

0

Ys dBs

∣∣∣∣ ≥ z] ≤ C ′ ε1/(4(b∨2))

z1/(b∨2)
.

Writing Ys in full, this amounts to the following: when x > a2a+b−1R−1/4, and taking
γ′ = 1/(b ∨ 2),

P

[∣∣∣∣∫ τ1

θ1

(W1(s)a − W̃1(s)a)W2(s)b dW2(s)

∣∣∣∣ > x

]
≤ C ′′

(R1/4x)γ′
. (3.26)

A similar procedure leads to a bound concerning
∫ τ1
θ1

(W1(s)a − W̃1(s)a)W2(s)b−1 ds.
Here we need only argue for the case b ≥ 1, as the time integral does not appear for
I(a,0). Referring to (3.25), but using b− 1 instead of b, if M > 1 then we obtain

P

[
sup

θ1≤s≤τ1

∣∣∣∣∣ (W1(s)a − W̃1(s)a)W2(s)b−1

a2a+b−2

∣∣∣∣∣ > M

]
≤

{
a

R8n+4M2/(b−1) C if b ≥ 2 ,

0 if b = 1 .

(3.27)

Choosing B, ε and τ as before, and again conditioning on σ{(W1(s),W2(s)) : s ≤ θ1}, but

now setting Yt = (W1(t)a−W̃1(t)a)W2(t)b−1

a2a+b−2 . To match the indices in part (i) of Lemma 5, set
α = 2/(b− 1) (for b > 1), and take any β > α. When M > 1,

P

[
sup

0≤t≤τ
|Yt| > M

]
≤

{
aε8n+4

Mα C if b ≥ 2 ,

0 if b = 1 .

Applying the second assertion in part (i) of Lemma 5, and using γ′′ = 1
2 (1/(1 ∨ (b− 1))),

P

[∣∣∣∣∫ τ1

θ1

(W1(s)a − W̃1(s)a)W2(s)b−1 ds

∣∣∣∣ > x

]
≤ C

(R1/2x)γ′′
for x > a2a+b−2R−1/2.

(3.28)
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Applying the inequalities (3.26) and (3.28) to the Itô representation of I(a,b) given in
(3.13), we conclude that for any a ≥ 1, b ≥ 0, a+ b > 1, if x > a2a+b−1R−1/4 then

P
[
|∆I(a,b)(τ1)−∆I(a,b)(θ1)| > x

]
≤ C

(R1/4x)γ′∧γ′′
. (3.29)

Phase 3: Now, we address the time interval [τ1, η1]. In this phase, starting at time τ1,
synchronous coupling is employed to the driving Brownian motions till W2(t+τ1)−W2(τ1)

hits the level −a−1 sgn(∆W1(τ1))(sgn(W1(θ1)))a+b−1. Applying the reflection principle to
(W1(t + τ1) −W1(τ1) : t ≥ 0), we can deduce the following estimate related to hitting
times of Brownian motion:

P [η1 − τ1 > t] ≤ Ct−1/2 . (3.30)

Consider the fluctuations of ∆I(a,b) on this interval. Using (3.17), it suffices to address
the integrals ∫ η1

τ1

∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b dW2(s)

and (for b ≥ 1 and 1 ≤ k ≤ a)∫ η1

τ1

∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b−1 ds .

As this is a synchronous coupling phase, |∆W1(t)| = |∆W1(τ1)| = 1
|W1(θ1)|a+b−1Rb

for all

t ∈ [τ1, η1]. Observe that

sgn ∆W1(τ1)(sgnW1(θ1))a+b−1∆W1(t) = (sgnW1(θ1))a+b−1|∆W1(t)|

= (sgnW1(θ1))a+b−1 1

|W1(θ1)|a+b−1Rb
=

1

W1(θ1)a+b−1Rb
.

Combining this with the facts that W1(θ1) = W̃1(θ1) and W2(θ1) = RW1(θ1), if t ∈ [τ1, η1]

then

sgn ∆W1(τ1)(sgnW1(θ1))a+b−1 ×∆W1(t)W1(t)a−kW̃1(t)k−1W2(t)b

=

(
W1(t)

W1(θ1)

)a−k(
W̃1(t)

W̃1(θ1)

)k−1(
W2(t)

W2(θ1)

)b
. (3.31)

Set A1(t) = W1(t)
W1(θ1) , Ã1(t) = W̃1(t)

W̃1(θ1)
and A2(t) = W2(t)

W2(θ1) . Observe that for 1 ≤ k ≤ a

|A1(t)a−kÃ1(t)k−1A2(t)b − 1| ≤

|A1(t)a−k − 1||Ã1(t)k−1||A2(t)b|+ |Ã1(t)k−1 − 1||A2(t)b|+ |A2(t)b − 1| . (3.32)

We will show that the first term above is small with high probability. If a = 1, or more
generally if k = a, then the first term is identically zero. If a ≥ 2 and k ≤ a− 1 then

|A1(t)a−k − 1||Ã1(t)k−1||A2(t)b| ≤
a−k∑
j=1

|A1(t)− 1||A1(t)|a−k−j |Ã1(t)|k−1|A2(t)|b .

(3.33)

Fix x ≥ 1/R2n. Recall that |W1(θ1)| ≥ R2n, and note firstly that for x ≥ 1/R2n, by the
reflection coupling implications summarized in (3.19),

P
[
|W1(τ1)−W1(θ1)| > xR2n/2

]
≤ P [|W1(τ1)−W1(θ1)| > 1/2] = 0 .
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and secondly by a Tchebychev inequality argument and Doob’s L2-maximal inequality

P

[
sup

τ1≤t≤τ1+T
|W1(t)−W1(τ1)| > xR2n/2

]
≤ CT

x2R4n
.

Then

P

[
sup

τ1≤t≤η1
|A1(t)− 1| > x

]
≤ P

[
sup

τ1≤t≤η1
|W1(t)−W1(θ1)| > xR2n

]
≤ P [η1 − τ1 > T ] + P

[
sup

τ1≤t≤τ1+T
|W1(t)−W1(θ1)| > xR2n

]
≤ P [η1 − τ1 > T ] + P

[
sup

τ1≤t≤τ1+T
|W1(t)−W1(τ1)| > xR2n/2

]
+ P

[
|W1(τ1)−W1(θ1)| > xR2n/2

]
≤ C√

T
+

CT

x2R4n
≤ C

(xR2n)2/3
, (3.34)

where the last inequality follows by taking T = (xR2n)4/3.

Similarly, for x ≥ 2,

P

[
sup

τ1≤t≤η1
|A1(t)| > x

]
= P

[
sup

τ1≤t≤η1
|W1(t)| > x|W1(θ1)|

]
≤ P

[
sup

τ1≤t≤η1
|W1(t)−W1(θ1)| > x|W1(θ1)|/2

]
≤ P

[
sup

τ1≤t≤η1
|W1(t)−W1(θ1)| > xR2n/2

]
≤ C

(xR2n)2/3
, (3.35)

where the last inequality follows from the computations performed to obtain (3.34).

A similar estimate for P
[
supτ1≤t≤η1 |Ã1(t)| > x

]
holds by replacing W1 with W̃1 in the

above calculations. To derive an analogous estimate for P
[
supτ1≤t≤η1 |A2(t)| > x

]
, first

observe that

E [|W2(τ1)−W2(θ1)|]2 = E [τ1 − θ1] ≤ C/R4n+2,

where the first equality is because conditional on σ{(W1(s),W2(s)) : s ≤ θ1}, W2−W2(θ1)

is independent of τ1−θ1 and the last inequality follows from (3.23). Using this observation
along with the Tchebychev inequality, we obtain

P

[
sup

τ1≤t≤η1
|W2(t)−W2(θ1)| > xR2n+1

2

]
≤ P [η1 − τ1 > T ] + P

[
sup

τ1≤t≤τ1+T
|W2(t)−W2(θ1)| > xR2n+1

2

]
≤ P [η1 − τ1 > T ] + P

[
sup

τ1≤t≤τ1+T
|W2(t)−W2(τ1)| > xR2n+1

4

]
+ P

[
|W2(τ1)−W2(θ1)| > xR2n+1

4

]
≤ C√

T
+

CT

x2R4n+2
+

C

x2R8n+4
≤ C

(xR2n)2/3
, (3.36)

where the last inequality follows by taking T = (xR2n)4/3. Using (3.36) and recalling
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|W2(θ1)| ≥ R2n+1,

P

[
sup

τ1≤t≤η1
|A2(t)| > x

]
≤ P

[
sup

τ1≤t≤η1
|W2(t)−W2(θ1)| > x|W2(θ1)|/2

]
≤ P

[
sup

τ1≤t≤η1
|W2(t)−W2(θ1)| > xR2n+1/2

]
≤ C

(xR2n)2/3
. (3.37)

From the above estimates, we can argue the following in case x ≥ 22(a+b−1)/R2n:

P

[
sup

τ1≤t≤η1
|A1(t)− 1||A1(t)|a−k−j |Ã1(t)|k−1|A2(t)|b > x

]
≤ P

[
sup

τ1≤t≤η1
|A1(t)− 1| >

√
x√
R2n

]
+ P

[
sup

τ1≤t≤η1
|A1(t)| > (

√
R2nx)

1
a+b−1−j

]
+ P

[
sup

τ1≤t≤η1
|Ã1(t)| > (

√
R2nx)

1
a+b−1−j

]
+ P

[
sup

τ1≤t≤η1
|A2(t)| > (

√
R2nx)

1
a+b−1−j

]
≤ C

1

(R2nx)γ

for some γ > 0 (in fact γ = 1/3) that does not depend on R (the last three probabilities
appearing after the first inequality above can be taken to be zero if a+ b− 1− j = 0).

By applying the above argument to each term on the right hand side of (3.33), we
obtain

P

[
sup

τ1≤t≤η1
|A1(t)a−k − 1||Ã1(t)k−1||A2(t)b| > x

]
≤ C

(R2nx)γ
for x ≥ (a−k)22(a+b−1)/R2n.

The terms |Ã1(t)k−1−1||A2(t)b| and |A2(t)b−1| appearing in (3.32) are subject to estimates

of the same form, based onP
[
supτ1≤t≤η1 |Ã1(t)− 1| > x

]
andP

[
supτ1≤t≤η1 |A2(t)− 1| > x

]
respectively in place of P

[
supτ1≤t≤η1 |A1(t)− 1| > x

]
, but otherwise using the same ar-

guments. Hence (3.32) and the above estimates yield the following for x ≥ (a + b −
1)22(a+b−1)/R2n:

P

[
sup

τ1≤t≤η1
|A1(t)a−kÃ1(t)k−1A2(t)b − 1| > x

]
≤ C

(R2nx)γ
. (3.38)

Thus (3.31) yields (when x ≥ (a+ b− 1)22(a+b−1)/R2n)

P

[
sup

τ1≤t≤η1

∣∣∣∆W1(t)W1(t)a−kW̃1(t)k−1W2(t)b − sgn ∆W1(τ1)(sgnW1(θ1))a+b−1
∣∣∣ > x

]
≤ C

(R2nx)γ
.

The above holds for all 1 ≤ k ≤ a; consequently (3.17) implies that, for x ≥ a(a + b −
1)22(a+b−1)/R2n,

P

[
sup

τ1≤t≤η1

∣∣∣(W1(t)a − W̃1(t)a)W2(t)b − a sgn ∆W1(τ1)(sgnW1(θ1))a+b−1
∣∣∣ > x

]
≤ C

(R2nx)γ
. (3.39)
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Now P [η1 − τ1 > t] ≤ Ct−1/2; so the first assertion in part (ii) of Lemma 5 implies
there is γ′ > 0, not depending on R, such that for x ≥ a(a+ b− 1)22(a+b−1)/R2n

P
[∣∣∣ ∫ η1

τ1

(W1(s)a − W̃1(s)a)W2(s)b dW2(s)

− a sgn ∆W1(τ1)(sgnW1(θ1))a+b−1(W2(η1)−W2(τ1))
∣∣∣ > x

]
≤ C

(R2nx)γ′
.

But it follows from the definition of η1 that

W2(η1)−W2(τ1) = −a−1 sgn(∆W1(τ1))(sgn(W1(θ1)))a+b−1 .

Together with the above inequality this yields, for x ≥ a(a+ b− 1)22(a+b−1)/R2n,

P

[∣∣∣∣∫ η1

τ1

(W1(s)a − W̃1(s)a)W2(s)b dW2(s) + 1

∣∣∣∣ > x

]
≤ C

(R2nx)γ
. (3.40)

To estimate the integral
∫ η1
τ1

∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b−1 ds for b ≥ 1, we can

once more use the synchronous coupling of W1, W̃1 on [τ1, η1] to show that for any
t ∈ [τ1, η1],

|∆W1(t)W1(t)a−kW̃1(t)k−1W2(t)b−1| ≤ 1

R2n+1

∣∣∣∣ W1(t)

W1(θ1)

∣∣∣∣a−k
∣∣∣∣∣ W̃1(t)

W̃1(θ1)

∣∣∣∣∣
k−1 ∣∣∣∣ W2(t)

W2(θ1)

∣∣∣∣b−1

.

For b ≥ 1 we may use (3.38) to show, for x ≥ 22(a+b−1),

P

 sup
τ1≤t≤η1

∣∣∣∣ W1(t)

W1(θ1)

∣∣∣∣a−k
∣∣∣∣∣ W̃1(t)

W̃1(θ1)

∣∣∣∣∣
k−1 ∣∣∣∣ W2(t)

W2(θ1)

∣∣∣∣b−1

> x

 ≤ C

(R2nx)γ
.

Thus, for x ≥ 22(a+b−1)/R2n+1,

P

[
sup

τ1≤t≤η1
|∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b−1| > x

]
≤ C

(R4n+1x)γ
.

Using the above and the fact that P [η1 − τ1 > t] ≤ Ct−1/2 in the second assertion in part
(ii) of Lemma 5, we obtain γ, δ > 0 not depending on R such that

P

[∣∣∣∣∫ η1

τ1

∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b−1 ds

∣∣∣∣ > x

]
≤ C

(Rδx)γ

for x ≥ (a+ b− 1)22(a+b−1)R−δ. But then we can use (3.17) to deduce

P

[∣∣∣∣∫ η1

τ1

(W1(s)a − W̃1(s)a)W2(s)b−1 ds

∣∣∣∣ > x

]
≤ C

(Rδx)γ
(3.41)

for x ≥ a(a + b − 1)22(a+b−1)R−δ. Recalling the expression of I(a,b) in terms of the Itô
integral and the time integral given in (3.13), we obtain from (3.40) and (3.41),

P
[∣∣∆I(a,b)(η1)−∆I(a,b)(τ1) + 1

∣∣ > x
]
≤ C

(Rδx)γ
(3.42)

for x ≥ a(a+ b− 1)22(a+b−1)R−δ.
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Phase 4: The next phase occurs in the time interval [η1, λ1]. In this phase, after time
η1 the Brownian motions W1 and W̃1 are subjected to reflection coupling till they meet.
Applying the reflection principle, and using the fact that |∆W (η1)| = 1/(|W (θ1)|a+b−1Rb)

together with other consequences of the definitions of the stopping times θ1 and τ1, we
see that when t > 0

P
[
λ1 − η1 > t/R2f(a−1,b)

]
≤ Ct−1/2 . (3.43)

Once again (3.17) can be applied, so it suffices to consider the integrals∫ λ1

η1

∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b dW2(s)

and ∫ λ1

η1

∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b−1 ds

for 1 ≤ k ≤ a.
For η1 ≤ t ≤ λ1 we can write

|∆W1(t)||W1(t)|a−k|W̃1(t)|k−1|W2(t)|b =

(
|∆W1(t)||W1(θ1)|a+b−1Rb

) ∣∣∣∣ W1(t)

W1(θ1)

∣∣∣∣a−k
∣∣∣∣∣ W̃1(t)

W̃1(θ1)

∣∣∣∣∣
k−1 ∣∣∣∣ W2(t)

W2(θ1)

∣∣∣∣b . (3.44)

Recalling that |∆W1(η1)| = |∆W1(τ1)| = 1
|W1(θ1)|a+b−1Rb

, and bearing in mind that W1 and

W̃1 are reflection coupled on [η1, λ1], when x ≥ 1 it follows that

P

[
sup

η1≤t≤λ1

|∆W1(t)||W1(θ1)|a+b−1Rb ≥ x

]

= P

[
Brownian motion starting from

1

2
hits

x

2
before zero

]
=

1

x
, (3.45)

where the last equality follows from the optional stopping theorem. Fixing x ≥ 2, we can
employ (3.43) and a Tchebychev inequality argument to show

P

[
sup

η1≤t≤λ1

∣∣∣∣ W1(t)

W1(θ1)

∣∣∣∣ > x

]
≤ P

[
sup

η1≤t≤λ1

|W1(t)−W1(θ1)| > xR2n/2

]

≤ P

[
sup

η1≤t≤λ1

|W1(t)−W1(η1)| > xR2n/4

]
+ P

[
|W1(η1)−W1(θ1)| > xR2n/4

]
≤ P [λ1 − η1 > T ] + P

[
sup

η1≤t≤η1+T
|W1(t)−W1(η1)| > xR2n/4

]
+ P

[
|W1(η1)−W1(θ1)| > xR2n/4

]
≤ C

Rf(a−1,b)
√
T

+
CT

x2R4n
+

C

(xR2n)2/3
.

The bound P
[
|W1(η1)−W1(θ1)| > xR2n/4

]
≤ C

(xR2n)2/3
follows from the calculations

leading to (3.34), where, in fact, we obtained the following bound when x ≥ 1
R2n :

P

[
sup

τ1≤t≤η1
|W1(t)−W1(θ1)| > xR2n

]
≤ C

(xR2n)2/3
.
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Taking T = (xR2n)4/3, we obtain the following when x ≥ 2:

P

[
sup

η1≤t≤λ1

∣∣∣∣ W1(t)

W1(θ1)

∣∣∣∣ > x

]
≤ C

(xR2n)2/3
. (3.46)

Similar estimates for P
[
supη1≤t≤λ1

∣∣∣ W̃1(t)

W̃1(θ1)

∣∣∣ > x
]

and P
[
supη1≤t≤λ1

∣∣∣ W2(t)
W2(θ1)

∣∣∣ > x
]

follow

by replacing W1 by W̃1 and W2 respectively in the above calculations (in the latter
case, we use (3.36)). Using these estimates along with (3.46) and (3.44), we obtain for
x ≥ 2a+b,

P

[
sup

η1≤t≤λ1

|∆W1(t)||W1(t)|a−k|W̃1(t)|k−1|W2(t)|b > x

]

= P

(|∆W1(t)||W1(θ1)|a+b−1Rb
) ∣∣∣∣ W1(t)

W1(θ1)

∣∣∣∣a−k
∣∣∣∣∣ W̃1(t)

W̃1(θ1)

∣∣∣∣∣
k−1 ∣∣∣∣ W2(t)

W2(θ1)

∣∣∣∣b > x


≤ P

[
sup

η1≤t≤λ1

|∆W1(t)||W1(θ1)|a+b−1Rb ≥ x
1
a+b

]
+ P

[
sup

η1≤t≤λ1

∣∣∣∣ W1(t)

W1(θ1)

∣∣∣∣ > x
1
a+b

]

+ P

[
sup

η1≤t≤λ1

∣∣∣∣∣ W̃1(t)

W̃1(θ1)

∣∣∣∣∣ > x
1
a+b

]
+ P

[
sup

η1≤t≤λ1

∣∣∣∣ W2(t)

W2(θ1)

∣∣∣∣ > x
1
a+b

]

≤ 1

x
1
a+b

+
C

(x
1
a+bR2n)2/3

≤ Cx−
2

3(a+b) , (3.47)

where the last step follows as R > 1. From (3.43), (3.47) and the first assertion in part
(i) of Lemma 5, it follows that there are δ, γ > 0 not depending on R such that

P

[∣∣∣∣∣
∫ λ1

η1

(W1(s)a − W̃1(s)a)W2(s)b dW2(s)

∣∣∣∣∣ > x

]
≤ C

(Rδx)γ

for x ≥ 2a+b/Rδ. Arguing as above, using (3.43), and (3.47) but with b − 1 replacing b,
and appealing to the second assertion in part (i) of Lemma 5, if b ≥ 1 then

P

[∣∣∣∣∣
∫ λ1

η1

∆W1(s)W1(s)a−kW̃1(s)k−1W2(s)b−1 ds

∣∣∣∣∣ > x

]
≤ C

(Rδx)γ

for x ≥ 2a+b−1/Rδ. From the above two bounds, if x ≥ 2a+b/Rδ then

P
[
|∆I(a,b)(λ1)−∆I(a,b)(η1)| > x

]
≤ C

(Rδx)γ
. (3.48)

Phase 5: The final phase concerns the interval [λ1, β1], in which the Brownian motions
(W1,W2) and (W̃1, W̃2) are coupled synchronously till the time β1 when (W1,W2) =

W̃1, W̃2) hits the line u2 = Ru1. Since (W1,W2) = (W̃1, W̃2) during this time interval,
∆I(a,b)(β1) = ∆I(a,b)(λ1). We claim there is a positive constant C not depending on R

such that

P [β1 − λ1 > t] ≤ Ct−1/6 . (3.49)

To see this, observe that β1 − λ1 depends on how far away the Brownian motion (W1,W2)

is from the line u2 = Ru1 at time λ1. As W2(θ1) = RW1(θ1), this distance, in turn,
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depends on the size of the total duration λ1 − θ1 of the previous three phases. Indeed,
for any α, x > 0 (to be chosen later),

P [β1 − λ1 > t] ≤ P [β1 − λ1 > t, λ1 − θ1 ≤ tα] + P [λ1 − θ1 > tα]

≤ P [|(W1,W2)(λ1)− (W1,W2)(θ1)| > x, λ1 − θ1 ≤ tα]

+ P [|(W1,W2)(λ1)− (W1,W2)(θ1)| ≤ x, β1 − λ1 > t]

+ P [λ1 − θ1 > tα] .

To estimate the first probability above, note that an application of the strong Markov
property at time θ1 allows us to deduce

P [|(W1,W2)(λ1)− (W1,W2)(θ1)| > x, λ1 − θ1 ≤ tα]

≤ P

[
sup

s∈[θ1,θ1+tα]

|(W1,W2)(s)− (W1,W2)(θ1)| > x

]
≤ C

tα/2

x
,

where the last inequality follows from Doob’s submartingale inequality applied to the
radial part of two-dimensional Brownian motion. The second probability is controlled by
conditioning on the past event [|(W1,W2)(λ1)− (W1,W2)(θ1)| ≤ x] and using the strong
Markov property to argue that the hitting time on the line u2 = Ru1 by the Brownian
motion ((W1,W2)(t) − (W1,W2)(λ1) : t ≥ λ1) is stochastically dominated by the hitting
time on zero by a one dimensional Brownian motion starting from x. Therefore,

P [|(W1,W2)(λ1)− (W1,W2)(θ1)| ≤ x, β1 − λ1 > t] ≤ C
x√
t
.

From (3.16), (3.30) and (3.43), we deduce that

P [λ1 − θ1 > tα] ≤ Ct−α/2 . (3.50)

Putting these bounds together, it follows that

P [β1 − λ1 > t] ≤ C
tα/2

x
+ C

x√
t

+ Ct−α/2 .

The target inequality (3.49) is obtained by taking α = 1/3 and x = t1/3 in the above
bound.
From (3.29), (3.42) and (3.48), we see that there exist positive constants C1, C2, δ, γ not
depending on R,w, i such that

P
[∣∣∆I(a,b)(β1)

∣∣ > x
]
≤ C1

(Rδx)γ
for x ≥ C2/R

δ. (3.51)

B: Describing subsequent cycles and successful coupling
The above account gives a description of the five phases that constitute the first cycle.
Subsequent cycles are defined similarly as follows:

For t ≥ β1, we apply scaling using Lemma 4 with r =
∣∣∆I(a,b)(β1)

∣∣−1/(a+b+1)
and define

further stopping times θ2, . . . , β2 corresponding to θ1, . . . , β1 for the scaled process, and
continue in this fashion to obtain successive cycles. As in the proof of Lemma 7, in order
to show that constructing these cycles leads to a successful coupling we need to show
that limk→∞∆I(a,b)(βk) = 0, and limk→∞ βk < ∞ almost surely. This would imply that
the end points of these cycles have an accumulation point and thus that the coupling is
successful in finite time. We now demonstrate that these facts follow from the estimates
obtained above, via Lemma 6.
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For k ≥ 1, if |∆I(a,b)(βk−1)| = 0, then the coupling is successful. If the coupling is not

successful, define Xk =
Rδ|∆I(a,b)(βk)|
|∆I(a,b)(βk−1)|

, where δ is as used in (3.51) and we adopt the

convention that β0 = 0. Taking τk = 1 for k ≥ 1, we see that Xk, τk satisfy the hypotheses
of Lemma 6, and thus we obtain R′0 > 1 such that for all R ≥ R′0,

∞∑
k=1

R−kδ
(
Πk
j=1Xj

)
< ∞

almost surely. In particular this implies that almost surely

lim
k→∞

R−kδ
(
Πk
j=1Xj

)
= lim

k→∞
|∆I(a,b)(βk)| = 0 .

Choose and fix any R ≥ R′0. From (3.14), (3.16), (3.30), (3.43) and (3.49), we have
α > 0 such that

P
[
β1 > R4n+2t

]
≤ Ct−α (3.52)

for t ≥ 1. Write Fk = σ{(W1(s),W2(s)) : s ≤ βk}. Define τ∗k =
|βk − βk−1|∣∣∆I(a,b)(βk−1)

∣∣2/(a+b+1)

for k ≥ 1. By (3.52), τ∗k satisfies

P
[
τ∗k+1 > R4n+2t | Fk

]
≤ Ct−α .

for t ≥ 1. Define X∗k =
R2δ/(a+b+1)|∆I(a,b)(βk)|2/(a+b+1)

|∆I(a,b)(βk−1)|2/(a+b+1)
for k ≥ 1, where δ is the same as

that used in (3.51). By (3.51), observe that

P
[
X∗k+1 > x | Fk

]
≤ Cx−γ(a+b+1)/2 for x ≥ 1.

The following holds:

βk+1 = τ∗1 +

k∑
l=1

R−2lδ/(a+b+1)
(
Πl
j=1X

∗
j

)
τ∗l+1 .

Thus, for any γ′ < α ∧ γ(a+b+1)
2 , using Lemma 6 with (X∗i , τ

∗
i /R

4n+2) in place of (Xi, τi),
we obtain R′′0 ≥ R′0 such that for every R ≥ R′′0 ,

P

[
τ∗1 +

∞∑
l=1

R−2lδ/(a+b+1)
(
Πl
j=1X

∗
j

)
τ∗l+1 > R4n+2t

]
≤ Ct−γ

′
.

This shows that the coupling construction represented by PR yields an almost surely
successful coupling with coupling time given by TR,(a,b) = limk→∞ βk. R0 claimed in the
theorem can be taken to be R′′0 .

From the coupling construction, we see that the active region SR,(a,b) referred to in
the theorem can be written as

SR,(a,b) =

∞⋃
k=1

[θk, λk] .

The estimate on the tail probabilities of |SR,(a,b)|, claimed in the statement of the lemma,
follows from Lemma 6 using an argument similar to that given above, after re-scaling
by considering |λk−θk|

|∆I(a,b)(βk−1)|2/(a+b+1) for τ∗k (in fact, it follows from (3.50) that the tail

estimate holds for any γ < 1/2).
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Assertion (ii) claimed in the lemma follows first from observing that

sup
t≤TR,(a,b)

|∆W1(t)| ≤
∞∑
l=1

sup
t∈[θl,λl]

|∆W1(t)|

and then from applying Lemma 6 with (
√
X∗k ,M

∗
k ) in place of (Xk, τk), where

M∗k = Rf(a−1,b)
supt∈[θk,λk] |∆W1(t)|
|∆I(a,b)(βk−1)|1/(a+b+1)

.

The tail estimates for M∗k needed to apply Lemma 6 are derived by recalling |W1(θ1)| ≥
R2n and applying scaling to deduce for x ≥ 1

P
[
M∗k+1 > x | Fk

]
≤ P

[
Rf(a−1,b) sup

t∈[θ1,λ1]

|∆W1(t)| > x

]

= P

[
Rf(a−1,b) sup

t∈[η1,λ1]

|∆W1(t)| > x

]
≤ P

[
sup

t∈[η1,λ1]

|∆W1(t)||W1(θ1)|a+b−1Rb > x

]
= x−1,

where the last step follows from (3.45).

4 Simultaneously coupling multiple monomial Stratonovich inte-
grals

This section describes the construction of a successful coupling based on a driving 2-
dimensional Brownian motion (W1,W2) and the complete finite set of monomial stochastic
integrals up to a given scaling degree n, given by (I(a,b) : a ≥ 1, b ≥ 0, a+ b ≤ n). The
construction uses an inductive strategy; coupling first at the level of monomial stochastic
integrals I(k,l) for all (k, l) ≺ (a, b) and then coupling I(a,b) while ensuring that the lower
order integrals do not deviate too far from coupled agreement.

Recall

X(a,b) =
(
W1, I(c,d); (c, d) � (a, b), c ≥ 1

)
.

We will abbreviate the complete set of monomial stochastic integrals (up to I(0,n)) as

X(t) = X(0,n)(t), t ≥ 0 .

X̃(a,b) and X̃ are defined in a similar manner.
The main theorem of this article states the existence of this successful coupling and

estimates the rate at which it happens. In the following, we will need a simple norm on
quantities such as X; we use Euclidean norm viewing X as a vector in the Euclidean
space of appropriate dimension.

Theorem 10. For any pair of starting points X(0) and X̃(0) there exists a successful
Markovian coupling construction P of X and X̃, with coupling time T satisfying the
following rate estimate:
There are positive constants C, γ such that if t ≥ 1 then

sup{P [T > t] : |X(0)| ≤ 1 , |X̃(0)| ≤ 1} ≤ Ct−γ .

Proof. As before, C, γ will denote generic positive constants whose values will change
from line to line. The constant R > 1 is a tuning parameter for the coupling construction:
its value will be specified later.
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By a combination of reflection coupling and then synchronous coupling, we may
assume that the starting points satisfy (W1,W2)(0) = (W̃1, W̃2)(0) and W2(0) = RW1(0).
We will write this as (X(0), X̃(0)) ∈ R where

R = {(w, w̃) : (w1, w2) = (w̃1, w̃2), w2 = Rw1, remaining coordinates of

w, w̃ unconstrained} .

At the end of the proof we will check that the rate of coupling is not affected by the time
taken to arrange for this.

The main body of the proof is based on induction on the number of �-ordered
monomial Stratonovich integrals to be coupled.
Induction hypothesis: Define ∆X(a,b) = X(a,b) − X̃(a,b). For any (a, b) ∈ ∆n, there exists
a successful Markovian coupling between the arrays of monomial Stratonovich integrals
X(a,b) and X̃(a,b), and between W and W̃ , with coupling time T(a,b) such that for all t ≥ 1

sup{P
[
T(a,b) > t

]
: |∆X(a,b)(0)| ≤ 1, (X(0), X̃(0)) ∈ R} ≤ Ct−γ .

for positive constants C, γ.
By Lemma 4 there is no loss of generality in assuming that (a) the starting points

X(a,b)(0) and X̃(a,b)(0) satisfy (X(0), X̃(0)) ∈ R and (b) |∆X(a,b)(0)| = 1.
Lemma 7 establishes the inductive hypothesis in the initial case of (a, b) = (1, 0), since

then (W1,W2)(0) = (W̃1, W̃2)(0) and |∆I(1,0)(0)| ≤ |∆X(a,b)(0)| = 1.
Consider (a, b) ∈ ∆n such that (1, 0) ≺ (a, b) (equivalently, a+ b > 1). Let (a−, b−) be

the � predecessor of (a, b). The inductive step of the proof is as follows: suppose the
induction hypothesis is true for (a−, b−); then it is required to show that the hypothesis is
also true for (a, b). The key to this is to conduct a careful analysis of the cycles described
informally above. By scaling arguments, it is sufficient to do this for the first cycle, and
then to show how scaling arguments can be used to establish suitable convergence over
the whole sequence of cycles.

If a = 0, then from the definition of X(a,b), X(a,b) = X(a−,b−) (as remarked in Section
2) and there is nothing to prove. Therefore, we assume a ≥ 1.

A: Description of the first cycle
We can write X(a,b) = (X(a−,b−), I(a,b)). The three phases of the first cycle have end-points
given by the following stopping times.

1: σ1 = inf{t ≥ 0 : ∆X(a−,b−)(t) = 0}, Coupling of X(a−,b−) and X̃(a−,b−)

derived from inductive hypothesis,

and note X(a−,b−)(σ1) = X̃(a−,b−)(σ1);
2: σ2 = inf{t ≥ σ1 : RW1(t) = W2(t)} synchronous coupling till RW1 = W2;
3: σ3 > σ2 Coupling strategy of Lemma 9

after re-scaling X(a,b), X̃(a,b)

using |∆I(a,b)(σ1)|−1/(a+b+1)

and note (W1,W2)(σ3) = (W̃1, W̃2)(σ3),

I(a,b)(σ3) = Ĩ(a,b)(σ3).

Between σ1 and σ2, the two Brownian motions are coalesced and synchronously
coupled. Therefore ∆X(a,b)(σ2) = (0,∆I(a,b)(σ1)).

Phase 1: At the end of this phase ∆X(a,b)(σ1) = (0,∆I(a,b)(σ1)). By the induction
hypothesis

P [σ1 > t] ≤ Ct−γ for t ≥ 1 . (4.1)
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We need a tail bound on P
[
|∆I(a,b)(σ1)| > x

]
for x ≥ 2. Using (4.1), x ≥ 2 and t ≥ 1,

P
[
|∆I(a,b)(σ1)| > x

]
≤ P [σ1 > t] + P

[
|∆I(a,b)(σ1)| > x, σ1 ≤ t

]
≤ Ct−γ + P

[
|∆I(a,b)(σ1)| > x, σ1 ≤ t

]
. (4.2)

Since x ≥ 2 and |∆I(a,b)(0)| ≤ 1, the second probability satisfies

P
[
|∆I(a,b)(σ1)| > x, σ1 ≤ t

]
≤

P

[
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) ◦ dW2(s)−
∫ u

0

W̃ a
1 (s)W b

2 (s) ◦ dW2(s) + ∆I(a,b)(0)

∣∣∣∣ > x

]
≤ 2P

[
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) ◦ dW2(s)

∣∣∣∣ > x/4

]
. (4.3)

Using the Itô representation of I(a,b) (Equation (3.13)),

sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) ◦ dW2(s)

∣∣∣∣ ≤

sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) dW2(s)

∣∣∣∣+
b

2
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b−1

2 (s) ds

∣∣∣∣ .
Now Cauchy-Schwarz arguments yield

E

[
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) ◦ dW2(s)

∣∣∣∣2
]

≤ 2E

[
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) dW2(s)

∣∣∣∣2
]

+
b2

2
E

[
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b−1

2 (s) ds

∣∣∣∣2
]

≤ 2E

[
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) dW2(s)

∣∣∣∣2
]

+
b2

2
E

[(∫ t

0

|W a
1 (s)||W b−1

2 (s)|ds
)2
]
.

By the BDG inequality,

E

[
sup
u≤t

∣∣∣∣∫ u

0

W a
1 (s)W b

2 (s) dW2(s)

∣∣∣∣2
]

≤ C E

[∫ t

0

W 2a
1 (s)W 2b

2 (s) ds

]
≤ C

∫ t

0

sasb ds =
Cta+b+1

a+ b+ 1
,

while a further application of the Cauchy Schwarz inequality yields

E

[(∫ t

0

|W a
1 (s)||W b−1

2 (s)|ds
)2
]
≤ tE

[∫ t

0

W 2a
1 (s)W 2b−2

2 (s) ds

]
≤ Ct

∫ t

0

sasb−1 ds =
Cta+b+1

a+ b
.

Using the Tchebychev inequality and the above two bounds together with Equation (4.3),
if x ≥ 2 and t ≥ 1 then

P
[
|∆I(a,b)(σ1)| > x, σ1 ≤ t

]
≤ Cta+b+1

x2
. (4.4)

Combining inequalities (4.2) and (4.4), and choosing t = x2/(a+b+1+γ), if x ≥ 2 then

P
[
|∆I(a,b)(σ1)| > x

]
≤ Cx−2γ/(a+b+1+γ) . (4.5)
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Phase 2: During this phase, the driving Brownian motions are synchronously coupled
till (W1,W2) hits the line y = Rx. This is done to get to the starting configuration of
the coupled processes in Lemma 9. Between σ1 and σ2, the two Brownian motions are
coalesced and synchronously coupled and hence ∆X(a,b)(σ2) = (0,∆I(a,b)(σ1)).

To get a bound on the tail of the distribution of σ2− σ1, we rewrite it as follows, using
(4.1):

P [σ2 − σ1 > t] ≤ P [σ1 > tα] + P [σ2 − σ1 > t, σ1 ≤ tα]

≤ Ct−αγ + P [σ2 − σ1 > t, σ1 ≤ tα] ,

for t ≥ 1, and arbitrary α ∈ (0, 1). The second term above can be estimated in terms of
the distance of (W1,W2) from the line y = Rx at time σ1, in fact following the lines of
the proof of (3.49):

P [σ2 − σ1 > t, σ1 ≤ tα] ≤ P [|(W1,W2)(σ1)− (W1,W2)(0)| > x, σ1 ≤ tα]

+ P [|(W1,W2)(σ1)− (W1,W2)(0)| ≤ x, σ2 − σ1 > t] ,

(4.6)

where x, α > 0 will be chosen appropriately to optimize the bounds. To estimate the first
probability in (4.6), note that

P [|(W1,W2)(σ1)− (W1,W2)(0)| > x, σ1 ≤ tα]

≤ P

[
sup

s∈[0,tα]

|(W1,W2)(s)− (W1,W2)(0)| > x

]
≤ Ctα/2x−1 .

To control the second probability in (4.6), condition on the event [|(W1,W2)(σ1) −
(W1,W2)(0)| ≤ x] and use the strong Markov property to argue that the hitting time
on the line y = Rx by the Brownian motion ((W1,W2)(t) − (W1,W2)(σ1) : t ≥ σ1) is
stochastically dominated by the hitting time on zero by a one dimensional Brownian
motion starting from x. Therefore,

P [|(W1,W2)(σ1)− (W1,W2)(0)| ≤ x, σ2 − σ1 > t] ≤ C
x√
t
.

Using the above estimates in (4.6), we obtain

P [σ2 − σ1 > t, σ1 ≤ tα] ≤ C
tα/2

x
+ C

x√
t
.

Using this and (4.1), and choosing suitable values of x and α, we obtain γ > 0 such that

P [σ2 − σ1 > t] ≤ Ct−γ for t ≥ 1 . (4.7)

Phase 3: In this phase, Lemma 9 is used to couple (W1,W2, I(a,b)) with (W̃1, W̃2, Ĩ(a,b))

while controlling the difference between the lower order integrals of the coupled pro-
cesses.

Note that at time σ3 the array ∆X(a,b)(σ3) of monomial Stratonovich integrals is
obtained by appending ∆I(a,b)(σ3) = 0 to the array ∆X(a−,b−)(σ3). Now ∆X(a−,b−)(σ3)

will be the discrepancy between the coupled sets of integrals at the end of the third
phase and thus, it is necessary to control its size. We do this by controlling the size (in an
appropriate sense) of each individual integral appearing in ∆X(a−,b−)(σ3) and showing
the coupling strategy of Lemma 9 does not make this size large. Fix any (k, l) � (a−, b−).
Note that, as ∆I(k,l)(σ2) = ∆I(k,l)(σ1) = 0, scaling yields the following distributional
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equality (where the second equality simply involves rewriting the Stratonovich integral
as the sum of an Itô integral and a time integral):

∆I(k,l)(σ3)
D
= U

∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) ◦ dB2(s)

= U

(∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s) +
l

2

∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl−1
2 (s) ds

)
(4.8)

where U has the same distribution as |∆I(a,b)(σ1)|(k+l+1)/(a+b+1), and (B1, B2) and

(B̃1, B̃2) are two-dimensional Brownian motions starting respectively from(
W1(σ2)

|∆I(a,b)(σ1)|1/(a+b+1)
,

W2(σ2)

|∆I(a,b)(σ1)|1/(a+b+1)

)
and (

W̃1(σ2)

|∆I(a,b)(σ1)|1/(a+b+1)
,

W̃2(σ2)

|∆I(a,b)(σ1)|1/(a+b+1)

)
,

and TR,(a,b) is the coupling time for the coupling construction of(
B1, B2,

I(a,b)(σ2)

|∆I(a,b)(σ1)|
+

∫
Ba1B

b
2 ◦ dB2

)
and (

B̃1, B̃2,
Ĩ(a,b)(σ2)

|∆I(a,b)(σ1)|
+

∫
B̃a1 B̃

b
2 ◦ dB̃2

)
given in Lemma 9. Furthermore, U is independent of ((B1(t)−B1(0), B2(t)−B2(0)) : t ≥ 0)

and ((B̃1(t)− B̃1(0), B̃2(t)− B̃2(0)) : t ≥ 0).
Define stopping times θj , τj , ηj , λj , βj , j ≥ 1 in the time interval [0, TR,(a,b)] as in the

proof of Lemma 9. As the Brownian motions move together on the intervals [βj−1, θj ] and
[λj , βj ], the monomial Stratonovich integral ∆I(k,l) does not change on these intervals.

On [θ1, λ1], the Itô integral in (4.8) can be written as

∫ λ1

θ1

(Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s) =

∫ λ1

θ1

∆B1(s)

k−1∑
j=1

Bk−j1 (s)B̃j−1
1 (s)Bl2(s) dB2(s)

=

∫ λ1

θ1

(∆B1(s)Bk+l−1
1 (θ1)Rl)

k−1∑
j=1

(
B1(s)

B1(θ1)

)k−j (
B̃1(s)

B̃1(θ1)

)j−1(
B2(s)

B2(θ1)

)l
dB2(s)

=

∫ λ1

θ1

(∆B1(s)Ba+b−1
1 (θ1)Rb)

k−1∑
j=1

(
B1(s)

B1(θ1)

)k−j (
B̃1(s)

B̃1(θ1)

)j−1(
B2(s)

B2(θ1)

)l
dB2(s)


× 1

(B1(θ1))(a+b)−(k+l)Rb−l
. (4.9)

Using supt∈[θ1,τ1] |∆B1(t)| = 1
|B1(θ1)|a+b−1Rb

and supt∈[τ1,η1] |∆B1(t)| = |∆B1(τ1)| together
with (3.45),

P

[
sup

θ1≤t≤λ1

|∆B1(s)||Ba+b−1
1 (θ1)|Rb ≥ x

]
≤ 1

x
for x ≥ 1 . (4.10)
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The same line of argument employed to obtain (3.24) can be used to get the following
bound. For 1 ≤ j ≤ k − 1, x > 2k+l−1:

P

 sup
θ1≤s≤τ1

∣∣∣∣ W1(s)

W1(θ1)

∣∣∣∣k−j
∣∣∣∣∣ W̃2(s)

W̃1(θ1)

∣∣∣∣∣
j−1 ∣∣∣∣ W2(s)

W2(θ1)

∣∣∣∣l > x

 ≤ 22(k+l−1)/l

R8n+4x2/l
C .

(where the above bound is taken to be zero if l = 0). As a result, using (3.35) and (3.46)

(bounding supτ1≤t≤η1

∣∣∣ B1(t)
B1(θ1)

∣∣∣ and supη1≤t≤λ1

∣∣∣ B1(t)
B1(θ1)

∣∣∣; the same bounds can be shown to

hold when B1 is replaced by B̃1 and B2), we can pick γ > 0 such that, for any 1 ≤ j ≤ k−1

and all x > 2k+l−1,

P

 sup
θ1≤t≤λ1

∣∣∣∣ B1(s)

B1(θ1)

∣∣∣∣k−j
∣∣∣∣∣ B̃1(s)

B̃1(θ1)

∣∣∣∣∣
j−1 ∣∣∣∣ B2(s)

B2(θ1)

∣∣∣∣l > x

 ≤ C

(R2nx)γ
. (4.11)

(4.10) and (4.11) together imply that there exists γ > 0 such that for any 1 ≤ j ≤ k − 1

and all x > 2k+l,

P

 sup
θ1≤s≤λ1

|∆B1(s)||Ba+b−1(θ1)|Rb
∣∣∣∣ B1(s)

B1(θ1)

∣∣∣∣k−j
∣∣∣∣∣ B̃1(s)

B̃1(θ1)

∣∣∣∣∣
j−1 ∣∣∣∣ B2(s)

B2(θ1)

∣∣∣∣l > x

 ≤ C

xγ
.

(4.12)

Also, recall from (3.50) (using α = 1) that

P [λ1 − θ1 > t] ≤ Ct−1/2 for t ≥ 1 . (4.13)

Using (4.12) and (4.13) in Lemma 5, we can chose positive γ, x0 such that (for x ≥ x0)

P

∣∣∣∣∣∣
∫ λ1

θ1

(∆B1(s)Ba+b−1(θ1)Rb)

k−1∑
j=1

(
B1(s)

B1(θ1)

)k−j (
B̃1(s)

B̃1(θ1)

)j−1(
B2(s)

B2(θ1)

)l
dB2(s)

∣∣∣∣∣∣ > x


≤
k−1∑
j=1

P

∣∣∣∣∣∣
∫ λ1

θ1

(∆B1(s)Ba+b−1(θ1)Rb)

(
B1(s)

B1(θ1)

)k−j (
B̃1(s)

B̃1(θ1)

)j−1(
B2(s)

B2(θ1)

)l
dB2(s)

∣∣∣∣∣∣ > x

k


≤ Cx−γ . (4.14)

Furthermore, by virtue of the definition of the stopping time θ1 in the coupling construc-
tion, and because (k, l) ≺ (a, b),

1

|(B1(θ1))|(a+b)−(k+l)Rb−l
≤ 1

Rf(a,b)−f(k,l)
≤ 1

R
. (4.15)

Using (4.14) and (4.15) in (4.9), for x ≥ x0/R we obtain

P

[∣∣∣∣∣
∫ λ1

θ1

(Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s)

∣∣∣∣∣ > x

]
≤ C

(Rx)γ
. (4.16)

Recall from Lemma 9 that SR,(a,b) =
⋃∞
j=1[θj , λj ] and∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s) =

∫
SR,(a,b)

(Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s).
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Now apply Lemma 6 to the sum on the right hand side of

R

∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s) = τ∗∗1 +

∞∑
j=1

R−(k+l+1)jδ/(a+b+1)
(

Πj
m=1X

∗∗
m

)
τ∗∗j+1

with (X∗∗j , τ∗∗j ) replacing (Xj , τj) in the statement of the lemma, where

τ∗∗j =
R
∣∣∣∫ λjθj (Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s)

∣∣∣
|∆I(a,b)(βj−1)|(k+l+1)/(a+b+1)

and

X∗∗j =
R(k+l+1)δ/(a+b+1)|∆I(a,b)(βj)|(k+l+1)/(a+b+1)

|∆I(a,b)(βj−1)|(k+l+1)/(a+b+1)
.

Taking δ to be the same as that used in (3.51), and setting β0 = 0, we can find γ′ > 0 for
which

P

[∣∣∣∣∣
∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) dB2(s)

∣∣∣∣∣ > x

]
≤ C

(Rx)γ′
(4.17)

for x ≥ x0/R, when R is sufficiently large, where x0 is the same as that used in (4.16).
Using the same estimates as above and using the assertions of Lemma 5 involving time
integrals, for l ≥ 1 it follows in a similar way that there is γ′′ > 0, x1 > 0 such that

P

[∣∣∣∣∣
∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl−1
2 (s) ds

∣∣∣∣∣ > x

]
≤ C

(R2n+2x)γ′′
(4.18)

for x ≥ x1/R
2n+2, for R sufficiently large.

Using the distributional equality (4.8), when x ≥ max{x2
0, x

2
1, 4}/R and U is as defined

for that equation, we can find positive constants γ, γ1, γ2 such that

P
[
|∆I(k,l)(σ3)| > x

]
= P

[
U

∣∣∣∣∣
∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) ◦ dB2(s)

∣∣∣∣∣ > x

]

≤ P
[
U ≥

√
xR
]

+ P

[∣∣∣∣∣
∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) ◦ dB2(s)

∣∣∣∣∣ >√x/R
]

= P
[
|∆I(a,b)(σ1)| > (

√
xR)(a+b+1)/(k+l+1)

]
+ P

[∣∣∣∣∣
∫ TR,(a,b)

0

(Bk1 (s)− B̃k1 (s))Bl2(s) ◦ dB2(s)

∣∣∣∣∣ >√x/R
]

≤ C

(xR)γ1
+

C

(xR)γ2
≤ C

(xR)γ
.

The last step above follows from (4.5), (4.17) and (4.18). As this bound can be chosen to
hold for all (k, l) ≺ (a, b) and ∆I(a,b)(σ3) = 0, we can choose positive constants C, γ such
that

P
[
|∆X(a,b)(σ3)| > x

]
≤ C

(xR)γ
when x ≥ C/R . (4.19)

A bound on the tail of the law of σ3 can be obtained using Lemma 9: if t ≥ 1 then

P
[
(σ3 − σ2)/|∆I(a,b)(σ1)|2/(a+b+1) > R4n+2t

]
≤ Ct−γ .
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Together with (4.5) this implies that when t ≥ 1

P
[
σ3 − σ2 > R4n+2t

]
≤ Ct−γ . (4.20)

Thus, from (4.1), (4.7) and (4.20), when t ≥ 1

P
[
σ3 > R4n+2t

]
≤ Ct−γ . (4.21)

B: Describing subsequent cycles and successful coupling
After completion of the first cycle, at time σ3, we re-scale X(a,b) and X̃(a,b) according to
Lemma 4 by a (random) scaling SR1

such that

|SR1

(
∆X(a,b)

)
(σ3)| = 1 .

Define σ4, σ5, σ6 (for the original process) corresponding to σ1, σ2, σ3 for the coupled
process after scaling exactly as before, and so on. At each stopping time σ3k, k ≥ 1, we
denote by SRk the (random) scaling that renormalizes at 1 the norm of the difference of
the re-scaled processes.

For any r ≥ 1, t ≥ 0,

r|∆X(a,b)(t)| ≤ |Sr
(
∆X(a,b)

)
(t)| ≤ ra+b+1|∆X(a,b)(t)| ,

with inequalities reversed if r ≤ 1.
For each k ≥ 1, ∣∣∣S(Πkj=1Rj)

(
∆X(a,b)

)
(σ3k)

∣∣∣ = 1 .

Therefore, if it can be shown that limk→∞Πk
j=1Rj =∞ then it follows that

lim
k→∞

|∆X(a,b)(σ3k)| = 0.

We achieve this by estimating the tail of the distribution of R−1
1 . Note that if R−1

1 ≤ 1,
then from the above relations

R1/(a+b+1)

R1
≤ |R∆X(a,b)(σ3)|1/(a+b+1)

while if R−1
1 ≥ 1 then

R

R1
≤ |R∆X(a,b)(σ3)| .

Thus, for x ≥ 1, if R1/(a+b+1) > x then

P

[
R1/(a+b+1)

R1
≥ x

]
= P

[
R1/(a+b+1)

R1
∈ [x,R1/(a+b+1)]

]
+ P

[
R1/(a+b+1)

R1
> R1/(a+b+1)

]
≤ P

[
R1/(a+b+1)

R1
∈ [x,R1/(a+b+1)]

]
+ P

[
R1/(a+b+1)

R1
> x, R−1

1 > 1

]
≤ P

[
R1/(a+b+1)

R1
∈ [x,R1/(a+b+1)]

]
+ P

[
R

R1
> x, R−1

1 > 1

]
≤ P

[
|R∆X(a,b)(σ3)| ≥ xa+b+1

]
+ P

[
|R∆X(a,b)(σ3)| ≥ x

]
≤ Cx−γ ,

where the last inequality is a consequence of (4.19).
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On the other hand, if R1/(a+b+1) ≤ x,

P

[
R1/(a+b+1)

R1
≥ x

]
= P

[
R1/(a+b+1)

R1
≥ x, R−1

1 ≥ 1

]
≤ P

[
R

R1
≥ x, R−1

1 ≥ 1

]
≤ P

[
|R∆X(a,b)(σ3)| ≥ x

]
≤ Cx−γ .

Combining the above two bounds, if x ≥ 1 then

P

[
R1/(a+b+1)

R1
≥ x

]
≤ Cx−γ . (4.22)

Applying Lemma 6 with Xk =
R1/(a+b+1)

Rk
and τk = 1, we obtain

∞∑
k=1

R−k/(a+b+1)(Πk
j=1Xj) < ∞

almost surely for sufficiently large R. In particular, limk→∞Πk
j=1Rj = ∞ and conse-

quently,
lim
k→∞

|∆X(a,b)(σ3k)| = 0.

Finally, to show that the coupling is successful and to verify the induction hypothesis for
(a, b), it is necessary to show that limk→∞ σ3k is almost surely finite and that its law has
a power law tail.

This follows by applying Lemma 6 to the sum on the right hand side of the expression

σ3k+3 = τ̂1 +

k∑
l=1

R−2l/(a+b+1)(Πl
j=1X

2
j )τ̂l+1, k ≥ 1,

with (X2
k , τ̂k) in place of (Xj , τj) in the lemma, where Xk =

R1/(a+b+1)

Rk
, defined for k ≥ 1,

and τ̂k =
(
Πk−1
j=1R

2
j

)
(σ3k − σ3k−3), defined for k ≥ 2, and σ0 = 0. As the law of τ̂k has the

same tail as that of σ3, it follows from (4.21) and (4.22) that if t ≥ 1 then

P

[
lim
k→∞

σ3k > R4n+2t

]
≤ Ct−γ ,

for sufficiently large R. This establishes the induction hypothesis, and so completes the
construction of a successful coupling when the starting points of the coupled Brownian
motions satisfy (W1,W2)(0) = (W̃1, W̃2)(0) and W2(0) = RW1(0).

The argument is completed by showing how to construct the coupling from arbitrary
starting points X(0) and X̃(0) satisfying |X(0)| ≤ 1, |X̃(0)| ≤ 1. To do this, define the
stopping times

σ−1 = inf{t ≥ 0 : using reflection coupling, (W1,W2)(t) = (W̃1, W̃2)(t)} ,
σ0 = inf{t ≥ σ−1 : using synchronous coupling, W2(t) = RW1(t)}

T = inf{t ≥ σ0 : coupling strategy constructed above, X(t) = X̃(t)} .

Using Brownian hitting time estimates derived from the reflection principle, when t ≥ 1

P [σ−1 > t] ≤ |(W1,W2)(0)− (W̃1, W̃2)(0)|√
t

≤ 2√
t
.
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Now, using the fact that |(W1,W2)(0)− (W̃1, W̃2)(0)| ≤ 2, and controlling the distance of
the Brownian motion (W1,W2) from the line y = Rx at time σ−1 as in the proof of (3.49),
we obtain a constant C that does not depend on the starting points such that

P [σ0 − σ−1 > t] ≤ Ct−1/6 .

Consequently, if t ≥ 1 then

sup{P [σ0 > t] : |X(0)| ≤ 1, |X̃(0)| ≤ 1} ≤ Ct−1/6 . (4.23)

Furthermore, for x ≥ 4 and arbitrary t > 0 to be chosen later,

P [|∆X(σ0)| > x] = P [|∆X(σ−1)| > x]

≤ P
[
|X(σ−1)−X(0)|+ |X̃(σ−1)− X̃(0)|+ |X(0)− X̃(0)| > x

]
≤ P

[
|X(σ−1)−X(0)|+ |X̃(σ−1)− X̃(0)| > x/2

]
( as |X(0)− X̃(0)| ≤ 2 and x ≥ 4)

≤ 2P [|X(σ−1)−X(0)| > x/4]

≤ 2P [σ−1 > t] + 2P

[
sup
s≤t
|X(s)−X(0)| > x/4

]

≤ 4√
t

+ C
E
[∑

(k,l)∈∆n

∫ t
0
W1(s)2kW2(s)2l ds

]
x2

+ Ct
E
[∑

(k,l)∈∆n
l2
∫ t

0
W1(s)2kW2(s)2l−2 ds

]
x2

≤ 2√
t

+ C

∑
(k,l)∈∆n

∫ t
0
sk+l ds

x2
+ Ct

∑
(k,l)∈∆n

l2
∫ t

0
sk+l−1 ds

x2
≤ 2√

t
+ C

tn+1

x2

≤ Cx−γ .

Here the last step holds for some γ > 0, and for t chosen appropriately in terms of x.
Moreover the final constant C above does not depend on the starting points so long as
they lie in the unit ball. Hence, for x ≥ 4,

sup{P [|∆X(σ0)| > x] : |X(0)| ≤ 1, |X̃(0)| ≤ 1} ≤ Cx−γ . (4.24)

Thus, for t ≥ 2, x ≥ 4,

sup{P [T > t] : |X(0)| ≤ 1, |X̃(0)| ≤ 1} ≤

sup{P [T > t, |∆X(σ0)| ≤ x, σ0 ≤ t/2] : |X(0)| ≤ 1, |X̃(0)| ≤ 1}

+ sup{P [|∆X(σ0)| > x] : |X(0)| ≤ 1, |X̃(0)| ≤ 1}

+ sup{P [σ0 > t/2] : |X(0)| ≤ 1, |X̃(0)| ≤ 1} .

The second and third terms above are already estimated in (4.24) and (4.23) respectively.
To bound the first term above, we apply the strong Markov property at σ0 to obtain

sup{P [T > t, |∆X(σ0)| ≤ x, σ0 ≤ t/2] : |X(0)| ≤ 1, |X̃(0)| ≤ 1} ≤

sup{P [T > t/2] : |∆X(0)| ≤ x, (X(0), X̃(0)) ∈ R}

Apply Lemma 4 to the right hand side above, taking r = x−1. Now use the fact that if
|∆X(0)| ≤ x, then as x > 1,

|Sx−1 (∆X) (0)| ≤ x−1|∆X(0)| ≤ 1 .
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Hence, we obtain

sup{P [T > t/2] : |∆X(0)| ≤ x, (X(0), X̃(0)) ∈ R} ≤

sup{P
[
T > t/(2x2)

]
: |∆X(0)| ≤ 1, (X(0), X̃(0)) ∈ R} .

If t ≥ 2x2 then the tail estimate of the law of the above coupling time gives

sup{P
[
T > t/(2x2)

]
: |∆X(0)| ≤ 1, (X(0), X̃(0)) ∈ R} ≤ C

x2γ

tγ
.

This estimate, along with (4.23) and (4.24), yields

sup{P [T > t] : |X(0)| ≤ 1, |X̃(0)| ≤ 1} ≤ C
x2γ

tγ
+ Cx−γ + Ct−1/6 .

Choosing x appropriately in terms of t, we see that for sufficiently large t (and conse-
quently for all t ≥ 1 by readjusting the constants),

sup{P [T > t] : |X(0)| ≤ 1, |X̃(0)| ≤ 1} ≤ Ct−γ ,

and this proves the theorem.

5 Conclusion

In this article, we have constructed a successful Markovian coupling for the two-
dimensional Brownian motion along with a finite collection of its monomial Stratonovich
integrals. In the context provided by Theorem 3, this is a further step in the direction
of extending Markovian coupling techniques beyond the realm of specific examples
towards a more general context. Our method shares some features with an iterative
coupling scheme employed in [22] for coupling iterated Kolmogorov diffusions, though
the inductive strategy described in the current paper seems to be more robust as one
can build iterations within iterations into the coupling, exploiting the inductive approach
described here. A natural next step for the general program of coupling hypoelliptic
diffusions would be to couple diffusions driven by nilpotent vector fields which do not just
depend on the driving Brownian motion but the entire diffusion. The Baker-Campbell-
Hausdorff formula can be employed to show that such a coupling can be achieved if
one can construct successful Markovian couplings for Brownian motion on the free
Carnot group of finite order [5]. The geometry of the Carnot group seems to lend itself
particularly to our inductive approach: the Lie algebra U of the Carnot group has a
graded structure given by U = U1 ⊕ U2 · · · ⊕ UN and there are dilation operators δt that
act by multiplication by ti on the elements of Ui while preserving the graded structure.
A possible strategy for constructing the coupling in this case would be to use the graded
structure in the induction hypothesis and to use the dilation operator to implement the
scaling strategy used repeatedly in the above arguments. We will investigate this in
future work.

The current article also provides quantitative bounds on the distribution of the cou-
pling time. These can be used to obtain estimates on the total variation distance between
the laws of the diffusions. Employed in conjunction with the scaling property (Lemma
4), this would lead to gradient estimates for heat kernels and harmonic functions cor-
responding to the generator of the diffusion [9, 10, 2]. We note here that it was shown
in recent work [3, 2] that optimal bounds on total variation distance and good gradi-
ent estimates, especially in the case of hypoelliptic diffusions, require non-immersion
couplings. However, so far, it has been possible to provide explicit constructions of
these couplings only in rather special examples: (generalized) Kolmogorov diffusions [3]
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and Brownian motion on the Heisenberg group [2]. An important challenge is to find
robust non-immersion coupling constructions applicable to a wider framework and then
to compare their performance with analogous immersion or Markovian couplings.
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