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Abstract

We consider the two block stochastic block model on n nodes with asymptotically equal
cluster sizes. The connection probabilities within and between cluster are denoted
by pn := an

n
and qn := bn

n
respectively. Mossel et al. [27] considered the case when

an = a and bn = b are fixed. They proved the probability models of the stochastic
block model and that of Erdős–Rényi graph with same average degree are mutually
contiguous whenever (a − b)2 < 2(a + b) and are asymptotically singular whenever
(a − b)2 > 2(a + b). Mossel et al. [27] also proved that when (a − b)2 < 2(a + b) no
algorithm is able to find an estimate of the labeling of the nodes which is positively
correlated with the true labeling. It is natural to ask what happens when an and bn
both grow to infinity. In this paper we consider the case when an →∞, an

n
→ p ∈ [0, 1)

and (an− bn)2 = Θ(an + bn). Observe that in this case bn
n
→ p also. We show that here

the models are mutually contiguous if asymptotically (an−bn)2 < 2(1−p)(an +bn) and
they are asymptotically singular if asymptotically (an−bn)2 > 2(1−p)(an+bn). Further
we also prove it is impossible find an estimate of the labeling of the nodes which is
positively correlated with the true labeling whenever (an − bn)2 < 2(1− p)(an + bn)

asymptotically. The results of this paper justify the negative part of a conjecture made
in Decelle et al. (2011) [17] for dense graphs.
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1 Introduction

In the last few years the stochastic block model has been one of the most active
domains of modern research in statistics, computer science and many other related fields.
In general a stochastic block model is a network with a hidden community structure
where the nodes within the communities are expected to be connected in a different
manner than the nodes between the communities. This model arises naturally in many
problems of statistics, machine learning and data mining, but its applications further
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extends to population genetics [30], where genetically similar sub-populations are used
as the clusters, to image processing [32], [33], where the group of similar images acts
as cluster, to the study of social networks, where groups of like-minded people act as
clusters [29].

Recently a huge amount of effort has been dedicated to find out the clusters. Numer-
ous different clustering algorithms have been proposed in literature. One might look at
[22], [18], [13], [19], [10], [9], [16], [31], [25] for some references. One might also look
at the review paper by Abbe [1] for a detailed study of the literature.

One of the easiest examples of the stochastic block model is the planted partition
model where one have only two clusters of more or less equal size. Formally,

Definition 1.1. For n ∈ N, and p, q ∈ [0, 1] let G(n, p, q) denote the model of random,±
labelled graphs in which each vertex u is assigned (independently and uniformly at
random) a label σu ∈ {±1} and each edge between u and v are included independently
with probability p if they have the same label and with probability q if they have different
labels.

The case when p and q are sufficiently close to each other has got significant amount
of interest in literature. Decelle et al. [17] made a fascinating conjecture in this regard.

Conjecture 1.1. Let p = a
n and q = b

n where a and b are fixed real numbers. Then the
following are true.
i) If (a− b)2 > 2(a+ b) then one can find almost surely a bisection of the vertices which
is positively correlated with the original clusters.
ii) If (a− b)2 < 2(a+ b) then the problem is not solveable.
iii) Further, there are no consistent estimators of a and b if (a− b)2 < 2(a+ b) and there
are consistent estimators of a and b whenever (a− b)2 > 2(a+ b).

Coja-Oghlan [15] solved part i) of the problem when (a − b)2 > C(a + b) for some
large C and finally part ii) and iii) of Conjecture 1.1 was proved by Mossel et al. [27]
and part i) was solved by Mossel et al. [26] and Massoulié [24] independently.

Typically the problem is much more delicate when more than two communities are
present in the sparse case. To keep things simple let us consider the general stochastic
block model with k asymptotically equal sized blocks with connection probabilities within
and between blocks are given by a

n and b
n respectively. It was conjectured in Mossel et

al [27] that for k sufficiently large, there is a constant c(k) such that whenever

c(k) <
(a− b)2

a+ (k − 1)b
< k

the reconstruction problem is solvable in exponential time, it is not solvable if (a−b)2
a+(k−1)b <

c(k) and solvable in polynomial time if k < (a−b)2
a+(k−1)b . The upper bound is known as

Kesten-Stigum threshold. Bordenave et al. [11] solved the reconstruction problem above
a deterministic threshold by spectral analysis of non-backtraking matrix. One might look
at Banks et al. [8] for the non solvability part. They proved that the probability models
of stochastic block model and that of Erdős–Rényi graph with same average degree are
mutually contiguous and the reconstruction problem is unsolvable if

d <
2 log(k − 1)

k − 1

1

λ2
.

Here d = a+(k−1)b
k and λ = a−b

kd . Abbe et al. [2] provides an efficient algorithm for
reconstruction above the Kesten-Stigum threshold. Abbe et al. [2] and Banks et al. [8]
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also provide cases strictly below the Kesten-Stigum threshold where the problem is
solvable in exponential time.

On the other hand, a different type of reconstruction problem was considered in
Mossel et al. [28] for denser graphs. They considered two different notions of recovery.
The first one is weak consistency where one is interested in finding a bisection σ̂ such
that σ and σ̂ have correlation going to 1 with high probability. The second one is called
strong consistency. Here one is interested in finding a bisection σ̂ such that σ̂ is either σ
or −σ with probability tending to 1. Mossel et al. [28] prove that weak consistency is

possible if and only if n(pn−qn)2

pn+qn
→∞ and strong consistency is possible if and only if(

an + bn − 2
√
anbn − 1

)
log n+

1

2
log log n→∞.

Here an = npn
logn and bn = nqn

logn respectively. Abbe et al. [3] studied the same problem
independently in the logarithmic sparsity regime. They prove that for a = npn

logn and b =
nqn
logn fixed, (a+b)−2

√
ab > 1 is sufficient for strong consistency and that (a+b)−2

√
ab ≥ 1

is necessary. We note that their results are implied by Mossel et al.[28].
However, according to the best of our knowledge questions similar to part ii) and iii)

of Conjecture 1.1 have not yet been addressed in dense case (i.e. when a and b increase
to infinity). This is the main focus of this paper.

Before stating our results we mention that the results in Mossel et al. [27] is more
general than part iii) of Conjecture 1.1. Let Pn and P′n be the sequences of probability
measures induced by G(n, p, q) and G(n, p+q2 , p+q2 ) respectively. Then [27] prove that
whenever a and b are fixed numbers and (a − b)2 < 2(a + b), the measures Pn and P′n
are mutually contiguous i.e. for a sequence of events An, Pn(An) → 0 if and only if
P′n(An) → 0. Now part iii) of Conjecture 1.1 directly follows from the contiguity. The
proof in Mossel et al. [27] is based on calculating the limiting distribution of the short
cycles and using a result on contiguity (Theorem 1 in Janson [21] and Theorem 4.1 in
Wormald [35]). However, one should note that the result from [27] does not directly
generalize to the denser case. Since, one requires the limiting distributions of short
cycles to be independent Poisson in order to use Janson’s result. In our proof instead of
considering the short cycles we consider the “signed cycles” (to be defined later) which
have asymptotic normal distributions. We also find a result analogous to Janson for the
normal random variables in order to complete the proof.

On the other hand, the original proof of non-reconstruction from Mossel et al. [27]
relies on the coupling of Pn and P′n with probability measure induced by Galton Watson
trees of suitable parameters. However, it is well known that when the graph is sufficiently
dense i.e. an � no(1) the coupling argument does not work. So our proof is based on
fine analysis of conditional probabilities. Technically, this proof is closely related to the
non-reconstruction proof in section 6.2 of Banks et al. [8] rather than the original proof
given in Mossel et al. [27].

A natural question arises how far the arguments in this paper generalize to the
multi-community case. Unfortunately, we do not have a definite answer for this problem.
The fundamental difficulty here is the absence of locally tree like structure which is the
essence of all the proofs in the sparse regime. However, we believe the similar thresholds
are true even in dense case also. In fact, it was shown in Banerjee and Ma(2017) [7]
that for the multi-community case the models are mutually singular much below the
Kesten-Stigum threshold. We leave the problem for future research.

The paper is organized in the following manner. In Section 2 we build some pre-
liminary notations and state our results. Section 3 is dedicated for building a result
analogous to Theorem 1 in Janson [21]. In Section 4 we define signed cycles and find
their asymptotic distributions. Section 5 is dedicated to complete the proofs of our
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contiguity results. In Section 6 we prove the non-reconstruction result. Finally, the paper
concludes with an Appendix containing a proof of a result from random matrix theory
used in this paper.

2 Our results

Through out the paper a random graph will be denoted by G and xi,j will be used
to denote the indicator random variable corresponding to an edge between the nodes i
and j. Further Pn and P′n will be used to denote the sequence of probability measures
induced by G(n, pn, qn) and G(n, pn+qn

2 , pn+qn
2 ) respectively. For notational simplicity we

denote pn+qn
2 by p̂n.

In this paper we shall consider the case when (an − bn)2 = Θ(an + bn). We shall use

the following notations through out the paper. We denote cn := (an−bn)2

(an+bn) , dn := pn−qn
2

and tn = cn
2(1−p̂n) .

Further, for any two labeling of the nodes σ and τ , we define their overlap to be

ov(σ, τ) :=
1

n

(
n∑
i=1

σiτi −
1

n

(
n∑
i=1

σi

)(
n∑
i=1

τi

))
. (2.1)

Now we define mutual contiguity of two sequences of measures as follows:

Definition 2.1. Let Pn and Qn be two sequences of probability measures, such that for
each n, Pn and Qn both are defined on the same measurable space (Ωn,Fn). We then
say that the sequences are mutually contiguous if for every sequence of measurable sets
An ⊂ Ωn,

Pn(An)→ 0⇔ Qn(An)→ 0.

Two sequences of probability measures Pn and Qn are called asymptotically mutually
singular if there exists a sequence of measurable sets An such that Pn(An) → 1 and
Qn(Acn)→ 1 as n→∞.

We are now ready to state the main results of the paper.

Theorem 2.1. i)If an, bn →∞, ann → p ∈ [0, 1) and cn → c < 2(1−p), then the probability
measures Pn and P′n are mutually contiguous. So there does not exist an estimator
(An, Bn) for (an, bn) such that |An − an|+ |Bn − bn| = op(an − bn).
ii)If an, bn →∞, ann → p ∈ [0, 1) and cn → c > 2(1− p), then the probability measures Pn
and P′n are asymptotically mutually singular. Further there exists an estimator (An, Bn)

for (an, bn) such that |An − an|+ |Bn − bn| = op(an − bn).

Theorem 2.2. If an, bn → ∞, an
n → p ∈ [0, 1) and cn → c < 2(1 − p), then there is no

reconstruction algorithm which performs better than the random guessing i.e. for any
estimate of the labeling {σ̂i}ni=1 we have

ov(σ, σ̂)
P→ 0. (2.2)

3 A result on contiguity

In this section we provide a very brief description of contiguity of probability mea-
sures. We suggest the reader to have a look at the discussion about contiguity of
measures in Janson [21] for further details. In this section we state several proposi-
tions and apart from Proposition 3.4 and Proposition 3.3, all the proofs can be found in
Janson [21].

Definition 2.1 of contiguity might appear a little abstract. However the following
reformulation is perhaps more useful to understand the contiguity concept.

EJP 23 (2018), paper 18.
Page 4/28

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP128
http://www.imstat.org/ejp/


Contiguity and non-reconstruction results for planted partition models: the dense case

Proposition 3.1. Two sequences of probability measures Pn and Qn are mutually con-
tiguous if and only if for every ε > 0 there exist n(ε) and K(ε) such that for all n > n(ε)

there exists a set Bn ∈ Fn with Pn(Bcn),Qn(Bcn) ≤ ε such that

K(ε)−1 ≤ Qn(An)

Pn(An)
≤ K(ε). ∀An ⊂ Bn.

Although Proposition 3.1 gives an equivalent condition, verifying this condition is
often difficult. However under the assumption of convergence of dQn

dPn
, one gets the

following simplified result.

Proposition 3.2. Suppose that Ln = dQn
dPn

, regarded as a random variable on (Ωn,Fn,Pn),
converges in distribution to some random variable L as n → ∞. Then Pn and Qn are
mutually contiguous if and only if L > 0 a.s. and E[L] = 1.

We now introduce the concept of Wasserstein’s metric which will be used in the proof
of Proposition 3.4.

Definition 3.1. Let F and G be two distribution functions with finite p th moment. Then
the Wasserstein distance Wp between F and G is defined to be

Wp(F,G) =

[
inf

X∼F,Y∼G
E |X − Y |p

] 1
p

.

Here X and Y are random variables having distribution functions F and G respectively.

In particular, the following result will be useful in our proof:

Proposition 3.3. Let Fn be a sequence of distribution functions and F be a distribu-
tion function. Then Fn converge to F in distribution and

∫
x2dFn(x) →

∫
x2dF (x) if

W2(Fn, F )→ 0.

The proof of Proposition 3.3 is well known. One might look at Mallows(1972)[23] for
a reference.

With Proposition 3.2 in hand, we now state the most important result in this section.
This result will be used to prove Theorem 2.1. Although, Proposition 3.4 is written in a
complete different notation, one can check that it is analogous to Theorem 1 in Janson
[21].

Proposition 3.4. Let Pn and Qn be two sequences of probability measures such that
for each n, both of them are defined on (Ωn,Fn). Suppose that for each i ≥ 3, Xn,i are
random variables defined on (Ωn,Fn). Then the probability measures Pn and Qn are
mutually contiguous if the following conditions hold:

i) Pn � Qn and Qn � Pn for each n.

ii) For any fixed k ≥ 3, one has (Xn,3, . . . , Xn,k) |Pn
d→ (Z3, . . . , Zk) and (Xn,3, . . . ,

Xn,k)|Qn
d→ (Z ′3, . . . , Z

′
k).

iii) Zi ∼ N(0, 2i) and Z ′i ∼ N(t
i
2 , 2i) are sequences of independent random variables.

Here |t| < 1.

iv)

EPn

[(
dQn
dPn

)2
]
→ exp

{
− t

2
− t2

4

}
1√

1− t
. (3.1)

Further,
dQn
dPn
|Pn

d→ exp

{ ∞∑
i=3

2t
i
2Zi − ti

4i

}
. (3.2)
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Proof. In this proof for simplicity we denote dQn
dPn

by Yn. We break the proof into two
steps.
Step 1. In this step we prove the random variable in the right hand side of (3.2) is
almost surely positive and has mean 1. Let us define

W := exp

{ ∞∑
i=3

2t
i
2Zi − ti

4i

}

and

W (m) := exp

{
m∑
i=3

2t
i
2Zi − ti

4i

}
.

As Zi ∼ N(0, 2i),

E

[
exp

{
2t

i
2Zi − ti

4i

}]
= exp

{
4ti × 2i

2× 16i2
− ti

4i

}
= 1.

So {W (m)}∞m=3 is a martingale sequence and

E
[
W (m)2

]
=

m∏
i=3

exp

{
ti

2i

}
= exp

{
m∑
i=3

ti

2i

}
.

Now
∞∑
i=3

ti

2i
=

1

2

(
− log(1− t)− t− t2

2

)
∀ |t| < 1.

So W (m) is a L2 bounded martingale. Hence, W is a well defined random variable,

E[W 2] = exp

{
− t

2
− t2

4

}
1√

1− t

and E[W ] = 1.

Now observe that Zi
d
= −Zi for each i and whenever |t| < 1, the series

∑∞
i=3

ti

4i

converges. So

W−1 d
= exp

{ ∞∑
i=3

2t
i
2Zi + ti

4i

}
.

However, E[W−1] = exp
{∑∞

i=3
ti

2i

}
<∞ implies W > 0 a.s.

Step 2. Now we come to the harder task of proving Yn
d→W . Since

lim sup
n→∞

EPn

[
(Yn)

2
]
<∞

from condition iv), the sequence Yn is tight. Hence from Prokhorov’s theorem there is a
sub sequence {nk}∞k=1 such that Ynk converge in distribution to some random variable
W ({nk}). We shall prove that the distribution of W ({nk}) does not depend on the sub

sequence {nk}. In particular, W ({nk})
d
= W .

Since Ynk converges in distribution to W ({nk}), for any further sub sequence {nkl}
of {nk}, Ynkl also converges in distribution to W ({nk}).

Given ε > 0 take m big enough such that

exp

{ ∞∑
i=3

ti

2i

}
− exp

{
m∑
i=3

ti

2i

}
< ε.
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For this m, look at the joint distribution of (Ynk , Xnk,3, . . . , Xnk,m). This sequence of m−1

dimensional random vectors with respect to Pnk is also tight from condition ii). So it
has a further sub sequence such that

(Ynkl , Xnkl ,3
, . . . , Xnkl ,m

)|Pnkl
d→ (W ({nk}), Z3 . . . , Zm) .

Here we have used condition ii) for the convergence of (Xnkl ,3
, . . . , Xnkl ,m

)|Pnkl .
The most important part of this proof is to show, we can define the random variables

W (m) and W ({nk}) in such a way that there exist suitable σ algebras F1 ⊂ F2 such that
W (m) ∈ F1 and W ({nk}) ∈ F2 and E [W ({nk}) | F1] = W (m).

From condition iv) we have lim supn→∞ EPn
[
Y 2
n

]
< ∞. As a consequence, the se-

quence the sequence Ynkl is uniformly integrable. This together with condition i) will
give us

1 = EPnkl

[
Ynkl

]
→ E[W ({nk})] = 1. (3.3)

Now take any positive bounded continuous function f : Rm → R. By Fatou’s lemma

lim inf EPnkl

[
f
(
Xnkl ,3

, . . . , Xnkl ,m

)
Ynkl

]
≥ E [f (Z3, . . . , Zm)W ({nk})] . (3.4)

However for any constant ξ we have

ξ = ξ EPnkl

[
Ynkl

]
→ ξ E[W ({nk})] = ξ

from (3.3).
So (3.4) holds for any bounded continuous function f . On the other hand replacing f

by −f we have

lim EPnkl

[
f
(
Xnkl ,3

, . . . , Xnkl ,m

)
Ynkl

]
= E [f (Z3, . . . , Zm)W ({nk})] . (3.5)

Now applying condition ii) we have∫
f
(
Xnkl ,3

, . . . , Xnkl ,m

)
YnkldPnkl =

∫
f
(
Xnkl ,3

, . . . , Xnkl ,m

)
dQnkl →

∫
f(Z ′3, . . . , Z

′
m)dQ.

(3.6)
Here Q is the measure induced by (Z ′3, . . . , Z

′
m). In particular, one can take the measure

Q such that (Z3, . . . , Zm) themselves are distributed as (Z ′3, . . . , Z
′
m) under the measure

Q. This is true due to the following observation.∫
f(Z ′3, . . . , Z

′
m)dQ = E

[
f(Z3, . . . , Zm)W (m)

]
for any bounded continuous function f . Since f is any bounded continuous function, we
have ∫

A

dQ = E
[
IAW

(m)
]

for any A ∈ σ(Z3, . . . , Zm). Here for any set A, IA denotes the indicator function taking
value one on A.

Now looking back into (3.5), we have for any A ∈ σ(Z3, . . . , Zm),

E
[
IAW

(m)
]

= E [IAW ({nk})] .

Since W (m) is σ(Z3, . . . , Zm) measurable, we have W (m) = E [W ({nk}) | σ(Z3, . . . , Zm)]

From Fatou’s lemma

E[W ({nk})2] ≤ lim inf
n→∞

EPn [Y 2
n ] = exp

{ ∞∑
i=3

ti

2i

}
.
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As a consequence, we have

0 ≤ E |W ({nk})−W (m)|2 = E[W ({nk})2]− E[W (m)2] < ε.

So W2(FW
(m)

, FW ({nk})) <
√
ε. Here FW

(m)

and FW ({nk}) denote the distribution func-

tions corresponding to W (m) and W ({nk}) respectively. As a consequence, W2(FW
(m)

,

FW ({nk}))→ 0 as m→∞. Hence by Proposition 3.3, W (m) d→W ({nk}).
On the other hand, we have already proved W (m) converge to W in L2. So W ({nk})

d
=

W .
In Step 1 and Step 2 we verified all the conditions required to use Proposition 3.2.

Now using Proposition 3.2 the proof of Proposition 3.4 is complete.

Remark 3.1. One might observe that the second part in assumption ii) of Proposition
3.4 is slightly weaker than (A2) in Theorem 1 of Janson [21]. For our purpose this is
sufficient since we use the fact that Yn = dQn

dPn
. However, in Theorem 1 of Janson [21] Yn

can be any random variable.

4 Signed cycles and their asymptotic distributions

We have discussed in the introduction that the proof of Mossel et al. [27] crucially
used the fact that the asymptotic distribution of short cycles turn out to be Poisson.
However, in the denser case one does not get a Poisson limit for the short cycles. So
their proof does not work in the denser case. Here we consider instead the “signed
cycles” defined as follows:

Definition 4.1. For a random graph G the signed cycle of length k is defined to be:

Cn,k(G) =

(
1√

npn,av(1− pn,av)

)k ∑
i0,i1,...,ik−1

(xi0,i1 − pn,av) . . . (xik−1i0 − pn,av)

where i0, i1, . . . , ik−1 are all distinct and pn,av is the average connection probability i.e.
pn,av = 1

n(n−1)

∑
i 6=j E[xi,j ]. Observe that for G(n, pn, qn), pn,av is equal to p̂n.

One should note that when k = 3 a similar kind of random variable was called “signed
triangle” in Bubeck et al. [12]

It is intuitive that one might expect asymptotic normal distribution for Cn,k’s when
n→∞ and p̂n is sufficiently large. Our next result formalizes this intuition.

Proposition 4.1. i)When G ∼ P′n, n(pn + qn)→∞ and 3 ≤ k1 < . . . < kl = o(log(p̂nn)),(
Cn,k1(G)√

2k1

, . . . ,
Cn,kl(G)√

2kl

)
d→ Nl(0, Il). (4.1)

ii) When G ∼ Pn, npn → ∞, cn → c ∈ (0,∞) and 3 ≤ k1 < . . . < kl = o
(
min(log(p̂nn),√

log(n))
)
, (

Cn,k1(G)− µ1√
2k1

, . . . ,
Cn,kl(G)− µl√

2kl

)
d→ Nl(0, Il) (4.2)

where µi =

(√
cn

2(1−p̂n)

)ki
for 1 ≤ i ≤ m.

The proof of Proposition 4.1 is inspired from the remarkable paper by Anderson
and Zeitouni [4]. However, the model in this case is simpler which makes the proof
less cumbersome. The fundamental idea is to prove that the signed cycles converge in
distribution by using the method of moments and the limiting random variables satisfy
the Wick’s formula. At first we state the method of moments.
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Lemma 4.1. Let (Yn,1, . . . , Yn,l) be a sequence of random vectors of l dimension. Then

(Yn,1, . . . , Yn,l)
d→ (Z1, . . . , Zl) if the following conditions are satisfied:

i)

lim
n→∞

E[Xn,1 . . . Xn,m] (4.3)

exists for any fixed m and Xn,i ∈ {Yn,1, . . . , Yn,l} for 1 ≤ i ≤ m.

ii) (Carleman’s Condition)[14]

∞∑
h=1

(
lim
n→∞

E[X2h
n,i]
)− 1

2h

=∞ ∀ 1 ≤ i ≤ l.

Further,

lim
n→∞

E[Xn,1 . . . Xn,m] = E[X1 . . . Xm].

Here Xn,i ∈ {Yn,1, . . . , Yn,l} for 1 ≤ i ≤ m and Xi is the in distribution limit of Xn,i. In
particular, if Xn,i = Yn,j for some j ∈ {1, . . . , l} then Xi = Zj .

The method of moments is very well known and much useful in probability theory.
We omit its proof.

Now we state the Wick’s formula for Gaussian random variables which was first
proved by Isserlis(1918)[20] and later on introduced by Wick[34] in the physics literature
in 1950.

Lemma 4.2. (Wick’s formula)[34] Let (Y1, . . . , Yl) be a multivariate mean 0 random
vector of dimension l with covariance matrix Σ(possibly singular). Then ((Y1, . . . , Yl)) is
jointly Gaussian if and only if for any integer m and Xi ∈ {Y1, . . . , Yl} for 1 ≤ i ≤ m

E[X1 . . . Xm] =

{ ∑
η

∏m
2
i=1 E[Xη(i,1)Xη(i,2)] for m even

0 for m odd.
(4.4)

Here η is a partition of {1, . . . ,m} into m
2 blocks such that each block contains exactly 2

elements and η(i, j) denotes the j th element of the i th block of η for j = 1, 2.

The proof of the aforesaid Lemma is omitted. However, it is good to note that the
random variables Y1, . . . , Yl may also be the same. In particular, taking Y1 = · · · = Yl,
Lemma 4.2 also provides a description of the moments of Gaussian random variables.
With Lemma 4.1 and 4.2 in hand, we now jump into the proof of Proposition 4.1.
Proof of Proposition 4.1:
At first we introduce some notations and some terminologies. We denote a word
w to be an ordered sequence of integers (to be called letters) (i0, . . . , ik−1, ik) such
that i0 = ik and all the numbers ij for 0 ≤ j ≤ k − 1 are distinct. For a word
w = (i0, . . . , ik−1, ik), its length l(w) is k + 1. The graph induced by a word w is de-
noted by Gw and defined as follows. One treats the letters (i0, . . . , ik) as nodes and puts
an edge between the nodes (ij , ij+1)0≤j≤k−1. Note that for a word w of length k + 1,
Gw = (Vw, Ew) is just a k cycle. For a word w = (i0, . . . , ik) its mirror image is defined by
w̃ = (i0, ik−1, ik−2, . . . , i1, i0). Further for a cyclic permutation τ of the set {0, 1, . . . , k−1},
we define wτ := (iτ(0), . . . , iτ(k−1), iτ(0)). Finally two words w and x are called paired if
there is a cyclic permutation τ such that either xτ = w or x̃τ = w. An ordered tuple
of m words, (w1, . . . , wm) will be called a sentence. For any sentence a = (w1, . . . wm),
Ga = (Va, Ea) is the graph with Va = ∪mi=1Vwi and Ea = ∪mi=1Ewi .
Proof of part i) We complete the proof of this part in two steps. In the first step
the asymptotic variances of (Cn,k1(G), . . . , Cn,kl(G)) will be calculated and the second
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step will be dedicated towards proving the asymptotic normality and independence of
(Cn,k1(G), . . . , Cn,kl(G)).
Step 1: Observe that when G ∼ P′n, the distribution of Cn,k1(G), . . . , Cn,kl(G) is triv-
ially independent of the labels σi and E[Cn,k(G)] = 0 for any k. Now we prove that
Var(Cn,k(G)) ∼ 2k for any k = o(

√
n). Let for any word w = (i0, . . . , ik), Xw :=∏k−1

j=0

(
xij ,ij+1

− p̂n
)
. Now observe that

Var(Cn,k) =

(
1

np̂n(1− p̂n)

)k
E

[
(
∑
w

Xw)2

]

=

(
1

np̂n(1− p̂n)

)k
E

[∑
w,x

XwXx

]
.

(4.5)

Since both Xw and Xx are product of independent mean 0 random variables each coming
exactly once, E[XwXx] 6= 0 if and only if all the edges in Gw are repeated in Gx. Observe
that since Gw and Gx are cycles of length k, this is satisfied if and only if w and x are
paired. There are k many cyclic permutations τ of the set {0, . . . , k − 1} and for a given
w and τ , there are only two possible choices of x such that w and x are paired. These
choices are obtained when xτ = w and x̃τ = w. As a consequence for any word w,
exactly 2k words are paired with it. Now observe that when w and x are paired, XwXx

is a product of k random variables each appearing exactly twice. As a consequence,
E[XwXx] = (p̂n(1− p̂n))

k
. Also the total number of words is given by n(n−1) . . . (n−k+1)

for the choices of i0, . . . , ik−1. It is well known that

n(n− 1) . . . (n− k + 1)

nk
→ 1

whenever k = o(
√
n). So

Var(Cn,k) = 2k

(
1

np̂n(1− p̂n)

)k
n(n− 1) . . . (n− k + 1) (p̂n(1− p̂n))

k ∼ 2k (4.6)

as long as k = o(
√
n). This completes Step 1 of the proof.

Step 2: Now we claim that in order to complete Step 2, is enough to prove the following
two limits.

lim
n→∞

E [Cn,k1(G)Cn,k2(G)]→ 0 (4.7)

whenever k1 6= k2 and there exists random variables Z1, . . . , Zl such that for any fixed m

lim
n→∞

E[Xn,1 . . . Xn,m]→

{ ∑
η

∏m
2
i=1 E[Zη(i,1)Zη(i,2)] for m even

0 for m odd.
(4.8)

where Xn,i ∈ {
Cn,k1 (G)√

2k1
, . . . ,

Cn,kl (G)√
2kl
}.

First observe that (4.8) will simultaneously imply part i) and ii) of Lemma 4.1.
Implication of i) is obvious. However, for ii) one can take Xn,i’s to be all equal and
from Wick’s formula (Lemma 4.2) the limiting distribution of Xn,i’s are normal. It is
well known that normal random variables satisfy Carleman’s condition. On the other

hand (4.8) also implies that the limit of (
Cn,k1 (G)√

2k1
, . . . ,

Cn,kl (G)√
2kl

) is jointly normal. Hence
applying (4.7), one gets the asymptotic independence.

We first prove (4.7). Observe that

E [Cn,k1(G)Cn,k2(G)] =

(
1

np̂n(1− p̂n)

) k1+k2
2

E

[∑
w,x

XwXx

]
.
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However, here l(w) = k1 +1 and l(x) = k2 +1. So E
[∑

w,xXwXx

]
= 0. As a consequence,

(4.7) holds.
Now we prove (4.8). Let li be the length of any word corresponding to Xn,i. Observe

that li ∈ {k1 + 1, . . . , kl + 1} for any i. At first we expand the left hand side of (4.8).

E[Xn,1 . . . Xn,m] =

(
1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
w1,...,wm

E [Xw1
. . . Xwm ] . (4.9)

Here the graphs Gw1
, . . . , Gwm are cycles of length l1 − 1, . . . , lm − 1 respectively. So

in order to have E [Xw1
. . . Xwm ] 6= 0, we need each of the edges in Gw1

, . . . , Gwm to be
traversed more than once. The sentence a := (w1, . . . , wm) formed by such (w1, . . . , wm)

will be called a weak CLT sentence. Given a weak CLT sentence a, we introduce a
partition η(a), of {1, . . . ,m} in the following way. If i, j are in same block of the partition
η(a), then Gwi Gwj have at least one edge in common.

As a consequence, we can further write the left hand side of (4.9) in the following
way. (

1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
η

∑
w1,...,wm | η=η(w1,...,wm)

E [Xw1 . . . Xwm ] . (4.10)

Observe that each block in η should have at least 2 elements. Otherwise, in this case
E [Xw1 . . . Xwm ] = 0. As a consequence, the number of blocks in η ≤ [m2 ].

Now we prove that if the number of blocks in η < m
2 , then

(
1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
η

∑
w1,...,wm | η=η(w1,...,wm)

E [Xw1
. . . Xwm ]→ 0.

If η(w1, . . . , wm) have strictly less than m
2 blocks, then a has strictly less than m

2 connected
components. From Proposition 4.9 and Lemma 4.10 of Anderson and Zeitouni [4] it
follows that in this case #Va <

∑m
i=1

li−1
2 . However each connected component is formed

by a union of several cycles so Va ≤ Ea. Now the following lemma gives a bound on the
number of weak CLT sentences having strictly less than m

2 connected components.

Lemma 4.3. Let A be the set of weak CLT sentences such that for each a ∈ A, #Va = t.
Then

#A ≤ 2
∑
i li

(
C1

∑
i

li

)C2m(∑
i

li

)3(
∑
i li−2t)

nt. (4.11)

The proof of Lemma 4.3 is rather technical and requires some amount of random
matrix theory. So we defer its proof to the appendix. However, assuming Lemma 4.3, we
have(

1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
a : Va<

∑m
i=1

li−1

2

E [Xw1 . . . Xwm ]

≤
(

1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
t<

∑
i(li−1)

2

∑
i

(li−1)

2∑
e=t

2
∑
i li

(
C1

∑
i

li

)C2m(∑
i

li

)3(
∑
i li−2t)

ntp̂en.

(4.12)

Now observe that
∑∞
e=t p̂

e
n ≤ 1

1−p̂n p̂
t
n. As we consider p < 1, we have for large enough n,

1
1−p̂n ≤ D for some deterministic constant D. Plugging in this estimate in (4.12) we have
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the first expression in (4.12) is lesser or equal to

D

(
1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
t<

∑
i(li−1)

2

2
∑
i li

(
C1

∑
i

li

)C2m(∑
i

li

)3m(∑
i

li

)3((
∑
i li−1)−2t)

ntp̂tn.

≤ D

(
2√

(1− p̂n)

)∑
i(li−1)

2mCC2m
1

(∑
i

li

)(C2+3)m ∑
t<

∑
i(li−1)

2

(
(
∑
i li)

6

np̂n

)∑
i
li−1

2 −t

︸ ︷︷ ︸
T1((say))

.

(4.13)

Observe that T1 is just a geometric series. When kl = o(log(p̂nn)) we have,(
(
∑
i li)

6

np̂n

)
≤ (mkl)

6

np̂n
→ 0.

Now, the lowest value of
∑m
i=1 (li − 1) − 2t is 1. As the geometric series

∑∞
j=1 κ

j , for
κ < 1 is comparable to its first term, we can give the following final bound to (4.12),

C3

(
2√

(1− p̂n)

)∑
i(li−1)

2mCC2m
1

(∑
i

li

)(C2+3)m
(
∑
i li)

3

√
np̂n

. (4.14)

Here C3 is a universal constant. Observe that the dominant term in the numerator of
(4.14) is (

2√
(1− p̂n)

)∑
i(li−1)

≤

(
2√

(1− p̂n)

)m(kl−1)

.

However from our assumption m(kl − 1) log

(
2√

(1−p̂n)

)
− 1

2 log(np̂n)→ −∞. As a conse-

quence, the first expression in (4.12) goes to 0.

Once this is proved all the other partitions left are pair partitions i.e. it has exactly
m
2 many blocks. In particular, m is even. We now fix a partition η of this kind. Let
for any i ∈ {1, . . . , m2 }, η(i, 1) < η(i, 2) be the elements in the i th block. Observe now
that fixing a pair partition η and (w1, . . . , wm) such that η(w1, . . . , wm) = η, the random
variables Xwη(i1,j)

and Xwη(i2,j)
are independent when ever i1 6= i2 for any j ∈ {1, 2}. As

a consequence, we now can rewrite (4.10) as follows:

(
1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
η

∑
w1,...,wm | η=η(w1,...,wm)

E [Xw1
. . . Xwm ]

= o(1) +

(
1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
η | η pair parition

∑
w1,...,wm | η=η(w1,...,wm)

m
2∏
i=1

E
[
Xwη(i,1)Xwη(i,2)

]
(4.15)

Now observe that whenever
∏m

2
i=1 E

[
Xwη(i,1)Xwη(i,2)

]
6= 0, we have wη(i,1) and wη(i,2) are

paired. In particular l(wη(i,1)) = l(wη(i,2)) and there are (1 + o(1))(2(lη(i,1) − 1))nlη(i,1)−1

many such choices of (wη(i,1), wη(i,2)) for every i. Here lη(i,1) is the common length
of the words wη(i,1) and wη(i,2). On the other hand, in this case E

[
Xwη(i,1)Xwη(i,2)

]
=
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(p̂n(1− p̂n))
lη(i,1)−1. Hence, we get the following final reduction to (4.15):(

1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
η

∑
w1,...,wm | η=η(w1,...,wm)

E [Xw1 . . . Xwm ]

= o(1) + (1 + o(1))

(
1

np̂n(1− p̂n)

)∑
i(li−1)

2 ∑
η | η pair parition

m
2∏
i=1

2(lη(i,1) − 1)

× Ilη(i,1)=lη(i,2)n
∑
i(li−1)

2 (p̂n(1− p̂n))

∑
i(li−1)

2

= o(1) + (1 + o(1))
∑

η | η pair parition

m
2∏
i=1

2(lη(i,1) − 1)Ilη(i,1)=lη(i,2) .

(4.16)

This completes the proof. �
Proof of part ii) We now give a proof of part ii) of Proposition 4.1. Recall that dn = pn−qn

2 .
We have

Cn,k(G) =

(
1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

(xi0,i1 − p̂n) . . . (xik−1i0 − p̂n)

=

(
1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

(xi0,i1 − pi0,i1 + pi0,i1 − p̂n) . . . (xik−1i0 − pik−1,ik + pik−1,ik − p̂n)

=

(
1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

(xi0,i1 − pi0,i1 + σi0σi1dn) . . . (xik−1i0 − pik−1,ik + σik−1
σikdn)

=

(
1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

(xi0,i1 − pi0,i1) . . . (xik−1i0 − pik−1,ik) + dkn

k−1∏
j=0

σijσij+1

+Vn,k

(4.17)

where pi,j = pn if σi = σj and qn otherwise. Here Vn,k is obtained by taking the sum of
all the remaining terms in the expansion of(

1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

(xi0,i1 − pi0,i1 + σi0σi1dn) . . . (xik−1i0 − pik−1,ik + σik−1
σikdn)

apart from (
1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

(xi0,i1 − pi0,i1) . . . (xik−1i0 − pik−1,ik)

and (
1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

dkn

k−1∏
j=0

σijσij+1 .

At first we prove that
k−1∏
j=0

σijσij+1
= 1 (4.18)

irrespective of the values of σi’s. The proof of this is straight forward since i0 = ik we
have

k−1∏
j=0

σijσij+1
=

k−1∏
j=0

σ2
j = 1.
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As dn =
√

cnp̂n
2n , we have(

1

np̂n(1− p̂n)

) k
2 ∑
i0,i1,...,ik−1

dkn = (1 + o(1))
dknn

k

(np̂n(1− p̂n))
k
2

= (1 + o(1))

(√
cn

2(1− p̂n)

)k
.

This explains the mean term. The proof of asymptotic normality and independence of

Dn,k(G) :=

(
1

np̂n(1− p̂n)

) k
2

 ∑
i0,i1,...,ik−1

(xi0,i1 − pi0,i1) . . . (xik−1i0 − pik−1,ik)


is exactly same as part i). We only note that here the variance is also 2k. To see this, we
have

dn =

√
cnp̂n
2n

and whenever, k = o(log(p̂nn)) both

lim
n→∞

(
(p̂n + dn)(1− p̂n − dn)

p̂n(1− p̂n)

) k
2

= 1 (4.19)

and

lim
n→∞

(
(p̂n − dn)(1− p̂n + dn)

p̂n(1− p̂n)

) k
2

= 1. (4.20)

It is easy to see that Var
(
Dn,k(G)√

2k

)
lies between the left hand side of ( 4.19) and (4.20).

As a consequence, Var
(
Dn,k(G)√

2k

)
→ 1.

It is easy to observe that E [Vn,k] is always 0. Now our final task is to prove Var(Vn,k)→
0. This will prove that Vn,k

p→ 0 and the proof will be completed.
Let us fix a word w and let ∅ ( Ef ( Ew be any subset. Then

Vn,k =
∑
w

Vn,k,w

where

Vn,k,w :=

(
1

np̂n(1− p̂n)

) k
2 ∑
∅(Ef(Ew

∏
e∈Ef

σedn
∏

e∈E\Ef

(xe − pe).

Here for any edge i, j, xe = xi,j , pe = pi,j and σe = σiσj . Now

Var(Vn,k) =
∑
w,x

Cov(Vn,k,w, Vn,k,x).

We now find an upper bound of Cov(Vn,k,w, Vn,k,x).
At first fix any word w and the set ∅ ( Ef ( Ew and consider all the words x such

that Ew ∩ Ex = Ew\Ef . As every edge in Gw and Gx appear exactly once,

Cov(Vn,k,w, Vn,k,x) =
∑

Ew\E′⊂Ew\Ef

(
1

np̂n(1− p̂n)

)k ∏
e∈E′

(±d2
n) E

∏
e∈Ew\E′

(xe − pe)2

=
∑

Ew\E′⊂Ew\Ef

(
1

np̂n(1− p̂n)

)k
(±d2#E′

n )(1 + o(1)) (p̂n(1− p̂n))
k−#E′

≤
∑

Ew\E′⊂Ew\Ef

(1 + o(1))

(
1

np̂n(1− p̂n)

)k (cn
2

)#E′
(
p̂n
n

)#E′

p̂k−#E′

n

≤ (C)k
1

nk+#Ef

(4.21)
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where C is some known constant. The last inequality holds since #E′ ≥ #Ef and
#(Ew\E′ ⊂ Ew\Ef ) ≤ 2k.

Observe that the graph corresponding to the edges Ew\Ef is a disjoint collection of
straight lines. Let the number of such straight lines be ζ. Obviously ζ ≤ #(Ew\Ef ). The
number of ways these ζ components can be placed in x is bounded by kζ ≤ k#(Ew\Ef )

and all other nodes in x can be chosen freely. So there are at most nk−#VEw\Ef k#(Ew\Ef )

choices of such x. Here VEw\Ef is the set of vertices of the graph corresponding to
(Ew\Ef ). Observe that, whenever k > #Ef > 0, Ew\Ef is a forest so

#VEw\Ef ≥ #(Ew\Ef ) + 1⇔ k −#VEw\Ef ≤ #Ef − 1.

As a consequence,∑
x | Ew∩Ex=Ew\Ef

Cov(Vn,k,w, Vn,k,x) ≤ (C)k
1

nk+#Ef
n#Ef−1k#(Ew\Ef ) ≤ (C)k

1

nk+1
kk.

(4.22)
The right hand side of (4.22) does not depend on Ef and there are at most 2k nonempty
subsets Ef of Ew. So ∑

x

Cov(Vn,k,w, Vn,k,x) ≤ (2C)kkk
1

nk+1
.

Finally there are at most nk many w. So∑
w

∑
x

Cov(Vn,k,w, Vn,k,x) ≤ (2C)kkk
1

n
. (4.23)

Now we use the fact k = o(
√

log(n)). In this case

k log(2C) + k log(k) ≤
√
log(n) log(

√
log n) = o(log(n))⇔ (2C)kkk = o(n).

This concludes the proof. �

5 Calculation of second moment and completion of the proof of
Theorem 2.1

With Propositions 3.4 and 4.1 in hand the rest of the proof of Theorem 2.1 should be

very straight forward. We at first prove that limn→∞E
(
dPn
dP′n

)2

is the right hand side of

(3.1) with t = c
2(1−p) whenever an

n → p ∈ [0, 1).

Lemma 5.1. Let Yn := dPn
dP′n

. Whenever pn → p ∈ [0, 1), we have

EP′n [Y 2
n ]→ exp

{
− t

2
− t2

4

}
1√

1− t
, t =

c

2(1− p)
< 1.

Proof. The proof of Lemma 5.1 is similar to the proof of Lemma 5.4. in Mossel et al. [27].
The notations used in this proof are slightly different from that of Lemma 5.4 in Mossel
et al. [27] for understanding case when p is not necessarily 0.

At first we introduce some notations. Given a labeled graph (G, σ) we define

Wuv = Wuv(G, σ) =


pn
p̂n

if σuσv = 1 and (u, v) ∈ E
qn
p̂n

if σuσv = −1 and (u, v) ∈ E
1−pn
1−p̂n if σuσv = 1 and (u, v) /∈ E
1−qn
1−p̂n if σuσv = −1 and (u, v) /∈ E

(5.1)
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and define Vuv by the same formula, but with σ replaced by τ . Now

Yn =
1

2n

∑
σ∈{1,−1}n

∏
(u,v)

Wuv

and

Y 2
n =

1

22n

∑
σ,τ

∏
(u,v)

WuvVuv.

Since {Wuv} are independent given σ, it follows that

EP′n(Y 2
n ) =

1

22n

∑
σ,τ

∏
(u,v)

EP′n (WuvVuv) .

Now we consider the following cases:

1. σuσv = 1 and τuτv = 1.

2. σuσv = −1 and τuτv = −1.

3. σuσv = 1 and τuτv = −1.

4. σuσv = −1 and τuτv = 1.

Let t = c
2(1−p) . We at first calculate EP′n(WuvVuv) for cases 1 and 3.

Case 1:

EP′n(WuvVuv) =

(
pn
p̂n

)2

p̂n +

(
1− pn
1− p̂n

)2

(1− p̂n).

=
p2
n

p̂n
+

(1− pn)2

1− p̂n

=
(p̂n + dn)2

p̂n
+

(1− p̂n − dn)2

1− p̂n

= 1 + d2
n(

1

p̂n
+

1

1− p̂n
) = 1 +

d2
n

p̂n(1− p̂n)
= 1 +

cn
2n(1− p̂n)

= 1 +
tn
n

(5.2)

where dn = pn−qn
2 and tn = cn

2(1−p̂n) = (1 + o(1))t as before.
Case 3:

EP′n(WuvVuv) =

(
pn
p̂n
· qn
p̂n

)
p̂n +

(
1− pn
1− p̂n

· 1− qn
1− p̂n

)
(1− p̂n).

=
pnqn
p̂n

+
(1− pn)(1− qn)

1− p̂n

=
(p̂n + dn)(p̂n − dn)

p̂n
+

(1− p̂n − dn)(1− p̂n + dn)

1− p̂n

= 1− d2
n(

1

p̂n
+

1

1− p̂n
) = 1− d2

n

p̂n(1− p̂n)
= 1− tn

n

(5.3)

It is easy to observe that EP′n(WuvVuv) = 1 + tn
n and 1 − tn

n for Case 2 and Case 4

respectively.
We now introduce another parameter ρ = ρ(σ, τ) = 1

n

∑
i σiτi. Let S± be the number

of {u, v} such that σuσvτuτv = ±1 respectively. It is easy to observe that

ρ2 =
1

n
+

2

n2
(S+ − S−) (5.4)
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and

1− 1

n
=

2

n2
(S+ + S−). (5.5)

So

S+ = (1 + ρ2)
n2

4
− n

2
, S− = (1− ρ2)

n2

4
. (5.6)

Now

EP′n(Y 2
n ) =

1

22n

∑
σ,τ

(
1 +

tn
n

)S+
(

1− tn
n

)S−

=
1

22n

∑
σ,τ

(
1 +

tn
n

)(1+ρ2)n
2

4 −
n
2
(

1− tn
n

)(1−ρ2)n
2

4

.

(5.7)

Observe that tn = (1 + o(1))t is a bounded sequence. It is easy to check by taking
logarithm and Taylor expansion that for any bounded sequence xn,(

1 +
xn
n

)n2

= (1 + o(1)) exp

{
nxn −

1

2
x2
n

}
.

So we can write the right hand side of (5.7) as

(1 + o(1))
1

22n

∑
σ,τ

e−
tn
2 exp

[(
ntn −

t2n
2

)(
1 + ρ2

4

)]
× exp

[(
−ntn −

t2n
2

)(
1− ρ2

4

)]

=(1 + o(1))
1

22n

∑
σ,τ

e−
tn
2 −

t2n
4 exp

[
ntnρ

2

2

]

=(1 + o(1))e−
tn
2 −

t2n
4

1

22n

∑
σ,τ

exp

[
(1 + o(1))tnρ2

2

]
(5.8)

From Lemma 5.5 in Mossel et al. [27]

1

22n

∑
σ,τ

exp

[
(1 + o(1))ntρ2

2

]
→ 1√

1− t
.

So the right hand side of (5.8) converges to

exp

{
− t

2
− t2

4

}
1√

1− t

as required.

Proof of Theorem 2.1:
Proof of part i) We take Xn,i = Cn,i(G).

At first observe that when pn → p ∈ [0, 1) for any fixed i, µi :=

(√
cn

2(1−p̂n)

)i
converges

to

(√
c

2(1−p)

)i
as n→∞.

From Proposition 4.1 and Lemma 4.1 we see that Cn,i(G)’s satisfy all the required
conditions for Proposition 3.4. Hence Pn and P′n are mutually contiguous.

It is easy to see that the estimate d̂n := 1
n−1

∑
i 6=j xi,j has mean an+bn

2 and variance

O(an+bn
n ). So

d̂n −
an + bn

2
= op(

√
an + bn) = op(an − bn)
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Suppose under Pn there exist estimators An of an and Bn of bn such that

|An − an|+ |Bn − bn| = op(an − bn).

Then 2(d̂n −Bn)− (an − bn) = op(an − bn) i.e.

2(d̂n −Bn)

an − bn
|Pn

P→ 1.

However, from the fact that Pn and P′n are mutually contiguous we also have

2(d̂n −Bn)

an − bn
|P′n

P→ 1

which is impossible.
Proof of part ii) It is easy to observe that Pn and P′n are asymptotically singular as for
any kn →∞, µkn√

2kn
→∞. Now we construct estimators for an and bn. Let us define

f̂n,kn =

{ (√
2knCn,kn(G)

) 1
kn if Cn,kn(G) > 0

0 otherwise.

It is easy to see that under Pn f̂n,kn
P→
√

c
2(1−p) as kn → ∞. We have seen earlier that

under Pn

d̂n − (an+bn)
2√

an + bn

P→ 0⇒
d̂n − (an+bn)

2

an + bn

P→ 0⇒

√
d̂n

an+bn
2

P→ 1.

⇒
√
d̂n −

√
an + bn

2
= op(

√
an + bn) = op(an − bn)

(5.9)

As p̂n → p, √
d̂n(1− p̂n)
an+bn

2 (1− p)
P→ 1.

So √
d̂n(1− p̂n)−

√
an + bn

2
(1− p) = op(an − bn) ∀ p ∈ [0, 1).

So
√
d̂n(1− p̂n)f̂n,kn − an−bn

2 = op(an − bn) under Pn. As a consequence, the estimators

Â = d̂n +

√
d̂n(1− p̂n)f̂n,kn and B̂ = d̂n −

√
d̂n(1− p̂n)f̂n,kn have the required property.

This concludes the proof. �
We end the discussion of this section by the following remark on the computation of

the signed cycles.

Remark 5.1. In general the direct computation of the random variables Cn,k(G)’s take
at least O(nk) amount of time. So it might appear that the statistics Cn,k(G)’s are not
useful for any practical purpose. Fortunately, this is not the case. It was proved in
Banerjee and Ma(2017) [7] that whenever k is odd, the difference between Cn,k(G) and∑n
i=1 Pk(λi) converges in probability to 0 for any k = o

(
min(log(p̂nn),

√
log(n))

)
. Here

{λi}1≤i≤n are the eigenvalues of the centered adjacency matrix of the graph and Pk(·) is
the Chebyshev polynomial of degree k (look at (2.7)-(2.8) in Banerjee and Ma(2017) [7]
for definition). The case when k is even is more complicated. In this case one can prove

Cn,2k(G)−
∑n
i=1 P2k(λi)−E2k

P→ 0 where E2k is an additional error term. One can prove
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that Var [E2k] converges to 0 and find the asymptotic value of E[E2k] explicitly under
additional growth conditions on p̂n. As a consequence, the signed cycles of growing
orders can be computed by the spectral decomposition of the centered adjacency matrix
of the graph. It is well known that this has O(n3 log(n)) time complexity. One might
check Banerjee and Ma(2017) [7] for details.

6 Proof of non reconstructability

In this section we provide a proof of the non-reconstruction results stated in Theorem
2.2. Our proof technique relies on fine analysis of conditional probabilities. Technically,
this proof is closely related to the non-reconstruction proof in section 6.2 of Banks et
al. [8] rather than the original proof given in Mossel et al. [27]. At first we prove one
Proposition and one Lemma which will be crucial for our proof.

Proposition 6.1. Suppose an, bn → ∞, ann → p ∈ [0, 1), cn → c and c < 2(1 − p). Then

for any fixed r and any two configurations (σ
(1)
1 , . . . , σ

(1)
r ), (σ

(2)
1 , . . . , σ

(2)
r )

TV
(
Pn(G|(σ(1)

1 , . . . , σ(1)
r )),Pn(G|(σ(2)

1 , . . . , σ(2)
r ))

)
= o(1)

Here TV(µ1, µ2) is the total variation distance between two probability measures µ1 and
µ2.

Proof. We know that

TV
(
Pn(G|σ(1)

u u ∈ [r]),Pn(G|σ(2)
u u ∈ [r])

)
=
∑
G

∣∣∣(Pn(G|σ(1)
u u ∈ [r])− Pn(G|σ(2)

u u ∈ [r])
∣∣∣

=
∑
G

∣∣∣(Pn(G|σ(1)
u u ∈ [r])− Pn(G|σ(2)

u u ∈ [r])
∣∣∣ √P′n(G)√

P′n(G)

≤

(∑
G

P′n(G)

) 1
2

∑
G

(
Pn(G|σ(1)

u u ∈ [r])− Pn(G|σ(2)
u u ∈ [r]

)2

P′n(G)


1
2

=

(∑
G

(∑
σ̃ Pn(σ̃)

(
Pn(G|σ(1), σ̃)− Pn(G|σ(2), σ̃

))2
P′n(G)

) 1
2

.

(6.1)

Here σ(1) :=
{

(σ
(1)
1 , . . . , σ

(1)
r

}
, σ(2) :=

{
(σ

(2)
1 , . . . , σ

(2)
r )
}

and σ̃ is any configuration on

{r + 1, . . . , n}.
Now observe that(∑

σ̃

Pn(σ̃)
(
Pn(G|σ(1), σ̃)− Pn(G|σ(2), σ̃

))2

=
∑
σ̃,τ̃

Pn(σ̃)Pn(τ̃)
(
Pn(G|σ(1), σ̃)Pn(G|σ(1), τ̃) + Pn(G|σ(2), σ̃)Pn(G|σ(2), τ̃)

−Pn(G|σ(1), σ̃)Pn(G|σ(2), τ̃)− Pn(G|σ(2), σ̃)Pn(G|σ(1), τ̃)
)
.

(6.2)

We shall prove that the value of∑
G

∑
σ̃,τ̃

Pn(σ̃)Pn(τ̃)
Pn(G|σ(1), σ̃)Pn(G|σ(2), τ̃)

P′n(G)
(6.3)
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does not depend on σ(1) and σ(2) upto o(1) terms. This will prove that the final expression
in (6.1) goes to 0. As a consequence, the proof of Proposition 6.1 will be complete.

At first we recall the definition of Wuv(G, σ) from (5.1). It is easy to observe that∑
G

∑
σ̃,τ̃

Pn(σ̃)Pn(τ̃)
(
Pn(G|σ(1), σ̃)Pn(G|σ(2), τ̃)

)
P′n(G)

=
∑
σ̃,τ̃

1

22(n−r)

∑
G

(∏
uv

W (G, σ(1), σ̃)W (G, σ(2), τ̃)

)
P′n(G)

=
1

22(n−r)

∑
σ̃,τ̃

∏
u,v

EP′n(W (G, σ(1), σ̃)W (G, σ(2), τ̃)).

(6.4)

Observe that the sum in the final expression of (6.4) is taken over (σ̃, τ̃) so the configura-
tions in σ(1) and σ(2) remain unchanged.

Now let us introduce the following parameters

ρfix :=
1

r

r∑
i=1

σ
(1)
i σ

(2)
i

Sfix
± :=

∑
u,v∈[r]

I{σ(1)
u σ

(1)
v σ

(2)
u σ

(2)
v =±1}

(6.5)

where IA denotes the indicator variable corresponding to set A. We similarly define

ρ(σ̃, τ̃) :=
1

n− r

n∑
i=r+1

σ̃iτ̃i

S±(σ̃, τ̃) :=
∑

u,v/∈[r]

I{σ̃uσ̃v τ̃uτ̃v=±1}.
(6.6)

Finally for each u ∈ [r] define

Su,±(σ̃, τ̃) = #{v /∈ [r] : σ̃v τ̃v = ±σ(1)
u σ(2)

u }. (6.7)

By using arguments similar to the proof of Lemma 5.1 one can show that the right hand
side of the final expression of (6.4) further simplifies to

=

(
1 +

tn
n

)Sfix
+
(

1− tn
n

)Sfix
− 1

22(n−r)

∑
σ̃,τ̃

(
1 +

tn
n

)S+(σ̃,τ̃)(
1− tn

n

)S−(σ̃,τ̃)

×

∏
u∈[r]

(
1 +

tn
n

)Su,+(σ̃,τ̃)(
1− tn

n

)Su,−(σ̃,τ̃)

=

(
1 +

tn
n

)Sfix
+
(

1− tn
n

)Sfix
− 1

22(n−r)

∑
σ̃,τ̃

(
1 +

tn
n

)(1+ρ(σ̃,τ̃)2) (n−r)2
4 −n−r2

×

(
1− tn

n

)(1−ρ(σ̃,τ̃)2) (n−r)2
4 ∏

u∈[r]

(
1 +

tn
n

)nSu,+(σ̃,τ̃)

n
(

1− tn
n

)nSu,−(σ̃,τ̃)

n

.

(6.8)

It is easy to see that for any fixed u ∈ [r] and σ
(1)
u , σ(2)

u when σ̃ and τ̃ are chosen

independently and uniformly over {±1} for each vertex v /∈ [r], both Su,±(σ̃,τ̃)
n

a.s.→ 1
2 . On

the other hand |Su,±| ≤ n. So both the quantities

∏
u∈[r]

(
1 +

tn
n

)nSu,+(σ̃,τ̃)

n
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and ∏
u∈[r]

(
1− tn

n

)nSu,−(σ̃,τ̃)

n

are uniformly bounded over σ̃, τ̃ and converge almost surely to exp
(
tr
2

)
and exp

(
− tr2

)
under uniform independent assignment.

Now Sfix
+ and Sfix

− are both bounded by r2 also tn = (1 + o(1))t. So

(
1 +

tn
n

)Sfix
+
(

1− tn
n

)Sfix
−

= (1 + o(1)).

On the other hand one can repeat the arguments in the proof of Lemma 5.1 to conclude
that

∑
σ̃,τ̃

(
1 +

tn
n

)(1+ρ(σ̃,τ̃)2) (n−r)2
4 −n−r2

(
1− tn

n

)(1−ρ(σ̃,τ̃)2) (n−r)2
4

→ 1√
1− t

exp

{
− t

2
− t2

4

}
.

Combining all the arguments one gets the first expression in (6.8) converges to

1√
1− t

exp

{
− t

2
− t2

4

}
exp

(
tr

2

)
exp

(
− tr

2

)
=

1√
1− t

exp

{
− t

2
− t2

4

}
.

As a result∑
G

∑
σ̃,τ̃

Pn(σ̃)Pn(τ̃)
Pn(G|σ(1), σ̃)Pn(G|σ(2), τ̃)

P′n(G)
= (1 + o(1))

1√
1− t

exp

{
− t

2
− t2

4

}

irrespective of the value of σ(1) and σ(2). So the final expression in (6.1) goes to 0. Hence
the proof is complete.

We now prove the following easy consequence of Proposition 6.1 which states that
the posterior distribution of a single label is essentially unchanged if we know a bounded
number of other labels.

Lemma 6.1. Suppose S is a set of finite cardinality r, u /∈ S be a fixed node and π gives
probability 1

2 to both ±1. Then under the conditions of Proposition 6.1

E [TV(Pn(σu|G, σS), π)|σS ] = o(1).

Proof. Observe that Pn(σu = i) = π(i) from the model assumption. So

E [TV(Pn(σu|G, σS), π)|σS ]

=
∑
G

∑
i=±1

|Pn (σu = i|G, σS)− Pn(σu = i)|Pn(G|σS)

=
∑
i=±1

Pn(σu = i)
∑
G

∣∣∣∣Pn (σu = i|G, σS)

Pn(σu = i)
− 1

∣∣∣∣Pn(G|σS)

=
∑
i=±1

Pn(σu = i)
∑
G

∣∣∣∣Pn (σu = i ∩G ∩ σS)Pn(σS)

Pn(σu = i ∩ σS)Pn(G ∩ σS)
− 1

∣∣∣∣Pn(G|σS)

=
∑
i=±1

Pn(σu = i)
∑
G

∣∣∣∣Pn(G|σS , σu = i)

Pn(G|σS)
− 1

∣∣∣∣Pn(G|σS)

(6.9)
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Observe that

Pn(G|σS) =
1

2
(Pn(G|σS , σu = 1) + Pn(G|σS , σu = −1)) .

As a consequence, the final expression of the right hand side of (6.9) becomes

1

2

∑
i=±1

Pn(σu = i)TV (Pn(G|σS , σu = i),Pn(G|σS , σu = −i)) .

So the proof is complete by applying Proposition 6.1.

With Proposition 6.1 and Lemma 6.1 in hand, we now give a proof of Theorem 2.2.

Proof of Theorem 2.2:
Let σ̂ be any estimate of the labeling of the nodes, σ be the true labeling and f : {1, 2} →
{±1} be the function such that f(1) = 1 and f(2) = −1.

It is elementary to check that

1

2
ov(σ, σ̂) =

1

n

[
N11 +N22 −

1

n
(N1·N·1)− 1

n
(N2·N·2)

]
. (6.10)

Here

Nij =
∣∣σ−1{f(i)} ∩ σ̂−1{f(j)}

∣∣
Ni· =

∣∣σ−1{f(i)}
∣∣

N·j =
∣∣σ̂−1{f(j)}

∣∣ . (6.11)

So it is sufficient to prove that

1

n2
EPn

[
Nii −

1

n
Ni·N·i

]2

=
1

n2
EPn

[
N2
ii −

2

n
NiiNi·N·i +

1

n2
N2
i·N

2
·i

]
→ 0 i ∈ {1, 2}.

Now

EPn
[
N2
ii

]
= EPn

[∑
u,v

I{σu=f(i)}I{σv=f(i)}I{σ̂u=f(i)}I{σ̂v=f(i)}

]

= EPn

[
E

[∑
u,v

I{σu=f(i)}I{σv=f(i)}I{σ̂u=f(i)}I{σ̂v=f(i)}

]
|G

]

= EPn

[
E

[∑
u,v

I{σu=f(i)}I{σv=f(i)}

]
I{σ̂u=f(i)}I{σ̂v=f(i)} |G

] (6.12)

The last step follows from the fact that σ̂ is a function of G. Now

E
[
I{σu=f(i)}I{σv=f(i)}|G

]
= E

[
I{σu=f(i)}|G, σv = f(i)

]
Pn (σv = f(i)|G)

= (π(f(i)) + o(1))Pn(G|σv = f(i))
Pn(σv = f(i))

Pn(G)

= (π2(f(i)) + o(1))
Pn(G|σv = f(i))

Pn(G)
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Here the second step follows from Lemma 6.1. Now,∣∣∣∣∣EPn
[

E
∑
u,v

(
I{σu=f(i)}I{σv=f(i)} − π2(f(i))

)
I{σ̂u=f(i)}I{σ̂v=f(i)} |G

]∣∣∣∣∣
≤ EPn

[∑
u,v

∣∣E [(I{σu=f(i)}I{σv=f(i)} − π2(f(i))
)
I{σ̂u=f(i)}I{σ̂v=f(i)} |G

]∣∣]

= EPn

[∑
u,v

∣∣∣∣π2(f(i))I{σ̂u=f(i)}I{σ̂v=f(i)}

(
Pn(G|σv = f(i))

Pn(G)
− 1

)
+ o(1)

∣∣∣∣
]

≤
∑
u,v

∑
G

|Pn(G|σv = f(i))− Pn(G)|+ o(n2)

= o(n2).

(6.13)

Here the last step follows from Proposition 6.1.
So we have

EPn
[
N2
ii

]
=
∑
u,v

EPn
[
π2(f(i))I{σ̂u=f(i)}I{σ̂v=f(i)}

]
+ o(n2) (6.14)

Similar calculations will prove that

EPn [NiiNi·N·i] = n
∑
u,v

EPn
[
π2(f(i))I{σ̂u=f(i)}I{σ̂v=f(i)}

]
+ o(n3) (6.15)

and
EPn

[
N2
i·N

2
·i
]

= n2
∑
u,v

EPn
[
π2(f(i))I{σ̂u=f(i)}I{σ̂v=f(i)}

]
+ o(n4). (6.16)

Plugging in these estimates we have

1

n2
EPn

[
Nii −

1

n
Ni·N·i

]2

= o(1).

This completes the proof. �
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7 Appendix

7.1 More general words and their equivalence classes

Here we only give a very brief description about the combinatorial aspects of random
matrix theory required to prove Lemma 4.3. For more general information one should
look at Chapter 1 of Anderson et al. [5] and Anderson and Zeiouni [4]. The definitions in
this section have been taken from Anderson et al. [5] and Anderson and Zeitouni [4].

Definition 7.1. (S words) Given a set S, an S letter s is simply an element of S. An S
word w is a finite sequence of letters s1 . . . sn, at least one letter long. An S word w is
closed if its first and last letters are the same. Two S words w1, w2 are called equivalent,
denoted w1 ∼ w2, if there is a bijection on S that maps one into the other.

When S = {1, . . . , N} for some finite N , we use the term N word. Otherwise, if the
set S is clear from the context, we refer to an S word simply as a word.

For any word w = s1 . . . sk, we use l(w) = k to denote the length of w, define the
weight wt(w) as the number of distinct elements of the set s1, . . . , sk and the support of
w, denoted by supp(w), as the set of letters appearing in w. With any word w we may
associate an undirected graph, with wt(w) vertices and l(w)−− 1 edges, as follows.

Definition 7.2. (Graph associated with a word) Given a word w = s1 . . . sk, we let
Gw = (Vw, Ew) be the graph with set of vertices Vw = supp(w) and (undirected) edges
Ew = {{si, si + 1}, i = 1, . . . , k − 1}.

The graph Gw is connected since the word w defines a path connecting all the vertices
of Gw, which further starts and terminates at the same vertex if the word is closed. For
e ∈ Ew, we use Nw

e to denote the number of times this path traverses the edge e (in any
direction). We note that equivalent words generate the same graphs Gw (up to graph
isomorphism) and the same passage-counts Nw

e .

Definition 7.3. (sentences and corresponding graphs) A sentence a = [wi]
n
i=1 =

[[αi,j ]
l(wi)
j=1 ]ni=1 is an ordered collection of n words of length (l(w1), . . . , l(wn)) respectively.

We define the graph Ga = (Va, Ea) to be the graph with

Va = supp(a), Ea = {{αi,j , αi,j+1}|i = 1, . . . , n; j = 1, . . . , l(wi)− 1}} .

Definition 7.4. (weak CLT sentences) A sentence a = [wi]
n
i=1 is called a weak CLT

sentence. If the following conditions are true:

1. All the words wi’s are closed.

2. Jointly the words wi visit edge of Ga at least twice.

3. For each i ∈ {1, . . . , n}, there is another j 6= i ∈ {1, . . . , n} such that Gwi and Gwj
have at least one edge in common.

Note that these definitions are consistent with the ones given in Section 4. However,
in Section 4, we defined these only for some specific cases required to solve the problem.

In order to prove Lemma 4.3, we require the following result from Anderson et al.
[5].
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Lemma 7.1. (Lemma 2.1.23 in Anderson et al. [5]) Let Wk,t denote the equivalence
classes corresponding to all closed words w of length k+ 1 with wt(w) = t such that each
edge in Gw have been traversed at least twice. Then for k > 2t− 2,

#Wk,t ≤ 2kk3(k−2t+2).

Assuming Lemma 7.1 we now prove Lemma 4.3.
Proof of Lemma 4.3: Let a = [wi]

m
i=1 be a weak CLT sentence such that Ga have C(a)

many connected components. At first we introduce a partition η(a) in the following way.
We put i and j in same block of η(a) if Gwi and Gwj share an edge. At first we fix such a
partition η and consider all the sentences such that η(a) = η. Let C(η) be the number of
blocks in η. It is easy to observe that for any a with η(a) = η, we have C(η) = C(a). From
now on we denote C(η) by C for convenience.

Let a be any weak CLT sentence such that η(a) = η. We now propose an algorithm
to embed a into C ordered closed words (W1, . . . ,WC) such that the equivalence class of
each Wi belongs toWLi,ti for some numbers Li and ti.

A similar type of argument can be found in Claim 3 of the proof of Theorem 2.2 in
Banerjee and Bose(2017) [6].
An embedding algorithm: Let B1, . . . , BC be the blocks of the partition η ordered in
the following way. Let mi = min{j : j ∈ Bi} and we order the blocks Bi such that
m1 < m2 . . . < mC. Given a partition η this ordering is unique. Let

Bi = {i(1) < i(2) < . . . < i(l(Bi))}.

Here l(Bi) denotes the number of elements in Bi.
For each Bi we embed the sentence ai = [wi(j)]1≤j≤l(Bi) into Wi sequentially in the

following manner.

1. Let S1 = {i(1)} and w1 = wi(1).

2. For each 1 ≤ c ≤ l(Bi)− 1 we perform the following.

• Consider wc = (α1,c, . . . , αl(wc),c) and Sc ⊂ Bi. Let ne ∈ Bi\Sc be the minimum
index such that the following two conditions hold.

(a) Gwc and Gwne shares at least one edge e = {ακ1,c, ακ1+1,c}.
(b) κ1 is minimum among all such choices.

• Let wne = (β1,c, . . . , βl(wne),c) and {βκ2,c, βκ2+1,c} be the first time e appears in
wne. As {βκ2,c, βκ2+1,c} = {ακ1,c, ακ1+1,c}, ακ1,c is either equal to βκ2,c or βκ2,c.
Let κ3 ∈ {κ2, κ2 + 1} such that ακ1,c = βκ3,c. If βκ2,c = βκ2+1,c, then we simply
take κ3 = κ2.

• We now generate wc+1 in the following way

wc+1 = (α1,c, . . . , ακ1,c, βκ3+1,c, . . . , βl(wne),c, β2,c, . . . , βκ3,c, ακ1+1,c, . . . , αl(wc),c).

Let ãc := (wc, wne). It is easy to observe by induction that all wc’s are closed
words and so are all the wne’s. Also all the edges in the graph Gãc are
preserved along with their passage counts in Gwc+1 .

• Generate Sc+1 = Sc ∪ {ne}.

3. Return Wi = wl(Bi).

In the preceding algorithm we have actually defined a function f which maps any weak
CLT sentence a into C ordered closed words (W1, . . . ,WC) such that the equivalence
class of each Wi belongs to WLi,ti for some numbers Li and ti. Observe that given
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two words w1 and w2, application of step 2 gives rise to a closed word w3 where
l(w3) = l(w1) + l(w2)− 1. So

Li =
∑
j∈Bi

l(wj)− (l(Bi)− 1) <
∑
j∈Bi

l(wj).

⇒ Li + 1 ≤
∑
j∈Bi

l(wj)

⇒ Li + 1− 2ti ≤
∑
j∈Bi

l(wj)− 2ti.

(7.1)

Unfortunately f is not an injective map. So given (W1, . . . ,WC) we find an upper bound
to the cardinality of the following set

f−1(W1, . . . ,WC) := {a|f(a) = (W1, . . . ,WC)}

We have argued earlier C is the number of blocks in η. However, in general (W1, . . . ,WC)

does neither specify the partition η nor the order in which the words are concatenated
with in each block Bi of η. So we fix a partition η with C many blocks and an order of
concatenation O. Observe that

O = (σ1(η), . . . , σC(η))

where for each i, σi(η) is a permutation of the elements in Bi. Now we give an uniform
upper bound to the cardinality of the following set

f−1
η,O(W1, . . . ,WC) := {a|η(a) = η ;O(a) = O &f(a) = (W1, . . . ,WC)} .

According to the algorithm any word Wi is formed by recursively applying step 2 to
(wc, wne) for 1 ≤ c ≤ l(Bi). Given a word w3 = (α1, . . . , αl(w3)), we want to find out the
number of two word sentences (w1,w2) such that applying step 2 of the algorithm on
(w1,w2) gives w3 as an output. This is equivalent to choose three positions i1 < i2 < i3
from the set {1, . . . , l(w3)} such that αi1 = αi3 . Once these three positions are chosen,
(w1,w2) can be constructed uniquely in the following manner

w1 = (α1, . . . , αi1 , αi3+1, . . . , αl(w3))

w2 = (αi2 , . . . , αi3 , αi1+1, . . . , αi2).

Total number of choices i1 < i2 < i3 is bounded by l(w3)3 ≤ (
∑m
i=1 l(wi))

3
. For each

block Bi, step 2 of the algorithm has been used l(Bi) many times. So

f−1
η,O(W1, . . . ,WC) ≤

(
m∑
i=1

l(wi)

)3
∑C
i=1 l(Bi)

=

(
m∑
i=1

l(wi)

)3m

.

On the other hand, there are at most mm many η’s and for each η there are at most∏C
i=1 l(Bi)! ≤ mm choices of O. So

f−1(W1, . . . ,WC) ≤ m2m

(
m∑
i=1

l(wi)

)3m

≤

(
D1

m∑
i=1

l(wi)

)D2m

(7.2)

for some known constants D1 and D2. Now we fix the sequence (Li, ti) and find an
upper bound to the number of (W1, . . . ,WC). From Lemma 7.1 we know the number of
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choices of Wi is bounded by 2Li−1(Li − 1)Li−2ti+1nti . So the total number of choices for
(W1, . . . ,WC) is bounded by

2
∑C
i=1 Li

C∏
i=1

(Li − 1)3(Li−2ti+1)nti ≤ 2
∑m
i=1 l(wi)nt

(
m∑
i=1

l(wi)

)3(
∑m
i=1 l(wi)−2t)

. (7.3)

Now the number of choices (Li, ti) such that
∑C
i=1 Li =

∑m
i=1 l(wi)−

∑C
i=1(l(Bi)− 1) and∑C

i=1 ti = t are bounded by

(∑m
i=1 l(wi)−

∑C
i=1(l(Bi)− 1)− 1

C − 1

)(
t− 1

C − 1

)
≤
(∑m

i=1 l(wi)− 1

C − 1

)(
t− 1

C − 1

)
≤

(
m∑
i=1

l(wi)

)2m

.

(7.4)
Here the inequality follows since C ≤ m and t <

∑m
i=1

l(wi)−1
2 . Finally we using the fact

that 1 ≤ C ≤ m and combining (7.2), (7.3) and (7.4) we finally have

#A ≤

(
D1

m∑
i=1

l(wi)

)D2m

× 2
∑m
i=1 l(wi)nt

(
m∑
i=1

l(wi)

)3(
∑m
i=1 l(wi)−2t)

×

(
m∑
i=1

l(wi)

)2m

⇒#A ≤ 2
∑
i l(wi)

(
C1

∑
i

l(wi)

)C2m(∑
i

l(wi)

)3(
∑
i l(wi)−2t)

nt

(7.5)

as required. �
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