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Abstract

A point-shift F maps each point of a point process Φ to some point of Φ. For all
translation invariant point-shifts F , the F -foliation of Φ is a partition of the support of
Φ which is the discrete analogue of the stable manifold of F on Φ. It is first shown
that foliations lead to a classification of the behavior of point-shifts on point processes.
Both qualitative and quantitative properties of foliations are then established. It is
shown that for all point-shifts F , there exists a point-shift F⊥, the orbits of which are
the F -foils of Φ, and which is measure-preserving. The foils are not always stationary
point processes. Nevertheless, they admit relative intensities with respect to one
another.
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1 Introduction

A point process is said to be stationary if its distribution is invariant by the group
of translations on Rd. A point-shift is a dynamics on the support of a stationary point
process, which is itself flow-adapted with respect to the translations of Rd.

The main new objects of the paper are the notion of foliation of a stationary point
process w.r.t. a flow-adapted point-shift.

Such a foliation is a discrete version of the global stable manifold (see e.g. [9] for
the general setting and below for the precise definition used here) of this dynamics, i.e.,
two points in the support of the point process are in the same leaf or foil of this stable
manifold if they have the same “long term behavior” for this dynamics. This foliation
provides a flow-adapted partition of the support of the point process in connected
components and foils.

The point foil of a point process w.r.t. a point-shift is defined under the Palm distribu-
tion of this point process. It is the random counting measure with atoms at the points
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Point-shift foliation of a point process

of the foil of the origin. The distribution of the point foil under the Palm probability of
the point process is left invariant by all bijective shifts preserving the foliation. A point
foil is not always markable, i.e., is not always a stationary point process under its Palm
distribution.

The main result of the paper is the classification of point-shifts based on the cardinal-
ities of their foils and connected components (Theorem 22). This classification states
that each connected component belongs to one of the following three classes:

1. Components with finitely many points, and where the dynamics from these points
exhibits a periodic behavior;

2. Components with infinitely many points and infinitely many finite foils, and where
there are points with infinitely many pre-images;

3. Components with infinitely many infinite foils, and where there is no point with
infinitely many pre-images; namely, if one applies the point-shift infinitely many
times to the point process, there are no points left.

Another important dichotomy is whether the point foils of a component are markable or
not.

This classification is complemented by quantitative results on the relative intensities
of foils (Theorem 45). The existence of these relative intensities follows from the remark-
able fact that one can always navigate the foil of the origin in a measure-preserving way.
Two foils having a positive and finite relative intensity can be seen as having the same
dimension.

The literature on point-shifts starts with the seminal paper by J. Mecke [12]. The
fundamental result of [12] is the point stationarity theorem, which states that all bijective
point-shifts preserve the Palm distribution of all simple and stationary point processes.
The notion of point-map was introduced by H. Thorisson (see [13] and the references
therein) and further studied by M. Heveling and G. Last [8]. These objects arise in
a variety of applications ranging from drainage networks [7] to routing in wireless
networks [2]. The dynamical system analysis of point-shifts which is pursued in the
present paper was proposed in [4]. The last paper is focused on long term properties of
iterates of point-shifts. It introduced the notion of point-map probability, which provides
an extension of Mecke’s point stationarity theorem. In contrast, the present paper is
focused on the stable manifold of a point-shift, as already mentioned. It is centered
on the definition of this object and on the study of both qualitative and quantitative
properties of its distribution.

The paper is structured as follows. Section 2 defines the setting for point processes
and point-shifts and Section 3 that for discrete foliations. Section 4 combines the two
frameworks and defines the discrete foliation of a point process by a point-shift. Section
5 gives the classification. Section 6 introduces the stable group of this foliation, and
shows the existence of measure-preserving dynamics on the foliation. It also defines the
foil point process. Finally, Section 7 gathers the quantitative properties of foliations.

2 Point processes and point-shifts

Whenever (Rd,+) acts on a space, the action of t ∈ Rd on that space is denoted by θt.
It is assumed that (Rd,+) acts on the reference probability space (Ω,F).

2.1 Counting measures and point processes

Let N be the space of all locally finite and simple counting measures on Rd. It
contains all measures φ on Rd such that for all bounded (relatively compact) Borel
subsets B of Rd, φ(B) ∈ N (counting measure condition) and for all x ∈ Rd, φ({x}) ≤ 1
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Point-shift foliation of a point process

(simplicity condition). Let N be the cylindrical σ-field on N generated by the functionals
φ 7→ φ(B), where B ranges over the elements of B, the Borel σ-field of Rd. The flow θt
acts on counting measures as

(θtφ)(B) = φ(B + t),

and therefore on Rd as θtx = x− t.
Let N0 be the subspace of N of counting measures with an atom at the origin.
A (random) point process is a couple (Φ,P) where P is a probability measure on a

measurable space (Ω,F) and Φ is a measurable mapping from (Ω,F) to (N,N ).
If, for all t ∈ Rd, Φ(θtω) = θtΦ(ω) (this is the flow-adapted assumption on Φ) and

θtP = P, the point process (Φ,P) is called stationary. This implies

∀B1, . . . , Bk ∈ B, n1, . . . , nk ∈ N,
P[Φ(B1) = n1, . . . ,Φ(Bk) = nk] = P[Φ(θtB1) = n1, . . . ,Φ(θtBk) = nk].

Note that being flow-adapted is a property of Φ, while being stationary is a property of
(Φ,P).

When the point process (Φ,P) has a finite and positive intensity, its Palm probability
[5] is denoted by PΦ. Expectation w.r.t. PΦ is denoted by EΦ.

2.2 Flow-adapted point-shifts

A point-shift on N is a measurable function F which is defined for all pairs (φ, x),
where φ ∈ N and x ∈ φ, and satisfies the relation Fφ(x) ∈ φ.

In order to define flow-adapted point-shifts, it is convenient to use the notion of
point-map. A measurable function f from the set N0 to Rd is called a point-map if for all
φ in N0, f(φ) belongs to φ.

If f is a point-map, the associated flow-adapted point-shift, F = Ff , is a function
which is defined for all pairs (φ, x), where φ ∈ N and x ∈ φ, and

Fφ : φ→ φ, Fφ(x) := f(θxφ) + x.

Note that with abuse of notation, Ff and Fφ were used with different meanings. The
two can be distinguished from the context depending on whether f is a point-map or
φ a counting measure. It is easy to verify that the point-shift F is flow-adapted. In the
rest of this article, point-shift always means flow-adapted point-shift. Point-shifts will be
denoted by capital letters and the point-map of a given point-shift will be denoted by the
associated small letter (F ’s point-map is hence denoted by f ).

Remark 1. The term flow-adapted is borrowed from [11]. The term compatible is also
used for the same notion in the literature ([3] and [4]). Since the former is more common
in dynamical systems, flow-adapted will be used in the present paper.

For all n ≥ 0, all φ ∈ N and x ∈ φ, the n-th order iterate of the point-shift F is defined
inductively by F 0

φ(x) = x and

F k+1
φ (x) = Fφ(F kφ (x)), k ≥ 0.

For all n, Fn is a flow-adapted point-shift.
Let mn

f (φ, y) = card(F−nφ (y)). The n-th image counting measure (of φ by F ) is then

defined as the counting measure Fnφ (φ) with support {y ∈ φ;F−nφ (y) 6= ∅}, and such that
the multiplicity of y in the support of Fnφ (φ) is mn

f (φ, y). Notice that Fnφ (φ) is not simple
in general.
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2.3 Examples

This subsection introduces a few basic examples which will be used to illustrate the
results below. These examples will be based on two types of point processes: Poisson
point processes and Bernoulli grids. The latter are defined as follows: it is well known
that the d dimensional lattice Zd can be transformed into a stationary point process in
Rd by a uniform random shift of the origin in the d unit cube. The Bernoulli grid of
Rd is obtained in the same way when keeping or discarding each of the lattice points
independently with probability p. The result is again a stationary point process whose
distribution will be denoted by Pp.

2.3.1 Strip point-shift

The Strip Point-Shift was introduced by Ferrari, Landim and Thorisson [6]. For all points
x = (x1, x2) in the plane, let St(x) denote the half strip (x1,∞) × [x2 − 1/2, x2 + 1/2].
Then S(x) is the left most point of φ in St(x). It is easy to verify that S is flow-adapted.
Denote its point-map by s.

The strip point-shift is not well-defined when there are more than one left most point
in St(x), nor when the point process has no point in St(x). Note that such ambiguities
can always be removed, and some refined version of the strip point-shift can always be
defined by fixing, in some flow-adapted manner, the choice of the image and by choosing
fφ(x) = x in the case of non-existence. By doing so one gets a refined point-shift defined
for all (φ, x).

2.3.2 Mutual nearest neighbor point-shift

The Mutual Nearest Neighbor point-shift was defined by Olle Häggström. Two points x
and y in φ are mutual nearest neighbors if x (resp. y) is the closest point of φ to y (resp.
x). The Mutual Nearest Neighbor Point-Shift N is the involution which maps x to y when
these two points are mutual nearest neighbors and maps z to itself if z has no mutual
nearest neighbor. This point-shift is bijective.

2.3.3 Drainage point-shift on the Bernoulli grid

The Drainage point-shift, which is variant of drainage network [7], is denoted by D and
is defined on the 2-dimensional Bernoulli grid as follows:

Dφ(x1, x2) = (x′1, x2 − 1),

where
x′1 = min{y ≥ x1; (y, x2 − 1) ∈ φ}.

It is easy to verify that 0 < p < 1, R is a.s. well-defined.

2.3.4 Condenser point-shifts

Assume each point x ∈ φ is marked with

mc(x) = #(φ ∩B(x, 1)).

Note that mc(x) is always positive. The condenser point-shift acts on marked point
processes as follows: it goes from each point x ∈ φ to the closest point y with a larger
first coordinate such that mc(y) = mc(x) + 1. It is easy to verify that the condenser
point-shift is flow-adapted and almost surely well-defined on the homogeneous Poisson
point process.
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2.4 On finite subsets of point process supports

This subsection contains some of the key technical results to be used in the forthcom-
ing proofs.

A disjoint subset collection of counting measures, is a map T defined on a subset A
of N(Rd), which associates to each φ ∈ A, a collection T (φ) = {Ti(φ); i ∈ I}, where I is a
countable index set, of pairwise disjoint non-empty subsets of φ.

A disjoint subset collection R is called an inclusion of T if for each Ti ∈ T there exists
a unique Ri ∈ R such that Ri ∩ Ti 6= ∅ and in addition Ri ⊂ Ti. With abuse of notation,
Ri is referred as the inclusion of Ti.

Note that a disjoint collection can be seen as a partition of counting measures by
adding φ\ ∪i∈I Ti(φ) as another element to the collection. Therefore with abuse of
notation the term partition will also be used to refer to a disjoint subset collection.

If A ⊂ N(Rd) is closed under the action of Rd, the partition T on the elements of A is
called flow-adapted if for all φ ∈ A, and all t ∈ Rd,

T (φ) = {Ti(φ), i ∈ I} ⇒ T (θtφ) = {θtTi(φ); i ∈ I}.

One of the simplest cases of flow-adapted partitions is the singleton partition; i.e.,

T (φ) = {{t}; t ∈ φ}.

Theorem 2. Let (Φ,P) be a stationary point process and T be a flow-adapted partition
of the point process. If R is a flow-adapted inclusion of T , then almost surely Ti ∈ T is
finite if and only if its inclusion, Ri, is finite.

Proof. For x ∈ φ, let Tx := Tx(φ) denote the element of T which includes x and Rx :=

Rx(φ) denote the inclusion of Tx. Let PΦ be the Palm probability of the point process. It
is sufficient to prove almost surely T0 is finite if and only if R(0) is finite.

Clearly if T0 is finite so is R0. To prove the converse, define the mass transport w
(see Lemma 51)

wφ(x, y) =

{
1x=y Tx is finite or Rx is infinite,

1y∈Rx/|Rx| Tx is infinite and Rx is finite.
(2.1)

The mass transport principle implies

EΦ[w−(0)] = EΦ[w+(0)] = EΦ[1] = 1.

Therefore w−(0) is PΦ-a.s. finite and hence PΦ-a.s. there is no point satisfying the
second case of (2.1), which completes the proof.

Remark 3. As mentioned earlier, a flow-adapted disjoint collection can be completed to
a flow-adapted partition and hence the statement of Theorem 2 is also valid when T is a
flow-adapted disjoint collection and R is a flow-adapted inclusion of T .

Corollary 4. Let T be the partition with a single element including all points of the
point process. Theorem 2 gives that one cannot choose a finite non-empty subset of a
stationary point process in a flow-adapted manner.

Following the notation of the proof of Theorem 2, for a flow-adapted partition T ,
one can consider T0 : N0 → N0 which maps φ to T0(φ). It is easy to see that each
flow-adapted partition T of counting measures is fully characterized by the measurable
map T0 : N0 → N0. Indeed,

Tt(φ) = θ−tT0(θtφ) = t+ T0(θtφ). (2.2)
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An enumeration of the elements of a set is an injective function ν from from this
set to N (or equivalently to Z). There are several enumerations of the elements of the
partition T ; e.g., based on the distance to the origin. Any element T of the partition is a
countable collection of points of φ. Since φ has no accumulation points, one can define
the distance of T to the origin as the minimum of the distances from the points of T to
the origin. If the set of distances of the sets of the partition to the origin are all different,
one defines T0 as the element of the partition with the smallest distance to the origin, T1

as the one with the second smallest distance to the origin, and so on. Ties are treated in
the usual way, e.g. by using lexicographic ordering. Note that this enumeration is not
flow-adapted.

A natural question is about the existence of translation invariant enumerations. This
is not always granted. For example, it is well known, and can be seen from Corollary 4,
that the singleton partition of a stationary point process (Φ,P) cannot be enumerated in
a measurable and flow-adapted manner.

Definition 5. A flow-adapted partition of a stationary point process will be said to
be markable if there exists an enumeration of the elements of the partition which is
invariant by translations.

The reason for this terminology is that if the partition is defined by a selection of the
points of Φ based on marks (see e.g. [5] for the definition of marks of a point process),
then such an enumeration exists1. For instance, the singleton partition of a stationary
point process is flow-adapted but is not a markable partition.

Definition 6. Let T be a flow-adapted partition of the support of Φ. Let H be a point-
shift. One says H preserves T if for all T ∈ T , H−1(T ) = T . If H is bijective, this is
equivalent to the property that for all T ∈ T , H(T ) = T .

Definition 7. Let ΓT := ΓT (Φ) be the set of all bijective and T -preserving point-shifts.
The set ΓT can be equipped with a group structure by composition of point-shifts. This
group, which is as subgroup of the symmetric group on the support of Φ, is called the
T -stable group. An element H of this T -stable group is said T -dense if P-almost surely,
for all x ∈ φ, the orbit of x under H spans the whole set of the partition that contains x;
i.e.,

{Hn(x);n ∈ Z} = Tx(φ).

3 Discrete foliations

3.1 Foils and connected components

The notion of discrete foliation can be defined for any function on any set. Since the
present paper is focused on stochastic objects, only measurable functions on measurable
spaces will be considered.

Assume (X,F) is a measurable space where all singletons are measurable; i.e., for
all x ∈ X one has {x} ∈ F and let g be a measurable map (or dynamics) on X. Note that
in general X is not a topological space2.

1In fact the following result holds: there exists an enumeration invariant by translation if and only if there
exists a decomposition of the stationary point process into a collection of stationary sub-point processes with
disjoint supports and with positive intensities. The proof of this result is skipped as it will not be used below.

2 When X is a topological space and g is continuous, g defines a topological dynamical system; when X
is equipped with a probability measure which is preserved by g, the latter defines a measure preserving
dynamical system.
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Definition 8. The graph Gg = Gg(X) = (V,E) has for set of vertices V = X and
E = {(x, g(x)), x ∈ X} for set of edges3. Note that this graph can be considered either
as undirected or as directed, with each edge from x to g(x).

For x ∈ X, denote by Cg(x) the undirected connected component of Gg which
contains x; i.e., the set of all points y ∈ X for which there exist non-negative integers m
and n such that gm(x) = gn(y). The set of connected components of Gg will be denoted
by Cg(X).

Cg(x) will be said to be g-acyclic, if the restriction of Gg to Cg(x) is a tree.

Lemma 9. The connected component C = Cg(x) of Gg is either an infinite tree or it has
exactly one (directed) cycle K(C); in the latter case, for all y ∈ C, there exists n ∈ N
such that gn(y) ∈ K(C).

Proof. All statements follow from the fact that all vertices of C, seen as a directed graph,
have out-degree equal to one and from the fact that C is connected (as an undirected
graph).

Remark 10. If for all x ∈ X, Card(g−1(x)) is finite, then Cg(x) is countable.

Whenever it is clear from the context, the superscript g is dropped.
Connected components can be partitioned into finer sets. Let ∼g be the binary

relation on the elements of X defined by

x ∼g y ⇔ ∃n ∈ N; gn(x) = gn(y).

It is immediate that ∼g is an equivalence relation.

Definition 11. The partition of X generated by the equivalence classes of ∼g will be
called the g-foliation of X. Denote it by Lg(X) or LgX . Each equivalence class is called a
foil. The equivalence class of x ∈ X is denoted by Lg(x).

Remark 12. In the terminology of geometry, foils are called leaves. But since the paper
uses graphs which are mostly trees, to avoid confusion with tree leaves, the word foil
will be used here.

Remark 13. If x ∼g y then x and y are in the same connected component of Cg(x). In
other words, the foliation is a subdivision of Cg(X).

One can also see Lg(x) as the limit of the increasing sets Lgn(x), where

Lgn(x) := {y ∈ X; gn(y) = gn(x)}.

The cardinality of Lg(x) (resp. Lgn(x)) will be denoted by lg(x) (resp. lgn(x)).
For reasons that will be explained below, the class of g(x), namely Lg(g(x)) will be

denoted by Lg+(x). If there exists a point y ∈ X such that g(y) ∈ Lg(x), Lg(y) is denoted
by Lg−(x). One can verify that Lg+(x) is well-defined and that both Lg−(x) and Lg+(x) are
class objects; i.e., they do not depend on the choice of the element of the equivalence
class.

Remark 14. For a homeomorphism g on a metric space, the stable manifold of a point
x ∈ X with respect to g is

W s(g, x) = {y ∈ X; lim
n→∞

d(gn(x), gn(y)) = 0}.

Hence, in the case where the space X is equipped with a discrete metric, the stable
manifold foliation is the g-foliation of X as defined above. This explains the chosen
terminology.

3In all cases to be considered, the connected components of Gg will always have a countable collection of
nodes and a finite degree, even when X is not countable; see the next remark.
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The measurability of g implies all foils are measurable subsets of X.
A partition L of X into measurable sets is called g-invariant if for all L ∈ L

g−1(L) = {x ∈ X; g(x) ∈ L} ∈ L,

provided that g−1(L) 6= ∅.

3.2 Foil order

The g-foliation of each connected component of X can be equipped with some form
of order. Consider g(x) as the father of x. Then Lg(x) denotes the g-generation of x i.e.,
the set of its g-cousins of all orders; Lgn(x) denotes the set of its g-cousins with common
n-th g-ancestor. In addition, Lg+(x) is the g-generation senior to x’s, i.e., that of its father,
whereas Lg−(x) (if it exists) is the g-generation junior to x’s, i.e., that of its sons (if any)
or that of the sons of its cousins (again if any).

Definition 15. Note that if C(x) is acyclic, this definition of generations gives a linear
order on the foils of C(x) which is that of seniority: by definition Lg(y) < Lg+(y) for all
y ∈ C(x). This order is then similar to the order of either Z or N (total order with either
no minimal element or with a minimal element).

Note that gn(X) is a sequence of decreasing sets in n. Its limit (which may be the
empty set) is denoted by g∞(X).

Definition 16. Let n be a positive integer. For all x ∈ X, let Dn(x) = Dn(g, x) be the
set of all descendants of x which belong to the n-th generation w.r.t. x; i.e.,

Dn(x) := {y ∈ X; gn(y) = x}.

The cardinality of Dn(x) (which may be zero, finite or infinite) is denoted by dn(x). Also,
let D(x) = D(g, x) denote the set of all descendants of x; i.e.,

D(x) := {y ∈ X;∃ n ≥ 0 : gn(y) = x} =

∞⋃
n=1

Dn(x).

Finally the cardinality of D(x) is denoted by d(x).

4 Point-map foliations

This section introduces two dynamics associated with a flow-adapted point-shift
F = Fφ (or equivalently to its associated point-map f ) and discuss the associated
foliations. Dynamics 1 will be used for the classification result and Dynamics 2 will be
used for the results of Section 7.

1. For all fixed φ ∈ N, consider the map g = Fφ, from the discrete space support(φ) to
itself. The Fφ-foliation of φ is a partition of the set support(φ). It will be denoted

by LFφφ . The set of connected components will be denoted by CFφφ . Whenever the

context allows it, the subscript φ is dropped, so that the latter set is denoted by CF
and the former by LF .

2. (N0, θf ): for all φ ∈ N0, let g(φ) = θfφ := θf(φ)φ. The map θf is a measurable
dynamics on N0, a non-discrete measure space. The definition of the θf -foliation
is nevertheless that of Definition 114. The reason for this choice of definition
is given in Corollary 17 below. The associated foliation (resp. set of connected

4 Rather than that of the stable manifold alluded to in Remark 14
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components) is denoted by LθfN0 or simply by Lθf (resp. CθfN0 or Cθf ). Note that this
partition of N0 is very different in nature from that discussed for dynamics 1 above:
each connected component of Lθf (and hence each foil or each component of the
graph Gθf ) is still discrete, whereas N0 is a non-countable set. So the number of
connected components of this foliation must be non-countable.

Although LF and Lθf are defined on different spaces, they are closely related because of
the following statement, which follows from the compatibility of the point-shift F .

Corollary 17.
x ∼Fφ y ⇔ θxφ ∼θf θyφ. (4.1)

Example 18. Consider the Drainage point-shift D on the 2-dimensional Bernoulli grid
defined in Subsection 2.3.3. If p ∈ (0, 1), one can show that

LD(x1, x2) = {(y, x2) ∈ Φ},

and
CD(x1, x2) = {(y1, y2) ∈ Φ}.

Thus each foil looks like a 1-dimensional Bernoulli grid and each connected component
looks like a 2-dimensional Bernoulli grid (Figure 1). If d = 2, the graph GR has a single
connected component.

Figure 1: The Drainage point-shift on 2-dimensional Bernoulli grid. The dashed lines
indicate two foils of this point-shift.

Example 19. Consider the Strip Point-Shift of Subsection 2.3.1 on the 2-dimensional
Poisson point process. There is a single connected component. The foil of the origin is
depicted in Figure 2.

Consider now a stationary point process (Φ,P), with Palm version denoted by (Φ,PΦ).
The expectation with respect to P (resp. PΦ) is denoted by E (resp. EΦ). The above
dynamics lead to the following stochastic objects:

1. FΦ is a random map from the discrete random set support(Φ) to itself. Both the
component partition CF = CFΦ

Φ and the foil partition LF = LFΦ

Φ are flow-adapted
partitions of this random set, with the latter being a refinement of the former.
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Figure 2: The strip point-shift on the 2-dimensional Poisson point process. The graph in
blue is the restriction of the graph of the point-shift to the points of older generations
(see Remark 21) than the foil of the origin and larger than the origin in the total order of
the foil (see Subsection 6.2). The half-foil of the origin is in red.

2. Lθf = LθfN0 is a deterministic partition of the whole set N0 (in contrast to the random
partition of a random set described above). Note however that it is sufficient that
θf be defined PΦ-almost surely and hence it may be undefined for some elements
of N0 of null measure for PΦ.

Here are some observations on the flow-adapted partitions CF and LF . These two
partitions do not depend on P at all (since they are defined on realizations). In particular,
they do not depend on whether the point process is considered under P or PΦ.

The elements of each of these two partitions can be enumerated in a natural way
following the method discussed just before Definition 5.

The dichotomy of Section 2.4 applies: there are cases where LF (resp. CF ) is a
markable partition and cases where it is not5. A simple instance of the latter case is
obtained when F is bijective; then the foil partition coincides with the singleton partition,
which is not a markable partition.

The following solidarity properties hold:

Proposition 20. If the foil partition LF is markable, so is the component partition CF .
Conversely, if C is a component which is the support of a flow-adapted point process Ξ,
then either the foil partition of Ξ, LFΞ

Ξ is markable or there is no stationary point process
with a positive intensity having for support a foil of LFΞ

Ξ .

5The partition LFΦ
Φ gathers points whose marks are in the same equivalence class w.r.t. some equivalence

relation. This does not mean that this partition is markable.
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Point-shift foliation of a point process

Proof. The first assertion is immediate. The proof of the converse leverages the foil
order introduced in Subsection 3.2. First observe that Ξ has a single component. Assume
that, for some foil L of Ξ, the point process Ψ(L) with support L is a stationary point
process. Then Ψ(L+) = Ψ(F (L)) is a stationary point process with non empty support
(as L is non empty) and hence with positive intensity. Hence all foils that are senior to L
are stationary point processes with a positive intensity. Similarly, either L− is empty, and
then there is no foil junior to L, or Ψ(L−) = Ψ(F−1(L)) is also a stationary point process
with a positive intensity. It then follows that the foil partition of Ξ is markable.

Remark 21. Under PΦ, the foil order leads to a natural enumeration of the foils of the
component of the origin. The foil of the origin is numbered 0 and will be denoted by
LF (0) = L0, the foil senior (resp. junior) to it will be numbered 1 and will be denoted by
L1 (resp. L−1 if non empty), and so on. Note that this enumeration is not flow-adapted.

5 Point-map cardinality classification

In the rest of this work (Φ,P) is a stationary point process such that Φ(Rd) =∞, P
a.s. Its Palm version will be denoted by (Φ,PΦ). Note that the point process is always
assumed to have a finite and positive intensity.

The foliation LF partitions the support of the point process Φ into a discrete set
of connected components; each component is in turn decomposed in a discrete set of
F -foils, and each foil in a set of points. The present subsection proposes a classification
of point-maps based on the cardinality of these sets (Theorem 22).

5.1 Connected components

The cardinality classification of connected components of the two dynamics differ.
The partition CFΦ

Φ is countable. Its cardinality is a random variable with support on
the positive integers and possibly infinite. If (Φ,P) is ergodic, this is a positive constant
or∞ almost surely.

As already mentioned, in contrast, the partition Cθf is deterministic and non-countable
in general.

5.2 Inside connected components

In view of Corollary 17, the cardinality classification of the foils belonging to a given
connected component is the same for LFΦ

Φ and for Lθf .
It is easy to see that the cardinality of the set of foils of a component is a random

variable with support in N = N ∪ {∞}. The same holds true for the set of points of a
non-empty foil. The following theorem shows that only a few combinations are however
possible:

Theorem 22 (Cardinality classification of a connected component). Let (Φ,P) be a
stationary point process. Then P almost surely, each connected component C of GF (Φ)

is in one of the three following classes:

Class F/F: C is finite, and hence so is each of its F -foils. In this case, when denoting
by 1 ≤ n = n(C) <∞ the number of its foils:

• C has a unique cycle of length n;
• F∞(C) is the set of vertices of this cycle.

Class I/F: C is infinite and each of its F -foils is finite. In this case:

• C is acyclic;
• Each foil has a junior foil, i.e., a predecessor for the order of Definition 15;
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Point-shift foliation of a point process

• F∞(C) is a unique bi-infinite path, i.e., a sequence of points (xn)n∈Z of φ such
that Fφ(xn) = xn+1 for all n.

Class I/I: C is infinite and all its F -foils are infinite. In this case:

• C is acyclic;
• F∞(C) = ∅.

The following definitions will be used:

Definition 23. Let C be a connected component of GF (Φ). The point-shift evaporates
C if F∞G (C) = ∅ almost surely.

It follows from Theorem 22 that:

Corollary 24. The point-shift F evaporates C if and only if C is of Class I/I.

Before giving the proof of Theorem 22, a collection of preliminary results (Proposition
25 to Corollary 30) is presented.

Proposition 25. Let (Φ,P) be a stationary point process with Palm probability PΦ. Let
dn(0) and d(0) be as in Definition 16 for the F -foliation of φ = Φ(ω). One has

∀n ≥ 0 : EΦ [dn(0)] = 1. (5.1)

In particular, for all n, dn(0) is PΦ-almost surely finite. If, in addition, GF (Φ) is PΦ-almost
surely acyclic, then

EΦ [d(0)] =∞.

Proof. The map

w(φ, x, y) := 1{Fnφ (x) = y}

is a flow-adapted mass transport (see [11]). The first statement is hence an immediate
consequence of Proposition 51. For the second part, when GF is acyclic, the Dn-s form a
partition of D and hence

EΦ [d(0)] =

∞∑
n=1

EΦ [dn(0)] =∞.

Remark 26. Note that GF (Φ) is PΦ-almost surely acyclic if and only if GF (Φ) is P-almost
surely acyclic.

Corollary 27. Almost surely, if lF (x) =∞, then for all positive n, lF (Fnφ (x)) =∞.

Proof. Proposition 25 implies that the degrees of all vertices in GF (Φ) are a.s. finite.
Hence the claim.

Corollary 28. The point-shift Fφ is almost surely surjective on the support of φ if and
only if it is almost surely injective.

Proof. If Fφ is surjective (resp. injective), then almost surely d1(0) ≥ 1 (resp. d1(0) ≤ 1).
Since EΦ[d1(0)] = 1], almost surely d1(0) = 1, and hence the point-shift is bijective.

Proposition 29. The connected component C of GF (Φ) is acyclic if and only if it is
infinite. Hence GF (Φ) is acyclic if and only if it has no finite connected component.
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Proof. According to Lemma 9 each connected component of GF (φ) has at most one cycle.
If the latter is finite, it possesses exactly one cycle. This proves the first statement.

Let n = n(Φ) be the number of connected components of GF (Φ) which are infinite
and possess a cycle. Let T = {Ti}ni=1 denote the collection of such components. Note
that n may be infinite. According to Lemma 9, each Ti has exactly one cycle. This cycle
is a finite inclusion of Ti, which contradicts Theorem 2. Therefore almost surely, there is
no such component.

The next corollary follows from Lemma 9.

Corollary 30. If GF (Φ) is almost surely connected, it is almost surely a tree.

Proof of Theorem 22. The result for connected components of Class F/F is an immedi-
ate consequence of Lemma 9.

Assume C is an infinite component. According to Proposition 29, C is acyclic. Con-
sider the collection of all connected components with both finite and infinite foils. Denote
this collection by T = {Ti}ni=1, where n may be infinity. Corollary 27 implies that each
Ti should have a largest finite foil, say Ri, where the order is that based on seniority
(Definition 15). Therefore, Ri is a finite inclusion of Ti which contradicts Theorem 2. So,
almost surely, there is no connected component with both finite and infinite foils, which
proves that each acyclic component is either of Class I/F or I/I.

Let C be a connected component of Class I/F . Almost surely, C cannot have a
smallest foil. Otherwise the latter would again be a finite flow-adapted inclusion of the
infinite connected component C, which contradicts Theorem 2. This proves the second
assertion on the foils of C in this case. Now let L0 be an arbitrary foil of C and, for all
integers i, let Li be the foil containing F iφ(L0). Since L0 is finite, there exists a least
non-negative integer n such that Fnφ (L0) is a single point. Let

C0 := {Fmφ (L0), −∞ < m < n},

The graph GF (C0) is infinite, connected and all its vertices are of finite degree. It
hence follows from König’s infinity lemma [10] that GF (C0) has an infinite path (or
branch) {xi}i≤0. For i > 0, define xi := F iφ(x0). Then (xi)i∈Z is a bi-infinite path. Clearly

(xi)i∈Z ⊂ F∞φ (C). Since all edges of GF (C) are from a foil L to the foil L+, (xi)i∈Z
has exactly one vertex in each foil. To prove F∞φ (C) ⊂ (xi)i∈Z, assume there exists
y ∈ F∞φ (C)\(xi)i∈Z. Then there exist at least two bi-infinite paths. Since all bi-infinite
paths of C intersect L(y), which is finite, there is a point of φ through which all the
bi-infinite paths pass. Since there are at least two infinite paths, this point is well-defined
and is a finite inclusion of C, which contradicts Theorem 2. This completes the proof of
the properties of Class I/F .

Consider now C of Class I/I and assume that F∞φ (C) is not empty. If x ∈ F∞φ (C),

then GF (D(x)) is an infinite connected graph with vertices of finite degree and hence
it possesses an infinite path, which in turn gives a bi-infinite path using the same
construction as what was described above for the Class I/F . Hence, in order to prove
that F∞φ (C) is empty, it is sufficient to show that C has no bi-infinite path. If C has finitely
many bi-infinite paths, then the intersections of these bi-infinite paths with each foil of C
give a collection of finite inclusion of infinite sets, which contradicts Theorem 2. Consider
now the case where C has infinitely-many bi-infinite paths. Since C is connected, each
two bi-infinite paths should intersect at some point. Let J = J(C) be the set of all points
x ∈ C such that at least two bi-infinite paths join at x. It is now shown that, almost
surely, the intersection of a bi-infinite path and J has neither a first nor a last point
for the order induced by F . If it has a first (resp. last) point, then the part of the path
before the first (resp. after the last) point is an infinite flow-adapted set with a finite
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flow-adapted inclusion, which contradicts Theorem 2. Therefore, for each point x ∈ J ,
there is a smallest positive integer n(J, x) such that Fn(J,x)

φ ∈ J . Now define a point-shift
h on the whole point process as follows

h(x) =

{
F
n(J,x)
φ x ∈ J(C)

x otherwise.

Since the intersection of any bi-infinite path with J does not have a first point, h is almost
surely surjective. But from the very definition of J , all points of this set have at least two
pre-images, which contradicts Corollary 28. Hence the situation with infinitely-many
bi-infinite paths is not possible either, which concludes the proof.

In graph theoretic terms, one can summarize the results discussed in the last proof
as follows:

Corollary 31. A Class I/I component has one (positive) end. A Class I/F component
has two ends (a positive and a negative one).

Theorem 22 also has the following corollary:

Corollary 32. For all stationary point processes (Φ,P), for all point-shifts F , there exist
three stationary point processes (ΦF/F ,P), (ΦI/F ,P) and (ΦI/I ,P) (which may be empty
with positive probability), all defined on the same probability space, and such that

Φ = ΦF/F + ΦI/F + ΦI/I .

All connected components of GF (Φi) are of Class i, i ∈ {F/F , I/F , I/I}. If (Φ,P) is
ergodic, then each of these point processes is also ergodic.

Proof. The statement is an immediate consequence of Theorem 22 and the fact that
being a connected component of Class i is a flow-adapted property. Thus if Φi is defined
as the set of all points in components of Class i, Φi is flow-adapted. Stationarity and
ergodicity depend only on P and the flow on the probability space and they are being
carried to new point processes.

5.3 Comments and examples

Here are a few observations on the cardinality classification.

A point process (Φ,P) can have a mix of components of all three classes.

If (Φ,P) only has F/F components, then it should have an infinite number of con-
nected components. An example of this situation is provided by the Mutual Nearest
Neighbor Point-Shift N on Poisson point process on R2 (see below).

If (Φ,P) only has I/F components, then the cardinality of CFΦ

Φ may be finite or infinite.
An example of the first situation is provided by the Royal Line of Succession Point-Shift
on Poisson point processes on R2 (see below). An example of the latter is provided by
the Strip Point-Shift S on the Bernoulli grid of dimension 2.

If (Φ,P) only has I/I components, then the cardinality of CFΦ

Φ may again be finite or
infinite. An example of the first situation is provided by the Strip Point-Shift S on Poisson
point processes on R2. An example with infinite cardinality is provided in Subsection 8.3
of the appendix.

The end of this section gathers examples of the three classes.
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5.3.1 Class F/F

For the Mutual Nearest Neighbor Point-Shift N on a Poisson point process, there is no
evaporation and there is an infinite number of connected components, all of class F/F .
The order of the foils is that of Z mod 2 or Z mod 1. The foil partition is the singleton
partition, hence not markable. The connected component partition is not markable
either.

5.3.2 Class I/F

An example of this class is provided by the Strip point-shift on a stationary Poisson point
process (Φ,P) of R2 and R3. This point-shift has a single connected component [6]. The
RLS ordering (see the proof of Proposition 36) hence defines a total order on (Φ,P),
which is equivalent to that of Z. This allows one to define the RLS Point-Shift Frls which
associates to x ∈ Φ the unique point y ∈ Φ such that x comes next to y in this total order.
This point-shift is clearly bijective. Hence the foil of x is {x}. The unique connected
component of this point-shift is thus of class I/F . The unique connected component has
two ends. Its foliation has the same order as Z. It is not markable.

Note that these two examples are bijective point-shifts. But there are cases of type
I/I which are not bijective.

5.3.3 Class I/I

Here are three examples illustrating that this class of point-shifts can have either
markable or non markable foliations.

Proposition 33. The Drainage point-shift on the 2-dimensional Bernoulli grid with
0 < p < 1, has a single connected component of type I/I. Foils of this connected
component are not markable.

Proof. For x ∈ Φ, let π1(x) := x1 and π2(x) := x2 denote the first and the second
coordinate of x, respectively. It is clear that all points of a same foil share the same
second coordinate. The claim is that all points with the same second coordinate are
included in a single foil.

If x ∈ Φ, one has D(x) = (x1 +K,x2 − 1), where K + 1 is distributed as a geometric
random variable with parameter p. Assume x = (x1,m) and y = (y1,m) are two points
of Φ such that x1 < y1. Let (Kn)n∈Z, (K

′
n)n∈Z be two sequences of i.i.d. random

variables distributed as geometric random variable with parameter p, minus 1. If
δn = Dn(y)−Dn(x), one has δ0 = y1 − x1 and, for n ∈ N, one can consider

δn+1 =

{
δn −Kn +K ′n Kn < δn,

0 Kn ≥ δn.

This means (δn)n∈N behaves like a random walk on Z starting from y1−x1, before hitting
the set of non-positive integers. It is zero as soon as the random walk hits the set of
non-positive integers. Since the random walk on Z with mean zero steps is recurrent, δn
hits zero almost surely, which proves that x and y are in the same connected component.
Therefore all foils are infinite and the connected component is of type I/I. If foils of this
connected component were markable, the partition of the point process into vertical lines
form a collection of infinite disjoint subsets of the Bernoulli grid, where the intersection
of these subsets with a some fixed foil is a finite non-empty inclusion, which contradicts
Theorem 2.
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Proposition 34. The Condenser point-shift on the Poisson point process in R has a
single I/I connected component and the foliation is markable.

Proof. Clearly points of a single foil have the same mark. So in order to prove the
statement, it is sufficient to show that all the points with the same mark belong to the
same foil.

Assume that for some m ∈ N, there exist x, y ∈ Φ such that mc(x) = mc(y) = m, x ≤ y,
and both x and y are not in the same component of GF . For all z ∈ Φ with mc(z) = m and
y ≤ z, one has, Fn(x) ≤ Fn(y) ≤ Fn(z), for all n ∈ N. Therefore, the fact that x �F y

implies x �F z as well. This implies that the points of CF (x) with mark m are less than y.
Hence, there is a largest point of CF (x) with mark m. For t ∈ Φ, Let R(t) be the largest
point CF (t) with mark m if it exists and CF (t) otherwise. R(x) is a finite inclusion of
CF (x), which is clearly infinite. This contradicts Theorem 2.

Therefore each foil consists of all points with the same mark mc. The foliation has
the order of N.

Here are further examples of this class. The authors in [6] prove that the Strip
point-shift S on the Poisson point process in R2, has a single connected component
which is one ended. Therefore this connected component evaporates under the action of
fs and is of Class I/I. On a Poisson point process, the expander point-shift also has a
single connected component which evaporate under the action of the point-shift. This
component is of Class I/I.

6 Partition preserving point-maps

It is well-known that all bijective point-shifts preserve the Palm probability of sta-
tionary point processes and that this property characterizes the Palm probabilities of
stationary point processes [12].

This section features a fixed point-shift F and considers the class of bijective point-
shifts which preserve the two partitions CF = CFΦ

Φ and LF = LFΦ

Φ of a stationary point
process Φ. Such point-shifts will be instrumental to derive quantitative results in Section
7.

6.1 Bijective point-shifts preserving components

Let ΓFC := ΓCF (Φ) be the CF -stable group as defined in Definition 7. As mentioned in

Definition 7, ΓFC is a subgroup of the symmetric group on the support of Φ.

Proposition 35. For each point-shift F and each stationary point process (Φ,P), there
exists a CF -dense element (see Definition 7) of the CF -stable group; i.e., there exists
H ∈ ΓFC such that for all x ∈ Φ,

{Hi(x); i ∈ Z} = CFΦ (x).

There is no uniqueness in general.

Proof. The construction of H is different for each of the three classes of components
identified in Theorem 22. In each case, the first step is the construction of a total order
on the points of C which is flow-adapted and the second one is the definition of a dense
and bijective point-shift preserving C.

If C = CFΦ (x) is of F/F class, then it is easy to create a total order which is translation
invariant on the points of C as it is a finite set (e.g. using lexicographic order) with
points that can be numbered 0, 1, . . . , n−1 for some integer n = n(x) ≥ 1. A flow-adapted
bijection H preserving C is then easy to build by taking H = Mn with Mn(k) = k + 1

mod n.
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If C = CFΦ (x) is of I/F class, then, the existence of a single bi-infinite path in
GF (C) (see Theorem 22) and the finiteness of the foils can be used to construct a total
order. Let {xn}n∈Z be the bi-infinite path in question and let Ln denote the foil of xn.
Since Ln is finite for all n, one can use the lexicographic order to create a total order
between its points. The total order is then obtained by saying that all points of Ln have
precedence over those of Ln−1. This total order, which is that of Z, is flow-adapted. The
bijective point-shift is that associating to a point x of C its direct successor for this order.
This point-shift will be referred to as the Bi-Infinite Path Point-Shift B, with associated
point-map b. On such a component, one takes H = B.

If C = CFΦ (x) is of I/I class, then the construction uses a total order on the nodes
of GF (C) known as RLS (Royal Line of Succession). The latter order is based on two
ingredients:

1. A local (total) order among the sons of a given node in GF (C). This can be done as
follows: for a given point x of C let BF (x) = BFφ (x) be the set of its brothers; i.e.,

BF (x) := {y ∈ φ;Fφ(x) = Fφ(y)}.

The elements of BF (x) can then be ordered in a flow-adapted manner using the
lexicographic order of the Euclidean space.

2. The Depth First Search (DFS - see Appendix 8.2) pre-order on rooted trees.

The RLS order on a rooted tree is a total order on a finite tree obtained by combining (1)
and (2): DFS is used throughout and the sons of any given node are visited in the order
prescribed by (1), with priority given to the older son.

It is now explained how this also creates a total order on the nodes of C. For x, y ∈ C,
there exist positive integers m and n such that Fmφ (x) = Fnφ (y). One says that x ≥r y if x
has RLS priority over y in the rooted tree of descendants of Fmφ (x). This tree is a.s. finite
because in the I/I case, there is evaporation of C by the point-shift, which this in turn
implies that for all points z ∈ φ, the total number of descendents of z is a.s. finite. The
DFS preordering on descendants of a node in a tree forms an interval of this preordering.
This implies that ≥r is a well-defined order on C and also that it orders elements of C in
the same linear order as that of an interval in Z. Furthermore, since C is infinite, this
order on C cannot have a greatest element or a least element. Otherwise the greatest
and the least elements would be a finite flow-adapted inclusion of C or the foil, which
contradicts Theorem 2. Therefore the order on C as well as its restriction to a foil is a
linear order, similar to that of Z.

On such a components, one defines H = R where R denotes the RLS point-shift,
namely the point-shift that associates to each point its successor in the RLS order, which
is bijective and translation invariant.

Let h denote the point-map of the point-shift H defined in the last theorem. Notice
that since H is bijective, the dynamical system (N0, θh) preserves PΦ.

6.2 Bijective point-shifts preserving foils

The results of this subsection parallel those of the last subsection, with an important
refinement which is that of order preservation.

Let ΓFL := ΓFL(Φ) denote the set of all bijective and LFΦ -preserving point-shifts. This
group, which is called the LF -stable group, is a subgroup of the CF -stable group.

As above, an element H of the LF -stable group is said to be LFΦ -dense if

{Hi
φ(x); i ∈ Z} = LFφ (x).
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Each LFΦ -dense element H of the LF -stable group induces a total order �H on the
elements of each infinite foil of C by

x �H H(x). (6.1)

This total order is flow-adapted. It is said to be preserved by F if

x �H y ⇒ F (x) �H F (y).

The following proposition uses the fact (proved in Theorem 22) that in a connected
component C of GF (Φ), either all foils of C have finite cardinality or all foils have infinite
cardinality.

Proposition 36. For each stationary point process (Φ,P), and each point-shift F , there
exists a LFΦ -dense element F⊥ of the LF -stable group. In addition F⊥ can be chosen
such that the �F⊥ order is preserved by F on components with all its foils with infinite
cardinality. There is no uniqueness in general.

Proof. If the connected component C of a realization φ has finite foils, the following
construction can be used: F⊥(x) is the element coming next to x in the lexicographic
order. This rule is applied to all elements of a foil except the greatest element for this
order, whereas F⊥ of the greatest element is the least element.

For a connected component C with all its foils with infinite cardinality, the construc-
tion uses the RLS total order on the nodes of GF (C).

One defines F⊥(x) as the next element in L(x), i.e., the greatest element of L(x)

which is less than x, makes F⊥ a bijection, and the orbit of each point x of L(x) is the
foil L(x).

The property that �F⊥ is preserved by F follows from the fact that if x has priority
over y for DFS, then the father of x also has priority over the father of y for DFS.

Let f⊥ denote the point-map of the point-shift F⊥ defined in the last theorem. For the
same reasons as above, the dynamical system (N0, θf⊥) preserves PΦ.

In the next definition and below, in order to simplify notation, �F⊥ (defined in (6.1))
is often replaced by �⊥.

Definition 37. For two elements x and y of the same foil s.t. x �⊥ y, let

∆(x, y) := Card{z : x �⊥ z ≺⊥ y}.

By convention let ∆(y, x) := −∆(x, y).

It is easy to verify that for all x and y in the same foil,

F
∆(x,y)
⊥ (x) = y. (6.2)

6.3 Point foils and components

This subsection discusses some properties of the foil and the component of the origin,
seen as point processes. In particular, it provides conditions under which these objects
are not stationary point processes.

For all countable sets S of points of Rd without accumulation, let Ψ(S) denote the
counting measure with support S.

Let L0 (resp. C0) denote the foil (resp. component) of the origin under PΦ. The
counting measure Ψ(L0) under PΦ (resp. Ψ(C0) under PΦ) will be called the point foil
(resp. the point component) of Φ w.r.t. the point-shift F .
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Point-shift foliation of a point process

The terms point foil and point component are used to stress that these random
counting measures are not always Palm versions of stationary point processes. More
precisely, let Q0 (resp. R0) denote the distribution of the point foil Ψ(L0) (resp. Ψ(C0)).
The following proposition summarizes the connections between foils/components and
stationary point processes. Its proof follows from the definition of markability.

Proposition 38. If the foliation of C0 is not markable, then Q0 is not the Palm distribu-
tion of a stationary point process (see Subsection 2.4). Similarly, if C0 is not markable,
then the distribution R0 of Ψ(C0) is not the Palm distribution of a stationary point
process.

It follows from the above considerations that both in the markable and the non-
markable cases, Q0 (resp. R0) is preserved by θf⊥ (resp. θh). This invariance property is
of course classical in the markable case.

The fact that it holds in general can be phrased as follows: for all (non–necessarily
measure-preserving) dynamics f on a stationary point process, there exists a dynamics
f⊥ on the typical leaf of the stable manifold of f , which is bijective, dense (has the whole
leaf as orbit), and which preserves the law of the leaf.

7 Statistical properties of point-map foils

This section is devoted to quantitative complements to the results obtained hitherto
on the structure of foils and components. By quantitative results, one means here
properties pertaining to the mean values of certain random variables associated with
these objects, e.g., intensities or relative intensities.

7.1 Foil cardinalities

This subsection establishes a connection between the Palm-distribution of ln(0) (the
cardinality of the set of F -cousins of 0 with the same n-th order ancestor) and the
distribution of dn(0) (the cardinality of set of F descendants of generation n w.r.t. 0 – see
Definition 11). As a byproduct of this useful result, one can conclude:

1. If F evaporates Φ, namely if ΦF/F and ΦI/F are empty, then each F -foil of Φ has
an infinite number of points (Corollary 42), and the typical point has a number of
descendants which is a.s. finite (Corollary 41) but with infinite mean (Proposition
25), and hence heavy tailed. See Subsection 2.3.1 for an example.

2. If ΦI/I is empty, then each F -foil of Φ has an a.s. finite number of points (Theorem
22); the typical point has descendants of all orders with a positive probability6

(Corollary 41), and hence an infinite number of descendants. However, the expected
number of descendants of order n does not diverge in mean (Corollary 44) as n
tends to infinity. If in addition ΦI/F is empty, then the set of descendants of the
typical point looks like a “finite star with a loop at the center”. See Subsection
2.3.2 for an example. If in place ΦF/F is empty, then the set of descendants of the
typical point is either finite or looks like an “infinite path with finite trees attached
to it”. The points in this infinite path constitute a sub-stationary point process. This
point process always has a positive intensity. (For instance, for the RLS point-shift
on the Poisson point process in R2, this is the whole point process. There exist
cases where F is not bijective and the connected components are of type I/F and
hence such that this sub-point process is not the whole point process.

6With probability 1 iff F is bijective.

EJP 23 (2018), paper 19.
Page 19/25

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP123
http://www.imstat.org/ejp/


Point-shift foliation of a point process

Proposition 39. For all point-shifts F , for all stationary point processes (Φ,P), for all
h : N→ R+,

EΦ [h(dn(0))] = h(0)PΦ [0 /∈ FnΦ(Φ)] + EΦ

[
h(ln(0))

ln(0)

]
. (7.1)

Proof. By sending a total mass of h(ln(x)) to Fnφ (x), the total mass mass received by
point y is easily seen to be h(dn(y)). Let

w(φ, x, y) = 1{Fnφ (x) = y}h(ln(x))

ln(x)
,

where φ = Φ(ω). For all x and y in φ,

w+(x) =
h(ln(x))

ln(x)
, w−(y) = 1{dn(y) 6= 0}h(dn(y)),

and therefore using Lemma 51,

EΦ

[
h(ln(0))

ln(0)

]
= EΦ [1{dn(0) 6= 0}h(dn(0))]

= EΦ [h(dn(0))]− EΦ [1{dn(0) = 0}h(dn(0))]

= EΦ [h(dn(0))]− PΦ [dn(0) = 0]h(0)

= EΦ [h(dn(0))]− PΦ [0 /∈ FnΦ(Φ)]h(0).

The announced quantitative results are given in the following corollaries of Proposi-
tion 39.

If in (7.1) h(x) is replaced by xh(x), one gets:

Corollary 40. For all n ≥ 0,

EΦ [h(ln(0))] = EΦ [dn(0)h(dn(0))] . (7.2)

Corollary 41. For all n ≥ 0,

PΦ [0 ∈ FnΦ(Φ)] = EΦ

[
1

ln(0)

]
. (7.3)

In addition

PΦ [0 ∈ F∞(Φ)] = EΦ

[
1

l∞(0)

]
. (7.4)

Proof. The first result is obtained by putting h ≡ 1 in (7.1). Equation (7.4) is obtained
when letting n→∞ in Equation (7.3) and when using monotone convergence.

Equation (7.4) immediately proves:

Corollary 42. F evaporates (Φ,P) if and only if the F -foil of 0 is PΦ a.s. infinite7.

This is consistent with the result of Corollary 24 since the property that the foil
of 0 is infinite a.s. is equivalent to having all connected components of Class I/I, or
equivalently to having (ΦF/F ,P) and (ΦI/F ,P) almost surely empty.

Corollary 43. For all n ≥ 0,

EΦ [dn(0)|0 ∈ FnΦ(Φ)] = 1/EΦ

[
1

ln(0)

]
. (7.5)

7Equivalently, the iterated images of C, seen as counting measures, converge to 0 for the vague topology.
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Proof. Taking h the identity in (5.1) and (7.1) gives

1 = EΦ [dn(0)] = EΦ [dn(0)|0 /∈ FnΦ(Φ)]PΦ [0 /∈ FnΦ(Φ)]

+EΦ [dn(0)|0 ∈ FnΦ(Φ)]PΦ [0 ∈ FnΦ(Φ)]

= EΦ [dn(0)|0 ∈ FnΦ(Φ)]PΦ [0 ∈ FnΦ(Φ)] .

Replacing PΦ [0 ∈ FnΦ(Φ)] using (7.3) implies the result.

Corollary 44. If f does not evaporate (Φ,P), then

EΦ [dn(0)|0 ∈ Fn(Φ)] ↑n→∞ 1/EΦ

[
1

l∞(0)

]
<∞ (7.6)

and

lim sup
n→∞

EΦ [dn(0)|0 ∈ F∞(Φ)] ≤ 1/EΦ

[
1

l∞(0)

]
<∞. (7.7)

Proof. The first assertion follows from Equation (7.5). The second follows from Equation
(7.5) and simple monotonicity arguments.

7.2 Foil intensities

This subsection is focused on the intensity of the F -foils. From Proposition 20, either
all foils of a markable component are stationary point processes, or none of them are.
The notion of intensity only makes sense in the former case. The notion of relative
intensity defined in the next subsection allows one to discuss the “density” of foils in
whole generality, namely regardless of the above dichotomy.

The goal of the section is to complement the structural results discussed hitherto by
more quantitative results. The main result is an expression for the average number of
different points in the foil LF+(0) per point in the foil of 0, LF (0), when the point process
is under its Palm distribution.

7.2.1 Relative intensities

Below, when considering a component of Class I/I, it is assumed that F⊥ is an LFΦ -dense
element of the LFΦ -stable group and that �F⊥ is F -compatible.

Let f⊥ denote the point-map of F⊥ and let θf⊥ denote its related shift on N0. Equations
(4.1) and (6.2) give that for PΦ-almost all φ ∈ N0,

θnf⊥φ = θFn⊥(φ,0)φ. (7.8)

Hence if φ ∼θf ψ, with abuse of notation, one can define ∆(φ, ψ) as the unique integer n
such that θnf⊥φ = ψ.

Consider the dynamical system (N0, θf⊥). The fact that F⊥ is bijective implies that
θf⊥ preserves PΦ.

Theorem 45. Let (Φ,P) be a stationary point process, F be an arbitrary point-shift and
F⊥ and ∆ be as in Definition 37. Let P0 denote the distribution of Φ under PΦ. Then, for
P0 almost-all realizations φ for which the connected component of the origin is I/I, the
limit

λ+(φ) := lim
n→∞

∆ (Fφ(0), Fφ ◦ Fn⊥(0))

∆ (0, Fn⊥(0))
= lim
n→∞

∆ (Fφ(0), Fφ ◦ Fn⊥(0))

n
(7.9)

exists, is positive and in L1(P0). In addition, λ+(φ) is a function of the foil of 0 only; i.e.,
if 0 ∼F x, λ+(θxφ) = λ+(φ) and λ+ is independent of the choice F⊥ as far as it satisfies
the properties in Proposition 36.
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Remark 46. Note that the denominator of (7.9) is equal to n. The reason for which (7.9)
is written in this way is to stress the fact that numerator counts the number of elements
of LF+(0) (which are older than Fφ(0)) as n tends to infinity, whereas the denominator
counts the number of elements of LF (0) (which are older than 0). Note that λ+ can be
also defined as

lim
n→∞

∆
(
Fφ ◦ F−n⊥ (0), Fφ ◦ Fn⊥(0)

)
∆
(
F−n⊥ (0), Fn⊥(0)

) .

But for sake of simplicity the latter is not used.

Remark 47. In the case where the connected component of the origin is of type I/F or
F/F , define

λ+(φ) =
l∞(Fφ(0))

l∞(0)
. (7.10)

The existence of the non-degenerate limit in (7.9) and the non-degenerate value in (7.10)
can be seen as a proof of the fact that all foils of a connected component have the “same
dimension”. This fact justifies the use of the term “foliation” within this context (see e.g.
[1]).

Proof. The main idea is to distribute the mass from all brothers in a family to their father
and all older “close” individuals in the generation of their father without a descendant.

If x is in a connected component of GF (φ) which is F/F or I/F , all statements follow
from finiteness of the foils. Hence assume C(0) is I/I. Hence it is sufficient to show
that, for P0 almost all φ, the limit

λ+(φ) = lim
n→∞

∆
(
θfφ, θf ◦ θnf⊥φ

)
∆
(
φ, θnf⊥φ

) , (7.11)

exists and is positive, finite and constant on the foil Lθf (φ) provided the latter is infinite.
Let ∆+(φ) := ∆(θfφ, θf ◦ θf⊥φ). Now consider the following mass transport:

w(φ, x, y) =

{
1 y ∈ LF+(x) and 0≤∆(Fφ(x), y)<∆(Fφ(x), Fφ ◦ F⊥(x))

0 otherwise.

One has, for all points x, y ∈ φ, w−(y) ≤ 1 and w+(x) = ∆+(θxφ). Therefore

EΦ [∆+] = EΦ

[
w+(0)

]
= EΦ

[
w−(0)

]
≤ 1.

Since the denominator in (7.11) is equal to n, one has

lim
n→∞

∆
(
θfφ, θf ◦ θnf⊥φ

)
∆
(
φ, θnf⊥φ

) = lim
n→∞

1

n

n∑
i=1

∆
(
θf ◦ θi−1

f⊥
φ, θf ◦ θf⊥ ◦ θ

i−1
f⊥

φ
)

= lim
n→∞

1

n

n−1∑
i=0

∆+

(
θif⊥φ

)
.

Since F⊥ is P-almost surely bijective, PΦ is θf⊥ -invariant. Therefore if one denotes
by I the invariant σ-field of θf⊥ , because of the finiteness of EΦ[∆+] the conditions
of Birkhoff’s ergodic theorem are satisfied. This implies that the last limit exists for
PΦ-almost all φ and it is equal to EΦ[∆+|I], which is finite and invariant under the action
of θf⊥ ; i.e., it is a function of Lθf (φ).

To prove that λ+(φ) is a.s. positive, note that, if Y is the event of being the youngest
son of the family, then ∆+ ≥ 1Y . Hence if, with positive probability, λ+(φ) = 0, this
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means that, with positive probability, EΦ[1Y |I] is zero. But since EΦ is θf⊥ -invariant, this
means that, with positive probability, there is no youngest son on the foil of Lθf (φ), which
means that all points of Lθf (φ) are brothers. Since Cθf (φ) is infinite, this contradicts the
a.s. finiteness of d1(Fφ(0)).

Finally to prove that λ+(φ) is independent of the choice of F⊥, it is sufficient to
show that EΦ[∆+|I] depends only on f . To do so, it is enough to prove that for all
A ∈ I, EΦ[∆+1A] depends only on f . Since A ∈ I, with abuse of notation, one has
1A(φ) = 1A(Lθf (φ)). Let

A+ = {θfφ;φ ∈ A},

L
θf
− (A) = {φ ∈ N0;L

θf
− (φ) 6= ∅ and L

θf
− (φ) ∈ A}.

It is easy to see that L
θf
− (A) ∈ I. Let

uφ(x, y) = ∆+(θxφ)1{y=Fφ(x)}1A(θxφ),

which is a flow-adapted transport kernel. If A+ denotes {θfφ;φ ∈ A}, by the mass
transport principle,

EΦ [∆+1A] = EΦ

[
w+(0)

]
= EΦ

[
w−(0)

]
= EΦ

[
∆⊥1A+

]
, (7.12)

where ∆⊥(φ) is the smallest i > 0 such that F i⊥(x) has a child and zero otherwise. Note
that all elements of A+ have at least one child and therefore 1A+(φ) is zero whenever φ
has no child. Let

vφ(x, y) =

{
1 θx(φ) ∈ A+ and y = f i⊥(x) for some 0 ≤ i < ∆⊥(x),

0 otherwise.

Since A ∈ I, (7.12) and the mass transport principle give

EΦ [∆+1A] = EΦ

[
∆⊥1A+

]
= EΦ

[
v+(0)

]
= EΦ

[
v−(0)

]
= EΦ

[
1
L
θf
− (A)

]
= PΦ

[
L
θf
− (A)

]
.

Clearly the latter depends only on f and not on the choice of F⊥ which completes the
proof.

Corollary 48. Letting A = Ω in the last proof gives

EΦ[∆+] = PΦ[L
θf
− (Ω)],

where the R.H.S. is the probability that 0 is not in the first foil (if there is any) of its
component.

Definition 49. The quantity λ+(Φ), defined PΦ a.s., counts the average number of
different points in the foil LF+(0) per point in the foil of 0, LF (0), and is hence called the
relative intensity of LF+(0) with respect to LF (0) in Φ. This notion extends to the relative
intensity

Λ+(x,Φ) = λ+(θxΦ)

of LF+(x) with respect to LF (x) for all x ∈ Φ.
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7.2.2 Intensities

In the particular case where foils are markable, one gets back the following classical
result as a direct corollary of Theorem 45:

Proposition 50. Assume that (P, θt) is ergodic. Assume LF (0) is markable, so that it is
the support of a point process. Let β (resp. β+) denote the intensity of Ψ(LF (0)) (resp.
Ψ(LF+(0))). Then β+ = βΛ+, where Λ+ = E0(Λ+(0,Φ)).

Note that it follows from β+ = βΛ+ that Λ+ < 1.
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8 Appendix

8.1 Mass transport

Let w be a point-shift and (Φ,P) be a stationary point process. Let Gw(Φ) be the
directed graph of Definition 8. Define w+(Φ, 0) (ref. w−(Φ, 0)) to be the out-degree
(in-degree) of node 0 under PΦ. The following is classical:

Lemma 51 (Mass transport principle). If w is a mass transport and (Φ,P) is a stationary
point process then

EΦ

[
w+(Φ, 0)

]
= EΦ

[
w−(Φ, 0)

]
. (8.1)

8.2 Depth first search

DFS is a recursive algorithm prescribing a class of ways to traverse a rooted tree.
Nodes belong to two categories: visited and unvisited. The algorithm starts from the
root, with the latter visited and all other nodes unvisited. From a given visited node, the
node visited next is one of its yet unvisited sons. If all its sons have already been visited
(in particular if it has no sons), then the algorithm moves to the father of the given node
to search for the next unvisited node.

8.3 Multi type strip point-shift

Consider the following variant of the Strip Point-Shift. To each point xi of the Poisson
point process Φ, one associates an independent mark mi, which is a Poisson point process
of intensity 1 on a circle of radius 1. Consider the (Poisson cluster) point process

Ψ = Φ +
∑
i

xi +mi.

Each realization of Ψ determines the points xi of Φ and the associated cluster xi +mi. It
hence allows one to classify the points of Φ in types taking their values in N, with the
type of xi being the cardinality of mi. The Multi Type Strip Point-Shift f maps y ∈ xi+mi

to xi and uses the fs map within points of type k ∈ N with Φ.
On Ψ, this point-shift admits an infinite number of connected components (one per

type). It follows from the results of Subsection 2.3.1 (and from the fact that the points
of type k in Φ form a stationary Poisson point process of positive intensity that each
connected component has properties similar that that of the unique component of
Subsection 2.3.1; in particular, it is of Class I/I and evaporates under the action of f .
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